
On Multiple Linear Approximations

Alex Biryukov⋆, Christophe De Cannière⋆⋆, and Michael Quisquater⋆⋆

Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10,

B–3001 Leuven-Heverlee, Belgium
{abiryuko, cdecanni, mquisqua}@esat.kuleuven.ac.be

Abstract. In this paper we study the long standing problem of information extraction
from multiple linear approximations. We develop a formal statistical framework for block
cipher attacks based on this technique and derive explicit and compact gain formulas for
generalized versions of Matsui’s Algorithm 1 and Algorithm 2. The theoretical framework
allows both approaches to be treated in a unified way, and predicts significantly improved
attack complexities compared to current linear attacks using a single approximation. In
order to substantiate the theoretical claims, we benchmarked the attacks against reduced-
round versions of DES and observed a clear reduction of the data and time complexities,
in almost perfect correspondence with the predictions. The complexities are reduced by
several orders of magnitude for Algorithm 1, and the significant improvement in the case
of Algorithm 2 suggests that this approach may outperform the currently best attacks on
the full DES algorithm.
Keywords: Linear cryptanalysis, multiple linear approximations, stochastic systems of
linear equations, maximum likelihood decoding, key-ranking, DES, AES.

1 Introduction

Linear cryptanalysis [9] is one of the most powerful attacks against modern cryptosystems. In
1994, Kaliski and Robshaw [6] proposed the idea of generalizing this attack using multiple linear
approximations (the previous approach considered only the best linear approximation). However,
their technique was limited to cases where all approximations derive the same parity bit of the
key. Unfortunately, this approach imposes a very strong restriction on the approximations, and
the additional information gained by the few surviving approximations is often negligible.

In this paper we start by developing a theoretical framework for dealing with multiple linear
approximations. We first generalize Matsui’s Algorithm 1 based on this framework, and then
reuse these results to generalize Matsui’s Algorithm 2. Our approach allows to derive compact
expressions for the performance of the attacks in terms of the biases of the approximations and
the amount of data available to the attacker. The contribution of these theoretical expressions
is twofold. Not only do they clearly demonstrate that the use of multiple approximations can
significantly improve classical linear attacks, they also shed a new light on the relations between
Algorithm 1 and Algorithm 2.

The main purpose of this paper is to provide a new generally applicable cryptanalytical tool.
In order to illustrate the potential of this new approach, we implemented two attacks against
reduced-round versions of DES, using this cipher as a well established benchmark for linear
cryptanalysis. The experimental results, discussed in the second part of this paper, are in exact
correspondence with our theoretical predictions and show that the latter are well justified.

This paper is organized as follows: Sect. 2 describes a very general maximum likelihood
framework, which we will use in the rest of the paper; in Sect. 3 this framework is applied to
derive and analyze an optimal attack algorithm based on multiple linear approximations. In the
last part of this section, we provide a more detailed theoretical analysis of the assumptions made
in order to derive the performance expressions. Sect. 4 presents experimental results on DES as

⋆ F.W.O. Researcher, sponsored by the Fund for Scientific Research – Flanders (Belgium).
⋆⋆ F.W.O. Research Assistant, sponsored by the Fund for Scientific Research – Flanders (Belgium).

an example. Finally, Sect. 5 discusses possible implications of our techniques to modern block
ciphers such as the AES. A more detailed discussion of the practical aspects of the attacks, the
relation with coding theory, an overview of previous work, and a search algorithm for the m best
approximations can be found in the appendices.

2 General Framework

In this section we discuss the main principles of statistical cryptanalysis and set up a generalized
framework for analyzing block ciphers based on maximum likelihood. This framework can be
seen as an adaptation or extension of earlier frameworks for statistical attacks proposed by
Murphy et al. [13], Vaudenay [16], Junod [5] and Selçuk [15].

2.1 Attack Model

We consider a block cipher Ek which maps a plaintext P ∈ P to a ciphertext C = Ek(P) ∈ C. The
mapping is invertible and depends on a secret key k ∈ K. We now assume that an adversary is
given N different plaintext–ciphertext pairs (Pi, Ci) encrypted with a particular secret key k∗ (a
known plaintext scenario), and his task is to recover the key from this data. A general statistical
approach — also followed by Matsui’s original linear cryptanalysis — consists in performing the
following three steps:

Distillation phase. In a typical statistical attack, only a fraction of the information contained
in the N plaintext–ciphertext pairs is exploited. A first step therefore consists in extracting
the relevant parts of the data, and discarding all information which is not used by the
attack. In our framework, the distillation operation is denoted by a function ψ : P × C → X
which is applied to each plaintext–ciphertext pair. The result is a vector x = (x1, . . . , xN)
with xi = ψ(Pi, Ci), which contains all relevant information. If |X | ≪ N , which is usually
the case, we can further reduce the data by counting the occurrence of each element of X
and only storing a vector of counters t = (t0, . . . , t|X |−1). In this paper we will not restrict
ourselves to a single function ψ, but consider m separate functions ψj , each of which maps
the text pairs into different sets Xj and generates a separate vector of counters tj .

Analysis phase. This phase is the core of the attack and consists in generating a list of key
candidates from the information extracted in the previous step. Usually, candidates can only
be determined up to a set of equivalent keys, i.e., typically, a majority of the key bits is
transparent to the attack. In general, the attack defines a function σ : K → Z which maps
each key k onto an equivalent key class z = σ(k). The purpose of the analysis phase is to
determine which of these classes are the most likely to contain the true key k∗ given the
particular values of the counters tj .

Search phase. In the last stage of the attack, the attacker exhaustively tries all keys in the
classes suggested by the previous step, until the correct key is found. Note that the analysis
and the searching phase may be intermixed: the attacker might first generate a short list
of candidates, try them out, and then dynamically extend the list as long as none of the
candidates turns out to be correct.

2.2 Attack Complexities

When evaluating the performance of the general attack described above, we need to consider
both the data complexity and the computational complexity. The data complexity is directly
determined by N , the number of plaintext–ciphertext pairs required by the attack. The compu-
tational complexity depends on the total number of operations performed in the three phases of
the attack. In order to compare different types of attacks, we define a measure called the gain of
the attack:

2

Definition 1 (Gain). If an attack is used to recover an n-bit key and is expected to return

the correct key after having checked on the average M candidates, then the gain of the attack,

expressed in bits, is defined as:

γ = − log2

2 · M − 1

2n
(1)

Let us illustrate this with an example where an attacker wants to recover an n-bit key. If he does
an exhaustive search, the number of trials before hitting the correct key can be anywhere from 1
to 2n. The average number M is (2n +1)/2, and the gain according to the definition is 0. On the
other hand, if the attack immediately derives the correct candidate, M equals 1 and the gain is
γ = n. There is an important caveat, however. Let us consider two attacks which both require a
single plaintext–ciphertext pair. The first deterministically recovers one bit of the key, while the
second recovers the complete key, but with a probability of 1/2. In this second attack, if the key
is wrong and only one plaintext–ciphertext pair is available, the attacker is forced to perform an
exhaustive search. According to the definition, both attacks have a gain of 1 bit in this case. Of
course, by repeating the second attack for different pairs, the gain can be made arbitrary close
to n bits, while this is not the case for the first attack.

