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Abstract

Recently we solved the long-standing open problem of justifying a Dolev-Yao type model of cryp-

tography as used in virtually all automated protocol provers under active attacks. The justification

was done by defining an ideal system handling Dolev-Yao-style terms and a cryptographic realization

with the same user interface, and by showing that the realization is as secure as the ideal system in the

sense of reactive simulatability. This definition encompasses arbitrary active attacks and enjoys general

composition and property-preservation properties. Security holds in the standard model of cryptography

and under standard assumptions of adaptively secure primitives.

A major primitive missing in that library so far is symmetric encryption. We show why symmetric

encryption is harder to idealize in a way that allows general composition than existing primitives in

this library. We discuss several approaches to overcome these problems. For our favorite approach we

provide a detailed provably secure idealization of symmetric encryption within the given framework for

constructing nested terms.

1 Introduction

Automated proofs of security protocols with model checkers or theorem provers typically abstract from
cryptography by deterministic operations on abstract terms and by simple cancellation rules. An example
term is Epkew

(Epkev
(signsksu

(m, N1), N2)), where m denotes an application message and N1, N2 two nonces.
A typical cancellation rule is Dske(Epke(m)) = m for corresponding keys. The proof tools handle these terms
symbolically, i.e., they never evaluate them to bitstrings. In other words, they perform abstract algebraic
manipulations on trees consisting of operators and base messages, using the cancellation rules, the transition
rules of a particular protocol, and abstract models of networks and adversaries. Such abstractions, although
different in details, are called the Dolev-Yao model after the first authors [17].

For many years there was no cryptographic justification for such abstractions. The problem lies in
the assumption, implicit in the adversary model, that actions that cannot be expressed with the abstract
operations are impossible, and that no relations hold between terms unless derivable by the cancellation rules.
It is not hard to make artificial counterexamples to these assumptions. Nevertheless, no counterexamples
against the method for protocols proved in the literature were found so far. Further, the overall approach of
abstracting from cryptographic primitives once with rigorous hand-proofs, and then using tools for proving
protocols using such primitives, is highly attractive: Besides the cryptographic aspects, protocol proofs
have many distributed-systems aspects, which make proofs tedious and error-prone even if they weren’t
interlinked with the cryptographic aspects. To use existing efficient automated proof tools for security
protocols, cryptography must indeed be abstracted into simple, deterministic ideal systems. The closer one
can stay to the Dolev-Yao model, the easier the adaptation of the proof tools will be.1

Cryptographic underpinnings of a Dolev-Yao model were first addressed by Abadi and Rogaway in [2].
However, they only handled passive adversaries and symmetric encryption. The protocol language and
security properties handled were extended in [1, 20], but still only for passive adversaries. This excludes

1Efforts are also under way to formulate syntactic calculi for dealing with probabilism and polynomial-time considerations,
in particular [23, 21, 24, 18] and, as a second step, to encode them into proof tools. However, this approach can not yet
handle protocols with any degree of automation. Generally it is complementary to, rather than competing with, the approach
of proving simple deterministic abstractions of cryptography and working with those wherever cryptography is only used in a
blackbox way.

1



most of the typical ways of attacking protocols, e.g., man-in-the-middle attacks and attacks by reusing
a message part in a different place or a concurrent protocol run. A full cryptographic justification for a
Dolev-Yao model, i.e., for arbitrary active attacks and within arbitrary surrounding interactive protocols,
was first given recently in [4]. Based on the specific Dolev-Yao model whose soundness was proven in [4],
the well-known Needham-Schroeder-Lowe protocol was proved in [3]. This shows that in spite of adding
certain operators and rules compared with simpler Dolev-Yao models (in order to be able to use arbitrary
cryptographically secure primitives without too many changes in the cryptographic realization), such a proof
is possible in the style already used in automated tools, only now with a sound cryptographic basis. In [5]
it was shown how the library, in other words the term algebra and rules, can be modularly extended by
additional cryptographic primitives, using the example of symmetric authentication [5].

Nevertheless, symmetric encryption is still missing in this framework, while it is the most common cryp-
tographic primitive in typical proofs with Dolev-Yao models. The goal of this paper is to add symmetric
encryption to this framework. Concurrently to our work, Laud [19] has presented a cryptographic under-
pinning for a Dolev-Yao model of symmetric encryption under active attacks. His work enjoys a direct
connection with a formal proof tool, but it is specific to certain confidentiality properties, restricts the sur-
rounding protocols to straight-line programs in a specific language, and does not address a connection to the
remaining primitives of the Dolev-Yao model.

There are intrinsic difficulties in providing a sound abstraction from symmetric encryption in the strong
sense of security used in [4]. This strong notion is the concept of simulatability. Essentially, it is the
cryptographic notion of secure implementation. Very roughly, a real system is called as secure as an ideal
system in this sense if everything that can happen to honest users of the real system can also happen
to the same honest users with the ideal system. This is typically proved by providing a simulator that,
interacting with the ideal system and the honest users, and using an adversary on the real system as a
blackbox subsystem, simulates all visible actions of the real system online (i.e., at the time they occur).

For symmetric encryption, there is the following so-called commitment problem if one wants to achieve
simulatability.2 The ideal encryption system must somehow allow that secret keys are sent from one partici-
pant to another, because many protocols to be proven using such an ideal system are key-exchange protocols.
This is the main difference to public-key systems, where an ideal system can assume that only public keys
are sent around, because this is sufficient for all standard protocols. If the ideal system simply allows keys
to be sent at any time (and typical Dolev-Yao models do allow all valid terms to be sent at any time), the
following problem can occur: An honest participant first sends a ciphertext such that the adversary can see
it, and later sends both the contained cleartext and the key. This behavior may even be reasonably designed
into protocols, e.g., the ciphertext might be an encrypted bet that is later opened. The simulator will first
learn in some abstract way that a ciphertext was sent and has to simulate it by some bitstring, which the
adversary sees. Later the simulator sees abstractly that a key becomes known and that the ciphertext con-
tains a specific application message. It cannot change the application message, thus it must simulate a key
that decrypts the old ciphertext bitstring (produced without knowledge of the application message) to this
specific message.

We discuss several ways of dealing with this problem. Our preferred one, for which we actually present
the ideal and real symmetric encryption system, is to leave it to the surrounding protocol to guarantee
that the commitment problem does not occur. Essentially, this means that the surrounding protocol must
guarantee that keys are no longer sent in a form that might make them known to the adversary once an
honest participant has started using them. Alternatives would be to build such a guarantee into the ideal and
the real system, or to restrict oneself to the few encryption systems where this problem does not occur, or
to work in models of cryptography that still have some ideal, unrealizable aspect, in particular the random-
oracle model. We discuss these possibilities and our choice in more detail in Section 3. The most important
argument for our choice is that, depending on the timing assumptions possible in the environment and
on the protocol goals, a range of different measures are conceivable for guaranteeing the necessary order
between the sending of keys and ciphertexts. Further, existing formal methods and automated tools are well
suited to arguing about such properties. Instead, if we proposed measures in the underlying idealization,
we would need a once-and-for-all measure, and we would at present need to prove it by hand. To show the

2Given that one wants to achieve simulatability, the problem is independent of a surrounding framework for nested terms,
i.e., of our specific goal of making the ideal encryption system a subsystem in the library of [4].
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applicability of our choice for modeling the protocols typically analyzed in Dolev Yao models, we investigated
the 50 protocols of the Clark-Jacob library [15] with respect to the commitment problem, and only one of
them raises this problem.

Other design decisions to be taken with symmetric encryption are whether, given a ciphertext, the
adversary may obtain information about the key used, and whether the ideal system prescribes that every
decryption of a ciphertext (or a message of a different type) with the wrong key produces an error, or whether
it may sometimes produce another message. Such questions are similar to the passive case in [2] or to the
treatment of symmetric authentication in [5], but have to combined in a consistent way into the overall ideal
encryption system.

2 Underlying Definitions

Before discussing the commitment problem in more detail, we present the exact definition of simulatability,
the strong security notion that causes this problem. For this, we first briefly sketch the underlying definitions
from [25]. This is the model used in the cryptographic library from [4] into which we embed our ideal
encryption system.

A system consists of several possible structures. A structure consists of a set M̂ of connected correct
machines and a subset S of free ports, called specified ports. A machine is a probabilistic IO automaton
(extended finite-state machine) in a slightly refined model to allow complexity considerations. For these
machines Turing-machine realizations are defined, and the complexity of those is measured in terms of
a common security parameter k, given as the initial work-tape content of every machine. Readers only
interested in using the ideal cryptographic library (or even only the ideal encryption system) in larger
protocols only need normal, deterministic IO automata.

In a standard real cryptographic system, the structures are derived from one intended structure and a
trust model consisting of an access structure ACC and a channel model χ. Here ACC contains the possible
sets H of indices of uncorrupted machines among the intended ones, and χ designates whether each channel
is secure, authentic (but not private) or insecure. In a typical ideal system, each structure contains only one
machine TH called trusted host.

Each structure is complemented to a configuration by an arbitrary user machine H and adversary machine
A. H connects only to ports in S and A to the rest, and they may interact. The set of configurations of
a system Sys is called Conf(Sys). The general scheduling model in [25] gives each connection c (from an
output port c! to an input port c?) a buffer, and the machine with the corresponding clock port c⊳! can
schedule a message there when it makes a transition. In real asynchronous cryptographic systems, network
connections are typically scheduled by A. A configuration is a runnable system, i.e., for each k one gets a
well-defined probability space of runs. The view of a machine in a run is the restriction to all in- and outputs
this machine sees and its internal states. Formally, the view view conf (M) of a machine M in a configuration
conf is a family of random variables with one element for each security parameter value k.

2.1 Simulatability

Simulatability is the cryptographic notion of secure implementation. For reactive systems, it means that
whatever might happen to an honest user in a real system Sys real can also happen in the given ideal system
Sys id: For every structure (M̂1,S ) ∈ Sys real, every polynomial-time user H, and every polynomial-time
adversary A1, there exists a polynomial-time adversary A2 on a corresponding ideal structure (M̂2,S ) ∈ Sys id

such that the view of H is computationally indistinguishable in the two configurations. This is illustrated in
Figure 1. Indistinguishability is a well-known cryptographic notion from [27].

Definition 2.1 (Computational Indistinguishability) Two families (vark)k∈N and (var′k)k∈N of random vari-
ables on common domains Dk are computationally indistinguishable (“≈”) iff for every algorithm Dis (the
distinguisher) that is probabilistic polynomial-time in its first input,

|P (Dis(1k, vark) = 1)− P (Dis(1k, var′k) = 1)| ∈ NEGL,
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Figure 1: Simulatability: The two views of H must be indistinguishable.

where NEGL denotes the set of all negligible functions, i.e., g : N → R≥0 ∈ NEGL iff for all positive
polynomials Q, ∃k0∀k ≥ k0 : g(k) ≤ 1/Q(k). ✸

Intuitively, given the security parameter and an element chosen according to either vark or var′k, Dis tries to
guess which distribution the element came from.

