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Abstract. In this paper we propose efficient two-round k-out-of-n oblivious trans-
fer schemes, in which R sends O(k) messages to S, and S sends O(n) messages
back to R. The computation cost of R and S is reasonable. The choices of R
are unconditionally secure. For the basic scheme, the secrecy of unchosen mes-
sages is guaranteed if the Decisional Diffie-Hellman problem is hard. When k = 1,
our basic scheme is as efficient as the most efficient 1-out-of-n oblivious transfer
scheme. Our schemes have the nice property of universal parameters, that is each
pair of R and S need neither hold any secret key nor perform any prior setup
(initialization). The system parameters can be used by all senders and receivers
without any trapdoor specification. Our k-out-of-n oblivious transfer schemes are
the most efficient ones in terms of the communication cost, in both rounds and
the number of messages.
Moreover, one of our schemes can be extended in a straightforward way to an adap-
tive k-out-of-n oblivious transfer scheme, which allows the receiver R to choose
the messages one by one adaptively. In our adaptive-query scheme, S sends O(n)
messages to R in one round in the commitment phase. For each query of R, only
O(1) messages are exchanged and O(1) operations are performed. In fact, the
number k of queries need not be pre-fixed or known beforehand. This makes our
scheme highly flexible.
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1 Introduction

Oblivious transfer (OT) is an important primitive used in many cryptographic
protocols [GV87,Kil88]. An oblivious transfer protocol involves two parties, the
sender S and the receiver R. S has some messages and R wants to obtain some
of them via interaction with S. The security requirement is that S wants R to
obtain the message of his choice only and R does not want S to know what he
chooses. The original OT was proposed by Rabin [Rab81], in which S sends a
message to R, and R gets the message with probability 0.5. On the other hand, S
does not know whether R gets the message or not. Even, et al. [EGL85] suggested
a more general scheme, called 1-out-of-2 OT (OT1

2). In this scheme, S has two
messages m1 and m2, and would like R to obtain exactly one of them. In addition,



S remains oblivious to R’s choice. Brassard, et al. [BCR86] further extended OT1
2

to 1-out-of-n OT (OT1
n) for the case of n messages.

Oblivious transfer has been studied extensively and in many flavors. Most of
them consider the case that R chooses one message. In this paper we are concerned
about the case that R chooses many messages at the same time. A k-out-of-n OT
(OTk

n) scheme is an OT scheme in which R chooses k messages at the same
time, where k < n. A straightforward solution for OTk

n is to run OT1
n k times

independently. However, this needs k times the cost of OT1
n. The communication

cost is two-round, O(k) messages from R to S, and O(kn) messages from S to R
even using the most efficient OT1

n schemes [NP01,Tze02].

Oblivious transfer with adaptive queries (Adpt-OT) allows R to query the
messages one by one adaptively [NP99a]. For the setting, S first commits the
messages to R in the commitment phase. Then, in the transfer phase, R makes
queries of the messages one by one. The cost is considered for the commitment
and transfer phases, respectively. It seems that the adaptive case implies the non-
adaptive case. But, the non-adaptive one converted from an adaptive one usually
needs more rounds (combining the commitment and transfer phases), for example,
the scheme in [OK04]. Since our scheme needs no trapdoors, there is no entailed
cost due to conversion. Adaptive OTk

n is natural and has many applications, such
as oblivious search, oblivious database queries, private information retrieval, etc.

In this paper we propose efficient two-round OTk
n schemes, in which R sends

O(k) messages to S, and S sends O(n) messages back to R. The computation cost
of R and S is reasonable. The choices of R are unconditionally secure. For the
basic scheme, the secrecy of unchosen messages is guaranteed if the Decisional
Diffie-Hellman (DDH) problem is hard. When k = 1, our scheme is as efficient as
the one in [Tze02]. Our schemes have the nice property of universal parameters,
that is, each pair of R and S need neither hold any secret key nor perform any
prior setup (initialization). The system parameters can be used by all senders
and receivers without any trapdoor specification. Our OTk

n schemes are the most
efficient one in terms of the communication cost, either in rounds or the number
of messages.