2.3 Maximum Likelihood Approach

The design of a statistical attack consists of two important parts. First, we need to decide on
how to process the N plaintext–ciphertext pairs in the distillation phase. We want the counters
tj to be constructed in such a way that they concentrate as much information as possible about
a specific part of the secret key in a minimal amount of data. Once this decision has been made,
we can proceed to the next stage and try to design an algorithm which efficiently transforms
this information into a list of key candidates. In this section, we discuss a general technique to
optimize this second step. Notice that throughout this paper, we will denote random variables
by capital letters.

In order to minimize the amount of trials in the search phase, we want the candidate classes
which have the largest probability of being correct to be tried first. If we consider the correct
key class as a random variable Z and denote the complete set of counters extracted from the
observed data by t, then the ideal output of the analysis phase would consist of a list of classes
{z}, sorted according to the conditional probability

Pr [Z = z | t] .

Taking the Bayesian approach, we express this probability as follows:

Pr [Z = z | t] =
Pr [T = t | z] · Pr [Z = z]

Pr [T = t]
. (2)

The factor Pr [Z = z] denotes the a priori probability that the class z contains the correct key k∗,
and is equal to the constant 1/|Z|, with |Z| the total number of classes, provided that the key
was chosen at random. The denominator is determined by the probability that the specific set
of counters t is observed, taken over all possible keys and plaintexts. The only expression in (2)
that depends on z, and thus affects the sorting, is the factor Pr [T = t | z], compactly written as
Pz(t). This quantity denotes the probability, taken over all possible plaintexts, that a key from
a given class z produces a set of counters t. When viewed as a function of z for a fixed set t, the
expression Pr [T = t | z] is also called the likelihood of z given t, and denoted by Lt(z), i.e.,

Lt(z) = Pz(t) = Pr [T = t | z] .

This likelihood and the actual probability Pr [Z = z | t] have distinct values, but they are pro-
portional for a fixed t, as follows from (2). Typically, the likelihood expression is simplified by
applying a logarithmic transformation. The result is denoted by

Lt(z) = log Lt(z)

3

and called the log-likelihood. Note that this transformation does not affect the sorting, since the
logarithm is a monotonously increasing function.

Assuming that we can construct an efficient algorithm that accurately estimates the likelihood
of the key classes and returns a list sorted accordingly, we are now ready to derive a general
expression for the gain of the attack.

Let us assume that the plaintexts are encrypted with an n-bit secret key k∗, contained in the
equivalence class z∗, and let Z∗ = Z \ {z∗} be the set of classes different from z∗. The expected
number of classes checked during the searching phase before the correct key is found, is given by
the expression

1 +
∑

z∈Z∗

Pr [LT(z) ≥ LT(z∗) | z∗] ,

where the random variable T represents the set of counters generated by a key from the class z∗,
given N random plaintexts. Note that this number includes the correct key class, but since this
class will be treated differently later on, we do not include it in the sum. In order to compute
the probabilities in this expression, we define the sets Tz = {t | Lt(z) ≥ Lt(z

∗)}. Using this
notation, we can write

Pr [LT(z) ≥ LT(z∗) | z∗] =
∑

t∈Tz

Pz∗(t) .

Knowing that each class z contains 2n/|Z| different keys, we can now derive the expected number
of trials M∗, given a secret key k∗. Note that the number of keys that need to be checked in the
correct equivalence class z∗ is only (2n/|Z| + 1)/2 on the average, yielding

M∗ =
2n

|Z| ·
[

1

2
+

∑

z∈Z∗

∑

t∈Tz

Pz∗(t)

]
+

1

2
. (3)

This expression needs to be averaged over all possible secret keys k∗ in order to find the expected
value M , but in many cases1 we will find that M∗ does not depend on the actual value of k∗,
such that M = M∗. Finally, the gain of the attack is computed by substituting this value of M
into (1).

3 Application of the Framework to Multiple Approximations

In this section, we apply the ideas discussed above to construct a general framework for analyzing
block ciphers using multiple linear approximations.

The starting point in linear cryptanalysis is the existence of unbalanced linear expressions
involving plaintext bits, ciphertext bits, and key bits. In this paper we assume that we can use
m such expressions (we will show how to find them in App. E):

Pr
[
P [χj

P] ⊕ C[χj
C] ⊕ K[χj

K] = 0
]

=
1

2
+ ǫj , j = 1, . . . ,m , (4)

with (P,C) a random plaintext–ciphertext pair encrypted with a random key K. The notation
X[χ] stands for Xl1 ⊕ Xl2 ⊕ . . . ⊕ Xla , where Xl1 , . . . ,Xla represent particular bits of X. The
deviation ǫj is called the bias of the linear expression.

We now use the framework of Section 2.1 to design an attack which exploits the information
contained in (4). The first phase of the cryptanalysis consists in extracting the relevant parts
from the N plaintext–ciphertext pairs. The linear expressions in (4) immediately suggest the
following functions ψj :

xi,j = ψj(Pi, Ci) = Pi[χ
j
P] ⊕ Ci[χ

j
C] , i = 1, . . . , N ,

1 In some cases the variance of the gain over different keys would be very significant. In these cases it
might be worth to exploit this phenomenon in a weak-key attack scenario, like in the case of the IDEA
cipher.

4

with xi,j ∈ Xj = {0, 1}. These values are then used to construct m counter vectors tj = (tj , N −
tj), where tj and N − tj reflect the number of plaintext–ciphertext pairs for which xi,j equals 0
and 1 respectively.2

In the second step of the framework, a list of candidate key classes needs to be generated.
We represent the equivalent key classes induced by the m linear expressions in (4) by an m-bit
word z = (z1, . . . , zm) with zj = k[χj

K]. Note that m might possibly be much larger than n, the
length of the key k. In this case, only a subspace of all possible m-bit words corresponds to a
valid key class. The exact number of classes |Z| depends on the number of independent linear
approximations (i.e., the rank of the corresponding linear system).

3.1 Computing the Likelihoods of the Key Classes

We will for now assume that the linear expressions in (4) are statistically independent for different
plaintext–ciphertext pairs and for different values of j (in the next section we will discuss this
important point in more details). This allows us to apply the maximum likelihood approach
described earlier in a very straightforward way. In order to simplify notations, we define the
probabilities pj and qj , and the imbalances3 cj of the linear expressions as

pj = 1 − qj =
1 + cj

2
=

1

2
+ ǫj .

We start by deriving a convenient expression for the probability Pz(t). To simplify the calculation,
we first give a derivation for the special key class z′ = (0, . . . , 0). Assuming independence of
different approximations and of different (Pi, Ci) pairs, the probability that this key generates
the counters tj is given by the product

Pz′(t) =

m∏

j=1

(
N

tj

)
· ptj

j · qN−tj

j . (5)

In practice, pj and qj will be very close to 1/2, and N very large. Taking this into account,
we approximate the m-dimensional binomial distribution above by an m-dimensional Gaussian
distribution:

Pz′(t) ≈
m∏

j=1

e−
(tj−pj ·N)2

N/2

√
π · N/2

=
m∏

j=1

e−
N
2 (ĉj−cj)

2

√
π · N/2

=
e−

N
2

P

(ĉj−cj)
2

(√
π · N/2

)m .

