Side Channel Analysis for Reverse Engineering
(SCARE)

An Improved Attack Against
a Secret A3/A8 GSM Algorithm

Christophe Clavier

Gemplus S.A., Card Security Group
La Vigie, ZI Athélia IV, Avenue du Jujubier, F-13705 La Ciotat Cedex, France

christophe.clavier@gemplus.com — http://wuw.gemplus.com/smart/

Abstract. Side-channel analysis has been recognized for several years as
a practical and powerful means to reveal secret keys of [publicly known]
cryptographic algorithms. Only very recently this kind of cryptanalysis
has been applied to reverse engineer a non-trivial part of the specification
of a proprietary (i.e., secret) algorithm. The target here is no longer the
value of secret key but the secret specifications of the cryptographic
algorithm itself.

In a recent paper, Roman Novak (2003) describes how to recover the
value of one (out of two) substitution table of a secret instance of the
A3/A8 algorithm, the GSM authentication and session-key generation
algorithm. His attack presents however two drawbacks from a practical
viewpoint. First, in order to retrieve one substitution table (7%), the
attacker must know the value of the other substitution table (71). Second,
the attacker must also know the value of secret key K.

In this paper, we improve Novak’s attack and show how to retrieve both
substitution tables (71 and T») without any prior knowledge about the
secret key. Furthermore, as a side-effect, we also recover the value of the
secret key.

With this contribution, we intend to present a practical SCARE (Side
Channel Analysis for Reverse Engineering) attack, anticipate a growing
interest for this new area of side-channel signal exploitation, and remind,
if needed, that security cannot be achieved through obscurity alone.

Keywords: GSM Authentication, A3/A8, Reverse Engineering, Substitution
Table, Side Channel Analysis

1 Introduction

Secure implementations of cryptographic algorithms on security devices such as
smart-cards have been carefully studied, particularly since side-channel attacks
were launched by P. Kocher [Koc96]. This kind of attacks derives information

about the execution of a sensitive algorithm, either from timing, power consump-
tion or electromagnetic emanation measurements. The signal exploitation may
range from simple observations, to more advanced statistical analyses. A simple
observation allows distinguishing the rough structure of the algorithm —e.g. the
number of round — or detecting the presence/absence of specific instructions or
blocks of instructions. Statistical analyses come close to hypothesis testings, ei-
ther by noise reduction averaging and enhancement of small signal contribution
for differential techniques (DPA, DEMA) ([KJJ99,QS00]), or by more global
and robust model fitting for correlation-based analyses (CPA, CEMA) [BCOO03].
Though numerous variations of these cryptanalytic techniques have been pro-
posed for several years, the target was inevitably the recovery of some sensitive
data of a user (e.g., a private key).

Recently, Novak [Nov03] exploited side-channel leakage in order to obtain
non-trivial details concerning the secret specifications of a block-cipher algo-
rithm. The targeted algorithm was one of the many proprietary instances of the
A3/A8 GSM authentication and session key generation algorithm. This opened
a breach in a new kind of cryptanalytic attacks: the Side-Channel Analysis for
Reverse Engineering (SCARE) attacks.

Without disclosing any further details about the targeted algorithm than
those found in [Nov03], we present two practical improvements on Novak’s at-
tack. The attack described in [Nov03] recovers the entries of a secret substitution
table from the knowledge of the other secret substitution table and the secret
key. The SCARE attacks presented in this paper allow to recover the entries of
the two secret substitution tables as well as the secret key from scratch.

Our attacks highlight that security cannot be achieved through obscurity
alone. This is even more true because of the SCARE attacks. The security level
of proprietary cryptographic algorithms (i.e., with secret specifications) is usu-
ally lower than publicly scrutinized algorithms. As SCARE attacks may allow
to disclose the secret specifications (substitution tables in our case), those algo-
rithms have then more chances to succumb to (classical) attacks.

The rest of this paper is organized as follows. In Section 2, we review the
principles behind Novak’s attack as well as its underlying assumptions. We then
propose a graph interpretation of it, allowing a discussion on its theoretical
feasibility. The next two sections describe our main contributions. Section 3
explains how to recover substitution table T} from the sole knowledge of secret
key K and Section 4 explains how to get rid of the secret key. In Section 5, we
discuss the threat of SCARE attacks and suggest practical counter-measures.
Finally, we conclude in Section 6.

