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Abstract. Transitive signature, motivated by signing vertices and edges
of a dynamically growing, transitively closed graph, was first proposed
by Micali and Rivest. The general designing paradigm proposed there
involved a underlying standard signature scheme, which is required to
be existentially unforgeable against adaptive chosen message attacks.
We show that the requirement for the underlying signature is not nec-
essarily so strong, instead non-adaptive security is enough to guarantee
the transitive signature scheme secure in the strongest sense, i.e, tran-
sitively unforgeable under adaptive chosen message attack (defined by
Bellare and Neven). We give a general proof of such transitive signature
schemes, and also propose a specific transitive signature scheme based on
factoring and strong-RSA. Hence the choice of standard signatures that
can be employed by transitive signature schemes is enlarged. The effi-
ciency of transitive signature schemes may be improved since efficiency
and security are trade-off parameters for standard signature schemes.
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1 Introduction

The concept of transitive signature was first proposed by Micali and Rivest in
[1]; it is used to sign vertices and edges of a dynamically growing, transitively
closed graph. Transitively closed graph has the property of including any edge
if there is a path between its two vertices.

A transitive signature has the following properties: (1) given the signatures
of two adjacent edges (i, j) and (j, k), anyone can easily derive the signature
of edge (i, k); (2) it should be hard for an adversary to forge valid signature of
an edge outside the transitive closure of the graph, and of a new vertex outside
the graph, even after the adversary has adaptively queried about signatures of
a number of vertices and edges of its choice.

Both [1] and [2] adopt the following paradigm to construct transitive sig-
natures: (1) Signer publishes representation value L(i) of a node with index i
by a trapdoor one-way function applied to the secret value l(i) of node i, i.e.,
L(i) = f(l(i)). (2) Signer generates the signature σi of (i, L(i)) using a standard
signature scheme, (i, L(i), σi) is called certificate of the node i. Signer generates



and publishes the certificate of another node j in the same way. (3) Then Signer
generates the signature δij of the edge (i, j) either by division (δij = l(i)l(j)−1),
or addition (δij = l(i)− l(j)), so that transitive feature remains (δik = δijδ

−1
jk or

δik = δij + δjk). The resulting transitive signature of an edge includes two node
certificates and a signature of the edge ((i, L(i), σi), (j, L(j), σj), δij).

The security of transitive signatures constructed by the paradigm above de-
pends on the security of the underlying standard signature and the trapdoor
one-way function. In [1], the trapdoor one-way function used is f(x, y) = gxhy,
so the security is based on discrete logarithm problem. In [2], the trapdoor one-
way functions adopted are modulo square and RSA function, so the security is
based on factoring problem and RSA assumption respectively. In all the schemes,
the underlying standard signatures are required existentially unforgeable against
adaptive chosen message attack, which is the strongest security notion in [3].

Our contribution: We examined the security proof of such transitive sig-
nature in detail rather than viewing the standard signature as a black box, and
found that the security requirement of the underlying standard signature is too
strong in the transitive signature scenario. It is enough to have a standard signa-
ture that is existentially unforgeable against non-adaptive chosen message attack
for the transitive signature to be secure against adaptive chosen message attack.
Hence the choice of standard signature is enlarged since there are more standard
signatures that are provably secure against non-adaptive chosen message attack
than that against adaptive attack. As an example, we adopted such a standard
signature scheme which is more efficient than most of the strongly provably
secure signatures, such as Cramer-Shoup’s scheme[4], Fischlin’s scheme [5]; the
resulting transitive signature is provably secure against adaptive chosen message
attack based on factoring and strong RSA assumption in standard model.

Organization of this paper: We give some definitions needed in section 2.
In section 3 we describe our general transitive signature scheme and its proof.
Then we present a specific transitive signature in detail in section 4. Section 5
is the conclusion.

2 Notations and Definitions

In this section, we give some notations and definitions that will be used in the
paper.

2.1 Notations

In the paper, we let a←A denote a is selected from the set A, a
R
←−A denote a is

selected uniform randomly from set A.

Let a←b (b is an element) denote a is assigned the value of b.

Let a←A denote a is assigned the value of the output of algorithm A.

|a| denotes the binary bit length of a, |H(·)| denotes the binary bit length of
the output value of function H.



2.2 Definitions

Definition 1. Transitive Closure of a Graph[1]. Transitive closure of a
graph G = (V,E) is the graph G∗ = (V,E∗), such that an edge (i, j) ∈ E∗ if
and only if there is a path from i to j. If G = G∗, then we call the graph G is
transitively closed. Here we only consider undirected graph.