The variable ĉj is called the estimated imbalance and is derived from the counters tj according
to the formula:

N · 1 + ĉj

2
= tj .

For any key class z, we can repeat the reasoning above, yielding the following general expression:

Pz(t) ≈
e−

N
2

P

(ĉj−(−1)zj ·cj)
2

(√
π · N/2

)m (6)

This formula has a useful geometrical interpretation: if we take a key from a fixed key class z∗ and
construct an m-dimensional vector ĉ = (ĉ1, . . . , ĉm) by encrypting N random plaintexts, then ĉ
will be distributed around the vector cz∗ = ((−1)z∗

1 c1, . . . , (−1)z∗

mcm) according to a Gaussian
distribution with a diagonal variance-covariance matrix 1/

√
N ·Im, where Im is an m×m identity

matrix. This is illustrated in Fig. 1. From (6) we can now directly compute the log-likelihood:

2 The vectors tj are only constructed to be consistent with the framework described earlier. In practice
of course, the attacker will only calculate tj (this is a minimal sufficient statistic).

3 Also known in the literature as “correlations”.

5

1

2

2

3

3

4

cz∗

czcz

cz

ĉ

1/
√
N

bb

bb

b

Fig. 1. Geometrical interpretation for m = 2. The correct key class z∗ has the second largest likelihood
in this example. The numbers in the picture represent the number of trials M∗.

Lt(z) = log Lt(z) = log Pz(t) ≈ C − N

2

m∑

j=1

(ĉj − (−1)zj · cj)
2 . (7)

The constant C depends on m and N only, and is irrelevant to the attack. From this formula we
immediately derive the following property.

Lemma 1. The relative likelihood of a key class z is completely determined by the Euclidean

distance |ĉ−cz|, where ĉ is an m-dimensional vector containing the estimated imbalances derived

from the known texts, and cz = ((−1)z1c1, . . . , (−1)zmcm).

The lemma implies that LT(z) > LT(z∗) if and only if |ĉ − cz| < |ĉ − cz∗ |. This is a common
result in coding theory.

3.2 Estimating the Gain of the Attack

Based on the geometrical interpretation given above, and using the results from Section 2.3, we
can now easily derive the gain of the attack.

Theorem 1. Given m approximations and N independent pairs (Pi, Ci), an adversary can

mount a linear attack with a gain equal to:

γ = − log2

[
2 · 1

|Z|
∑

z∈Z∗

Φ

(
−
√

N · |cz − cz∗ |
2

)
+

1

|Z|

]
, (8)

where Φ(·) is the cumulative normal distribution function, cz = ((−1)z1c1, . . . , (−1)zmcm), and

|Z| is the number of key classes induced by the approximations.

Proof. The probability that the likelihood of a key class z exceeds the likelihood of the correct
key class z∗ is given by the probability that the vector ĉ falls into the half plane Tc = {c |
|ĉ − cz| ≤ |ĉ − cz∗ |}. Considering the fact that ĉ describes a Gaussian distribution around cz∗

with a variance-covariance matrix 1/
√

N · Im, we need to integrate this Gaussian over the half
plane Tc and due to zero covariances, we immediately find:

Pr [LT(z) ≥ LT(z∗) | z∗] = Φ

(
−
√

N · |cz − cz∗ |
2

)
.

6

By summing these probabilities as in (3) we find the expected number of trials:

M∗ =
2n

|Z| ·
[

1

2
+

∑

z∈Z∗

Φ

(
−
√

N · |cz − cz∗ |
2

)]
+

1

2
. (9)

The gain is obtained by substituting this expression for M∗ in equation (1).
⊓⊔

The formula derived in the previous theorem can easily be evaluated as long as |Z| is not
too large. In order to estimate the gain in the other cases as well, we need to make a few
approximations.

Corollary 1. If |Z| is sufficiently large, the gain derived in Theorem 1 can accurately be ap-

proximated by

γ ≈ − log2

[
2 · |Z| − 1

|Z| · Φ
(
−

√
N · c̄2

2

)
+

1

|Z|

]
, f(N · c̄2, |Z|) , (10)

where c̄2 =
∑m

j=1 c2
j .

Proof. The corollary is proved in App. A.

An interesting conclusion that can be drawn from the corollary above is that the gain of the
attack is mainly determined by the product N · c̄2. As a result, if we manage to increase c̄2 by
using more linear characteristics, then the required number of known plaintext–ciphertext pairs
N can be decreased with the same factor, without affecting the gain. Since the quantity c̄2 plays
a very important role in the attacks, we give it a name and define it explicitly.

Definition 2. The capacity c̄2 of a system of m approximations is defined as:

c̄2 =

m∑

j=1

c2
j = 4 ·

m∑

j=1

ǫ2j .

3.3 Extension: Multiple Approximations and Matsui’s Algorithm 2

The approach taken in the previous section can be seen as an extension of Matsui’s Algorithm 1.
Just as in Algorithm 1, the adversary analyses parity bits of the known plaintext–ciphertext pairs
and then tries to determine parity bits of internal round keys. An alternative approach, which is
called Algorithm 2 and yields much more efficient attacks in practice, consists in guessing parts
of the round keys in the first and the last round, and determining the probability that the guess
was correct by exploiting linear characteristics over the remaining rounds. In this section we will
show that the results derived above can still be applied in this situation, provided that we modify
some definitions.

Let us denote by ZO the set of possible guesses for the targeted subkeys of the outer rounds
(round 1 and round r). For each guess zO and for all N plaintext–ciphertext pairs, the adversary
does a partial encryption and decryption at the top and bottom of the block cipher, and recovers
the parity bits of the intermediate data blocks involved in m different (r − 2)-round linear
characteristics. Using this data, he constructs m′ = |ZO|·m counters tj , which can be transformed
into a m′-dimensional vector ĉ containing the estimated imbalances.

As explained in the previous section, the m linear characteristics involve m parity bits of the
key, and thus induce a set of equivalent key classes, which we will here denote by ZI (I from
inner). Although not strictly necessary, we will for simplicity assume that the sets ZO and ZI

are independent, such that each guess zO ∈ ZO can be combined with any class zI ∈ ZI , thereby
determining a subclass of keys z = (zO, zI) ∈ Z with |Z| = |ZO| · |ZI |.

7

At this point, the situation is very similar to the one described in the previous section, the
main difference being a higher dimension m′. The only remaining question is how to construct
the m′-dimensional vectors cz for each key class z = (zO, zI). To solve this problem, we will need
to make some assumptions. Remember that the coordinates of cz are determined by the expected
imbalances of the corresponding linear expressions, given that the data is encrypted with a key
from class z. For the m counters that are constructed after guessing the correct subkey zO, the
expected imbalances are determined by zI and equal to (−1)zI,1c1, . . . , (−1)zI,mcm. For each of
the m′−m other counters, however, we will assume that the wrong guesses result in independent
random-looking parity bits, showing no imbalance at all.4 Accordingly, the vector cz has the
following form:

cz = (0, . . . , 0, (−1)zI,1c1, . . . , (−1)zI,mcm, 0, . . . , 0)

With the modified definitions of Z and cz given above, both Theorem 1 and Corollary 1 still hold
(the proofs are in App A). Notice however that the gain of the Algorithm-2-style linear attack
will be significantly larger because it depends on the capacity of linear characteristics over r − 2
rounds instead of r rounds.