Definition 2.2 (Simulatability) For two systems Sys real and Sys id, one says Sysreal ≥ Sys id ( at least as
secure as) iff for every polynomial-time configuration conf 1 = (M̂1,S , H, A1) ∈ Conf(Sys real), there ex-
ists a polynomial-time configuration conf 2 = (M̂2,S , H, A2) ∈ Conf(Sys id) (with the same H) such that
view conf

1
(H) ≈ view conf

2
(H). ✸

For the cryptographic library, this is even shown with blackbox simulatability, i.e., A2 consists of a simulator
Sim that depends only on (M̂1,S ) and uses A1 as a blackbox submachine. An essential feature of this
definition of simulatability is a composition theorem [25], which roughly says that one can design and prove
a larger system based on the ideal system Sys id, and then securely replace Sys id by the real system Sys real.

2.2 Notation

We write “:=” for deterministic and “←” for probabilistic assignment, and “ R←” for uniform random choice
from a set. By x := y++ for integer variables x, y we mean y := y + 1; x := y. The length of a message
m is denoted as len(m), and ↓ is an error element available as an addition to the domains and ranges of
all functions and algorithms. The list operation is denoted as l := (x1, . . . , xj), and the arguments are
unambiguously retrievable as l[i], with l[i] = ↓ if i > j. A database D is a set of functions, called entries,
each over a finite domain called attributes. For an entry x ∈ D, the value at an attribute att is written x.att .
For a predicate pred involving attributes, D[pred ] means the subset of entries whose attributes fulfill pred .
If D[pred ] contains only one element, we use the same notation for this element. Adding an entry x to D is
abbreviated D :⇐ x.

2.3 Overview of the Ideal Cryptographic Library

The ideal cryptographic library as defined in [4] offers its users abstract cryptographic operations, such as
commands to encrypt or decrypt a message, to make or test a signature, and to generate a nonce. All
these commands have a simple, deterministic behavior in the ideal system. In a reactive scenario, this
semantics is based on state, e.g., of who already knows which terms. State is stored in a “database”.
Each entry of the database has a type (e.g., “signature”), and pointers to its arguments (e.g., a key and a
message). This corresponds to the top level of a Dolev-Yao term; an entire term can be found by following
the pointers. Further, each entry contains handles for those participants who already know it. The reason
for using handles to make an entry accessible for higher protocols is that an idealized cryptographic term
and the corresponding real message have to be presented in the same way to higher protocols to allow for a
provably secure implementation in the sense of simulatability. In the ideal library, handles essentially point
to Dolev-Yao-like terms, while in the real library they point to cryptographic messages.

The ideal cryptographic library does not allow cheating by construction. For instance, if it receives
a command to encrypt a message m with a certain key, it simply makes an abstract database entry for
the ciphertext. Another user can only ask for decryption of this ciphertext if he has handles to both the
ciphertext and the secret key. Similarly, if a user issues a command to sign a message, the ideal system looks
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up whether this user should have the secret key. If yes, it stores that this message has been signed with
this key. Later tests are simply look-ups in this database. A send operation makes an entry known to other
participants, i.e., it adds handles to the entry. The underlying model does not only cover crypto operations,
but it is an entire reactive system and therefore contains an abstract network model.

3 Design Decisions for Symmetric Encryption in Simulatability

Proofs

In this section, we discuss several approaches to solve the commitment problem sketched in the introduc-
tion. We further elaborate on the main design decisions that we made to provide a suitable deterministic
abstractions of symmetric encryption.

3.1 The Commitment Problem and Solution Approaches

As the name suggests, a “commitment problem” in simulatability proofs captures a situation where the
simulator commits itself to a certain message and later has to change this commitment to allow for a correct
simulation.

In the case of symmetric encryption, the commitment problem occurs if the simulator has to construct
an indistinguishable ciphertext, knowing neither the secret key nor the plaintext used for the corresponding
ciphertext in the real world. To simulate the missing key, the simulator will create a new secret key, or rely
on an arbitrary, fixed key if the encryption systems guarantees indistinguishable keys, see [2]. Instead of
the unknown plaintext, the simulator will encrypt an arbitrary message of the correct length, relying on the
indistinguishability of ciphertexts of different messages. So far, the simulation is fine. It even stays fine if
the message becomes known later because secure encryption still guarantees that it is indistinguishable that
the simulator’s ciphertext contains a wrong message. However, if the secret key becomes known later, the
simulator runs into trouble, because, learning abstractly about this fact, it has to produce a suitable key
that decrypts its ciphertext into the correct message. It cannot cheat with the message because it has to
produce the correct behavior towards the honest users. This is typically not possible.

There is one perfect exception to the commitment problem, the one-time pad. For this specific encryption
system, the simulator can open an arbitrary ciphertext string c to an arbitrary message m by selecting the
key as c⊕m. However, we do not want to restrict the ideal encryption system to modeling one-time pads,
and for standard encryption systems and standard modes of operation, certainly no similar process is known.
We can even show that no encryption system with fixed-length keys and a deterministic decryption algorithm
can have this property. Assume there are x possible keys. Now let a protocol send fresh random messages
whose overall length allows 2x possibilities. Hence if the simulator later has to produce a key, it has to
be able to provide for 2x different cases of what the messages were with just x keys. Thus some of the
keys it produces must fit more than one message tuple for the same given ciphertext tuple. “Fit” means
in particular that the assumed deterministic decryption algorithm used by honest participants will in fact
decrypt this ciphertext tuple to these messages. This is impossible.

The reason why the commitment problem did not occur in the cryptographic library before is that for
public-key encryption it was enforced that secret keys are never sent, while for symmetric authentication it
could be enforced that an authenticator never becomes known without the message it authenticates.

Related problems are known from uncoercible encryption and from adaptively secure multi-party function
evaluation. However, none of the solutions provided there fits our case: Uncoercible encryption has even
stronger requirements that need a physical assumption to be fulfilled at all [12]. Adaptively secure multi-party
computation can either use deletion of old keys instead [8], or concentrates on public-key schemes [13, 7, 16],
simply assuming the one-time pad for the symmetric case.

In the following, we introduce possible approaches to solve the commitment problem.

3.1.1 Assumptions about Sending Keys

Our aim is an abstraction that is as simple as possible and works for the cases typically analyzed in Dolev-
Yao models. It turns out that for these typical cases, the commitment problem does not occur since the

5



overall protocol ensures that keys are not sent after having been used.

• Protocols with predistributed keys, as often assumed for authentication protocols, clearly fulfill this
assumption. Formally, this can be seen as a synchronization assumption stating that the predistribution
phase is over, at least per key, before one of the participants sharing this key starts using it.

• Synchronous protocols can make similar assumptions even if key exchange is part of the protocols, e.g.,
by indicating time bounds for the exchange phase and the usage phase for each key in the key exchange
messages.

• Two-party protocols for exchanging a session key (using a symmetric or asymmetric master key) clearly
fulfill the assumption if the party who generates the key sends it before using it. This is typically true.

• Three-party protocols where a key-distribution center S helps parties A and B to exchange a secret
key sk come in several flavors: If S sends sk to A and B, and it can do so in one step (this depends
on the detailed model of asynchrony), then the assumption is automatically fulfilled, and so it is if
S sends sk to A, and A sends it to B and only then starts to use it. If S sends sk in two different
steps, then the recipient of the first of these messages (or both if the first and second message look
equal) has to wait for a confirmation from its partner before using the key. Many protocols have such
a confirmation anyway.

• Many group key distribution protocols already have confirmation phases that can be used to fulfill the
assumption.

To get a representative assessment of the restrictiveness of the commitment problem, we further investigated
the protocols of the Clark-Jacob library [15]. From the 50 protocols of the library, only one—the (flawed)
Wide Mouthed Frog protocol—raises the commitment problem. Further, avoiding the commitment problem
is an integrity property that seems well within the scope of current automated protocol proof tools, so that
it can be verified together with the application properties of a protocol. (This will become even clearer with
the formal definition in Figure 2 and Definition 6.1.)

Hence our approach is to define a simple abstraction of symmetric encryption, and to show that it can be
securely implemented provided that the commitment problem does not occur. The alternative approaches
discussed below either exclude many more protocols, or require a much more complex abstraction, or rely on
unrealistic assumptions like the random oracle model, or only work for special non-committing encryption
schemes. An additional benefit of our solution is that we expect that our ideal encryption system also works
with the random oracle model and non-committing encryption schemes, even for protocols that do have the
commitment problem.

3.1.2 Internal Restrictions on Sending Keys

Another solution is to guarantee in the ideal and real system that the commitment problem cannot occur.
This means that the systems only permit operations that do not cause the commitment problem, e.g., if a
key has already been used for encrypting, it may no longer be sent. The problem is that this is a distributed
property and thus not trivial to enforce in the real system. To implement it without imposing further
restrictions on the patterns of how keys can be passed on, we might need Byzantine agreement before any
participant first uses a key. This seems a highly unnatural underlying implementation for the authentication
and key exchange protocols typically proved with Dolev-Yao models. It seems more natural to enforce
restrictions on the patterns of how keys can be passed on. This certainly means that both the ideal system
and the real system have to keep track of the current status of each key for each participant, e.g., whether it
may still be sent. Furthermore, we either have to provide general rules for confirmation messages (compare
Section 3.1.1) or to enforce patterns where no confirmation messages are needed. As we saw, the former
already excludes some important cases, while the latter pulls distributed-systems aspects down into the
cryptographic primitives. We therefore decided not to follow this approach.
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3.1.3 Random Oracle Approach and Special Encryption Schemes

The commitment problem can be circumvented by conducting the proof in the random oracle model [10]. In
a nutshell, including a random oracle in the encrypted message prevents the simulator from committing itself
to a fixed value since the oracle can still be suitably instantiated when the commitment is opened respectively
the secret key is sent. However, idealizations like random oracles do not capture cryptographic realities and
protocols are known which are provably secure in these idealizations but insecure for any instantiation of
the oracle [14], so that the benefit over simply using a Dolev-Yao model is not as great as we desire.

Further, the commitment problem does not occur for non-committing encryption schemes, but as we
showed above, this currently only leaves the one-time pad.

3.2 The Need for Authenticated Encryption

Assume that a user encrypts a message m with one symmetric encryption key sk1, and decrypts the resulting
ciphertext with a key sk2. In the ideal system, the result is the error symbol ↓ because no equation for this
case is defined. In the real world, however, some encryption schemes yield another message m′. In particular,
the one-time pad always yields a result. Similar problems are known from normal Dolev-Yao models, e.g.,
see [22].