Moreover, one of our schemes can be extended in a straightforward way to an
Adpt-OTk

n scheme. In our adaptive-query scheme, S sends O(n) messages to R in
one round in the commitment phase. For each query of R, only O(1) messages are
exchanged and O(1) operations are performed. In fact, the number k of queries
need not be fixed or known beforehand. This makes our scheme highly flexible.

1.1 Previous work and comparison

Rabin [Rab81] introduced the notion of OT and presented an implementation
to obliviously transfer one-bit message, based on quadratic roots modulo a com-
posite. Even, Goldreich and Lempel [EGL85] proposed an extension of bit-OT1

2,
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in which m1 and m2 are only one-bit. Brassard, Crépeau and Robert [BCR86]
proposed OT1

n soon after in the name ”all-or-nothing disclosure of secrets” (AN-
DOS). After that, OT1

n has become an important research topic in cryptographic
protocol design. Some OT1

n schemes are built by invoking basis OT1
2 several

times [BCR87,BCS96,NP99b], and the others are constructed directly from basic
cryptographic techniques [SS90,NR94,Ste98,NP01,Tze02]. Some OT1

n schemes de-
rived from computational private information retrieval (CPIR) have polylogarith-
mic communication cost [Lip04]. Nevertheless, the privacy of the receiver’s choice
is computationally secure. Besides, there are various oblivious transfer schemes
developed in different models and applications, such as OT in the bounded
storage model [CCM98,Din01], distributed OT [NP00,BDSS02], Quantum OT
[BBCS91,CZ03], and so on. Lipmaa [Lip] provided a good collection of these
works.

For OTk
n, Bellare and Micali [BM89] proposed an OTn−1

n scheme. Naor and
Pinkas [NP99b] proposed a non-trivial OTk

n scheme. The scheme invokes a ba-
sis OT1

2 scheme O(wk log n) times, where w > log δ/ log(k4/
√

n) and δ is the
probability that R can obtain more than k messages. The scheme works only for
k ≤ n1/4. After then, they also took notice of adaptive queries and provided some
Adpt-OTk

n schemes [NP99a]. In one scheme (the two-dimensional one), each query
needs invoke the basis OT1√

n
scheme twice, in which each invocation of OT1√

n

needs O(
√

n) initialization work. In another scheme, each adaptive query of mes-
sages need invoke the basis OT2

1 protocol log n times. Mu, Zhang, and Varadhara-
jan [MZV02] presented some efficient OTk

n schemes1. These schemes are designed
from cryptographic functions directly. The most efficient one is a non-interactive
one. To be compared fairly, the setup phase of establishing shared key pairs of a
public-key cryptosystem should be included. Thus, the scheme is two-round and
R and S send each other O(n) messages. However, the choices of R cannot be
made adaptive since R’s choices are sent to S first and the message commitments
are dependent on the choices. Recently, Ogata and Kurosawa [OK04] proposed
an efficient adaptive OT scheme based on the RSA cryptosystem. Each S needs
a trapdoor (the RSA modulus) specific to him. The scheme is as efficient as our
Adpt-OTk

n scheme. But, if the adaptive OT scheme is converted to a non-adaptive
one, it needs 3 rounds (In the first round, S sends the modulus N to R).

Ishai, Kilian, Nissim and Petrank [IKNP03] proposed some efficient protocols
for extending a small number of OT’s to a large number of OT’s. Chen and Zhu
[CZ03] provided an OTk

n in the quantum computation model. We won’t compare
these schemes with ours since they are in different categories.

In Table 1 we summarize the comparison of our, Mu, Zheng, and Varad-
harajan’s, and Naor and Pinkas’s OTk

n schemes. In Table 2 we summarize the
comparison of our and Naor and Pinkas’s Adpt-OTk

n schemes.