3.4 Influence of Dependencies

When deriving (5) in the Section 3, we assumed statistical independence. This assumption is not
always fulfilled, however. In this section we discuss different potential sources of dependencies
and estimate how they might influence the cryptanalysis.

Dependent plaintext–ciphertext pairs. A first assumption made by equation (5) concerns
the dependency of the parity bits xi,j with 1 ≤ i ≤ N , computed with a single linear approxi-
mation for different plaintext–ciphertext pairs. The equation assumes that the probability that
the approximation holds for a single pair equals pj = 1/2 + ǫj , regardless of what is observed for
other pairs. This is a very reasonable assumption if the N plaintexts are chosen randomly, but
even if they are picked in a systematic way, we can still safely assume that the corresponding
ciphertexts are sufficiently unrelated as to prevent statistical dependencies.

Dependent text mask. The next source of dependencies is more fundamental and is related
to dependent text masks. Suppose for example that we want to use three linear approximations
with plaintext–ciphertext masks (χ1

P , χ1
C), (χ2

P , χ2
C), (χ3

P , χ3
C), and that χ1

P ⊕ χ2
P ⊕ χ3

P = χ1
C ⊕

χ2
C⊕χ3

C = 0. It is immediately clear that the parity bits computed for these three approximations
cannot possibly be independent: for all (Pi, Ci) pairs, the bit computed for the 3rd approximation
xi,3 is equal to xi,1 ⊕ xi,2.

Even in such cases, however, we believe that the results derived in the previous section are
still quite reasonable. In order to show this, we consider the probability that a single random
plaintext encrypted with an equivalent key z yields a vector5 of parity bits x = (x1, . . . , xm). Let
us denote by χj

T the concatenation of both text masks χj
P and χj

C . Without loss of generality, we

can assume that the m masks χj
T are linearly independent for 1 ≤ j ≤ l and linearly dependent

(but different) for l < j ≤ m. This implies that x is restricted to a l-dimensional subspace R. We
will only consider the key class z′ = (0, . . . , 0) in order to simplify the equations. The probability
we want to evaluate is:

Pz′(x) = Pr [Xj = xj for 1 ≤ j ≤ m | z′]

These (unknown) probabilities determine the (known) imbalances cj of the linear approximations
through the following expression:

cj =
∑

x∈R

Pz′(x) · (−1)xj .

4 Note that for some ciphers, other assumptions may be more appropriate. The reasoning in this section
can be applied to these cases just as well, yielding different but very similar results.

5 Note a small abuse of notation here: the definition of x differs from the one used in Section 2.1.

8

We now make the (in many cases reasonable) assumption that all 2l − m masks χT , which
depend linearly on the masks χj

T , but which differ from the ones considered by the attack, have
negligible imbalances. In this case, the equation above can be reversed (note the similarity with
the Walsh-Hadamard transform), and we find that:

Pz′(x) =
1

2l

m∑

j=1

cj · (−1)xj .

Assuming that m · cj ≪ 1 we can make the following approximation:

Pz′(x) ≈ 2m

2l

m∏

j=1

1 + cj · (−1)xj

2
.

Apart from an irrelevant constant factor 2m/2l, this is exactly what we need: it implies that, even
with dependent masks, we can still multiply probabilities as we did in order to derive (5). This is
an important conclusion, because it indicates that the capacity of the approximations continues
to grow, even when m exceeds twice the block size, in which case the masks are necessarily
linearly dependent.

Dependent trails. A third type of dependencies might be caused by merging linear trails.
When analyzing the best linear approximations for DES, for example, we notice that most of
the good linear approximations follow a very limited number of trail through the inner rounds
of the cipher, which might result in dependencies. Although this effect did not appear to have
any influence on our experiments (with up to 100 different approximations), we cannot exclude
at this point that they will affect attacks using much more approximations.

Dependent key masks. We finally note that we did not make any assumption about the
dependency of key masks in the previous sections. This implies that all results derived above
remain valid for dependent key masks.

4 Experimental Results

In Section 3 we derived an optimal approach for cryptanalyzing block ciphers using multiple
linear approximations. In this section, we implement practical attack algorithms based on this
approach and evaluate their performance when applied to DES, the standard benchmark for linear
cryptanalysis. Our experiments show that the attack complexities are in perfect correspondence
with the theoretical results derived in the previous sections.

4.1 Attack Algorithm MK 1

Table 1 summarizes the attack algorithm presented in Section 2 (we call this algorithm Attack

Algorithm MK 1). In order to verify the theoretical results, we applied the attack algorithm to
8 rounds of DES. We picked 86 linear approximations with a total capacity c̄2 = 2−15.6 (see
Definition 2). In order to speed up the simulation, the approximations were picked to contain
10 linearly independent key masks, such that |Z| = 1024. Fig. 2 shows the simulated gain
for Algorithm MK 1 using these 86 approximations, and compares it to the gain of Matsui’s
Algorithm 1, which uses the best one only (c̄2 = 2−19.4). We clearly see a significant improvement.
While Matsui’s algorithm requires about 221 pairs to attain a gain close to 1 bit, only 216 pairs
suffice for Algorithm MK 1. The theoretical curves shown in the figure were plotted by computing
the gain using the exact expression for M∗ derived in Theorem 1 and using the approximation
from Corollary 1. Both fit nicely with the experimental results.

Note, that the attack presented in this section is a non-optimized proof of concept demonstra-
tion, even higher gains would be possible with dedicated attacks. For a more detailed discussion
of the technical aspects playing a role in the implementation of Algorithm MK 1, we refer to
App. B.

9

Table 1. Attack Algorithm MK 1 and its complexity.

Distillation phase. Obtain N plaintext–ciphertext pairs (pi, ci). For 1 ≤ j ≤ m, count the
number tj of pairs satisfying pi[χ

j
P] ⊕ ci[χ

j
C] = 0 and compute the estimated imbalance

ĉj = 2 · tj − N .
Analysis phase. For each equivalent key class z ∈ Z, determine the distance

|ĉ − cz|2 =
m

X

j=1

(ĉj − (−1)zj · cj)
2

and use these values to construct a sorted list, starting with the class with the smallest
distance.

Search phase. Run through the sorted list and exhaustively try all n-bit keys contained in
the equivalence classes until the correct key is found.

Data compl. Time compl. Memory compl.

Distillation: O(1/c̄2) O(m/c̄2) O(m)
Analysis: - O(m · |Z|) O(|Z|)
Search: - O(2n−γ) O(|Z|)

4.2 Attack Algorithm MK 2

In this subsection, we discuss the experimental results for the generalization of Matsui’s Algo-
rithm 2 using multiple linear approximations (called Attack Algorithm MK 2). We simulated the
attack algorithm on 8 rounds of DES and compared the results to the gain of the corresponding
Algorithm 2 attack described in Matsui’s paper [10].