2 Retrieving Table T, with Known Key K and Known
Table T]_

2.1 Description of Novak’s attack

As for any GSM A3/A8 instance, the cryptographic algorithm attacked by Novak
in [Nov03] takes a 16-byte challenge M = (my,...,m15) and a 16-byte secret

key K = (ko,...,k5) on input, and produces a 32-bit message authentication
code Sgrps and a 64-bit voice ciphering session key K.

Novak’s attack relies on three assumptions:

Assumption 1 (Observational). The attacker is supposed to be able to detect
by side-channel analysis when two intermediate values at some predefined point
during the execution of the algorithm are the same.

Assumption 2 (Prior structural knowledge). The attacker is supposed to
know the structure of the very beginning of the proposed target algorithm. Namely,
he must know that the application of function f (as depicted in Fig. 1) to each
one of the pairs {(m;, k;) }i=o,....15 forms the very first operation performed onto
the input data.

PQ__

@

Fig. 1. Synopsis of function f

Note that in his goal to retrieve the value of the substitution table(s), the
attacker does not need to know more about the structure of the algorithm. In
particular, he needs not to know the number of rounds and (if applicable) the
number of sub-rounds per round.! The attacker needs neither to known how the
diffusion process in the algorithm is performed.

Assumption 3 (Prior data knowledge). In order to retrieve table Ty, the
attacker is supposed to know the whole content of table Ty and secret key K.

L' A widely used and now public GSM algorithm, the COMP128, owns a round struc-
ture divided in 5 similar sub-rounds.

This last assumption is by far the main limitation in Novak’s attack. In
particular, it is hardly plausible that an attacker managed to get the content of
Ty, and didn’t know T5. Furthermore, the required knowledge of the secret key
constitutes an additional barrier.

In the sequel, iteration i refers to an application of f to a pair (m;,k;) in
the first layer. An observation of two intermediate values for different iterations
(resp. for the same iteration) is called a cross-iteration (resp. intra-iteration)
observation.

Definition 1. Let R(2)ﬁ be the set of input pairs (ma,mﬁ) producing two iden-
tical values at point Py (cf. Fig. 1) for iterations o and (3, namely

RE)y = {(ma,my) : Ty (To(Ti (ma & ka) © ma)) & (ma & ka)

=T\ (To(Ti (mj ® kg) ® mj)) & (mjs ® ks)} -

By Assumption 1, it is possible to collect the set of pairs
2) _ (2)
'=URas
a,B

for which an intermediate equality occurs at point P, in the first layer.

We note that, by incrementing all message bytes in parallel, only 256 invo-
cations of the algorithm are needed for that purpose.

Each one of these pairs relates two different entries of 7> by the equation:

Ti(Ta(za)) ® Th (T (xp)) = d (1)

with
To = T1(Mma @ ko) ® Mg
zy =Ti(mj ® kg) & mj (2)
d=(ma @ ka) & (mjz & k)

where z,, :E'B and d are known from Assumption 3.

Each of these relations gives the opportunity to link together (if not already
done) two different T5 entries. This decrements by one the degree of freedom
(d.o.f.) of the table, that is, the number of remaining independent T entries.

Once the d.o.f. of T5 is reduced to 1, all T5 entries are deductible from any of
them, e.g. from T5(0). There so remain 256 possible T» candidates. The attacker
is then able to identify the correct T> value by DPA-like [KJJ99] or CPA-like
(correlation based) [BCOO03] techniques.

Alternatively, and if he knows all other details of the algorithm, the attacker
may also identify the correct T value by a classical plaintext/ciphertext com-
parison. We stress that this knowledge is not mandatory for none of the attacks
presented in this paper. Only the knowledge of the structure of the first layer
(Assumption 2) is merely required to mount the attacks.

2.2 Graph interpretation

In this section, we propose an interpretation of the attack in terms of graph,
discuss some implementation aspects, and present justifications for its theoretical
feasibility.

Observing equal intermediates at point P, links together, by parameter d,
two Ty entries with indices # and z’. This basic relationship suggests a graph
interpretation of the current knowledge that the attacker acquired so far about
the constraints on T5.