We solve this problem by only considering encryption schemes that answer decryption requests with
wrong keys with ↓, i.e., encryption schemes that provide a certain kind of authenticity. Formally, we use
authenticated symmetric encryption schemes as defined in [11, 9]. They intuitively guarantee that if one
does not know a specific key, it is infeasible to compute a ciphertext that can be validly decrypted with this
key; see the definition in Section 5.1. This definition implies that decryption with a wrong key will always
output ↓ except with negligible probability.

Instead of restricting the encryption schemes used, one could try to define the ideal system such that
it allows non-error outputs for decryptions with wrong keys. However, a deterministic abstraction cannot
achieve this because in the real system, decryption with different wrong keys will yield different messages
if any, while in the ideal system all such wrong keys have a common abstraction. A non-deterministic
choice could be achieved by letting the adversary make the choice of the resulting message, but this seems a
somewhat undesirable ideal system, given that authenticated encryption is efficiently implementable under
normal cryptographic assumptions.

3.3 Modeling Special Adversary Capabilities

Our idealization finally has to reflect special capabilities that the adversary may have with respect to sym-
metric encryption schemes in the real world.

First, we allow for checking whether encryptions have been created with the same secret key, as the
definition of authenticated encryption schemes does not exclude that this can happen in the real system.
For public-key encryption, this was achieved in [4] by tagging ciphertexts with the corresponding public key.
For symmetric encryption, this is not possible as no public key exists. We solve this problem by tagging
abstract ciphertexts with an otherwise meaningless “public key” solely used as an identifier for the secret
key. An alternative approach was taken in [2] by only considering those encryption schemes that guarantee
indistinguishable keys; for these schemes, this problem does not occur. However, if we wanted to restrict
ourselves to this case we would first need to extend it to authenticated encryption.

Secondly, as encryption keys can also come from the adversary, it might happen that an encryption can be
validly decrypted with several keys for incorrectly chosen keys. (The security definition only considers correct
keys.) Hence it must be possible to tag encryptions with additional key identifiers during the execution of
the ideal system. Encryptions without key identifiers model encryptions from the adversary for which no
suitable key is known yet.

4 Ideal System

In the following, we present our ideal encryption system. We do this as an addition to the ideal cryptographic
library reviewed in Section 2.3 for capturing symmetric encryption primitives. We stress that for modeling
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and proving cryptographic protocols using our abstraction, it is sufficient to understand and use the ideal
system described in this section. Later sections only justify the cryptographic faithfulness of this ideal library.

4.1 Structures and Parameters

The ideal system consists of a trusted host THH for every subset H of a set {1, . . . , n} of users, denoting the
possible honest users. It has a port inu? for inputs from and a port outu ! for outputs to each user u ∈ H
and for u = a, denoting the adversary.

The ideal system keeps track of the length of messages using a tuple L of abstract length functions.
We add functions skse len∗(k) and symenc len∗(k, l) to L for the length of symmetric encryption keys and
ciphertexts, depending on a security parameter k and the length l of the message. Each function has to be
polynomially bounded and efficiently computable.

4.2 States

The state of THH consists of a database D and variables size, curhndu for u ∈ H ∪ {a}. The database D
contains abstractions from real cryptographic objects which correspond to the top levels of Dolev-Yao terms.
An entry has the following attributes:

• x.ind ∈ INDS , called index, consecutively numbers all entries in D. We use the index as a primary
key attribute of the database, i.e., we write D[i] for the selection D[ind = i].

• x.type ∈ typeset identifies the type of x. We add types skse, pkse, and symenc to typeset from [4],
denoting secret symmetric encryption keys, corresponding “public keys”, and symmetric encryptions.
The type pkse is a so-called secret type, i.e., it must not be put into lists and hence cannot be transferred.

• x.arg = (a1, a2, . . . , aj) is a possibly empty list of arguments. Many values ai are indices of other
entries in D and thus in INDS . We sometimes distinguish them by a superscript “ind”.

• x.hndu ∈ HNDS ∪ {↓} for u ∈ H ∪ {a} are handles by which a user or adversary u knows this entry.
x.hndu = ↓ means that u does not know this entry. We use a superscript “hnd” for handles.

• x.len ∈ N0 denotes the “length” of the entry, which is computed by applying the functions from L.

Initially, D is empty. THH has a counter size ∈ INDS for the current number of elements in D. New
entries always receive ind := size++, and x.ind is never changed. For the handle attributes, it has counters
curhndu (current handle) initialized with 0, and each new handle for u will be chosen as ihnd := curhnd++.

THH further maintains explicit bounds on the length of messages and the number of activations to achieve
polynomial runtime independent of the environment. The bounds from [4] can be used without modification
except that the number of permitted inputs from the adversary has to be enlarged. This is just a technical
detail to allow for a correct proof of simulatability. We omit further details.

4.3 New Inputs and their Evaluation

The ideal system has several types of inputs: Basic commands are accepted at all ports inu?; they correspond
to cryptographic operations and have only local effects, i.e., only an output at the port outu? for the same
user occurs and only handles for u are involved. Local adversary commands are of the same type, but only
accepted at ina?; they model tolerated imperfections, i.e., possibilities that an adversary may have, but
honest users do not. Send commands output values to other users. The notation j ← algo(i) for a command
algo of THH means that THH receives an input algo(i) and outputs j if the input and output port are clear
from the context. We only allow lists to be encrypted and transferred following a general convention in [4].

For symmetric encryption we add new basic commands and local adversary commands; the send com-
mands are unchanged. We now define the precise new inputs and how THH evaluates them based on its
abstract state. Handle arguments are tacitly required to be in HNDS and existing, i.e., ≤ curhndu , at
the time of execution. The underlying model further bounds the length of each input to ensure polynomial
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runtime; these bounds are not written out explicitly, but can easily be derived from the domain expectations
given for the individual inputs.

The algorithm ihnd ← ind2hndu(i) (with side effect) denotes that THH determines a handle ihnd for user
u to an entry D[i]: If ihnd := D[i].hndu 6= ↓, it returns that, else it sets and returns ihnd := D[i].hndu :=
curhndu++. On non-handles, it is the identity function. ind2hnd∗u applies ind2hndu to each element of a list.

4.3.1 Basic Commands

First we consider basic commands. This comprises operations for key generation, encryption, and decryption.
We assume the current input is made at port inu?, and the result goes to outu !.

• Key generation: sksehnd ← gen symenc key(). Set sksehnd := curhndu++ and

D :⇐ (ind := size++, type := pkse, arg := (), len := 0);

D :⇐ (ind := size++, type := skse, arg := (ind − 1), hndu := sksehnd, len := skse len∗(k)).

The first entry, an “empty” public key without handle, serves as the mentioned key identifier for the
secret key. The argument of the secret key “points” to the empty public key.

• Encryption: chnd ← sym encrypt(sksehnd, lhnd).

Let skse := D[hndu = sksehnd ∧ type = skse].ind and l := D[hndu = lhnd ∧ type = list].ind . Return
↓ if either of these is ↓, or if length := symenc len∗(k, D[l].len) > max len(k). Otherwise, set chnd :=
curhndu++, pkse := skse − 1 and

D :⇐ (ind := size++, type := symenc, arg := (l, pkse), hndu := chnd, len := length).

The general argument format for entries of type symenc is ((l1, pkse1), . . . , (lj , pksej)). The arguments
pkse1, . . . , pksej are pairwise disjoint key identifiers of those secret keys for which the encryption validly
decrypts into messages l1, . . . , lj , respectively. We will see in Section 4.3.2 that additional key identifiers
for an encryption can be added during the execution, e.g., since the adversary has created a suitable
key. Such arguments are appended at the end of the existing list. An empty sequence of arguments
models encryptions from the adversary for which no suitable secret key has been received yet.

• Decryption: lhnd ← sym decrypt(sksehnd, chnd).

If c := D[hndu = chnd ∧ type = symenc].ind = ↓ or skse := D[hndu = sksehnd ∧ type = skse].ind = ↓,
return ↓. Otherwise, let ((l1, pkse1), . . . , (lj , pksej)) := D[c].arg (where j may be 0). If skse−1 = pksei

for some 1 ≤ i ≤ j, set lhnd := ind2hndu(li) else lhnd := ↓.

4.3.2 Local Adversary Commands

The following local commands are only accepted at the port ina?. They model special capabilities of the
adversary, see Section 3.3. For dealing with symmetric encryptions from the adversary for which no suitable
key has been received yet, we provide a command for generating an unknown symmetric encryption. Later,
suitable secret keys may be received. A command for fixing symmetric encryptions takes care of this.
Finally, we allow the adversary to retrieve all information that we do not explicitly require to be hidden,
e.g., arguments and the type of a given handle. For this, we extend the general command for parameter
retrieval for the symmetric encryption system. For entries of type symenc, only the length of the encrypted
message is output instead of the message itself unless the adversary has the corresponding secret-key handle.

• Unknown symmetric encryption: chnd ← adv unknown symenc(length) with length ∈ N.

Return ↓ if length > max len(k). Set chnd := curhnda++ and

D :⇐ (ind := size++, type := symenc, arg := (), hnda := chnd, len := length).
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• Fixing symmetric encryption: v ← adv fix symenc content(sksehnd, chnd, lhnd).

Return ↓ if c := D[hnda = chnd ∧ type = symenc].ind = ↓, if skse := D[hndu = sksehnd ∧ type =
skse].ind = ↓, if l := D[hnda = lhnd ∧ type = list].ind = ↓, or if symenc len∗(k, D[l].len) 6= D[c].len.

Let pkse := skse − 1 and ((l1, pkse1), . . . , (lj, pksej)) := D[c].arg (where j may be 0). If pkse 6∈
{pkse1, . . . , pksej} then set D[c].arg := ((l1, pkse1), . . . , (lj , pksej), (l, pkse)) and v := true, else set v :=
false.

• Parameter retrieval: (type, arg)← adv parse(mhnd).

This existing command always sets type := D[hnda = mhnd].type, and for most types arg :=
ind2hnd∗a(D[hnda = mhnd].arg). This also applies to the new types skse and pkse. For type = symenc, let
((l1, pkse1), . . . , (lj , pksej)) := D[hnda = mhnd].arg . For i ∈ {1, . . . , j}, let pksehnd

i := ind2hnda(pksei)
and sksei := pksei + 1. Then if D[sksei].hnd a 6= ↓, let l′i := ind2hnda(li), else l′i := D[li].len . Finally let
arg := ((l′1, pkse

hnd
1 ), . . . , (l′j , pkse

hnd
j )).

For unknown encryptions, neither a key identifier nor a message exists. Note further that parsing a symmetric
encryption yields handles to the “empty” public keys. For an encryption generated by an honest user, the first
public key always corresponds to the secret key with which the encryption was generated. If the adversary
wants to know whether two encryptions were created using the same secret key, it parses them and compares
the resulting public keys.