Our attack uses eight 6-round linear approximations with a total capacity c̄2 = 2−11.9. In
order to compute the parity bits of these equations, eight 6-bit subkeys need to be guessed
in the first and the last rounds (how this is done in practice is explained in App. B). Figure 3
compares the gain of the attack to Matsui’s Algorithm 2, which uses the two best approximations
(c̄2 = 2−13.2). For the same amount of data, the multiple linear attack clearly achieves a much
higher gain. This reduces the complexity of the search phase by multiple orders of magnitude.
On the other hand, for the same gain, the adversary can reduce the amount of data by at least a
factor 2. For example, for a gain of 12 bits, the data complexity is reduced from 217.8 to 216.6. This
is in a close correspondence with the ratio between the capacities. Note that both simulations
were carried out under the assumption of independent subkeys (this was also the case for the
simulations presented in [10]). Without this assumption, the gain will closely follow the graphs
on the figure, but stop increasing as soon as the gain equals the number of independent key bits
involved in the attack.

As in the previous subsection our goal was not to provide the best attack on 8-round DES, but
to show that Algorithm-2 style attacks do gain from the use of multiple linear approximations,
with a data reduction proportional to the increase in the joint capacity. We refer to App. B for
the technical aspects of the implementation of Algorithm MK 2.

4.3 Capacity – DES Case Study

In Section 3 we argued that the minimal amount of data needed to obtain a certain gain compared
to exhaustive search is determined by the capacity c̄2 of the linear approximations. In order to get
a first estimate of the potential improvement of using multiple approximations, we calculated the
total capacity of the best m linear approximations of DES for 1 ≤ m ≤ 216. The capacities were
computed using an adapted version of Matsui’s algorithm (see Appendix E). The results, plotted
for different number of rounds, are shown in Figures 4 and 5, both for approximations restricted
to a single S-box per round and for the general case. Note that the single best approximation is
not visible on these figures due to the scale of the graphs.

10

0

1

2

3

4

5

6

7

8

9

10

214 215 216 217 218 219 220 221

Simulation of MK 1 (m = 86)
Theorem 1 for m = 86
Corollary 1 for m = 86

Simulation of Matsui’s Algorithm 1
Theorem 1 for m = 1

Fig. 2. Gain (in bits) as a function of data (known plaintext) for 8-round DES.

0

10

20

30

40

50

60

214 215 216 217 218 219 220

Simulation of MK 2 (m = 8)
Theory for m = 8

Simulation of Matsui’s Algorithm 2
Theory for m = 2

Fig. 3. Gain (in bits) as a function of data (known plaintext) for 8-round DES.

11

0

10−10

2 × 10−10

3 × 10−10

4 × 10−10

5 × 10−10

6 × 10−10

7 × 10−10

8 × 10−10

9 × 10−10

0 10000 20000 30000 40000 50000 60000 70000

Multiple active S-boxes
Single active S-box

Fig. 4. Capacity (14 rounds).

0

10−12

2 × 10−12

3 × 10−12

4 × 10−12

5 × 10−12

6 × 10−12

7 × 10−12

0 10000 20000 30000 40000 50000 60000 70000

Multiple active S-boxes
Single active S-box

Fig. 5. Capacity (16 rounds).

In [6], Kaliski and Robshaw showed that the first 10 006 approximations with a single active
S-box per round have a joint capacity of 4.92 · 10−11 for 14 rounds of DES.6 Fig. 4 shows that
this capacity can be increased to 4 · 10−10 when multiple S-boxes are allowed. Comparing this to
the capacity of Matsui’s best approximation (c̄2 = 1.29 · 10−12), the factor 38 gained by Kaliski
and Robshaw is increased to 304 in our case. Practical techniques to turn this increased capacity
into an effective reduction of the data complexity are presented in this paper, but exploiting
the full gain of 10 000 unrestricted approximations will require additional techniques. In theory,
however, it would be possible to reduce the data complexity form 243 (in Matsui’s case, using
two approximations) to about 236 (using 10 000 approximations).

In order to provide a more conservative (and probably rather realistic) estimation of the
implications of our new attacks on full DES, we searched for 14-round approximations which
only require three 6-bit subkeys to be guessed simultaneously in the first and the last rounds.
The capacity of the 108 best approximations satisfying this restriction is 9.83·10−12. This suggests
that an MK 2 attack exploiting these 108 approximations might reduce the data complexity with
a factor 4 compared to Matsui’s Algorithm 2 (i.e., 241 instead of 243). This is comparable to the
Knudsen-Mathiassen reduction [7], but would preserve the advantage of being a known-plaintext
attack rather than chosen-plaintext.

Using very high numbers of approximations is somewhat easier in practice for MK 1 because
we do not have to impose restrictions on the plaintext and ciphertext masks (see App. B).
Analyzing the capacity for the 10 000 best 16-round approximations, we now find a capacity of
5 · 10−12. If we restrict the complexity of the search phase to an average of 243 trials (i.e., a
gain of 12 bits), we expect that the attack will require 241 known plaintexts. As expected, this
theoretical number is larger than for the MK 2 attack using the same amount of approximations.

5 Consequences for Rijndael-like and Other Ciphers

Recently many ciphers with “provable security” against linear attack have been designed (for
ex. AES [1]). In order to attain such provable security, the designer usually estimates the maximal
S-box bias (which for specially constructed 8-bit S-boxes is 2−3) and then tries to give a lower
bound on the number of active S-boxes for the worst possible “trails”. The designer then chooses
the number of rounds for which the square of the total approximation bias is smaller than the
block size plus some security margin. Since for Rijndael any 4-round trail will have at least 25
active S-boxes (one of the best trails of active S-boxes is for ex. 1–4–16–4) the best approximation
bias is bounded by 2−75. The bias profile for ciphers like Rijndael is artificially flattened by the
designers, but this happens at the expense of many approximations having the same bias. That
means that a multiple linear approximation strategy would be more powerful against such a

6 Note that Kaliski and Robshaw calculated the sum of squared biases:
P

ǫ2j = c̄2/4.

12

cipher than against a cipher like DES, where the biases of the two best approximations are much
higher than the others.

Considering the attacks described in this paper, we expect that one may need to add a few
rounds when defining bounds of provable security against linear cryptanalysis, based only on
best approximations. Still, since AES has a large security margin against linear cryptanalysis
we do not believe that linear attacks enhanced with multiple linear approximations will pose a
practical threat to the security of the AES.

6 Conclusions

In this paper, we have studied the problem of generalizing linear cryptanalytic attacks given
m multiple linear approximations, which has been stated in 1994 by Kaliski and Robshaw [6].
In order to solve the problem, we have developed a statistical framework based on maximum
likelihood decoding. This approach is optimal in the sense that it utilizes all the information
that is present in the multiple linear approximations. We have derived explicit and compact
gain formulas for the generalized linear attacks and have shown that for a constant gain, the
data-complexity N of the attack is proportional to the inverse joint capacity c̄2 of the multiple
linear approximations: N ∝ 1/c̄2. The gain formulas hold for the generalized versions of both
algorithms proposed by Matsui (Algorithm 1 and Algorithm 2).