The graph of constraints on T} is a labelled non-oriented graph G2) whose
vertices are the indices of the different T5 entries, and where an edge labelled d

between two vertices and z' (noted A z') means that T>(z) and T>(z') are
linked together by the relation:

Ty (Tx(x)) ® Th (Ta(z") = d . (3)

At the beginning of the attack, graph G(® contains no edge, each vertex being
apart from each other. This means that each entry is a priori independent of all
others (except for the fact that they are all different from each other since T5 is
a permutation). There are 256 different connected components, each containing
only one vertex. The d.o.f. of T; is then also equal to 256.

Each time a relation like Eq. (3) is to be exploited, the attacker connects ver-
tices ¢ and 2’ (if they were not) by a d-labelled edge. This results in a graph con-
taining one less connected component. The correspondence between the number
of independent entries in T5 (the d.o.f.) and the number of connected components
in ¢ thus still persists.

Proposition 1 (Edge transitivity). If z 2 2’ and ' 2 2" then z “2% g

Proof. Trivial. 0

This proposition shows that it is possible to make each connected component
of G? fully connected.

2.2.1 Practical exploitation of observations

From a practical viewpoint, a possible and memory-efficient way to manage and
maintain the information contained in G(?) is to define two 256-byte arrays, say
comprep and delta, such that:

— comprep|z] represents the identifier of the connected component comp(x)
of z. By convention, it is defined as the least vertex belonging to comp(x).
This vertex may be thought of as the representative of comp(z).

— delta[z] represents the d parameter of the relation linking the vertex z and
the representative of comp(z) (comprep[z]). In particular,

Vzeg?, delta[comprep[z]] =0 .

The exploitation process of the relations starts with comprep = {0,1,...,
255} and delta = {0,0,...,0}, meaning that each vertex forms a connected
component by itself, of which it is obviously the representative.

Each time a relation is to be exploited, function AddRelationToGraph(z,z’,
d) defined in Fig. 2 is called, which possibly modifies the graph structure by
merging together the connected components of x and z’, if they were distinct.

Input: G given by comprep and delta arrays
(z,2,d) an observational z - 2’ relation

Output: G with comp(z) and comp(z') merged together

if (comprep[z] = comprep[z’]) then return G
if (comprep[z] > comprep[z’]) then swap(z,z’)
for all y € comp(z') \ {z'} do
AddPointToGraph(z,y,d ® deltalz'] ® deltay])
endfor
AddPointToGraph(z, ', d)
return ¢

Fig. 2. AddRelationToGraph(z, ', d) function

Input: G given by comprep and delta arrays
(z,y,d) ax A y relation
Output: G with y added to comp(z)

if (comprep[z] = comprep[y]) then return G
comprep[y] comprep[z]
delta[y] « delta[z] B d

return G

Fig. 3. AddPointToGraph(z,y,d) function

This operation must preserve both the convention that comprep|z] is minimal
in comp(z), and the property induced by Proposition 1. It also ensures that all
connected components are fully connected.

The process stops, either if there is no more relation to be exploited, or if
the graph is fully connected which is detectable by the fact that comprep =
{0,0,...,0}. In this later case, delta contains all the information required to
infer a possible candidate for T5 from each possible value tq of its first element
T>(0). The attack then succeeds.

Note that in the case of an unfinished attack, the number of possible candi-
dates for T5 rapidly grows with the number of remaining connected components
in comprep (d.o.f.). This may become prohibitive if the number of remaining
component is not small enough. This motivates a study of the connectivity of
G2 after having exploited all relations.

2.2.2 Resulting connectivity of G()

We first evaluate the number of relations that may be collected for the attack
when all possible message bytes are inputed at all possible iterations.
For any arbitrary secret key K, let

I = #{k:i}

denote the number of distinct bytes of K. Let also g(m, k) denote the value at
point P, when m and k are the input bytes of function f, and

S(z) = {(m,k) : k = k; for some i, and g(m, k) = 2} .

Finally, let s(z) = #S(z).