4.3.3 Send Commands

The ideal cryptographic library offers commands for virtually sending messages to other users. Sending
is modeled by adding a new handle for the intended recipient and possibly one for the adversary to the
database entry modeling the message. These handles always point to a list entry, which can contain arbitrary
application data, ciphertexts, public keys, etc., and now also symmetric encryptions and the corresponding
secret keys. These commands are unchanged from [4]; as an example we present those modeling insecure
channels, which are the most commonly used ones, and omit secure channels and authentic channels.

• send i(v, lhnd), for v ∈ {1, . . . , n}. Intuitively, the list l shall be sent to user v. Let l ind := D[hndu =
lhnd ∧ type = list].ind . If l ind 6= ↓, then output (u, v, ind2hnda(l

ind)) at outa!.

• adv send i(u, v, lhnd), for u ∈ {1, . . . , n} and v ∈ H at port ina?. Intuitively, the adversary wants to
send list l to v, pretending to be u. Let l ind := D[hnd a = lhnd ∧ type = list].ind . If l ind 6= ↓ output
(u, v, ind2hndv(l ind)) at outv !.

5 Real System

The real cryptographic library offers its users the same commands as the ideal one, i.e., honest users operate
on cryptographic objects via handles. There is one separate machine with a database for each honest user in
the real system, containing real cryptographic keys, real encryptions, etc.. Real bitstrings are actually sent
between machines. The commands are implemented by real cryptographic algorithms, and the simulatability
proof will show that nevertheless, everything a real adversary can achieve can also be achieved by an adversary
in the ideal system, or otherwise the underlying cryptography can be broken. We now present our additions
and modifications to the real system of [4], starting with a description of the underlying cryptographic
definitions.

5.1 Underlying Cryptographic Operations

We denote a symmetric encryption scheme by a tuple SE = (genSE, sym encrypt, sym decrypt, skse len,
symenc len) of polynomial-time algorithms. Key generation for a security parameter k ∈ N is written as

sk ← genSE(1k).
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The length of sk is skse len(k) > 0. We denote the encryption of a message m ∈ {0, 1}+ by

c ← sym encryptsk (m)

and decryption by
m := sym decryptsk (c).

The result may be ↓; then we call the ciphertext invalid for this key. A correctly generated ciphertext for a
key of the correct length always has to be valid for this key.

The length of c is symenc len(k, len(m)) > 0. This is also true for every c′ with sym decryptsk (c′) 6= ↓
for a value sk ∈ {0, 1}skse len(k). The functions skse len and symenc len must be bounded by multivariate
polynomials. Our requirement that such functions exist is without loss of generality due to standard padding
techniques.

Our security definition is the standard definition for authenticated symmetric encryption schemes
from [11, 9]. It consists of two parts: The scheme must ensure confidentiality of messages under chosen-
ciphertext attacks, and it must guarantee integrity of ciphertexts. In the following, we formulate these
notions using the notation for interacting machines.

Definition 5.1 (Security against Chosen-Ciphertext Attacks) Given a symmetric encryption scheme, the
symmetric decryptor machine SymDec is defined as follows: It has one input and one output port, a variable
sk, initialized with ↓, an initially empty set C and the following transition rules:

• First generate a key as sk ← genSE(1k) and set b R← {0, 1}.

• On input (symenc, m0, m1) (intuitively a pair of messages an adversary hopes to be able to distinguish),
and if len(m0) = len(m1), set c← sym encryptsk (mb), C := C ∪ {c}, and output c.

• On input (symdec, cj) and if cj 6∈ C, return sym decryptsk (cj ).

The encryption scheme is called indistinguishable under chosen-ciphertext attack if for every probabilistic
polynomial-time machine ASD that interacts with SymDec and finally outputs a bit b∗ (meant as a guess at
b), the probability of the event b∗ = b is bounded by 1/2 + g(k) for a negligible function g. ✸

The machine for defining integrity of ciphertexts is defined similarly.

Definition 5.2 (Integrity of Ciphertexts) Given a symmetric encryption scheme, we define the symmetric
integrity machine SymInt as follows: It has one input and one output port, a variable sk initialized with ↓,
and the following transition rules:

• First generate a key as sk ← genSE(1k).

• On input (symenc, mj), return cj ← sym encryptsk (mj).

• On input (symdec, c′j), return m′
j := sym decryptsk (c′j).

The encryption scheme is said to have integrity of ciphertexts if for every probabilistic polynomial-time
machine ASI that interacts with SymInt the probability is negligible (in k) that SymInt outputs m 6= ↓ on any
input (symdec, c) where c was not output by SymInt upon a command (symenc, ·) until that time, i.e., not
among the cj’s. ✸

Symmetric encryptions schemes provably secure with respect to these two definitions exist under reasonable
assumptions [26]. Bellare and Namprempre even showed in [9] that such encryption schemes can be derived
from any symmetric encryption scheme that is provably secure under adaptive chosen-plaintext attacks
together with any strongly unforgeable message authentication code by first encrypting a plaintext and then
appending a MAC to the obtained ciphertext.
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5.2 Structures

The intended structure of the real cryptographic library consists of n machines {M1, . . . , Mn}. Each Mu has
ports inu? and outu !, so that the same honest users can connect to the ideal and the real system. Each Mu

has connections to each Mv exactly as in [4], in particular an insecure connection called netu,v ,i for normal
use. They are called network connections and the corresponding ports network ports. Any subset H of
{1, . . . , n} can denote the indices of correct machines. The resulting actual structure consists of the correct
machines with modified channels according to a channel model. In particular, an insecure channel is split
in the actual structure so that both machines actually interact with the adversary. Details of the channel
model are not needed here. Such a structure then interacts with honest users H and an adversary A.

5.3 States of a Machine

The state of each machine Mu consists of a database Du and a variable curhndu . Each entry x in Du has
the following attributes:

• x.hndu ∈ HNDS consecutively numbers all entries in Du. We use it as a primary key attribute, i.e.,
we write Du[ihnd] for the selection Du[hndu = ihnd].

• x.word ∈ {0, 1}+ is the real representation of x.

• x.type ∈ typeset ∪ {null} identifies the type of x, where the value null denotes an unparsed entry.

• x.add arg is a list of (“additional”) arguments. For entries of our new types it is always ().

Initially, Du is empty. Mu has a counter curhndu ∈ HNDS for the current size of Du. The subroutine

(ihnd, Du) :← (i, type, add arg)

determines a handle for certain given parameters in Du: If an entry with the word i already exists, i.e.,
ihnd := Du[word = i ∧ type 6∈ {sks, ske}].hndu 6= ↓,3 it returns ihnd, assigning the input values type and
add arg to the corresponding attributes of Du[ihnd] only if Du[ihnd].type was null. Else if len(i) > max len(k),
it returns ihnd = ↓. Otherwise, it sets and returns ihnd := curhndu++, Du :⇐ (ihnd, i, type, add arg).

Similar to the machine THH, Mu maintains explicit bounds on the length of messages and number of
activations to achieve polynomial runtime. We omit further details.

5.4 Inputs and their Evaluation

Now we describe how Mu evaluates individual new inputs.

5.4.1 Constructors and One-level Parsing

The stateful commands are defined via functional constructors and parsing algorithms for each type. A
general functional algorithm

(type, arg)← parse(m),

then parses arbitrary entries as follows: It first tests if m is of the form (type, m1, . . . , mj) with type ∈
typeset \ {pkse, pka, sks, ske, garbage} and j ≥ 0. If not, it returns (garbage, ()). Otherwise it calls a type-
specific parsing algorithm arg ← parse type(m). If the result is ↓, parse again outputs (garbage, ()). By

“parse mhnd”

we abbreviate that Mu calls (type, arg)← parse(Du[mhnd].word), assigns Du[mhnd].type := type if it was still
null, and may then use arg . By

“parse mhnd if necessary”

we mean the same except that Mu does nothing if Du[mhnd].type 6= null.

3The restriction type 6∈ {sks, ske} (abbreviating secret keys of signature and public-key encryption schemes) is included for
compatibility to the original library. Similar statements will occur some more times, but no further knowledge of such types is
needed for understanding the new work.
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5.4.2 Basic Commands and parse type

First we consider basic commands. They are again local. In Mu this means that they produce no outputs
at the network ports. The term “tagged list” means a valid list of the real system. We assume that tagged
lists are efficiently encoded into {0, 1}+.

• Key constructor: sk∗ ← make symenc key().

Let sk ← genSE(1k), sr R← {0, 1}nonce len(k), and return sk∗ := (skse, sk , sr).

• Key generation: sksehnd ← gen symenc key().

Let sk∗ ← make symenc key(), sksehnd := curhndu++, and Du :⇐ (sksehnd, sk∗, skse, ()).

• Key parsing: arg ← parse skse(sk∗).

If sk∗ is of the form (skse, sk , sr) with sk ∈ {0, 1}skse len(k) and sr ∈ {0, 1}nonce len(k), return (), else ↓.

• Symmetric encryption constructor: c∗ ← make symenc(sk∗, l), for sk∗, l ∈ {0, 1}+.

Set r R← {0, 1}nonce len(k), sk := sk∗[2], and sr := sk∗[3]. Encrypt as c ← sym encryptsk ((r, l)), and
return c∗ := (symenc, sr , r, c).

• Symmetric encryption: chnd ← sym encrypt(sksehnd, lhnd).

Parse sksehnd and lhnd if necessary. If Du[sksehnd].type 6= skse or Du[lhnd].type 6= list, then return
↓. Otherwise set sk∗ := Du[sksehnd].word , l := Du[lhnd].word , and c∗ ← make symenc(sk∗, l). If
len(c∗) > max len(k), return ↓, else set chnd := curhndu++ and Du :⇐ (symenchnd, c∗, symenc, ()).

• Encryption parsing: arg ← parse symenc(c∗).

If c∗ is not of the form (symenc, sr , r, c) with sr , r ∈ {0, 1}nonce len(k) and c ∈ {0, 1}+, return ↓, else set
arg := ().

• Symmetric decryption: lhnd ← sym decrypt(chnd, sksehnd).

Parse chnd and sksehnd. If Du[chnd].type 6= symenc or Du[sksehnd].type 6= skse, return ↓. Else let
(symenc, sr , r, c) := Du[chnd].word and sk := Du[sksehnd].word [2]. Let l∗ := sym decryptsk (c) and
l := l∗[2]. If sr 6= Du[sksehnd].word [3], or l∗ = ↓, or l∗[1] 6= r, or if l is not a tagged list, return
lhnd := ↓. Otherwise let (lhnd, Du) :← (l, list, ()).

5.4.3 Send Commands and Network Inputs

Similar to the ideal system, there is a command send i(v, lhnd) for sending a list l from u to v, but now using
the port netu,v ,i!, i.e., using the real insecure network: On input send i(v, lhnd) for v ∈ {1, . . . , n}, Mu parses
lhnd if necessary. If Du[lhnd].type = list, Mu outputs Du[lhnd].word at port netu,v ,i!.

