
On the Impossibility of Highly-Efficient

Blockcipher-Based Hash Functions

J. Black ∗ M. Cochran ∗ T. Shrimpton †

An abridged version, reference [1], appears as Advances in Cryptology – Eurocrypt ’05, Lecture Notes in Computer Science,
Vol. ????, R. Cramer, ed., Springer-Verlag. This is the full version.

Abstract

Fix a small, non-empty set of blockcipher keys K. We say a blockcipher-based hash function is highly-

efficient if it makes exactly one blockcipher call for each message block hashed, and all blockcipher calls
use a key from K. Although a few highly-efficient constructions have been proposed, no one has been
able to prove their security. In this paper we prove, in the ideal-cipher model, that it is impossible to
construct a highly-efficient iterated blockcipher-based hash function that is provably secure. Our result
implies, in particular, that the Tweakable Chain Hash (TCH) construction suggested by Liskov, Rivest,
and Wagner [7] is not correct under an instantiation suggested for this construction, nor can TCH be
correctly instantiated by any other efficient means.

Keywords: Collision-resistant hash functions, tweakable blockciphers, provable security.

∗ Department of Computer Science, 430 UCB, Boulder, Colorado 80309 USA. E-mail: jrblack@cs.colorado.edu, Mar-
tin.Cochran@colorado.edu WWW: www.cs.colorado.edu/∼jrblack/, ucsu.colorado.edu/∼cochranm

† Department of Computer Science, Portland State University, Portland, Oregon, 97207, USA. E-mail: teshrim@cs.pdx.edu
WWW: www.cs.pdx.edu/∼teshrim/



Contents

1 Introduction 1

2 Security Definitions 4

3 Hash Function Constructions and Attacks 5

4 The Tweak Chain Hash 10

5 Conclusion and Open Problems 12



E
nn

n

mi

hi−1 > f(hi−1,mi)

Figure 1: The Matyas-Meyer-Oseas (MMO) compression function [8]. E : {0, 1}n ×{0, 1}n → {0, 1}n is a block cipher;
the hatch mark denotes the location of the key. Iterating this compression function results in a provably-secure hash
function [2], however notice that the above compression function will be rekeyed each round.

1 Introduction
Background. Essentially all modern hash functions are built by iterating a compression function according
to the Merkle-Damg̊ard paradigm [4, 10]. Moreover, these compression functions are almost always built from
a blockcipher. Constructions like the Matyas-Meyer-Oseas (MMO) compression function [8] are explicit about
their use of a blockcipher, but even so-called “dedicated” hashing primitives like MD5 and SHA-1 are in fact
blockcipher-based. The SHA-1 compression function, for example, uses a 160-bit blockcipher that takes a
512-bit key; this blockcipher has been named SHACAL-1 [6].

This idea of building hash functions from blockciphers goes back more than 25 years. The earliest con-
struction by Rabin [12] proposed to hash a message M = m1m2 · · ·mℓ by fixing an initial value h0 and
computing H(M) = DESmℓ

(DESmℓ−1
(· · · (DESm1

(h0)))); effectively, this is a Merkle-Damg̊ard construction
with blockcipher-based compression function f(hi−1,mi) = Emi

(hi−1). Other constructions like Davies-
Meyers [9] and MMO followed, but it was Preneel, Govaerts, and Vandewalle [11] who conducted the first
systematic study of blockcipher-based hash functions. They considered the security of 64 iterated construc-
tions with compression functions of the form f(hi−1,mi) = Ea(b)⊕ c where a, b, c ∈ {hi−1, mi, hi−1⊕mi, v}
for some fixed constant v. The analysis of PGV was attack-based, and schemes not broken by their attacks
were deemed secure. Subsequently, Black, Rogaway and Shrimpton [2] considered these same 64 construc-
tions using a proof-based approach. They showed that, in the ideal-cipher model, 20 of the 64 schemes are
collision-resistant up to the birthday bound; Figure 1 gives one example.