1 Yao, Bao, and Deng [YBD03] pointed out some security issues in [MZV02].
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Ours (this paper) Mu, et al. [MZV02] Naor, et al. [NP99b]

rounds 2 2 O(wk log n)

messages (R → S) O(k) O(n) O(wk log n))

messages (S → R) O(n) O(n) O(n + wk log n)

universal parameters Yes Yes No (need setup)

made to adaptiveness Yes (OTk
n-II) No Yes

Table 1. Comparison of OTk
n schemes in communication cost.

Ours 2-dimensional one, OTk
n,

(this paper) Naor, et al. [NP99a] Ogata, et al.[OK04]

commitment rounds 1 1 1
phase messages O(n) O(n) O(n)

transfer rounds 2 3* 2
phase messages O(1) O(

√
n)** O(1)

* Two invocations of OT1√
n in parallel.

** Use the most round-efficient OT1√
n scheme as the basis.

Table 2. Comparison of Adpt-OTk
n schemes in communication cost.

2 Preliminaries

Involved parties. The involved parties of an OT scheme is the sender and receiver.
Both are polynomial-time-bounded probabilistic Turing machines (PPTM). A
party is semi-honest (or passive) if it does not deviate from the steps defined in
the protocol, but tries to compute extra information from received messages. A
party is malicious (or active) if it can deviate from the specified steps in any way
in order to get extra information.

A malicious sender may cheat in order or content of his possessed messages.
To prevent the cheat, we can require the sender to commit the messages in a
bulletin board. When the sender sends the encrypted messages to the receiver
during execution of an OT scheme, he need tag a zero-knowledge proof of show-
ing equality of committed messages and encrypted messages. However, in most
applications, the sender just follows the protocol faithfully. Therefore, we consider
the semi-honest sender only and the semi-honest/malicious receiver.

Indistinguishability. Two probability ensembles {Xi} and {Yi}, indexed by i,
are (computationally) indistinguishable if for any PPTM D, polynomial p(n) and
sufficiently large i, it holds that

|Pr[D(Xi) = 1] − Pr[D(Yi) = 1]| ≤ 1/p(i).

Correctness of a protocol. An OT scheme is correct if the receiver obtains the
messages of his choices when the sender with the messages and the receiver with
the choices follow the steps of the scheme.
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Security model. Assume that S holds n messages m1, m2, . . . , mn and R’s k
choices are σ1, σ2, . . . , σk. Note that only semi-honest sender is considered. We
say that two sets C and C ′ are different if there is x in C, but not in C ′, or vice
versa. An OTk

n scheme with security against a semi-honest receiver should meet
following requirements:

1. Receiver’s privacy - indistinguishability: for any two different sets of choices
C = {σ1, σ2, . . . , σk} and C ′ = {σ′

1, σ
′
2, . . . , σ

′
k}, the transcripts, corresponding

to C and C ′, received by the sender are indistinguishable. If the received
messages of S for C and C ′ are identically distributed, the choices of R are
unconditionally secure.

2. Sender’s security - indistinguishability: for any choice set C = {σ1, σ2, . . . , σk},
the unchosen messages should be indistinguishable from the random ones.

An OTk
n scheme with security against a malicious receiver should meet fol-

lowing requirements:

1. Receiver’s privacy - indistinguishability: the same as the case of the semi-
honest receiver.

2. Sender’s security - compared with the Ideal model: in the Ideal model, the
sender sends all messages and the receiver sends his choices to the trusted
third party (TTP). TTP then sends the chosen messages to the receiver. This
is the securest way to implement the OTk

n scheme. The receiver R cannot
obtain extra information from the sender S in the Ideal model. We say that
the sender’s security is achieved if for any receiver R in the real OTk

n scheme,
there is another PPTM R′ (called simulator) in the Ideal model such that the
outputs of R and R′ are indistinguishable.

Computational model. Let Gq be a subgroup of Z∗
p with prime order q, and p =

2q+1 is also prime. Let g be a generator of Gq. We usually denote gx mod p as gx,
where x ∈ Zq. Let x ∈R X denote that x is chosen uniformly and independently
from the set X.