Inputs at network ports are simply tested for being tagged lists and stored as in [4].

6 Security Proof

Our security claim is that the real cryptographic library extended with symmetric encryption is as secure as
the ideal cryptographic library with symmetric encryption in the sense of Definition 2.2 provided that the
commitment problem is avoided by the surrounding protocol.

We first have to define what it means that the commitment problem does not occur. We formalize the
following event NoComm: if there exists an input at a specified port that causes a symmetric encryption to
be generated such that the corresponding key is not known to the adversary, then future inputs may only
cause this key to be sent within an encryption that cannot be decrypted by the adversary. Note that this
property could still be marginally weakened by restricting it to those cases where the symmetric encryption
is actually sent to the adversary; however, our variant is easier to verify for actual protocols since one does
not have to additionally parse every sent term to look for a contained encryption. For technical reasons, we
further exclude encryption cycles (such as encrypting a key with itself) within the definition of NoComm,
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If there exists t1 ∈ N, i ∈ INDS , u1 ∈ H such that for sksehnd
u1

:= D[i].hndu1
, we have

t1 : inu1
?.sym encrypt(sksehnd

u1
, lhnd

1 ) and # If a term is encrypted at time t1

t1 : D[i].type = skse and # with a secret key

t1 : D[i].hnda = ↓ # that is not known to the adversary

then the following must hold. For every t2 > t1, v2, u2 ∈ H we have

t2 : inu2
?.send A(lhnd

2 , v2) # If another term is sent at time t2 and

D[i] ∈ tree(t2 : D[hndu2
= lhnd

2 ]) # and the secret key is contained in this term

=⇒ # then

t2 : wrapped(i, t2 : D[hndu2
= lhnd

2 ].ind). # the secret key is sufficiently wrapped

Figure 2: The property NoComm.

which had to be required even for acquiring properties weaker than simulatability. We refer to [2] for further
discussions.

To capture the event NoComm formally, we first define the tree of contained terms of a database entry
D[i], written tree(D[i]), by defining that D[i] is the root of the tree, and D[j] is a child of D[k] if and only
if j ∈ D[k].arg. We recall that symmetric encryptions do not maintain the secret keys used for generating
these encryptions as arguments but only the corresponding public-key identifiers. To capture the absence of
encryption cycles, we define a function order on honestly generated secret encryption keys that are not known
to the adversary when they are first used. The function order then assigns each key a number corresponding
to the order in which the keys are first used for encryption. We also define that honestly generated secret
keys of public-key encryption schemes are always of order 0. Later on, we will require that a key of order i
may only be encrypted by keys of order j < i.

The event NoComm is formally defined in Figure 2. Here, a statement of the form “t : p?.send A(lhnd, v)”
means that a send command is input at port p? of THH at time t so that the sent term will be received by
the adversary. Formally, this means that v can be arbitrary for sending on insecure or authentic channels,
and that v has to be dishonest for sending on secure channels. We further write t : D to describe the contents
of database D at time t. A statement of the form t : wrapped(j, i) is true if and only if for every occurrence
of the node D[j] in tree(t : D[i]) with t : D[j].type = skse there exists a node D[k] in tree(t : D[i]) such
that t : D[k].type ∈ {symenc, enc}, D[j] is a descendant of D[t : D[k].arg [1]] (i.e., of the encrypted message),
D[k].hnda = ↓ and t : order(sk) < t : order(j) where sk denotes the secret key used for encrypting the
message, i.e., sk := t : D[k].arg[1][2] + 1 if t : D[k].type = symenc respectively sk := t : D[k].arg [2] − 1 if
t : D[k].type = enc.

Is is easy to see that one could as well define the event NoComm only in terms of the inputs that THH

obtains from the honest users, i.e., independent of the state of THH and solely depending on the interaction
with the surrounding protocol. However, this description would be very lengthy and is hence omitted for
reasons of readability.

We now define those configurations to be commitment-free in which the event NoComm holds independent
of the considered adversary, i.e., where the honest user already guarantees the validity of the event. As the
event can be restated in terms of the inputs obtained from the user, commitment-free configuration are
naturally also defined for the real library as it offers the same ports and commands to the honest users as
the ideal library.

Definition 6.1 (Commitment-free Configurations and Simulatability) A user H is commitment-
free with respect to symmetric encryption and the machine THH if for all configurations conf = (THH,SH,
H, A), the property NoComm as defined in Figure 2 holds. Configurations with a commitment-free user are
called commitment-free configurations. The restriction of simulatability to the set of commitment-free con-
figurations is denoted by ≥Comm, i.e., for all commitment-free configurations of the real system, there exists a
commitment-free configuration of the ideal system with the same honest user that achieves indistinguishable
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views for the honest user. ✸

Let RPar be the set of valid parameter tuples for the real system, consisting of the number n ∈ N of
participants, secure signature, encryption, and symmetric encryption schemes S, E , and SE , and length
functions and bounds L′. For (n,S, E ,SE , L′) ∈ RPar , let Syscry sym,real

n,S,E,SE,L′ be the resulting real cryptographic
library. Further, let the corresponding length functions and bounds of the ideal system be formalized by a
function L := R2Ipar(S, E ,SE , L′), and let Syscry sym,id

n,L be the ideal cryptographic library with parameters n
and L. The extension of R2Ipar to the newly added length functions for symmetric encryption, i.e., skse len∗

and symenc len∗ is given in Appendix B. Using the notation of Definition 2.2 and 6.1, we have

Theorem 6.1 (Security of Cryptographic Library) For all parameters (n,S, E ,SE , L′) ∈ RPar, we have

Syscry sym,real
n,S,E,SE,L′ ≥Comm Syscry sym,id

n,L ,

where L := R2Ipar(S, E ,SE , L′). ✷

For proving this theorem for the original library without symmetric encryption, a simulator SimH has
been defined in [4] such that even the combination of arbitrary polynomial-time users H and an arbitrary
polynomial-time adversary A cannot distinguish the combination of the real machines Mu from the combina-
tion THH and SimH (for all sets H indicating the correct machines). We sketch how we extend the simulator
and then the proof of correct simulation to deal with symmetric encryption. A fully rigorous definition of
SimH is postponed to Appendix A.

6.1 Simulator

Basically SimH has to translate real messages from the real adversary A into handles as THH expects them
at its adversary input port ina? and vice versa. In both directions, SimH has to parse an incoming message
completely because it can only construct the other version (abstract or real) bottom-up. This is done by
recursive algorithms. The state of SimH mainly consists of a database Da, similar to the databases Du , but
storing the knowledge of the adversary. The behavior of SimH is sketched as follows.

Inputs from THH. Assume that SimH receives an input (u, v, x, lhnd) from THH. If a bitstring l for lhnd

already exists in Da, i.e., this message is already known to the adversary, the simulator immediately outputs
l at port netu,v ,x !. Otherwise, it first constructs such a bitstring l with a recursive algorithm id2real. This
algorithm decomposes the abstract term using basic commands and the adversary command adv parse. At
the same time, id2real builds up a corresponding real bitstring using real cryptographic operations and enters
all new message parts into Da to recognize them when they are reused, both by THH and by A.

We sketch how the simulator is extended to deal with symmetric encryption keys respectively symmetric
encryptions. If the entry corresponding to lhnd is a symmetric encryption key, id2real creates a new secret
key by applying the function make symenc key and uses this key whenever an abstract encryption has to be
simulated under the abstract key entry lhnd. If the entry corresponding to lhnd is a symmetric encryption,
SimH first determines the corresponding secret key by means of the public key identifier of the encryption.
After that, it checks whether the designated recipient of the handle is a dishonest or an honest party. In
the first case, adv parse reveals the plaintext of the encrypted message, so id2real only has to encrypt this
plaintext with the determined secret key and output this encryption. If the designated recipient is honest,
then adv parse only outputs the length of the encrypted message. In this case, id2real encrypts a fixed
message of equal length.

Inputs from A. Now assume that SimH receives a bitstring l from A at a port netu,v ,x?. If l is not a valid
list, SimH aborts the transition. Otherwise it translates l into a corresponding handle lhnd by an algorithm
real2id, and outputs the abstract sending command adv send x(w, u, lhnd) at port ina!.

If a handle lhnd for l already exists in Da, then real2id reuses that. Otherwise it recursively parses a real
bitstring using the functional parsing algorithm. At the same time, it builds up a corresponding abstract term
in the database of THH. This finally yields the handle lhnd. Furthermore, real2id enters all new subterms into
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Da. For building up the abstract term, real2id makes extensive use of the special capabilities of the adversary
modeled in THH. In the real system, the bitstring may, e.g., contain an encryption which no encryption key
is known yet that could valid decrypt this encryption. Therefore, the simulator has to be able to insert such
an encryption with unknown key and unknown plaintext into the database of THH, which explains the need
for the command adv unknown symenc. Similarly, the adversary might send a new encryption key which
has to be added to existing symmetric encryption entries for which this key is valid. All these and similar
cases for symmetric encryption can be covered by using the special adversary capabilities that we offered in
Section 4.3.2.

6.2 Proof of Correct Simulation

In the proof of the extended cryptographic library, now including symmetric encryption, we retain the
original proof structure as far as possible. The basic structure of that proof is that a combined system CH

is defined that essentially contains all aspects of both the real and the ideal system, and then bisimulations
are proved between CH and the combination MH of the real machines, and between CH and the combination
THSimH of the trusted host and the simulator. A bisimulation, however, cannot deal with computational
indistinguishability. Hence at the beginning of the proof, the real asymmetric encryptions were replaced
by simulated ones as made in the simulator. This could be done in one replacement step, using a low-
level idealization of asymmetric encryption and the composition theorem. The overall proof is illustrated
in Figure 3 where Steps 1 and 2 depict the treatment of public-key encryption, and where Step 4 and the
system C∗

H were not present in the original proof.
Symmetric encryption is more complicated because we also allow symmetric keys to be sent around.

However, a typical low-level idealization would assume, like the original cryptographic definitions of encryp-
tion security, that the keys are only used for correct en- and decryption. Intuitively, this is OK in our case
because the simulator treats keys that the adversary learns perfectly correctly, and if the adversary does not
learn a key, i.e., the key is never sent at all or only encrypted, then it should be as good as if it had never been
used apart from en- and decryption. However, here we argue with the security of encryption while trying
to show the security of encryption, and we must ensure that the argument is not circular. Fortunately, our
assumptions guarantee that we always argue with the security of encryption with another key when treating
one key, and that the keys can be arranged in non-circular order for this treatment.

We therefore perform a successive exchange of real encryptions for simulated encryptions by a so-called
hybrid argument. We do this in the combined system because there we have all information easily available,
in particular, which keys are ideally known to the adversary. In the overall proof depicted in Figure 3, Step

4 and the fact that there are multiple indexed combined systems C
(i)
H are the new aspects for symmetric

encryption.