Although provably secure, these 20 schemes could be viewed as inefficient in the following sense: in each,
the blockcipher key is changed every round. For all conventional blockciphers, changing the key each round
is undesirable since scheduling a new key entails a significant computational cost. It is natural to ask then
if it is possible to achieve provable security without incurring this cost, and this question is the focus of our
work.

Main Result. Fix a small, non-empty set of blockcipher keys K. We term a blockcipher-based hash
function highly-efficient if its compression function uses exactly one call to a blockcipher (ie, it is rate-1),
and if the blockcipher uses only keys from K. Since we can preschedule each key in K, we enjoy a significant
performance gain: key scheduling reduces to looking up a precomputed permutation. It is possible that those
researchers who have worked on blockcipher-based hash functions over the past 25 years have considered
highly-efficient constructions, but found attacks that broke these constructions, or were unable to prove
their security. Indeed, the present authors also spent some time trying to find highly-efficient constructions
without success. We now explain why.

One would like to construct a highly-efficient hash function that is provably collision resistant. If such
a construction did exist, its underlying compression function could be constructed as follows (see Figure 2):
let f1 : {0, 1}

n
× {0, 1}

n
→ {0, 1}

n
and f2 : {0, 1}

n
× {0, 1}

n
× {0, 1}

n
→ {0, 1}

n
be arbitrary functions. We

define f : {0, 1}
n
× {0, 1}

n
→ {0, 1}

n
as

f(hi−1,mi) = f2(hi−1,mi, EK(f1(hi−1,mi))),

where EK is an n-bit blockcipher with key K ∈ K that is the output of a deterministic key-selection
function g.
It isn’t hard see that this construction captures all possible rate-1 compression functions built from a block-
cipher used in the forward direction and keyed from K: both f1 and f2 may process every bit of the input

1



f1
n

hi−1 f(hi−1,mi)
nnn

n

mi

f2EK

Figure 2: The general compression function built from a blockcipher keyed from K. Functions f1 : {0, 1}n × {0, 1}n →
{0, 1}n and f2 : {0, 1}n×{0, 1}n×{0, 1}n → {0, 1}n are arbitrary; EK is some n-bit blockcipher with key K ∈ K selected
by a deterministic key-selection function g.

to f in any arbitrary way. Notice that it isn’t necessary to feed forward the output of f1 to f2, since f2 can
compute f1(hi−1,mi) itself. The key-selection function g must be deterministic and well-defined, but beyond
this may depend on other message blocks, chaining values, the round number, or other parameters, provided
it always returns a value from K. These notions are made precise in Section 2. (Note that this approach
does not capture all blockcipher-based hash functions with a fixed key-set, only those that are iterated via
Merkle-Damg̊ard and that use the blockcipher in the forward direction.)

In this paper we prove that any compression function constructed as just described cannot produce a
provably collision-resistant hash function when iterated. Specifically, we show—in the ideal-cipher model—
that for any functions f1, f2, there exists an information-theoretic adversary that finds a collision in the
iterated function Hf in at most |K|(n + ⌈lg(n)⌉) blockcipher invocations. In fact, for many natural func-
tions f1, f2 (like XOR) we find collisions in just 2|K| blockcipher invocations. This is in stark contrast to the
Θ(2n/2) expected invocations needed to produce a collision in the 20 rekeying constructions proven secure
in [2]. Our impossibility proof uses a greedy algorithm that builds large numbers of messages along with
their associated hash outputs. We prove that this algorithm builds a tree with height at most n + ⌈lg(n)⌉
containing at least 2n(n+ ⌈lg(n)⌉)+ 1 hash values, thereby yielding a collision on some level of the tree. We
stress that our results should not be interpreted as giving practical attacks on all highly-efficient hash func-
tions: our attacks have exponential running time. Instead we are exhibiting a proof that no highly-efficient
iterated blockcipher-based hash functions can exist, in the model we have described.