In the second half of the paper we have proposed several practical methods which deliver
the theoretical gains derived in the first part of the paper. We have proposed a key-recovery
algorithm MK 1 which has a time complexity O(m/c̄2 +m · |Z|) and a data complexity O(1/c̄2),
where |Z| is the number of solutions of the system of m equations defined by the linear approx-
imations. We have also designed an algorithm MK 2 which is a direct generalization of Matsui’s
Algorithm 2, as described in [10]. The performances of both algorithms are very close to our the-
oretical estimations and confirm that the data-complexity of the attack decreases proportionally
to the increase in the joint capacity of multiple approximations. We have used 8-round DES as a
standard benchmark in our experiments and in all cases our attacks perform significantly better
than those given by Matsui. However our goal in this paper was not to produce the most optimal
attack on DES, but to construct a new cryptanalytic tool applicable to a variety of ciphers.
Nevertheless we do expect that ideas expressed in this paper will lead to an improvement in the
state-of-the-art attacks on DES.

References

[1] J. Daemen and V. Rijmen, The Design of Rijndael: AES — The Advanced Encryption Standard .
Springer-Verlag, 2002.

[2] Y. Desmedt, ed., Advances in Cryptology – CRYPTO’94 , vol. 839 of Lecture Notes in Computer

Science, Springer-Verlag, 1994.

[3] J. D. Golic, V. Bagini, and G. Morgari, “Linear cryptanalysis of bluetooth stream cipher,” in
Advances in Cryptology – EUROCRYPT 2002 (L. R. Knudsen, ed.), vol. 2332 of Lecture Notes in

Computer Science, pp. 238–255, Springer-Verlag, 2002.

[4] P. Junod, “On the complexity of Matsui’s attack,” in Selected Areas in Cryptography, SAC 2001

(S. Vaudenay and A. M. Youssef, eds.), vol. 2259 of Lecture Notes in Computer Science, pp. 199–211,
Springer-Verlag, 2001.

[5] P. Junod, “On the optimality of linear, differential, and sequential distinguishers,” in Advances in

Cryptology – EUROCRYPT 2003 (E. Biham, ed.), Lecture Notes in Computer Science, pp. 17–32,
Springer-Verlag, 2003.

[6] B. S. Kaliski and M. J. Robshaw, “Linear cryptanalysis using multiple approximations,” in Desmedt
[2], pp. 26–39.

[7] L. R. Knudsen and J. E. Mathiassen, “A chosen-plaintext linear attack on DES,” in Fast Software

Encryption, FSE 2000 (B. Schneier, ed.), vol. 1978 of Lecture Notes in Computer Science, pp. 262–
272, Springer-Verlag, 2001.

13

[8] L. R. Knudsen and M. J. B. Robshaw, “Non-linear approximations in linear cryptanalysis,” in
Proceedings of Eurocrypt’96 (U. Maurer, ed.), no. 1070 in Lecture Notes in Computer Science,
pp. 224–236, Springer-Verlag, 1996.

[9] M. Matsui, “Linear cryptanalysis method for DES cipher,” in Advances in Cryptology – EU-

ROCRYPT’93 (T. Helleseth, ed.), vol. 765 of Lecture Notes in Computer Science, pp. 386–397,
Springer-Verlag, 1993.

[10] M. Matsui, “The first experimental cryptanalysis of the Data Encryption Standard,” in Desmedt
[2], pp. 1–11.

[11] M. Matsui, “Linear cryptanalysis method for DES cipher (I).” (extended paper), unpublished, 1994.
[12] M. Matsui, “On correlation between the order of S-boxes and the strength of DES,” in Santis [14],

pp. 366–375.
[13] S. Murphy, F. Piper, M. Walker, and P. Wild, “Likelihood estimation for block cipher keys,” Tech-

nical report, Information Security Group, Royal Holloway, University of London, 1995.
[14] A. D. Santis, ed., Advances in Cryptology – EUROCRYPT’94 , vol. 950 of Lecture Notes in Computer

Science, Springer-Verlag, 1995.
[15] A. A. Selçuk, “On probability of success in linear and differential cryptanalysis,” in Proceedings of

SCN’02 (S. Cimato, C. Galdi, and G. Persiano, eds.), vol. 2576 of Lecture Notes in Computer Sci-

ence, Springer-Verlag, 2002. Also available at https://www.cerias.purdue.edu/papers/archive/
2002-02.ps.

[16] S. Vaudenay, “On the weak keys of blowfish,” in Fast Software Encryption, FSE’96 (D. Gollmann,
ed.), vol. 1039 of Lecture Notes in Computer Science, pp. 27–32, Springer-Verlag, 1996.

14

A Proofs

A.1 Proof of Corollary 1

Corollary 1. If |Z| is sufficiently large, the gain derived in Theorem 1 can accurately be ap-

proximated by

γ ≈ − log2

[
2 · |Z| − 1

|Z| · Φ
(
−

√
N · c̄2

2

)
+

1

|Z|

]
, (11)

where c̄2 =
∑m

j=1 c2
j is called the total capacity of the m linear characteristics.

Proof. In order to show how (11) is derived from (8), we just need to construct an approximation
for the expression

1

|Z∗|
∑

z∈Z∗

Φ

(
−
√

N · |cz − cz∗ |
2

)
=

1

|Z∗|
∑

z∈Z∗

Φ
(
−

√
N/4 · |cz − cz∗ |2

)
. (12)

We first define the function f(x) = Φ(
√

N/4 · x). Denoting the average value of a set of variables
by E[·] = ·̂, we can reduce (12) to the compact expression E[f(x)], with x = |cz − cz∗ |2. By
expanding f(x) into a Taylor series around the average value x̂, we find

E[f(x)] = f(x̂) + 0 + f ′′(x̂) · E[(x − x̂)2] +

Provided that the higher order moments of x are sufficiently small, we can use the approximation
E[f(x)] ≈ f(x̂). Exploiting the fact that the jth coordinate of each vector cz is either cj or −cj ,
we can easily calculate the average value x̂:

x̂ =
1

|Z∗|
∑

z∈Z∗

|cz − cz∗ |2 = 2 · |Z|
|Z∗|

m∑

j=1

c2
j .

When |Z| is sufficiently large (say |Z| > 28), the right hand part can be approximated by
2 · ∑m

j=1 c2
j = 2 · c̄2 (remember that Z∗ = Z \ {z∗}, and thus |Z∗| = |Z| − 1). Substituting this

into the relation E[f(x)] ≈ f(x̂), we find

1

|Z∗|
∑

z∈Z∗

Φ

(
−
√

N · |cz − cz∗ |
2

)
≈ Φ

(
−

√
N · c̄2

2

)
.

By applying this approximation to the gain formula derived in Theorem 1, we directly obtain
expression (11).

⊓⊔

A.2 Gain Formulas for the Algorithm-2-style Attack

With the modified definitions of Z and cz given in Section 3.3, Theorem 1 can immediately be
applied. This results in the following corollary.