To each pair of elements ((maq, ka), (mj, kg)) of S(z) corresponds an edge
(Za, ac’ﬁ) to be added to the graph of constraints on 75. The number of such edges

for a given z is (*(?)) but a lot of them can be deduced from others thanks to
the transitivity property (Proposition 1). So, they are not to be counted as new
relations. If we get rid of this transitivity property, the number of edges brought
to the graph G by S(2) is s(2) — 1.2 The total number of such edges amounts
to
nk =Y (s(z) = 1) =256l — 256 = 256 - (Ix — 1) .
z

Now, assuming that g(m, k) behaves like a random function, the sets {z =
Ti(m® k) ®m : (m,k) € S(z)}. behave like random samples of vertices, and
the evolution of G?) can be modeled as a random graph process.

This kind of structure and the evolution of its components have been deeply
studied in graph theory. An asymptotic result by P. Erdés and A. Rnyi [ERG0)
states that a random graph with n vertices and m ~ %nlogn random edges is
almost certainly connected when n — oo.

For n = 256, the graph is connected once m = 710 edges are put on it.
Given that ([MOV97], p.53):

16) 1.2, (256 — k)

where {1t6} denotes the Stirling number of the second kind, we have

Pr(ix > 13) = Pr(nk > 3072) > 0.999 .

2 We neglect the very unlikely case when s(z) = 0.

This indicates that there are much more relations than needed for G® to be con-
nected. This has been confirmed by many simulations with random permutations
Ty and T5. The exploitation of only intra-iteration relations always suffices to
obtain a degree of freedom equal to 1.

3 Retrieving Table 7; with Known Key K

The attack presented in [Nov03] assumes the ability to detect equalities of inter-
mediate results at point P; the exploitation of such equalities making it possible
to recover T5.

Likewise, we show in this section that it is possible to recover T} by observing
equalities of intermediate results at point P, (see Fig. 1).

Compared to Novak’s attack, our attack relies on the same observational and
structural prior knowledge assumptions (Assumptions 1 and 2). But the prior
data knowledge assumption (Assumption 3) is weakened and replaced with the
following one:

Assumption 3’ ([Weakened] prior data knowledge). In order to retrieve
table Ty, the attacker is supposed to know secret key K.

Definition 2. Let R(l)ﬁ be the set of input pairs (ma,mﬁ) producing two iden-
tical values at point Py (cf. Fig. 1) for iterations o and (3.

Similarly to § 2.1, each pair (m,, m’B) R(5 relates two different entries of
T} by the equation:

Ti(za) ® Ti(z)) =d (4)
with
To = Ma Dk,
Ty =mpdks . (5)
d=mas® mg

Here again, parameters z,, ac’B and d are known by the attacker (Assump-
tion 3’).

We should make a specific remark concerning this case:®

Proposition 2. Va, 3 € {0,...,15}, we have Rglia = RSL & (ko @ kg).

3 By abuse of notations, for a vector & and a scalar §, @4 means that each component
of x is ®-ed with 4§, i.e., if © = (w0, ..., T¢) then 2B = (yo,...,y:) with y; = z; DJ.

Proof. Ym,m' € {0,...,255}, we have
(m,m') € R(al)a — Tim®ky)dm=T(m' Dky) Dm'
< Ti((m® (ka Dkg)) D k) ® (m @ (ko ® kg))
=Ty ((m' & (ka ® kg)) ® kg) ® (m' & (ko ® kg))
= (m® (ko © kg),m' @ (ko ® ks)) € RY),
= (m,m) D (ko ® k) € RY); .
0

This implies for the attacker that information about T} brought by the re-
lation set R&l)a is the same as the one brought by each other Rgg Thus, it
is worth exploiting only one of the 16 intra-iteration relation sets. Hopefully,
such a remark does not apply to cross-iteration relation sets. Each one of the
cross-iteration relation sets is a priori informative. Compared to the case where
the attacker retrieves T by observing at point P», the number of relation sets
to be exploited is reduced from 16+ ('Y) = 136 to 1+ ('y) = 121. This does not
represent a noticeable penalty to mount the attack.

The exploitation process of the relations is the same as in Section 2.

The graph G of constraints on T} gathers all edges = A 2" where T} (x)
and Tj (z') are linked together by the relation:

Ti(z)®Ti(z')=d . (6)

The discussion about the connectivity of G(!) is essentially the same as
in § 2.2.2 —g(m, k) being defined as the value at point P;, and vertices x being
equal to m @ k instead of T} (m @ k) @ m.