Security of Tweak Chain Hash. Tweakable blockciphers were introduced by Liskov, Rivest, and Wag-
ner [7]. They define a tweakable blockcipher as a map Ẽ : {0, 1}

k
× {0, 1}

t
× {0, 1}

n
→ {0, 1}

n
where the

inputs are called the key, the tweak and the message. We sometimes write ẼK(T,M) instead of Ẽ(K,T,M).

For any fixed K ∈ {0, 1}
k

and T ∈ {0, 1}
t
, we require that Ẽ(K,T, ·) is a permutation on n bits. The idea is

for the tweakable blockcipher to act like a normal blockcipher but with an extra (public) input, the tweak,
which adds variability. The key may be expensive to schedule and to change, but changes to the tweak
should be inexpensive. Security is defined as indistinguishability of a family of random permutations from
ẼK(·, ·) with random key K, where the adversary controls the tweak and the message. See Section 2 for a
formal definition.

Along with several other constructions, Liskov, Rivest, and Wagner suggest a new iterated hash-function
construction built on tweakable blockciphers called the “Tweak Chain Hash” (TCH). This is a straightforward

adaptation of the MMO construction into the tweakable setting: let Ẽ be a tweakable blockcipher with
t = n, and fix a key K ∈ {0, 1}

k
. For any M ∈ ({0, 1}

n
)+ write M = m1 · · ·mℓ where each |mi| = n, define

TCH
eEK (M) as

function TCH
eEK (m1 · · ·mℓ)

for i← 1 to ℓ do hi ← ẼK(hi−1,mi)⊕ mi

return hℓ

where h0 is a fixed constant, say 0n. See Figure 3. A main motivation for TCH is efficiency: in each round
the (expensive to change) key K remains fixed while the (cheap to change) tweak and message vary. One
might therefore expect TCH to be substantially faster than MMO.

2



m2

TCH
eEK (m1m2)ẼK ẼK

h0

m1

n

n n

Figure 3: Two rounds of the Tweak Chain Hash compression function. eEK is the tweakable blockcipher, K is a fixed
public key; the arc denotes the location of the tweak.

However the security of TCH is left as an open question. In the same paper, the authors propose two ways
to create tweakable blockciphers from conventional blockciphers: one construction based on the CBC-MAC
and one using universal hash families. So it is natural to wonder whether TCH is secure when built using
either of these constructions. But inserting the second construction into TCH yields a fixed-key rate-1 hash
function constructed from a conventional blockcipher and given our results above, we would expect that any
such construction should be insecure. In fact we show something even stronger.

We demonstrate that using either tweakable-blockcipher construction from Liskov et al., the resulting
TCH construction admits a simple attack. These attacks produce an infinite number of same-length colliding
message pairs under TCH, regardless of the parameters chosen for the underlying tweakable blockcipher and
regardless of the security model. Appealing to our main result, we further show in the ideal-cipher model that
any tweakable blockcipher—built using one call to a conventional blockcipher—will yield an insecure TCH
construction. Our result does not, however, rule out TCH being secure when constructed from a tweakable
blockcipher primitive, such as the Hasty Pudding cipher [13]. This is discussed further in Section 4.

Security Model. The standard-model assumption for blockciphers is that they are good pseudo-random
permutations (PRPs) [9]. However this assumption is insufficient for proving the security of hash functions
based on blockciphers; indeed, Simon has shown [15] that the PRP assumption alone is insufficient for secure
blockcipher-based hashing. For this reason, all proofs of security for blockcipher-based hash functions have
been done in the ideal-cipher model [2, 9, 10, 15, 16]. This model, which dates back to Shannon [14], treats a
blockcipher as a random and independent permutation for each key. Some believe that modeling blockciphers
in this way is not realistic: often we find correlations and biases in real blockciphers that one would not
expect to see if the object were drawn uniformly from the family of all blockciphers with the same block
and key size. Nonetheless, proofs of security in this model do have meaning: security is guaranteed against
adversaries that ignore the structure of the underlying blockcipher.