Security assumptions. For our OTk
n schemes against semi-honest and malicious

receiver, we assume the hardness of Decisional Diffie-Hellman (DDH) problem and
Chosen-Target Computational Diffie-Hellman (CT-CDH) problem, respectively.

Assumption 1 (Decisional Diffie-Hellman (DDH)) Let p = 2q + 1 where

p, q are two primes, and Gq be the subgroup of Z∗
p with order q. The following

two distribution ensembles are computationally indistinguishable:

– Y1 = {(g, ga, gb, gab)}Gq , where g is a generator of Gq, and a, b ∈R Zq.

– Y2 = {(g, ga, gb, gc)}Gq , where g is a generator of Gq, and a, b, c ∈R Zq.

For the scheme against malicious receiver, we use the assumption introduced
by Boldyreva [Bol03], which is analogous to the chosen-target RSA inversion
assumption defined by Bellare, et al. [BNPS01]
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– System parameters: (g, h, Gq);
– S has messages: m1, m2, . . . , mn;
– R’s choices: σ1, σ2, . . . , σk;

1. R chooses two polynomials f(x) = a0 + a1x + · · · + ak−1x
k−1 + xk and f ′(x) =

b0 + b1x + · · ·+ bk−1x
k−1 + xk where a0, a1, . . . , ak−1 ∈R Zq and b0 + b1x + · · ·+

bk−1x
k−1 + xk ≡ (x − σ1)(x − σ2) · · · (x − σk) mod q.

2. R −→ S : A0 = ga0hb0 , A1 = ga1hb1 , . . . , Ak−1 = gak−1hbk−1 .

3. S computes ci = (gki , miB
ki
i ) where ki ∈R Z∗

q and Bi = gf(i)hf ′(i) =

A0A
i
1 · · ·A

ik−1

k−1 (gh)ik

mod p, for i = 1, 2, . . . , n.
4. S −→ R: c1, c2, . . . , cn.
5. Let ci = (Ui, Vi), R computes mσi

= Vσi
/U

f(σi)
σi

mod p for each σi.

Fig. 1. OTk
n-I: k-out-of-n OT against semi-honest receiver

Assumption 2 (Chosen-Target Computational Diffie-Hellman (CT-CDH))
Let Gq be a group of prime order q, g be a generator of Gq, x ∈R Z∗

q . Let

H1 : {0, 1}∗ → Gq be a cryptographic hash function. The adversary A is given

input (q, g, gx, H1) and two oracles: target oracle TG(·) that returns a random el-

ement wi ∈ Gq at the i-th query and helper oracle HG(·) that returns (·)x. Let qT

and qH be the number of queries A made to the target oracle and helper oracle

respectively. The probability that A outputs k pairs ((v1, j1), (v2, j2), . . . , (vk, jk)),
where vi = (wji

)x for i ∈ {1, 2, . . . , k}, qH < k ≤ qT , is negligible.

3 k-out-of-n OT schemes

We first present a basic OTk
n scheme for the semi-honest receiver in the standard

model. Then, we modify the scheme to be secure against the malicious receiver
in the random oracle model. Due to the random oracle model, the second scheme
is more efficient in computation.

3.1 k-out-of-n OT against semi-honest receiver

The sender S has n secret messages m1, m2, . . . , mn. Without loss of generality,
we assume that the message space is Gq, that is, all messages are in Gq. The
semi-honest receiver R wants to get mσ1 , mσ2 , . . . , mσk

. The protocol OTk
n-I with

security against the semi-honest receiver is depicted in Figure 1.

For system parameters, let g, h be two generators of Gq where logg h is un-
known to all, and Gq be the group with some descriptions. These parameters can
be used repeatedly by all possible senders and receivers as long as the value logg h
is not revealed. Therefore, (g, h, Gq) are universal parameters.