6.2.1 Initial and Final Combined Systems

The initial combined system CH is defined indirectly from the real and ideal system exactly as in [4]. In
particular, it contains a database D∗ that extends the database D of TH by an attribute word containing
real word entries as in MH or SimH. These real words are computed as in MH for entries generated by basic
commands, i.e., by the honest users, while they are computed as in SimH for entries resulting from network
inputs, i.e., values coming from the adversary. This implies that all symmetric encryptions produced by
honest users contain a real plaintext message.

The final combined system C∗
H is equal to CH except for symmetric encryptions: For encryptions made

by honest users and with keys of honest users, a simulated message 1len∗

defined as in SimH is encrypted
instead of a real plaintext message. To distinguish keys generated by honest users from keys generated by
the adversary within both CH and C∗

H, we give entries of type skse an additional attribute owner ranging
over {honest, adv}, which captures if this key has been generated by an honest user or by the adversary. This
means that if a command gen symenc key is input at inu?, then in the new entry x both systems additionally
set x.owner := honest for u ∈ H and x.owner := adv otherwise.
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Figure 3: Proof with hybrid systems.

6.2.2 Hybrid Combined Systems

Two successive hybrid combined system differ only in the behavior for one symmetric encryption key sk (i):

While C
(i)
H still encrypts real messages with this key, C

(i+1)
H encrypts simulated messages with it. The selection

of sk (i) must guarantee that sk (i) is only encrypted with keys sk (j) for j < i, so that these encryptions have
already been replaced by encryptions of fixed messages 1len∗

. We guarantee this by numbering the keys in
the order in which they are first used for encryption. (The combined system has global knowledge of this.)
This corresponds to the function order introduced for the definition of the NoComm property.

We define a hybrid combined system C
(i)
H for every i ∈ N. However, we will see that the number of

different hybrid systems only grows polynomially in the security parameter. Each hybrid combined system

C
(i)
H keeps additional state compared with CH.

• A global variable used keys ∈ N, initially set to 0. It counts how many honestly generated symmetric
encryption keys have already been used for encryption.

• Each entry of type skse in D∗ has two additional attributes: The Boolean attribute used , initially set to
false, indicates whether the key has already been used for encryption. The attribute pos ∈ N, initialized
with ↓, indicates the position of this key in the order in which keys were first used for encryption.

The combined system C
(i)
H processes commands like the initial combined system, except that the real words

may be different when a ciphertext is generated or decrypted by an honest user. Hence only the constructor
make symenc and the decryption command sym decrypt are affected, and only when the input sym encrypt

or sym decrypt was made at a port inu? for u ∈ H. The local variable sim in the encryption constructor is
set to true iff the key is used to encrypt simulated messages.

• Symmetric encryption constructor: c∗ ← make symenc(sk∗, l) for sk∗, l ∈ {0, 1}+.

Set r R← {0, 1}nonce len(k), sk := sk∗[2], and sr := sk∗[3]. Let skse ind := D∗[word = sk∗].ind .

if D∗[skse ind].hnd a 6= ↓ then
sim := false
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else
if D∗[skse ind].used = false then

D∗[skse ind].used := true;
used keys := used keys + 1;
D∗[skse ind].pos := used keys

end if
sim := (D∗[skse ind].pos ≤ i)

end if

If sim = false encrypt as c ← sym encryptsk ((r, l)) and otherwise as c ← sym encryptsk (1len∗

) for
len∗ := list len(nonce len(k), len(l)). Return c∗ := (symenc, sr , r, c).

• Symmetric decryption: lhnd ← sym decrypt(chnd, sksehnd).

Parse chnd and sksehnd, and let c ind := D∗[hndu = chnd].ind and sk ind := D∗[hndu = sksehnd].ind . If
D∗[c ind].type 6= symenc or D∗[sk ind].type 6= skse, return ↓. If D∗[sk ind].hnda = ↓ and D[sk ind].used =
false then output ↓. Else let (symenc, sr , r, c) := D∗[c ind].word and sk := D∗[sk ind].word [2].

If D∗[sk ind].hnda 6= ↓ or D∗[sk ind].pos > i (a key for which we encrypt normally) then let l∗ :=
sym decryptsk (c) and l := l∗[2]. If sr 6= D∗[sk ind].word [3], or l∗ = ↓, or l∗[1] 6= r, or if l is not a tagged
list, set lhnd := ↓. Otherwise use l as the resulting word and compute and return lhnd as in CH.

If D∗[sk ind].pos ≤ i, let ((l1, pkse1), . . . , (lj , pksej)) := D∗[c ind].arg . We claim that there exists a unique

j′ ∈ {1, . . . , j} such that skse ind = pksej′ + 1. Output lhnd := ind2hndu(lj′ ).

Lemma 6.1 The behavior of C
(0)
H is equal to that of the initial combined system CH. For every function

s : N → N bounding the number of keys generated by honest users, in particular s(k) := n · max in(k), the

behavior of C
(i)
H for the security parameter k and for i ≥ s(k) equals that of C∗

H. ✷

Proof. This is clear since in C
(0)
H we still treat all keys as in CH, while for i ≥ s(k) we treat all keys as in

C∗
H.

6.2.3 Low-level Combined Symmetric Encryption Machine

Within the hybrid argument, we do not want to argue individually with the secrecy and integrity of each
ciphertext. We therefore first define a machine SymComb that corresponds almost precisely to the entire
action of a hybrid system with one key. We then show that every successful attack against SymComb implies
a successful attack on one of the machines SymDec and SymInt.

Definition 6.2 (Machine SymComb) Given a symmetric encryption scheme, the machine SymComb is de-
fined as follows: It has one input and one output port, a variable sk initialized with ↓, an initially empty
database sym ciphers with attributes (msg , ciph), and the following transition rules:

• On input (generate): If sk 6= ↓, then output ↓. Else generate a key as sk ← genSE(1k) and set b R← {0, 1}.

• On input (symenc, m0): If sk = ↓, then output ↓. Else set m1 := 1len(m0) and c ← sym encryptsk (mb)
and sym ciphers :⇐ (m0, c), and output c.

• On input (symdec, c′): If sk = ↓, then output ↓. Else if b = 0 return sym decryptsk (c′); else return
sym ciphers [ciph = c′].msg.

The encryption scheme is called one-key reactively secure if for every probabilistic polynomial-time machine
ASC that interacts with SymComb and finally outputs a bit b∗ (meant as a guess at b), the probability of the
event b∗ = b is bounded by 1/2 + g(k) for a negligible function g. ✸

Lemma 6.2 A secure symmetric encryption scheme in the sense of Definitions 5.1 and 5.2 is also one-key
reactively secure. ✷

This is a standard cryptographic reduction proof which we postpone to Appendix C.

18



6.2.4 The Hybrid Argument

We now show that the combined systems CH and C∗
H are indistinguishable. The overall structure of this

hybrid argument is standard for the case of a polynomially growing number of hybrids. The special aspects
of our usage of symmetric encryption come in when we treat the cases of how a secret key can and cannot
occur in larger terms, and why the possible occurrences do no harm.

The core of the hybrid argument is to show how the encryption machine SymComb can be used to simulate

either C
(i)
H or C

(i+1)
H , depending on the bit b in SymComb. We call the rest of this simulation C′(i)

H , i.e., the

combination of C′(i)
H and SymComb should yield C

(i)
H or C

(i+1)
H depending on the bit b in SymComb. Clearly,

we use SymComb for encryption and decryption with the i-th used key. The problem is what we do if the
two hybrid systems (both or none) use the key in other operations. In spite of our assumptions this is not

impossible, e.g., they may put it into a list and send it over a secure channel. Thus we let C′(i)
H choose its

own key for these operations, independently of the key chosen in SymComb. The main task will be to show
that this does not make the simulation distinguishable.

Definition 6.3 The rewritten hybrid system C′(i)
H is defined exactly like C

(i)
H with the following exceptions

for inputs at inu? with u ∈ H:

• In the symmetric encryption constructor used in a command chnd ← sym encrypt(sksehnd, lhnd) for the
i-th used key, i.e., for D∗[hndu = sksehnd].pos = i, the algorithm sym encryptsk (·) is replaced by calls
to SymComb. Moreover, when this key first gets its attribute pos := i, then (generate) is input to
SymComb.

• In symmetric decryption lhnd ← sym decrypt(sksehnd, chnd) for D∗[hndu = sksehnd].pos = i, the algo-
rithm sym decryptsk (·) is replaced by calls to SymComb.

✸

Note that we have not replaced key generation in the definition of C′(i)
H ; hence we have a key sk∗ in SymComb

and another key sk (i) := D∗[hndu = sksehnd].word [2] in C′(i)
H .

Lemma 6.3 The combination of C′(i)
H and SymComb with bit b = 0 is reactively indistinguishable from C

(i)
H ,

and with bit b = 1 it is indistinguishable from C
(i+1)
H . ✷

The proof is postponed to Appendix C. We now put all our lemmas together to show the following theorem
about the main new proof parts for symmetric encryption.

Theorem 6.2 Given a secure encryption scheme according to Definitions 5.1 and 5.2, the initial and final
hybrid combined systems CH and C∗

H defined in Section 6.2.1 are reactively indistinguishable. ✷

Proof. Assume for contradiction that there is a reactive distinguisher Dis that distinguishes CH and C∗
H with

not negligible advantage p(k). Here Dis combines honest users, adversary, and final distinguisher. Similar to
Definition 2.1, the advantage is defined as |q∗(k)− q(k)| where q(k) and q∗(k) denote the probabilities that
Dis outputs 1 if it is run together with CH and C∗

H, respectively, for the security parameter k.
Then we construct a successful adversary ASC against the underlying symmetric encryption scheme, more

precisely against the machine SymComb from Definition 6.2. This adversary ASC is defined as follows: Given
the security parameter k, it randomly chooses i R← {0, . . . s(k) − 1}, where s is the polynomial bound on

the number of different hybrids from Lemma 6.1. Then it simulates the rewritten hybrid system C′(i)
H from

Definition 6.3 in interaction with the reactive distinguisher Dis, where it lets C′(i)
H interact directly with the

machine SymComb that ASC attacks. If Dis outputs a bit b∗, then ASC also outputs b∗.
By Lemma 6.3, the constructed adversary ASC together with SymComb, and given a choice of i, perfectly

simulates either C
(i)
H and C

(i+1)
H , depending on the bit b in SymComb. Let qi denote the probability that

Dis outputs 1 if it is run together with C
(i)
H ; we now omit the security parameter k for readability. The

probability that ASC guesses correctly for a specific i is 1
2 (1 − qi) + 1

2 (qi+1) (because for b = 0 we want Dis
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to output b∗ = 0). By Lemma 6.1, we have q0 = q and qs = q∗. Hence the success probability of ASC, over
the random choice of i from {0, . . . , s− 1}, is given by

1

s

s−1∑

i=0

1

2
(1 + qi+1 − qi) =

1

2
+

1

2s
(q∗ − q).