G is still modeled as a random graph, but there are slightly less available
random edges due to Proposition 2. Nevertheless, simulations confirmed that
this number of observed relations is, by far, large enough to mount the attack
successfully.

4 Retrieving Table T; without Key K

In the case where he does not know secret key K = (ko, ..., kis), the attacker
can make guesses about its successive bytes.

Making a guess gg about kg, the attacker is able to exploit relations belonging
to R(%. More generally, making a guess g+ = (go, - .., g+—1) about the first ¢ bytes
ke = (ko, ..., ki—1) of the key, the attacker is able to exploit all relations in

rRVE | RY) .

0<a,B<t

For any guess g, let g(l)(gt) denote the graph of constraints on 77 after

(1)

having exploited all relations in Rtl , and assuming that k¢ = g¢.

Graph G(V)(g,) is said to be inconsistent whenever the edge transitivity prop-
erty (Proposition 1) is not verified; otherwise, it is said to be consistent. For any
incorrect guess gy, the odds for graph G()(g;) to be inconsistent increase with .
This suggests an in-width first searching algorithm to retrieve T7.

At depth ¢, a set C; contains all guesses g; (together with their corresponding
graph G()(g;)) for which G(Y)(g,) is consistent. At depth ¢ + 1, when guessing
byte k; with each possible value g;, each graph G(!)(g;) in C; is constrained with
all relations in Rglﬁl \Rgl). Each such updated graph G(')(gs 1) is then stored
(together with g¢41 = g¢ U {g¢}) in Ci11, provided that it is consistent.

Before going further, we first give a slight generalization of Definition 2:

Definition 2°. For any k def kie = (ko, ..., ki5), let R&l)ﬁ(k) be the set of input
pairs (ma,mb) producing two identical values at point Py for iterations a and
B, when the secret key is k.

Proposition 3. Va, 3 € {0,...,15},Vd € {0,...,255}, we have
RS (k@ 8) =R, (k)& d .
Proof. Ym,m' € {0,...,255}, we have

(m,m') € RUL(k) <= Ti(m®ka) ®m = Ti(m' ® k) dm’
= Ti((m®) D (ka ®6)) ® (Mm@ J)
=T ((m' ®6) ® (ks ®J)) & (m' & J)
= (madm ad)eR k)
= (mm)ose R, (kD) .
]

Given that each T} entry x = m @ k depends linearly on m, Proposition 3
implies a kind of equivalence classes of pairs (table, key). For any 4, the same
set of observed relations may suggest a given value for T} if the secret key is k,
as well as a table deduced from the previous one by ®-ing its indices with § if
the secret key is k @ §. Otherwise stated, if the secret key k is compatible with
observations then each secret key k & ¢ is also compatible.

The main implication is that exploiting equalities of intermediate values at
point P; will, at best, disclose the value of T} up to its first element (as in the
previously described attacks), but also up to a @ of its indices by a constant .

Taking this property into account, the algorithm described above must be
modified in that only one guess about kg (say go = 0) needs to be considered.
The rest of the algorithm remains unchanged.

Note that without any death of guesses which reveal their graph as incon-
sistent, the number of guesses to be considered would increase exponentially
with the depth ¢. One may wonder whether this in-width search process indeed
requires a prohibitive number of guesses g; to be considered, or if incorrect

guesses prove themselves to be inconsistent so rapidly that the attack becomes
practicable.

Here again, simulations showed that the recovery of the relative value of T}
(up to a @ of entries with T37(0), and up to a @ of indices with § = ko) by
this in-width guessing process is actually effective. At depth ¢t = 2, only few
(say less than 20) incorrect guesses remain alive, and once ¢ = 3 or 4 only the
graph of the correct relative guess (up to ko) usually remains consistent. From
then, the relative value of T} is already known, but the attacker may choose to
continue this process and exploit relations implying successive iterations in order
to retrieve the remaining relative bytes of the secret key.

Finally, the relative values of 77 and K are retrieved, and the attacker only
needs to identify by DPA-like or CPA-like techniques (2% candidates about T})
which (74 (0), ko) defines their correct absolute values.

We thus explained how an attacker may proceed to recover 77 and K from
no particular prior data knowledge. This step may then be followed by the basic
Novak’s attack in order to retrieve T as well.