Definition 2. Transitive Signature Scheme[2]. A transitive signature scheme
TS = (TKG, TSgign, TV f,Comp) is determined by the following four polyno-
mial time algorithms:

1. TKG (key generation): a probabilistic algorithm, with security parameter as
input, returns a pair of public key and secret key (tpk, tsk).

2. TSign (signing): a probabilistic algorithm, takes input tsk, and nodes i, j,
returns the signature δij of edge (i, j).

3. TVf (verification): a deterministic algorithm, given tpk, nodes i, j, and a
candidate signature δ, verify if δ is a valid signature of (i, j), returns 1 if so,
otherwise returns 0.

4. Comp (composition): a deterministic algorithm, given tpk, and nodes i, j, k,
and corresponding signatures δij,δjk, returns a value δik which should be
valid signature of edge (i, k), or returns failure if (i, k) /∈ E∗.

Definition 3. Security of Transitive Signature Scheme[2]. Let (V,E∗)
denotes a transitive closure of graph G = (V,E). A transitive signature scheme
TS = (TKG, TSign, TV f,Comp) is transitively unforgeable under adaptive cho-
sen message attack if for any adversary A with running time polynomial in k,
the following value Advtu−acma

TS is negligible:

Advtu−acma
TS,A = P[Exptu−acma

TS,A (k) = 1], (1)

where tu−acma denotes transitively unforgeable under adaptive chosen message
attack. Exptu−acma

TS,F (k) is an experiment defined as:

Experiment: Exptu−acma
TS,F (k)

(tpk, tsk)← TKG(1k)
(i′, j′, σ′)← ATSign(tsk,·,·)(tpk)
if TV f(i′, j′, σ′) 6= 1 then

return 0
else if (i′, j′ ∈ V ∧ (i′, j′) /∈ E∗) or (i′ /∈ V ∨ j′ /∈ V ) then

return 1
end if

(ATSign(tsk,·,·) denotes the output of A after A queried about Oracle TSign(tsk, ·, ·).)

In the following, we give some definitions needed in security proof of the stan-
dard signature employed by our proposed specific transitive signature scheme.

Definition 4. RSA Assumption[4].Given a randomly generated RSA modu-
lus n, a random z ∈ Z

∗
n, and r that satisfy certain requirement, it is hard to find

y ∈ Z
∗
n such that yr = z mod n.



Definition 5. Strong RSA Assumption[4]. Given a randomly generated RSA
modulus n, a random z ∈ Z

∗
n, it is hard to find r > 1 and y ∈ Z

∗
n such that

yr = z mod n.

Lemma 1. Given x, y ∈ Z
∗
n, and a, b ∈ Z, such that xa = yb mod n, gcd(a, b) =

1, x̃ ∈ Z
∗
n can be efficiently calculated such that x̃a = y mod n.

This lemma is very useful in proving the security of some signature schemes, as
the one in this paper.

3 General Scheme

The general transitive signature scheme we describe below also employs standard
signature scheme to generate certificates of the nodes, with the difference that
the standard signature here is only provable secure against chosen message attack
instead of adaptive attack as required in [2] and [1]. There are three types of
transitive signatures proposed so far, they are based on discrete logarithm [1],
factoring and RSA one-more-inversion [2] respectively. Here we construct our
general scheme based on factoring, but it can also work with the other two
trapdoor one-way functions.

3.1 Proposed General Scheme

We construct a transitive signature scheme TS as follows. We choose a standard
signature that is provable existentially unforgeable against chosen message at-
tack, denoted as SDS, with signing algorithm SDSsign, verification algorithm
SDSvrf . The four algorithms TKG, TSign, TV f,Comp are defined as follows:

– TKG: given input 1k, generates (pk, sk) of SDS, output tpk = (n, pk) and
tsk = (p, q, sk), where n is a RSA modulus with p, q as its prime factors.

– TSign: TSign maintains state (V, l, C), suppose Node is the set of integers
indexing all the the nodes in graph G, then V ⊂ Node represents queried
nodes; l consists of elements l(i) ∈ Z

∗
n, i ∈ Node, which are kept secret; C is

set of certificate of queried nodes, with the element Ci = (i, L(i), σi), where
i ∈ V , L(i) is the public representation of node i, σi is the signature of the
node i. At first, the initial state of (V, l, C) is empty. When invoked on inputs
(tsk, tpk, i, j), TSign does:

if j < i then

swap i, j
else if i /∈ V then

V ← V ∪ i; l(i)
R
←− Z

∗
n; calculates L(i) = l(i)2 mod n; calculates σi =

SDSsign(sk, i, L(i))
else if j /∈ V then

V ← V ∪ j; l(j)
R
←− Z

∗
n; calculate xj = l(j)2 mod n; calculates σj =

SDSsign(sk, j, L(j))



end if

set δij = l(i)l(j)−1 mod n, Ci = (i, L(i), σi), Cj = (j, L(j), σj).