As s is a polynomial, the absolute value of the difference between this guessing probability and 1
2 is not

negligible. If it is negative for almost all k, then we invert the output of ASC to obtain an attacker with
positive not negligible guessing advantage. This is the desired contradiction to Lemma 6.2.

6.2.5 The Bisimulations

Finally we have to show how the bisimulations of the original cryptographic library are extended for sym-
metric encryption. This corresponds to Steps 5a and 5b in Figure 3. The bisimulations are now mappings
from CH to MH and from C∗

H to THSimH, called derivations in [4] because they essentially extract a part
of the combined system again. As the initial and final combined systems both equal the original combined
system on entries not belonging to symmetric encryption, these can both be extensions of the derivations
from [4]. This is a tedious part of the proof without much novelty for symmetric encryption, hence we only
sketch it.

The bisimulation proof relies on certain properties of the individual systems (ideal, real, and simulator),
and on joint invariants of the combined systems. These are the lemmas in Sections 4-6 of [6] and the
invariants in Section 7.2.4. Most of these properties are retained without change or adapted in obvious ways.
Examples of retained properties are that indices and handles are unique, that length bounds are retained,
and the equality of real and ideal lengths. An example of a property adapted in an obvious way is that real
and abstract lengths are equal, except for a few types that do not correspond to real sendable words. Here
the new type pkse is added to the exceptions.

Further, in order to show that the ideal look-up procedure for decryption works, we have to add an
invariant that essentially covers the case that the simulator’s action upon receipt of a new adversary key
enters all possible encryptions, which it actually does in the procedure real2id skse. More formally, the
invariant, similar to one for symmetric authentication in [5], states that real parsing of an entry of type
symenc only succeeds if the corresponding attributes are already present ideally.

The purpose of the derivations and the properties and invariants is described by the following definition.

Definition 6.4 (Bisimulation Property) By “an input retains all invariants” we mean the following:

• The resulting transitions of CH and C∗
H retain the invariants if they were true before the input.

• If the input is made to MH in the state derived from CH, then the probability distribution of the next
state equals that of the states derived from the next state of CH. Similarly, If the input is made to
THSimH in the state derived from C∗

H, then the probability distribution of the next state equals that of
the states derived from the next state of C∗

H. This is called “correct derivation”.

✸

All the properties and invariants are obviously true initially when all databases are empty and the counters
0. Then we would like to show that indeed all inputs retain all invariants. Unfortunately, this is not true for
all runs of the combined systems, e.g., if two nonces collide in the generation of two different secret keys.
These exceptional runs are collected in error sets.

Hence the remaining part of a fully detailed proof consists of a relatively long and tedious part that
shows that indeed all new inputs retain all invariants, except for certain well-defined error sets, and final
reduction proofs that show that the overall probability of all error sets is negligible. This part is aided by
certain lemmas from [6] that for each type of inputs (basic commands, send commands, and network inputs)
a majority of the invariants is automatically fulfilled by general aspects of the cryptographic library. These
lemmas continue to hold when symmetric encryption is added, which must be verified by text inspection.
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The error sets that arise due to symmetric encryption are all of already known types, because the
“main” cryptographic properties, both secrecy and ciphertext integrity, were already taken care of in the
hybrid argument. In particular, it has to be shown that no two entries of nonces or keys made by honest
participants collide, and that the adversary cannot guess random values and keys that he should ideally not
be able to know. All these proofs work as in [6].

7 Conclusion

We have presented a provably secure idealization of symmetric encryption within the Dolev-Yao style cryp-
tographic library from [4], which allows for cryptographically sound security proofs in an entirely abstract
way accessible to current automated proof tools. Security holds under arbitrary attacks and in arbitrary
contexts, and is based on the standard definition of authenticated encryption.

The benefit of adding symmetric encryption to the cryptographic library is impressive: Now 42 of the 50
protocols of the Clark-Jacob library can be expressed with the operations and constraints of the cryptographic
library, while only 12 protocols could be expressed before. Among the remaining eight protocols, only one
is excluded because of the commitment problem, five require hash functions (although one might already
model some of them by message authentication codes), and two require number-theoretic operations like
exponentiation and exclusive or.
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Figure 4: Set-up of the simulator.

A Simulator

We now give a formal description of the simulator SimH sketched in Section 6.1.

A.1 States of the Simulator

The state of SimH consists of a database Da and variables curhnda and stepsp? for each input port p?. Each
entry in Da has the following attributes:

• x.hnda ∈ HNDS is used as the primary key attribute in Da. However, its use is not as straightforward
as in the ideal and real system, since entries are created by completely parsing an incoming message
recursively.

• x.word ∈ {0, 1}∗ is the real representation of x.

• x.add arg is a list of additional arguments. Typically it is (). However, for our key identifiers it is
(adv) if the corresponding secret key was received from the adversary, while for keys from honest users,
where the simulator generated an encryption key, it is of the form (honest, sk∗).

The variable curhnda denotes the current size of Da, except temporarily within an algorithm id2real. The
variables stepsp? count the inputs at each port. The corresponding bounds boundp? are max in(k) for the
network ports and max ina(k) for outa?. These bounds are only included to ensure polynomial runtime, but
in order to obtain the correct functionality, the second bound must not be reached as this would destroy the
interaction of THH and SimH. This would allow for distinguishing the ideal and the real system. For our new
primitive, we have to enlarge the second bound which does not alter the proof, as it remains polynomially
bounded. Length functions for inputs are tacitly defined by the domains again.

A.2 Evaluation of Send Commands

When SimH receives an “unsolicited” input from THH (in contrast to the immediate result of a local com-
mand), this is the result m = (u, v, i, lhnd) of a send command by an honest user (here for an insecure
channel). SimH looks up if it already has a corresponding real message l := Da[l

hnd].word and otherwise
constructs it by an algorithm l← id2real(lhnd) (with side-effects). It outputs l at port netu,v ,i!.

The algorithm id2real is recursive; each layer builds up a real word given the real words for certain
abstract components. We only need to add new type-dependent constructions for our new types, but we
briefly repeat the overall structure to set the context.

1. Call (type, (mhnd
1 , . . . , mhnd

j )) ← adv parse(mhnd) at ina! (where we ignore some parentheses in the
case type = symenc) expecting type ∈ typeset \ {sks, ske, garbage} and j ≤ max len(k), and
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mhnd
i ≤ max hnd(k) if mhnd

i ∈ HNDS and otherwise len(mhnd
i ) ≤ max len(k) (with certain domain

expectations in the arguments mhnd
i that are automatically fulfilled in interaction with THH, also for

the now extended command adv parse for the new types).

2. For i := 1, . . . , j: If mhnd
i ∈ HNDS and mhnd

i > curhnda, set curhnda++.

3. For i := 1, . . . , j: If mhnd
i 6∈ HNDS, set mi := mhnd

i . Else if Da[m
hnd
i ] 6= ↓, let mi := Da[m

hnd
i ].word .

Else make a recursive call mi ← id2real(mhnd
i ). Let arg real := (m1, . . . , mj).

4. Construct and enter the real message m depending on type; here we only list the new types:

• If type = pkse, call sk∗ ← make symenc key() and set m := ǫ and Da :⇐ (mhnd, m, (honest, sk∗)).

• If type = skse, let pksehnd := mhnd
1 . We claim that Da[pksehnd].add arg is of the form (honest, sk∗).

Set m := sk∗ and Da :⇐ (mhnd, m, ()).

• If type = symenc, we claim that lhnd := mhnd
1 6= ↓ and pksehnd := mhnd

2 6= ↓, and distinguish
two cases: If Da[pksehnd].add arg [1] = honest, let sk∗ := Da[pksehnd].add arg [2], else sk∗ :=
Da[pksehnd + 1].word .

If lhnd ∈ HNDS (i.e., a cleartext handle, not only a length was output), let l := m1, m ←
make symenc(sk∗, l), and Da :⇐ (mhnd, m, ()).

Otherwise we claim that len := lhnd ∈ N. Then SimH encrypts a fixed message of the correct
length; it must not be a list. Let len∗ := list len(nonce len(k), len), sk := sk∗[2], and sr := sk∗[3].
Encrypt c← sym encryptsk (1len∗

) and set r R← {0, 1}nonce len(k), m := (symenc, sr, r, c), and Da :⇐
(mhnd, m, ()).

A.3 Evaluation of Network Inputs

When SimH receives an input l from A at a port netw,u,i? with len(l) ≤ max len(k), it verifies that l is a
tagged list. If yes, it translates l into a corresponding handle lhnd by a recursive algorithm lhnd ← real2id(l)
(with side-effects), and outputs adv send i(w, u, lhnd) at port ina!. The algorithm real2id recursively parses
the real message, builds up a corresponding term in THH, and enters all messages into Da.

For an arbitrary message m ∈ {0, 1}+, mhnd ← real2id(m) works as follows. If there is already a
handle mhnd with Da[m

hnd].word = m, it returns that. Else it sets (type, arg) := parse(m) and calls a
type-specific algorithm add arg ← real2id type(m, arg). After this, real2id sets mhnd := curhnda++ and
Da :⇐ (mhnd, m, add arg). We have to provide the type-specific algorithms for our new types.

• add arg ← real2id skse(m, ()). Call sksehnd ← gen symenc key() at ina! and set Da :⇐
(curhnda++, ǫ, (adv)) (for the key identifier), and add arg = () (for the secret key).

Let m =: (skse, sk, sr); this format is ensured by the preceding parsing. For each handle chnd

with Da[c
hnd].type = symenc and Da[c

hnd].word = (symenc, sr , r, c) for r ∈ {0, 1}nonce len(k), c ∈
{0, 1}symenc len′(k,len(l)), sym decryptsk(c) = (r, l) for some l ∈ {0, 1}+, make a recursive call lhnd ←
real2id(l) and call v ← adv fix symenc content(sksehnd, chnd, lhnd) at ina!. Return add arg.

• add arg ← real2id symenc(m, ()). Let (symenc, sr, r, c) := m; parsing ensures this format.

For l ∈ {0, 1}+, let Sksel := {sksehnd | Da[sksehnd].type = skse ∧ Da[sksehnd].word [3] = sr ∧
sym decryptsk(c) = (r, l) for sk := Da[sksehnd].word [2]} be the set of keys known to the adversary
for which m decrypts to the message l. Let Skse denote the union of the sets Skse l.

For each Sksel 6= ∅ do the following: First, let sksehnd ∈ Skse l arbitrary and make a recursive call
lhnd ← real2id(l). Secondly, call chnd ← sym encrypt(sksehnd, lhnd) at ina!. Thirdly, for every skse′hnd ∈
Sksel \ {sksehnd} (in any order), call v ← adv fix symenc content(skse′hnd, chnd, lhnd) at ina!. Return ().