Except for the two simple attacks given for TCH, all attacks in this paper are in the ideal-cipher model.
We do not make any probabilistic assumptions nor do we depend on the permutivity of the blockciphers.

The normal measure of security for blockcipher-based hash functions is that they are secure against
information-theoretic adversaries in the ideal-cipher model [2]. Our adversaries are therefore information-
theoretic. While this may seem to be giving too much power to an adversary when thinking of real-world
attacks, we once again stress that our goal is to demonstrate the nonexistence of provably collision-resistant
schemes, not to give practically instantiable attacks. Indeed, it is clearly impossible to exhibit a practical
attack given the generality of our setting: f1 could itself be a collision-resistant hash function and a practical
attack on the resulting hash function would imply a practical attack on f1.

Message Lengths. Our definition for collision resistance will count as valid any pair of messages that
produce the same hash value. Finding collisions in practice is often much harder than this due to techniques
such as Merkle-Damg̊ard strengthening [9]. In view of this, all attacks in this paper produce colliding
messages of the same length, and therefore still apply even in the presence of such techniques.

3



2 Security Definitions

Basic Notions. Let k and n be positive integers. A blockcipher is a function E : {0, 1}
k
×{0, 1}

n
→ {0, 1}

n

where for each K ∈ {0, 1}
k

we require that EK(·) = E(K, ·) is a permutation on {0, 1}
n
. Let Perm(n)

be the set of all permutations on {0, 1}
n
, and let Bloc(k, n) be the set of all blockciphers E : {0, 1}

k
×

{0, 1}
n
→ {0, 1}

n
. A function f : Perm(n) × D → {0, 1}

c
is a (permutation-based) compression function if

D = {0, 1}
a
× {0, 1}

n
for some a ≥ 1 where a + n ≥ c. If the program for computing f uses a single query

π(x) to compute fπ(h,m) = f(π, h,m) then f is rate-1.

For non-empty sets K ⊂ {0, 1}
k

and S ⊆ {0, 1}
∗
, fix a deterministic key-selection function g : S×{0, 1}

n
×

{0, 1}
n
→ S × K. Fix a constant h0 and let σ0 = ε. We define a (highly-efficient, blockcipher-based) hash

function by the following program:

function H[g,K]E(m1 · · ·mℓ)
for i← 1 to ℓ do

(σi,K)← g(σi−1, hi−1,mi)
π ← EK

hi ← fπ (hi−1,mi)
return hℓ

where f : Perm(n)×{0, 1}
n
×{0, 1}

n
→ {0, 1}

n
is a rate-1 compression function. This program computes a

map H[g,K]E : Bloc(k, n)×({0, 1}
n
)+ → {0, 1}

n
, and we say that H[g,K]E is rate-1 because f is. Sometimes

we will call H[g,K]E the iterated hash of f , for obvious reasons.
When it is understood from context, we will omit the superscript π to f , and E to H. We will also often

omit explicit reference to g and K, simply writing H for HE [g,K].

We write x
$

← S for the experiment of choosing a random element from the finite set S and calling it x.
An adversary is an algorithm with access to one or more oracles, which we write as superscripts.

Collision resistance. To quantify the collision resistance of a highly-efficient, blockcipher-based hash
function, we model the blockcipher as a randomly chosen E ∈ Bloc(k, n). An adversary A is given oracles
for E(·, ·) and its inverse E−1(·, ·), and wants to find a collision for H—that is, M,M ′ ∈ D where M 6= M ′

but H(M) = H(M ′). We look at the number of queries that the adversary makes and compare this with
the probability of finding a collision.