Corollary 2. Given m approximations and N independent pairs (Pi, Ci), an adversary can

mount an Algorithm-2-style linear attack with a gain equal to:

γ = − log2

[
2 · 1

|Z|
∑

z∈Z∗

Φ

(
−
√

N · |cz − cz∗ |
2

)
+

1

|Z|

]
. (13)

15

The formula above involves a summation over all elements of Z∗. Motivated by the fact that
|Z∗| = |ZO| · |ZI | − 1 is typically very large, we now derive a more convenient approximated
expression similar to Corollary 1. In order to do this, we split the sum into two parts. The
first part considers only keys z ∈ Z∗

1 = Z1 \ {z∗} where Z1 = {z | zO = z∗O}; the second
part sums over all remaining keys z ∈ Z2 = {z | zO 6= z∗O}. In this second case, we have that
|cz − cz∗ |2 = 2 ·

∑m
j=1 c2

j = 2 · c̄2 for all z ∈ Z2, such that

∑

z∈Z2

Φ

(
−
√

N · |cz − cz∗ |
2

)
= |Z2| · Φ

(
−

√
N · c̄2

2

)
.

For the first part of the sum, we apply the approximation used to derive Corollary 1 and obtain
a very similar expression:

∑

z∈Z∗

1

Φ

(
−
√

N · |cz − cz∗ |
2

)
≈ |Z∗

1 | · Φ
(
−

√
N · c̄2

2

)
.

Combining both result we find the counterpart of Corollary 1 for an Algorithm-2-style linear
attack.

Corollary 3. If |Z| is sufficiently large, the gain derived in Theorem 2 can accurately be ap-

proximated by

γ ≈ − log2

[
2 · |Z| − 1

|Z| · Φ
(
−

√
N · c̄2

2

)
+

1

|Z|

]
, (14)

where c̄2 =
∑m

j=1 c2
j is the total capacity of the m linear characteristics.

Notice that although Corollaries 1 and 3 contain identical formulas, the gain of the Algorithm-
2-style linear attack will be significantly larger because it depends on the capacity of linear
characteristics over r − 2 rounds instead of r rounds.

B Discussion – Practical Aspects

When attempting to calculate the optimal estimators derived in Section 3, the attacker might
be confronted with some practical limitations, which are often cipher-dependent. In this section
we discuss possible problems and propose ways to deal with them.

B.1 Attack Algorithm MK 1

When estimating the potential gain in Section 3, we did not impose any restrictions on the
number of approximations m. However, while it does reduce the complexity of the search phase
(since it increases the gain), having an excessively high number m increases both the time and
the space complexity of the distillation and the analysis phase. At some point the latter will
dominate, cancelling out any improvement made in the search phase.

Analyzing the complexities in Table 1, we can make a few observations. We first note that
the time complexity of the distillation phase should be compared to the time needed to encrypt
N ∝ 1/c̄2 plaintext–ciphertext pairs. Given that a single counting operation is much faster than
an encryption, we expect the complexity of the distillation to remain negligible compared to the
encryption time as long as m is only a few orders of magnitude (say m < 100).

The second observation is that the number of different key classes |Z| clearly plays an im-
portant role, both for the time and the memory complexities of the algorithm. In a practical
situation, the memory is expected to be the strongest limitation. Different approaches can be
taken to deal with this problem:

16

Straightforward, but inefficient approach. Since the number of different key classes |Z| is
bounded by 2m, the most straightforward solution is to limit the number of approximations.
A realistic upper bound would be m < 32. The obvious drawback of this approach is that it
will not allow us to attain very high capacities.

Exploiting dependent key masks. A better approach is to impose a bound on the number
l of linearly independent key masks χj

K . This way, we limit the memory requirements to
|Z| = 2l, but still allow a large number of approximations (for ex. a few thousands). This
approach restricts the choice of approximations, however, and thus reduces the maximum
attainable capacity. This is the approach taken in Section 4.1. Note also that the attack
described in [6] can be seen as a special case of this approach, with l = 1.

Merging separate lists. A third strategy consists in constructing separate lists and merging
them dynamically. Suppose for simplicity that the m key masks χj

K considered in the attack
are all independent. In this case, we can apply the analysis phase twice, each time using m/2
approximations. This will result in two sorted lists of intermediate key classes, both contain-
ing 2m/2 classes. We can then dynamically compute a sorted sequence of final key classes
constructed by taking the product of both lists. The ranking of the sequence is determined
by the likelihood of these final classes, which is just the sum of the likelihoods of the elements
in the separate lists. This approach slightly increases7 the time complexity of the analysis
phase, but will considerably reduce the memory requirements. Note that this approach can
be generalized in order to allow some dependencies in the key masks.

B.2 Attack Algorithm MK 2

We now briefly discuss some practical aspects of the Algorithm-2-style multiple linear attack,
called Attack Algorithm MK 2. As discussed earlier, the ideas of the attack are very similar to
Attack Algorithm MK 1, but there are a number of additional issues. In the following paragraphs,
we denote the number of rounds of the cipher by r.

Choice of characteristics. In order to limit the amount of guesses in rounds 1 and r, only parts
of the subkeys in these rounds will be guessed. This restricts the set of useful r − 2-round
characteristics to those that only depend on bits which can be derived from the plaintext,
the ciphertext, and the partial subkeys. This obviously reduces the maximum attainable
capacity.

Efficiency of the distillation phase. During the distillation phase, all N plaintexts need to
be analyzed for all |ZO| guesses zO. Since |ZO| is rather large in practice, this could be very
computational intensive. For example, a naive implementation would require O(N ·|ZO|) steps
and even Matsui’s counting trick would use O(N + |ZO|2) steps. However, the distillation
can be performed in O(N + |ZO|) steps by gradually guessing parts of zO and re-processing
the counters.

Merging Separate lists. The idea of working with separate lists can be applied here just as
for MK 1.

Computing distances. In order to compare the likelihoods of different keys, we need to eval-
uate the distance |ĉ − cz|2 for all classes z ∈ Z. The vectors ĉ and cz are both |ZO| · m-
dimensional. When calculating this distance as a sum of squares, most terms do not depend
on z, however. This allows the distance to be computed very efficiently, by summing only m
terms.

B.3 Attack Algorithm MD 1 (distinguishing/key-recovery)

The main limitation of Algorithm MK 1 and MK 2 is the bound on the number of key classes
|Z|. In this section, we show that this limitation disappears if our sole purpose is to distinguish

7 In cases where the gain of the attack is several bits, this approach will actually decrease the complexity,
since we expect that only a fraction of the final sequence will need to be computed.

17

an encryption algorithm Ek from a random permutation R. As usual, the distinguisher can be
extended into a key-recovery attack by adding rounds at the top and at the bottom.

If we observe N plaintext–ciphertext pairs and assume for simplicity that the a priori prob-
ability that they were constructed using the encryption algorithm is 1/2, we can construct a
distinguishing attack using the maximum likelihood approach in a similar way as in Section 3.
Assuming that all secret keys k are equally probable, one can easily derive the likelihood that
the encryption algorithm was used, given the values of the counters t:

LE(t) ≈ 1

2m

m∏

j=1

(
N

tj

)
·
(
p

tj

j · qN−tj

j + q
tj

j · pN−tj

j

)
.

This expression is correct if all text masks and key masks are independent, but is still expected
to be a good approximation, if this assumption does not hold (for the reasons discussed in
Section 3.4). A similar likelihood can be calculated for the random permutation:

LR(t) =

m∏

j=1

(
N

tj

)
·
(

1

2

)N

.