If Skse = ∅, call chnd ← adv unknown symenc(len(m)) at ina! and return ().
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A.4 Properties of the Simulator

The simulator is polynomial-time. Further, no handle output by THH is rejected by SimH, and the counters
stepsouta? of SimH and steps ina? of THH never reach their bounds. This is shown as in [4], except for the new
bound max ina for steps ina? and stepsouta?, cf. Section 4.2. Because of the interaction of THH and SimH in
real2id, these steps are increased linearly in the number of existing encryption and existing keys, since a new
secret key might update the arguments of each existing encryption entry, and a new encryption can get any
existing key as an argument. This means that we have to enlarge the bounds at ina? and outa? to maintain
the correct functionality of the simulator. However, only a polynomial number of encryptions and keys can
be created (a coarse bound is n ·max in(k) for entries of the honest users plus the polynomial runtime of A

for the remaining ones). We omit further details.

B Corresponding Ideal Length Functions and Bounds

For given real length functions list len, nonce len, skse len, and symenc len, the corresponding ideal length
functions are computed as follows:

• skse len∗(k) := list len(len(skse), skse len(k), nonce len(k)); this must be bounded by max len(k);

• symenc len′(k, l) := symenc len(k, list len(nonce len(k), l));

• symenc len∗(k, l) := list len(len(symenc), nonce len(k), nonce len(k), symenc len′(k, l)).

C Postponed Proofs

C.1 Proof of Lemma 6.2

Let ASC be an adversary that succeeds in attacking SymComb with probability 1
2 + p for a not negligible

function p. We now construct an adversary ASD against SymDec as follows. ASD has the adversary ASC as a
blackbox submachine and maintains an initially empty database sym ciphersSD with attributes (msg , ciph),
both ranging over {0, 1}+, and a bit g, initially 0. We now defined how ASD reacts on all outputs that ASC

makes (usually to SymComb):

• (generate). Here ASD sets g := 1.

• (symenc, m0). If g = 0, then ASD returns ↓. Else it outputs (symenc, m0, 1
len(m0)) to SymDec, which

answers with a ciphertext c. Then ASD sets sym ciphersSD :⇐ (m0, c) and returns c to ASC.

• (symdec, c). If g = 0, then ASD returns ↓. Else it sets m := sym ciphersSD [ciph = c].msg . If m 6= ↓, it
outputs m to ASC, otherwise it outputs (symdec, c) to SymDec and forwards the obtained message to
ASC.

• A bit b∗ as its guess of b. Then ASD also outputs b∗.

We show that the adversary ASD together with the machine SymDec perfectly simulates the machine
SymComb with the bit b of SymDec unless the ciphertext integrity of the encryption scheme is violated. For
this, we establish the following three invariants for runs of ASD together with SymDec and runs of SymComb

if they choose the same key sk and get the same inputs

1. The database sym ciphersSD of ASD is always equal to the database sym ciphers of SymComb.

2. If b = 0 and (m, c) ∈ sym ciphersSD , then m = sym decryptsk(c).

3. We have (m, c) ∈ sym ciphersSD for some m if and only if c ∈ C , the set of ciphertexts in SymDec.
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We now show that the invariants are retained and the outputs of the simulation correct except in cer-
tain runs that violate ciphertext integrity. Before the first output (generate) of ASC, encryption and de-
cryption commands to SymComb always yield ↓ because of sk = ↓ in SymComb, which is exactly what
ASD does. Hence assume in the following that an output (generate) already occurred, and thus sk 6= ↓
in SymComb. The simulation of encryption commands and further key generation commands is clearly
perfect, and the invariants remain correct. Now we consider a decryption command (symdec, c). We set
m := sym ciphersSD [ciph = c].msg and distinguish four cases.

• If m 6= ↓ and b = 0, then ASD outputs m, while SymComb outputs sym decryptsk(c). This equals m by
Invariant 2.

• If m 6= ↓ and b = 1, then ASD outputs m, while SymComb outputs sym ciphers [ciph = c].msg. This
equals m by Invariant 1.

• If m = ↓ and b = 0, then ASD outputs (symdec, c) to SymDec. Invariant 3 implies that c 6∈ C . Hence
both SymDec and SymComb output sym decryptsk(c).

• If m = ↓ and b = 1, then ASD outputs (symdec, c) to SymDec. We again have c 6∈ C ; hence SymDec

outputs m′ = sym decryptsk(c). SymComb returns m∗ := sym ciphers [ciph = c].msg, where Invariant
1 implies m∗ = ↓. Hence here we obtain the only exception to perfect simulation if m′ 6= ↓.

Let q be the probability of the runs in which the only exception to perfect simulation (in the fourth case)
occurs. Then the success probability of the adversary ASD against SymDec is at least 1

2 + p− q, because in
all other cases ASD is successful if and only if ASC is successful against SymComb. If p− q is not negligible,
we have obtained the desired contradiction to the given chosen-ciphertext security.

Otherwise q is not negligible. Then we derive a successful attack against ciphertext integrity. Intuitively
this is possible because the ciphertext c in the exceptional case can be validly decrypted with sk although
SymDec has never output c. Let ASI be an adversary against SymInt that acts like ASD, but when ASD outputs
(symenc, m0, 1

len(m0)) to SymDec, then ASI outputs (symenc, 1len(m0)) to SymInt. This clearly simulates the
encryption commands perfectly for the case b = 1. For decryption and the case m 6= ↓ (and always b = 1),
ASD and thus ASI both output m. If m = ↓, then ASD and ASI output (symdec, c) to SymDec and SymInt,
respectively. Then SymInt always outputs m′ = sym decryptsk(c), and we know that SymDec also outputs
m′ because c 6∈ C . Hence decryption is also simulated perfectly. Now an exception means m′ 6= ↓, and c 6∈ C
is exactly the same condition as that for new ciphertexts in Definition 5.2. Hence in every exceptional run
ASI makes a successful attack against ciphertext integrity. Thus ASI has success probability q against SymInt

(even 2q because it always uses b = 1). This is the desired contradiction to the given ciphertext integrity.

C.2 Proof of Lemma 6.3

The lemma would clearly hold with perfect indistinguishability if the keys sk∗ and sk (i) were equal, because
then the use of the encryption machine SymComb instead of encrypting and decrypting oneself is a simple
rewriting.

Hence it is sufficient to show that the use of sk (i) instead of sk∗ in the operations other than en- and
decryption is perfectly indistinguishable for the users and the adversary. For this we show that no information
in the Shannon sense flows from the word sk (i) = D∗[skse ind].word [2] to the honest users and the adversary,
except for the length of sk(i). Since sk∗ and sk(i) are of the same length skse len(k), leaking the length of
sk(i) does not destroy the perfect simulation. An overview of the cases in this proof is given in Figure 5.

We first show that no information about sk (i) is output at ports outu ! with u ∈ H, i.e., to honest
users. Such outputs occur as a result of basic commands and of network inputs. Most resulting outputs are
database handles and types, which clearly do not reveal anything about the word attribute of skse ind. The
only exceptions are the commands get len, which outputs the length of an entry, and retrieve, which outputs
the word attribute of an entry of type data. As explained above, leaking the length of sk (i) is no problem.
Entries of type data can only be created by a command store, which does not depend on the word attribute
of another entry, and in particular not on sk (i).
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Figure 5: Absence of information flow from a simulated key sk (i).

We now show that no information flows at the network ports, i.e., to the adversary. We only need to
consider authentic and insecure channels, and we distinguish outputs before and after the time t where
D∗[skse ind] is used for encryption for the first time. For the time until t, the definition of make symenc in the
hybrid systems guarantees that the adversary has no handle to this key, i.e., t : D∗[skse ind].hnda = ↓ because
keys with adversary handles are not counted. For the time after t, the property NoComm implies that in
every term sent over any channel with skse ind as a contained term, this term is wrapped by an encryption
under a key skse ′ ind

for which the adversary does not have a handle. By definition of the commands adv parse

and sym decrypt, this implies that the adversary cannot get a handle to D∗[skse ind] after time t, and together
with t : D∗[skse ind].hnda = ↓ this implies D∗[skse ind].hnd a = ↓ also for the time after t.

We first show that no information about the key flows into database entries that ideally do not have
this key as a component. For application data, nonces, and all types of keys, this is clear by definition.
The word attribute of a list is fully determined by the word attributes of the contained terms of the list.
The word attribute of a public-key encryption, digital signature, or authenticator is determined by the word
attributes of the contained terms, a fresh random value, and on parts of the word attribute of the used secret
key. For this secret key, we already showed that it does not depend on the word attributes of symmetric
keys. Finally, the word attribute of symmetric encryptions also depends on word attributes of the contained
terms, a fresh random value, and on parts of the word attribute of the used secret key, more precisely on
D∗[skse ′ ind

].word [3] where skse ′ ind
is the index of the key used for the encryption. This part is independent

of sk (i) = D∗[skse ind].word [2].
The case that an output term has skse ind as an ideal component is the most interesting part of the proof:

We only know that the adversary did not get a handle D∗[skse ind].hnda while the hybrid system prepared the
real output. In the following we hence only treat such a term l = D∗[l ind].word with skse ind ∈ tree(t : D[l ind]).
The initial combined system constructs network outputs like SimH, i.e., it translates the ideal output l ind

of THH with the recursive procedure id2real. The interaction with THH in this procedure is unchanged in
all hybrid systems, and thus the term is parsed as far as possible with adv parse. This gives an adversary
handle to skse ind except in certain cases, in particular that skse ind is encrypted within this term. For these
cases we nevertheless show the absence of information flow, using the prior replacements of real encryptions
by encryptions of fixed messages in the hybrid system.

The first case is that skse ind ideally occurs within a public-key encryption where the secret key is unknown
to the adversary, i.e., as the cleartext argument or a component of that. But in the hybrid systems, all such
real public-key encryptions are already replaced by encryptions of fixed messages 1len∗

, see Step 2 of Figure 3.
Hence there is no information flow from the real cleartext word besides the length of the cleartext, which
does not matter as shown above.

The second case is that skse ind ideally occurs within a symmetric encryption with a key skse ′ ind
which

has no adversary handle at the time t′ where this term is sent. For the case t′ < t we know that skse ′ind

was first used for encryption before time t and had no adversary handle then either. It thus got a position
attribute j := D∗[skse ′ ind

].pos and we have j < i. For the case t′ > t the NoComm property ensures

t′ : order(D∗[skse ′ ind
].ind) < t′ : order(D∗[skse ind].ind) which also implies that skse ′ ind

was first used for
encryption before time t, that it had no adversary handle then either and thus also got a position attribute
j := D∗[skse ′ ind

].pos with j < i. Thus all actual words encrypted with the corresponding real key sk (j) are

simulated messages 1len∗

. In particular, they are independent of the real key sk (i), except possibly for the
length, which does not matter as shown above.
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