The receiver R first constructs a k-degree polynomial f ′(x) such that f ′(i) = 0
if and only if i ∈ {σ1, . . . , σk}. Then R chooses another random k-degree polyno-
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mial f(x) to mask the chosen polynomial f ′(x). The masked choices A0, A1, . . . , Ak−1

are sent to the sender S.
When S receives these queries, he first computes Bi = gf(i)hf ′(i) by computing

A0A
i
1 · · ·Aik−1

k−1 (gh)ik mod p. Because of the random polynomial f(x), S does not
know which f ′(i) is equal to zero, for i = 1, 2, . . . , n. Then S treats Bi as the
public key and encrypts each message mi by the ElGamal cryptosystem. The
encrypted messages c1, c2, . . . , cn are sent to R.

For each ci, i ∈ {σ1, σ2, . . . , σk}, since Bi = gf(i)hf ′(i) = gf(i)h0 = gf(i), R
can get these messages by the decryption of ElGamal cryptosystem with secret
key f(i). If i /∈ {σ1, σ2, . . . , σk}, since R can not compute (gf(i)hf ′(i))ki with the
knowledge of gki and f(i), f ′(i) only, the message mi is unknown to R.

Correctness. Let ci = (Ui, Vi), we can check that the chosen messages mσi
,

i = 1, 2, . . . , k, are computed as

Vσi
/Uf(σi)

σi
= mσi

· (gf(σi)hf ′(σi))kσi /gkσi
f(σi)

= mσi
· (gf(σi) · 1)kσi /gkσi

f(σi)

= mσi
.

Security analysis. We now prove the security of OTk
n-I.

Theorem 1. For scheme OTk
n-I, R’s choices are unconditionally secure.

Proof. For every tuple (b′0, b
′
1, . . . , b

′
k−1) representing the choices σ′

1, σ
′
2, . . . , σ

′
k,

there is a tuple (a′0, a
′
1, . . . , a

′
k−1) that satisfies Ai = ga′

ihb′i for i = 0, 1, . . . , k − 1.
Thus, the receiver R’s choices are unconditionally secure.

✷

Theorem 2. Scheme OTk
n-I meets the sender’s security requirement. That is, by

the DDH assumption, if R is semi-honest, he gets no information about messages

mi, i /∈ {σ1, σ2, . . . , σk}.

Proof. We show that for all i /∈ {σ1, σ2, . . . , σk}, ci’s look random if the DDH
assumption holds. First, we define the random variable for the unchosen messages

C = (g, h, (gki1 , mi1(g
f(i1)hf ′(i1))ki1 ), . . . , (gkin−k , min−k

(gf(in−k)hf ′(in−k))kin−k )),

where ki1 , ki2 , . . . , kin−k
∈R Z∗

q . Since the polynomial f(x) and f ′(x) are chosen
by the receiver, and f ′(i1), . . . , f

′(in−k) 6= 0, we can simplify C as

C ′ = (g, h, (gki1 , hki1 ), . . . , (gkin−k , hkin−k ))

Since the indistinguishability is preserved under multiple samples, we just need
to show that if the following two distributions

– C̃ = (g, h, gr, hr), where h 6= 1, r ∈R Z∗
q
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– X̃ = (g, h, x1, x2), where h 6= 1, x1, x2 ∈R Gq

are distinguishable by a polynomial-time distinguisher D, we can construct an-
other polynomial-time machine D′, which takes D as a sub-routine, to solve the
DDH problem:
Machine D′

Input: (g, u, v, w) (either from Y1 or Y2 in DDH)
Output: D(g, u, v, w)

If D distinguishes C̃ and X̃ with non-negligible advantage ε (Should be ǫ(n, t),
we omit the security parameter n and t here for simplicity, where t is the se-
curity parameter.), D′ distinguishes Y1, Y2 in the DDH problem with at least
non-negligible advantage ε−2/q, where dist(C̃, Y1) = 1/q and dist(X̃, Y2) = 1/q.

✷

Complexity. The scheme uses two rounds (steps 2 and 4), the first round
sends k +1 messages and the second round sends 2n messages. For computation,
R computes 3k + 2 and S computes (k + 2)n modular exponentiations.