The resulting transitive signature of edge (i, j) is (Ci, Cj , δij).
– TVf: given input (Ci, Cj , δij), parses Ci as (i, L(i), σi), Cj as (j, L(j), σj),

then check if Ci and Cj are valid according to the verification algorithm of
SDS (SDSvrf ), and if δ2

ij = L(i)L(j)−1 mod n.
– Comp: given valid transitive signatures (Ci, Cj , δij) and (Cj , Ck, δjk), sup-

pose i < j < k, if not so, we can swap the sequence of i, j, k. Calculates
δjk = δijδjk which can be verified by δ2

ik = L(i)L(j)−1 mod n.

3.2 Security Proof

We recall the security proof of standard signature schemes. For a standard sig-
nature scheme, an adversary is considered successful if it can figure out a valid
signature of a new message, after a number of queries about signatures of any
messages of its choice. In security proof of a standard signature scheme, we as-
sume such an adversary exists, then we construct a simulator of the signer; when
the adversary queries about the signature of a message, the simulator responses
a simulated signature that is valid in the view of the adversary; then after a num-
ber of queries, the adversary calculate a forgery signature of a new message that
has never been queried; if the simulator can utilize the forgery to solve some
hard problem that is considered unsolvable in polynomial time, the signature
scheme is provably secure.

For transitive signature schemes however, it is easy to find such adversaries,
because anyone can compose the signature of an edge in the transitive closure of
the graph. So here an adversary is considered successful only if it can figure out
a valid signature of an edge outside the transitive closure of the graph, or a valid
signature of a new node outside the graph, after it queries about signatures of
polynomial number of edges at its will.

Theorem 1. The above transitive signature TS is transitively unforgeable against
adaptive chosen message attack if the underlying standard signature SDS is ex-
istentially unforgeable against non-adaptive chosen message attack and factoring
is hard.

Proof. Let Sts denote the simulator of the above transitive signature TS, Ssds

denote the simulator of the employed standard signature SDS. Suppose a forger
of the transitive signature Fts is able to output a forgery signature with non-
negligible probability. We construct an adversary A to solve the factoring prob-
lem or break the underlying standard signature. First A invoke Sts as follows:
generates l(i) randomly from Z

∗
n, calculates L(i) = f(l(i)), i ∈ [1, Q] (Q is

the query number), invoke simulator Ssds, queries Ssds about signatures of
L(i), i∈[1, Q], after gets responses from Ssds, sets σi = Ssds(L(i)), then we get
Node, the set of (l(i), L(i), σi), i ∈ [1, Q]; invoke Fts:

reply Fts’s query of (i, j) as:
if i = j then



return failure
else if i /∈ V then

V ← V ∪ i
select an element randomly from Node, denote as Nodei, Node = Node−
{Nodei}

else if j /∈ V then

V ← V ∪ j
select an element randomly from Node, denote as Nodej , Node = Node−
{Nodej}

end if

if i < j then

set δij = l(i)l(j)−1 mod n
else if i > j then

set δji = l(j)l(i)−1 mod n
end if

return to Fts the value of ((i, L(i), σi), (j, L(j), σj), δij) as the queried signature
of edge (i, j).

Suppose Fts outputs an edge signature ((i′, L(i′), σi
′), (j′, L(j′), σj

′), δ′) from
the above query results it has got. The adversary A can do the following:

if i′, j′ ∈ V ∧ (i′, j′) /∈ E∗ then

Sts can factor n by knowing δ′ and δi′j′ = l(i′)l(j′)−1 mod n
else if i′ /∈ V or j′ /∈ V (let j′ /∈ V wlog) then

(L(j′), σj′) is a forgery message-signature pair of SDS, forward it to Ssds,
Ssds use it to solve the underlying problem

end if

By the similar argument as in the proof of [2], we obtain

Advtu−acma
TS = 2Advfac

MG + Advuf−cma
SDS , (2)

where Advuf−cma
SDS means the probability of forging a signature under chosen

message attacks, Advfac
MG means the probability of breaking the RSA modulus

generated by the modulus generator MG. ⊓⊔

Thus we prove that the above transitive signature is secure against adaptive
chosen message attack though the underlying standard signature is only secure
against non-adaptive chosen message attack. The reason is that the adaptive
queries from the adversary are not directly fed to the standard signature sim-
ulator Ssds, but intercepted by the transitive signature simulator Sts first, the
resulting queries of standard signatures are generated by Sts, which can be done
adaptively or non-adaptively.