Contrary to what was found for Algorithm MK 1, both likelihoods can be computed in time
proportional to m, i.e., independent of |Z|. The complete distinguishing algorithm, called Attack

Algorithm MD 1 consists of two steps:

Distillation phase. Obtain N plaintext–ciphertext pairs (Pi, Ci). For 1 ≤ j ≤ m, count the
number tj of pairs satisfying Pi[χ

j
P] ⊕ Ci[χ

j
C] = 0.

Analysis phase. Compute LE(t) and LR(t). If LE(t) > LR(t), decide that the plaintexts were
encrypted with the algorithm Ek (using some unknown key k).

The analysis of this algorithm is a matter of further research.

C Links of Multiple Approximation Attack to Coding Theory

The problem of extracting information from many linear approximations may be viewed as a
decoding problem in which k information bits about the secret key are encoded through a set
of m linear equations into an m-bit codeword8. Given a single known plaintext-ciphertext pair
the attacker sees an extremely ‘noisy’ version of this m-bit codeword. However, the attacker
is allowed to request additional transmissions (i.e., more known plaintext-ciphertext pairs) in
order to improve the quality of the channel. The cryptanalysis problem thus seems to be related
to an NP-complete problem of decoding a random linear code. However, worst case hardness
does not ensure average case hardness, and there are several important distinctions with the
general case; the parity check matrix is produced by approximations derived from the cipher
and thus contains some structure and is often sparse. Recovery of even a single information bit
or distinguishing a system from random might be sufficient for the attack. The attacker can
adaptively request more data, based on partial decoding results. The attacker has always access
to a perfect (though expensive) information source by checking key candidates against (Pi, Ci)
pairs and eliminating all false key-candidates. Such additional channel is not available in a pure
coding-theoretic scenario.

D Previous Work: History of Linear Cryptanalysis

In this section we cover the history of linear cryptanalysis and its various refinements. In [9]
linear cryptanalysis of DES was described. The paper suggests two algorithms: the first one is

8 A similar framework is used for linear cryptanalysis of stream ciphers in [3].

18

the so called Algorithm 1, which covers the full cipher with a single approximation and recovers
a single parity bit of the key. The second algorithm (called Algorithm 2) covers (r − 1) rounds
of a cipher by a single approximation and guesses the 6-bit key which enter the active S-boxes
of the last round. By repeating this approach twice (using the encryption-decryption symmetry
of Feistel ciphers) the attacker is able to recover 14-bits of the key with 247 known plaintexts
and with a success rate of 95%. The remaining 42-bits would be recovered by exhaustive key
search. In [11] it is suggested to use two 14-round approximations and to guess the keys both
at the input and at the output (the so called Algorithm 2-B). As a result the attacker guesses
13-bits of the key (12 bits entering the S-boxes and one parity bit of the approximation) for each
of the two approximations in parallel. In total he gains 26 bits of the key (due to the DES key
schedule the bits are disjoint) using 245 known plaintexts and with 98.8% success probability.
The remaining 30 bits are found by fast exhaustive search. One notices that the effort spent
in the two phases of this attack is very unbalanced. By using the idea of key-ranking [10] the
attacker introduces a “time of analysis/data” tradeoff to the attack. The idea is to require only
243 known plaintexts, but to allow the correct key to be within the first 213 from a merged list
of 226 keys. The complexity of the attack is thus 213 · 230 = 243, and the success rate is 85%. In
this paper, when we refer to “Algorithm 2”, we are referring to this last attack.

In [12] Matsui proposed a search algorithm for the best linear approximation. The algorithm
is a branch and bound algorithm with an underestimating heuristic. It works by induction on
the number of rounds. It is very sensitive to the initial approximation which is used to cut the
tree branches: for a good choice it runs several seconds for full 16-round DES and for arbitrary
number of active S-boxes.

Junod [4] shows that Matsui’s ranking estimate is pessimistic (as was predicted by Matsui
and others) and that the analysis phase has a complexity of at most 241 if one uses an optimal
ranking criteria. However this observation does not help to reduce the data complexity much,
since the approximations are very sensitive to the amount of data and degrade rapidly if less
data is available.

Several generalizations of the linear cryptanalysis method have been proposed in the last
10 years: Kaliski-Robshaw [6] suggested to use many linear approximations instead of one, but
did not provide a method for doing so, except for the case when all the approximations cover
the same parity bit of the key. The idea of using non-linear approximations has been suggested
by Knudsen-Robshaw [8]. Knudsen-Mathiassen [7] suggest to convert linear cryptanalysis into a
chosen plaintext attack, which would gain the first round of approximation for free. The gain is
small, since Matsui’s attack gains the first round rather efficiently as well.

E Search for the m-best Linear Approximations

In this section we describe an algorithm which searches for the m-best linear approximations
(allowing several active S-boxes per-round). The algorithm is a very simple adaptation of Matsui’s
algorithm [12]. The main idea is to keep a queue of m-best approximations for n-rounds: Qn =
(q1

n, . . . , qm
n), sorted in order of decreasing bias. Here qn

i = (patterni
n, Bi

n) stores both the linear
mask pattern for all the intermediate rounds patterni

n, and the bias of the approximation Bi
n.

The algorithm will use the worst approximation in the current list Bm
n = mini(B

i
n) for pruning

the tree (instead of the best approximation which is used in Matsui’s pruning).
The algorithm may be rewritten to run much faster by using the following observations:

given a list of m best approximations for i − 1 rounds, queue Qi−1, we can try to find a rough
approximation of the list for i rounds, queue Qi, by extending approximations from Qi−1 by
one round in all the possible ways. Performance of algorithm is very sensitive to the quality of
the initial approximation Bm

n and since approximations found this way are usually very good
we avoid checking many unnecessary branches. It is actually possible to rewrite an algorithm
completely in a way that will use only the bound on the worst-approximation, and this is how
the capacity graphs in this paper were computed.

19

Algorithm 1 Search for Multiple Linear Approximations (SMA)

1: Procedure Round-1
2: BEGIN the program
3: while There are candidates for ΓY1 and ΓX1 do
4: p1 ⇐ (ΓY1, ΓX1).
5: if [p1, Bn−1] ≥ Bm

n then
6: Call Procedure Round-2.
7: end if
8: end while

END the program
Procedure Round-2:

9: while There are candidates for ΓY2 and ΓX2 do
10: p2 ⇐ (ΓY2, ΓX2).
11: if [p1, p2, Bn−2] ≥ Bm

n then
12: Call Procedure Round-3.
13: end if
14: end while

Procedure Round-i (3 ≤ i ≤ n − 1):
15: while There are candidates for ΓXi do
16: ΓYi ⇐ ΓYi−2 ⊕ ΓXi−1.
17: pi ⇐ (ΓYi, ΓXi).
18: if [p1, p2, . . . , pi, Bn−i] ≥ Bm

n then
19: Call Procedure Round-(i+1).
20: end if
21: end while

Procedure Round-n:
22: while There are candidates for ΓXn do
23: ΓYn ⇐ ΓYn−2 ⊕ ΓXn−1.
24: pn ⇐ (ΓYn, ΓXn).
25: if [p1, p2, . . . , pn] ≥ Bm

n then
26: Insert [p1, p2, . . . , pn] into Qn.
27: Bm

n ⇐ minj(B
j
n)

28: end if
29: end while

20