3.2 k-out-of-n OT against malicious receiver

A malicious player may not follow the protocol dutifully. For example, in scheme
OTk

n-I, a malicious R might send some special form of Ai’s in step 2 such that he
is able to get extra information, such as the linear combination of two messages
(even though we don’t know how to do such attack). So, we present another
scheme OTk

n-II that is provable secure against the malicious R. The scheme is
depicted in Figure 2.

Let Gq be the subgroup of Z∗
p with prime order q, g be a generator of Gq,

and p = 2q + 1 is also prime. Let H1 : {0, 1}∗ → Gq, H2 : Gq → {0, 1}l be two
collision-resistant hash functions. Let messages be of l-bit length. Assume that
CT-CDH is hard under Gq.

Correctness. We can check that the chosen messages mσj
, j = 1, 2, . . . , k, are

computed as

cσj
⊕ H2(Kj) = mσj

⊕ H2(w
x
σj

) ⊕ H2(w
x
σj

)

= mσj
.

Security analysis. We need the random oracle model in this security analysis.

Theorem 3. In OTk
n-II, R’s choice meets the receiver’s privacy.

Proof. For any Aj = wjg
aj and wl, l 6= j, there is an a′l that satisfies Aj = wlg

a′
l .

For S, Aj can be a masked value of any index. Thus, the receiver’s choices are
unconditionally secure.

✷
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– System parameters: (g, H1, H2, Gq);
– S has messages: m1, m2, . . . , mn;
– R’s choices: σ1, σ2, . . . , σk;

1. R computes wσj
= H1(σj) and Aj = wσj

gaj , where aj ∈R Z∗
q and j = 1, 2, . . . , k.

2. R −→ S: A1, A2, . . . , Ak.
3. S computes y = gx, Dj = (Aj)

x, wi = H1(i), and ci = mi ⊕ H2(w
x
i ), where

x ∈R Z∗
q , i = 1, 2, . . . , n, and j = 1, 2, . . . , k.

4. S −→ R: y, D1, D2, . . . , Dk, c1, c2, . . . , cn

5. R computes Kj = Dj/yaj and gets mσj
= cσj

⊕ H2(Kj) for j = 1, 2, . . . , k.

Fig. 2. OTk
n-II: k-out-of-n OT against malicious receiver

Theorem 4. Even if R is malicious, the scheme OTk
n-II meets the requirement

for the sender’s security assuming hardness of the CT-CDH problem the random

oracle model.

Proof. Since we treat H2 as a random oracle, the malicious R has to know Ki =
wx

i in order to query the hash oracle to get H2(w
x
i ). For each possible malicious

R, we construct a simulator R∗ in the Ideal model such that the outputs of R
and R∗ are indistinguishable.

R∗ works as follows:

1. R∗ simulates R to obtain A∗
1, A

∗
2, . . . , A

∗
k. When R queries H1 on index i, we

return a random w∗
i (consistent with the previous queries.)

2. R∗ simulates S (externally without knowing mi’s) on inputs A∗
1, A∗

2, . . . , A∗
k

to obtain x∗, y∗, D∗
1, D

∗
2, . . . , D

∗
k.

3. R∗ randomly chooses c∗1, c
∗
2, . . . , c

∗
n.

4. R∗ simulates R on input (y∗, D∗
1, D

∗
2, . . . , D

∗
k, c

∗
1, c

∗
2, . . . , c

∗
n) and monitors the

queries closely. If R queries H2 on some vj = (w∗
j )

x∗
, R∗ sends j to the TTP

T to obtain mj and returns c∗j ⊕mj as the hash value H2((w
∗
j )

x∗
), otherwise,

returns a random value (consistent with previous queries).
5. Output (A∗

1, A
∗
2, . . . , A

∗
k, y

∗, D∗
1, D

∗
2, . . . , D

∗
k, c

∗
1, c

∗
2 . . . , c∗n).