Definition 1 [Collision resistance of a hash function] Fix k, n > 0, and let E : {0, 1}
k
× {0, 1}

n
→

{0, 1}
n

be a blockcipher. Let K ⊂ {0, 1}
k

and S ⊆ {0, 1}
∗

be non-empty sets, and let g : S × {0, 1}
n
×

{0, 1}
n
→ S × K be a key-selection function. Let H[g,K] be a highly-efficient, blockcipher-based hash

function, H[g,K] : Bloc(k, n)×D → {0, 1}
n
, and let A be an adversary. Then the advantage of A in finding

collisions in H is the real number

Advcoll
H (A) = Pr

[
E

$

← Bloc(k, n); (M,M ′)
$

←AE(·,·),E−1(·,·) : M 6= M ′ ∧ HE(M) = HE(M ′)
]

For q ≥ 1 we write Advcoll
H (q) = maxA{Advcoll

H (A)} where the maximum is taken over all adversaries that
ask at most q oracle queries.

Tweakable Blockciphers. Fix k, t, n > 0. A tweakable blockcipher is a function Ẽ : {0, 1}
k
× {0, 1}

t
×

{0, 1}
n
→ {0, 1}

n
such that for any K ∈ {0, 1}

k
and any T ∈ {0, 1}

t
we are guaranteed that Ẽ(K,T, ·) =

ẼK(T, ·) is a permutation on {0, 1}
n
. If we write π̃

$

←{0, 1}
t
× Perm(n) we are choosing 2t random permu-

tations on {0, 1}
n
, one for each T ∈ {0, 1}

t
. The permutation associated to T is π̃(T, ·).

Definition 2 [Security of Conventional and Tweakable Blockciphers] Let Ẽ : {0, 1}
k
× {0, 1}

t
×

{0, 1}
n
→ {0, 1}

n
be a tweakable blockcipher, and let A be an adversary. Then

Advprp
E (A) = Pr[K

$

←K : AEK(·) = 1]− Pr[π
$

← Perm(n) : Aπ(·) = 1]

Advtprp
eE

(A) = Pr[K
$

←{0, 1}
k

: A
eEK(·,·) = 1]− Pr[π̃

$

←{0, 1}
t
× Perm(n) : Aeπ(·,·) = 1]

4



Write Advprp
E (q) = maxA{Advprp

E (A)} and Advtprp
eE

(q) = maxA{Advtprp
eE

(A)} for q ≥ 1 and where the
maxima are taken over all adversaries that ask at most q oracle queries.

3 Hash Function Constructions and Attacks

We begin this section with a more detailed discussion of the generalized rate-1 blockcipher-based compression
function shown in Figure 2, and of certain assumptions we might make in practice (though our later proofs
will make no such assumptions). Next we consider attacks on the iterated hash of this compression function.
The first attack is particularly efficient (it requires only 2|K| blockcipher invocations) and we argue that
it probably applies to many “reasonable” constructions for the compression function. The second is more
general: it shows there cannot exist an iterated hash function based on this type of compression function
that is provably collision resistant in our model.

Generalized Rate-1 Blockcipher-based Compression Function. We consider any compression
function f that is built in the following way. Let f1 : {0, 1}

n
×{0, 1}

n
→ {0, 1}

n
and f2 : {0, 1}

n
×{0, 1}

n
×

{0, 1}
n
→ {0, 1}

n
be arbitrary functions. We define f : Perm(n)×({0, 1}

n
×{0, 1}

n
)→ {0, 1}

n
as fπ(h,m) =

f2(h,m, π(f1(h,m))). See Figure 2 with π = EK . We will not formally argue that this construction covers
all possible 2n to n bit functions that call π at most once; this would take us quite far afield. Instead we
give the following informal justification.

The function f takes two n-bit inputs, h and m. We make both of these inputs available to the “pre-
processing” function f1 and to the “postprocessing” function f2. Additionally, f2 has access to the output
of π. We do not feed the output of f1 to f2 since f2 is capable of recomputing f1 itself. Similarly, we do not
feed the output of f2 back to f1 since any computation performed by f2 only on inputs h and m could have
been computed by f1; if the output of f2 depends also on π then it cannot be fed back into f1 (and thus π)
because we are requiring f be rate-1.