Since the security requirement of the underlying signature is relaxed, there
are more signature schemes to choose from for a transitive signature, i.e., sig-
nature schemes secure against non-adaptive chosen message attack. Generally
these signature schemes are more efficient than the ones provable secure in the
strongest sense. In the following section, we provide such an efficient signature



scheme that provable secure under non-adaptive chosen message attack in stan-
dard model.

4 A Specific Transitive Signature Scheme

4.1 A Standard Signature Scheme

We first introduce a standard signature that is provable existentially unforge-
able against non-adaptive chosen message attack in standard model, and more
efficient than most known provable secure signature schemes against adaptive
chosen message attack, such as Cramer-Shoup’s scheme [4] and Fischlin’s scheme
[5]. This standard signature will be used to construct a specific transitive signa-
ture conforming to the general scheme described above.

Scheme 1 A standard signature scheme

– Key Generation: choose a RSA modulus n = pq, where p = 2p′ + 1, q =
q′ + 1, p′, q′ are primes; choose random x, h ∈ QRn, QRn denotes the
quadratic residue modulo n; choose a collision resistant hash function H :
{0, 1}∗→{0, 1}k; the public key is (n, h,H), secret key is (p, q, p′, q′).

– Signature Generation: to sign message m, choose a random (k+1) bit prime
e, calculate y from

ye = xhH(m) mod n

The signature of m is (e, y).
– Verification: to verify a putative message signature pair (m, e, y), first check

if e is an odd (k + 1) bits number, then check if ye = xhH(m) mod n.

This signature scheme can be proved secure against chosen message attack in
a way similar to Cramer-Shoup’s scheme[4], but its security against adaptive
attack remains unknown so far.

4.2 Security Proof under Non-adaptive Chosen Message Attack

Initialization: Given a modulus n without knowing its factors, and a random
z ∈ Z

∗
n, we want to find a pair (r, y) satisfying yr = z mod n. In non-adaptive

chosen message attack, the queries of chosen messages are done at one time.
Simulator S randomly chooses Q primes that are (k + 1) bits long: e1, e2, ..., eQ.
Suppose F output forgery message-signature pair (m, e, y). Then there are two
kinds of possible forgeries:

1. e 6= ek, for all k ∈ [1, Q]
2. e = et,∃t ∈ [1, Q]

S just guesses which kind of forgery will come out, then construct public keys
accordingly.
Case 1: e 6= ek, for all k ∈ [1, Q], we denote this event as E1.



Set h = z2
∏

k
ek , x = ha, a ∈R {1, ..., n2}. On queries of signatures for (m1,m2, ...,mQ)

from F , S does as follows:

yi = z2
∏

k 6=i
ek(a+H(m)) (3)

Return (ei, yi), i = 1, ..., Q to F .
F then outputs forgery message-signature pair (m, e, y). So

ye = xhH(m) mod n
= ha+H(m) mod n
= z2

∏
k

ek(a+H(m)) mod n

(4)

It is easy to prove that gcd(e, 2
∏

k ek(a + H(m))) = 1 with high probability,
so we can solve the strong RSA problem according to Lemma 1; otherwise, S
aborts.

Case 2: e = et,∃t ∈ [1, Q], we denote this event as E2.
In this case, S guesses t, and sets

h = z2
∏

k 6=t
ek

yt = w2
∏

k 6=t
ek , w ∈R Z

∗
n,

x = yt
eth−H(mt) mod n

(5)

On queries of signatures for (m1,m2, ...,mQ) from F , S does as follows:

if i = t then

σ(mi) = (et, yt)
else if i 6= t then

yi = w2
∏

k 6=i
ek · z2

∏
k 6=t,i

ek(H(mi)−H(mt))

σ(mi) = (ei, yi)
end if

Then we get the following two equations:

yt
et = xhH(mt) mod n
ye = xhH(m) mod n

(6)

S aborts if its guess is not right, else i.e., et = e, we get

(yty
−1)e = hH(mt)−H(m) mod n

= z2
∏

k 6=t
ek(H(mt)−H(m)) mod n

(7)

Because et is co-prime to 2
∏

k 6=t ek and the length |et| > |H(·)|, so

gcd(et, 2
∏

k 6=t

ek(H(mt)−H(m))) = 1,

then we can solve the strong RSA problem according to Lemma 1. ⊓⊔
But it is not sure whether this scheme has security proof against adaptive

chosen message attack so far. This scheme has simpler form than Cramer-Shoup’s



scheme [4] and Fischlin’s scheme [5], which means more efficiency in calculation.
In the following table, we give a simple compare of the efficiency between the
standard signatures mentioned. We compare the efficiency in terms of compu-
tations number, such as the computations of exponent (denoted as exp.), root
extraction (denoted as root extr.), and the resulting signature size.