If R obtains k+1 decryption keys, R∗ does not know which k indices are really
chosen by R. The simulation would fail. Therefore we show that R can obtain at
most k decryption keys by assuming the hardness of chosen-target CDH problem:
In the above simulation, if R queries H1, we return a random value output by the
target oracle. When R∗ simulates S on input A∗

1, A
∗
2, . . . , A

∗
k, we forward these

queries to the helper oracle, and return the corresponding outputs. Finally, if
R queries H2 on legal vji

for all 1 ≤ i ≤ k + 1, we can output k + 1 pairs
(vji

, ji), which contradicts to the CT-CDH assumption. Thus, R obtains at most
k decryption keys.

Let σ1, σ2, . . . , σk be the k choices of R. For the queried legal vσj
’s, cσj

is con-

sistent with the returned hash values, for j = 1, 2, . . . , k. Since no other (w∗
l )

x∗
,
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– System parameters: (g, H1, H2, Gq);
– S has messages: m1, m2, . . . , mn;
– R’s choices: σ1, σ2, . . . , σk;

Commitment Phase

1. S computes ci = mi ⊕ H2(w
x
i ) for i = 1, 2, . . . , n, and y = gx where wi = H1(i),

and x ∈R Z∗
q .

2. S −→ R : y, c1, c2, . . . , cn.

Transfer Phase

For each σj , j = 1, 2, . . . , k, R and S execute the following steps:

1. R chooses a random aj ∈ Z∗
q and computes wσj

= H1(σj), Aj = wσj
gaj .

2. R −→ S : Aj .
3. S −→ R : Dj = (Aj)

x.
4. R computes Kj = Dj/yaj and gets mσj

= cσj
⊕ H2(Kj).

Fig. 3. Adpt-OTk
n: Adaptive OTk

n

l 6= σ1, σ2, . . . , σk, can be queried to the H2 hash oracle, cl has the right dis-
tribution (due to the random oracle model). Thus, the output distribution is
indistinguishable from that of R.

✷

Complexity. OTk
n-II has two rounds. The first round sends k messages and

the second round sends n + k + 1 messages. For computation, R computes 2k,
and S computes n + k + 1 modular exponentiations.

4 k-out-of-n OT with adaptive queries

The queries of R in our schemes can be adaptive. In our schemes, the commit-
ments ci’s of the messages mi’s of S to R are independent of the key masking.
Therefore, our scheme is adaptive in nature. Our Adpt-OTk

n scheme, which re-
phrases the OTk

n-II scheme, is depicted in Figure 3.

The protocol consists of two phases: the commitment phase and the transfer
phase. The sender S first commits the messages in the commitment phase. In
the transfer phase, for each query, R sends the query Aj to S and obtains the
corresponding key to decrypt the commitment cj .

Correctness of the scheme follows that of OTk
n-II.

Security analysis. The security proofs are almost the same as those for OTk
n-II.

We omit them here.

Complexity. In the commitment phase, S needs n+1 modular exponentiations
for computing the commitments ci’s and y. In the transfer phase, R needs 2
modular exponentiations for computing the query and the chosen message. S
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needs one modular exponentiation for answering each R’s query. The commitment
phase is one-round and the transfer phase is two-round for each adaptive query.

5 Conclusion

We have presented two very efficient OTk
n schemes against semi-honest receivers

in the standard model and malicious receivers in the random oracle model. Our
schemes possess other interesting features, such as, it can be non-interactive and
needs no prior setup or trapdoor. We also proposed an efficient Adpt-OTk

n for
adaptive queries. The essential feature allowing this is the reversal of the orders
of key commitment and message commitment. In most previous schemes (includ-
ing OTk

n-I), the key commitments (for encrypting the chosen messages) are sent
to S first. The message commitments are dependent on the key commitments.
Nevertheless, in our scheme OTk

n-II the message commitments are independent
of the key commitment. Thus, the message commitments can be sent to R first.

References

[BBCS91] Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Marie-Hélène Sku-
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