5 Counter-measures

By enhancing Novak’s work, the attacks presented in the previous sections make
possible to recover the two substitution tables of a secret algorithm. The exposure
of such design details represents a threat at the system level —as opposed to
the user level threat in a classical key recovery scenario. As the attacks need
to be performed only once, the secrecy of the algorithm specifications directly
relates to the protection offered by the weakest available product implementing
this A3/A8 GSM algorithm.

Fortunately, there are counter-measures preventing our attacks. Side-channel
leakage may be reduced via hardware features (including current scrambler
or dual-rail logic). Time randomization may be introduced by hardware (e.g.,
dummy cycles) or software (e.g., random delays) means, making harder the
comparison of waveforms at specific points. Finally, masking all intermediate
values, which is the usual counter-measure against statistical analysis, should
efficiently thwart our attacks, provided that the randomization is refreshed at
every invocation. We point the synergy provided by the combination of these
protections, each one making it difficult to bypass each other. A soon as such
counter-measures are properly implemented, the observational assumption (As-
sumption 1) will not stand anymore, and the attacker will be defeated.

6 Conclusion

A SCARE attack presented in [Nov03] allows an attacker to recover the value
of a substitution table T» which is part of the secret specifications of a GSM
A3/A8 authentication and session key generation algorithm.

We proposed a graph interpretation of this attack and proved, under the ran-
dom graph model, that the set of relations collectible by side-channel observation
is large enough to infer the whole table up to its first element.

Noticing that this first attack needs the knowledge of another substitution
table T} used in this algorithm as well as the knowledge of the secret key K (As-
sumption 3), we presented a similar way to retrieve T from the sole knowledge
of secret key K, and we then improved this attack to recover 77 without even
knowing secret key K, which is also recovered as a by-product.

Our proposed attacks have been validated by simulation. Providing that the
observational assumption (Assumption 1) discussed in [Nov03], and a weak prior
structural knowledge assumption (Assumption 2) are satisfied, our attacks allow
to recover both substitution tables T and T (as well as secret key K for our
last attack), without additional prior data knowledge.

We stress that, unlike classical attack scenarios in which the target is gener-
ally one’s cryptographic secret key, SCARE attacks are one-shot attacks in that
they jeopardize the specifications of the algorithm once for all. Should these
specifications be made public, a further analysis by cryptography researchers
may then reveal design flaws which will in turn threat all the users within the
system. The security of a system being the one of its weakest link, this type of
attacks demonstrates the need for a generalization of carefully designed imple-
mentations. Above all, it illustrates, one more time, the necessity to abandon
the meaningless security through obscurity alone philosophy.

This contribution, together with [Nov03], opens new perspectives for side-
channel analysis applied to reverse engineering.

References

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Ro-
hatgi. Towards sound approaches to counteract power-analysis attacks. In
M. Wiener, editor, Advances in Cryptology — CRYPTO ’99, volume 1666 of
Lecture Notes in Computer Science, pages 398-412. Springer-Verlag, 1999.

[BCOO03] Eric Brier, Christophe Clavier, and Francis Olivier. Optimal statistical
power analysis. Cryptology ePrint Archive, Report 2003/152, 2003.

[ER60] P. Erd6s and A. Rnyi. On the evolution of random graphs, Magyar Tud.
Akad. Mat. Kut. Int. Kzl. 5 (1960), 17-61.

[Koc96] Paul Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In N. Koblitz, editor, Advances in Cryptology -
CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science, pages
104-113. Springer-Verlag, 1996.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In M. Wiener, editor, Advances in Cryptology — CRYPTO ’99, volume 1666
of Lecture Notes in Computer Science, pages 388-397. Springer-Verlag,
1999.

[MOV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-
book of applied cryptography. CRC Press, 1997.

[Nov03] Roman Novak. Side-Channel Attack on Substitution Blocks. In J. Zhou,
M. Yung, and Y. Han, editors, Applied Cryptography and Network Security

(ANCS ’03), volume 2846 of Lecture Notes in Computer Science, pages

307-318. Springer-Verlag, 2003.

[QS00] J-J. Quisquater and D. Samyde. A new tool for non-intrusive analysis of
smart cards based on electro-magnetic emissions, the SEMA and DEMA
methods. Presented at the rump session of EUROCRYPT 2000, Bruges,

Belgium, May 14-18, 2000.