Sign Verify Signature Size
Cramer-Shoup’s[4] 3 exp.,1 root extr. 4 exp. k + 2 log n
Fischlin’s[5] 2 exp.,1 root extr. 3 exp. 2k + log n
This Scheme 1 exp.,1 root extr. 2 exp. k + log n

By the table above, we do not mean to show that we have contributed a better
signature scheme, because they provide different security levels. The scheme
described has better efficiency because we only require it provably secure against
non-adaptive chosen message attack. What we show is that there really exists
such a standard signature that can be used in constructing provably secure
transitive signature schemes, by providing more efficiency.

In the following section we describe the specific transitive signature scheme
combined with the standard signature introduced here.

4.3 Transitive Signature Scheme

The transitive signature scheme is defined as follows:

– TKG: a probabilistic algorithm, given input 1k,1l output tpk = (n, x, h,H)
and tsk = (p, q), where n is a RSA modulus with p, q as its prime factors,

x, h
R
←− QRn, H : {0, 1}∗→{0, 1}k is a collision resistant hash function.

– TSign: TSign maintains state (V, l, C), where definition of V , l and C are the
same as in the proposed general scheme. Elements of l are kept secret. When
invoked on inputs (tsk, tpk, i, j), that is when asked to produce a signature
on edge (i, j), TSign does:

if j < i then

swap i, j
else if i /∈ V then

V ← V ∪ i; l(i)
R
←− Z

∗
n; calculate xi = l(i)2; select a (k + 1) bits prime

ei randomly, calculate yi ∈ Zn from yi
ei = xhH(xi) mod n;

else if j /∈ V then

V ← V ∪ j; l(j)
R
←− Z

∗
n; calculate xj = l(j)2; select a (k + 1) bits prime

ej randomly, calculate yj ∈ Zn from yj
ej = xhH(xj) mod n;

end if

set δij = l(i)l(j)−1 mod n, Ci = (i, ei, yi, xi), Cj = (j, ej , yj , xj).

The resulting transitive signature of edge (i, j) is (δij , Ci, Cj).
– TVf: given input (δij , Ci, Cj), parses Ci as (i, ei, yi, xi), Cj as (j, ej , yj , xj),

then does the following:

if j < i then



swap i, j
end if

if |ei| = |ej | = k + 1 and yi
ei = xhH(xi)mod and yj

ej = xhH(xj) mod n
and δ2

ij = xixj
−1 mod n then

returns 1
else

returns 0
end if

The verifier accepts the signature if return value of TVf is 1, rejects it if
returns 0.

– Comp: given valid transitive signatures (δij , Ci, Cj) and (δjk, Cj , Ck), sup-
pose i < j < k, if not so, we can swap the sequence of i, j, k. Calculates
δjk = δijδjk. The correctness of Comp can be verified by δ2

ik = xixk
−1 mod n.

The security proof can be done similarly to the proof of general scheme.
Compared with other transitive signature schemes that utilize a standard

signature to generate the node certificate, this scheme is more efficient, as men-
tioned in section 4.2.

There are also transitive signature schemes that avoid node certificate from
standard signature. As the schemes proposed in [2]: FBTS-2, RSATS-2. The
nodes are presented by the hash values of node index, which can be verified
publicly, hence avoid node certification, i.e., avoid employing another standard
signature scheme. They are even more efficient than our scheme. But they are
provable secure only in random oracle model so far, while the security proof of
our proposed scheme is done in standard model.

5 Conclusions

In this paper, we have pointed out that the underlying standard signature is not
necessary to be secure against adaptive chosen message attack for the transi-
tive signature scheme to be secure against adaptive attack, therefor the choice
of candidate standard signature is larger. In particular, we have constructed
a transitive signature scheme that is secure against adaptive attack, by utiliz-
ing a standard signature scheme that is efficient and provably secure against
non-adaptive chosen message attack while its security against adaptive attack is
unknown.
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