Although f1 and f2 are fully arbitrary, we imagine that in practice they will be simple and fast-to-compute
functions. In PGV [11], for example, these functions are never more complex than XOR. It would make
little sense to have f1 be, say, SHA-1 since our overall construction is itself aiming to be a cryptographic
hash function. Nonetheless, our results continue to hold even for such far-fetched constructions: since our
adversary is information-theoretic, it is able to find all 2n-bit inputs that yield some particular n-bit output
for f1 in constant time.

The Two-Fiber Attack. We begin by describing a simple collision-finding attack called the “two-fiber
attack” which works on many natural highly-efficient constructions, including all of the fixed-key construc-
tions from [11]. In this attack the function f1 has a certain property, which we call the “two-fiber property.”
We now explain.

Let f−1
1 (i) represent the set {(h,m) : f1(h,m) = i}. This is commonly called the fiber of f1 under i, or

the i-fiber. We now define the notion of a well-balanced fiber or function.

Definition 3 [Well-Balanced Fibers] Fix integer n > 0, and let f : {0, 1}
n
× {0, 1}

n
→ {0, 1}

n
be a

function. Then the fiber f−1(i) is well-balanced if each h ∈ {0, 1}
n

appears exactly once as a first coordinate
of some ordered pair of f−1(i). If every fiber of f is well-balanced, then we say that f is well-balanced.

An example of a well-balanced function is f1(h,m) = h⊕m. In fact, it’s not hard to see that if f1(h, ·) is a
permutation on {0, 1}

n
for each h ∈ {0, 1}

n
then f1 will be well-balanced.

For the purposes of the present attack, we require only that there exist distinct i1, i2 ∈ {0, 1}
n

such that
f−1
1 (i1) and f−1

1 (i2) are well-balanced. If f1 has two such fibers, we say that f1 has the two-fiber property

and the resulting attack is called the two-fiber attack. Notice that this property can be determined by the
adversary without requiring any E-queries.

The attack is given in the theorem below. The idea behind the attack is that by doing just 2|K| queries
to E on points i1 and i2, an adversary can produce arbitrarily many same-length messages along with their
hash values.

Theorem 4 [Two-Fiber Attack] Fix k, n > 0 and let E : {0, 1}
k
× {0, 1}

n
→ {0, 1}

n
be a blockcipher.

Fix K ⊂ {0, 1}
k
, S ⊆ {0, 1}

∗
, and let g : S × {0, 1}

n
× {0, 1}

n
→ S × K be a key-selection function. Let

5



the compression function f : Perm(n) × ({0, 1}
n
× {0, 1}

n
) → {0, 1}

n
be defined as usual by fπ(h,m) =

f2(h,m, π(f1(h,m))), where f1 has the two-fiber property. Finally, let hash function H[g,K] : Bloc(k, n) ×
D → {0, 1}

n
be the iterated hash of f . Then Advcoll

H (2|K|) = 1.

Proof: Let i1, i2 ∈ {0, 1}
n
, i1 6= i2, be chosen such that f−1

1 (i1) and f−1
1 (i2) are well-balanced fibers. We now

define AE,E−1

, a collision-finding adversary for H. First A makes 2|K| queries to its left oracle at (K, i1) and
(K, i2) for each K ∈ K. With the resulting values, A grows a rooted tree T . Tree T will be annotated with
node-labels and edge-labels; the edge-labels will represent message blocks and the node-labels will contain
the intermediate hash values obtained by traversing T from the root to that node. Edges are added by
specifying an ordered pair (u, v) of node labels where u is already in T and v is a new node with label v.
Thus each edge-addition always creates a leaf. Each time we add an edge to T we will also specify the label
for that edge.

Let the root of T be labeled h0. Since h0 ∈ {0, 1}
n

and f−1
1 (i1) and f−1

1 (i2) are well-balanced fibers, then
there exist distinct m1,m2 such that i1 = f1(h0,m1) and i2 = f1(h0,m2). Therefore A can now compute
x1 = f(h0,m1) and x2 = f(h0,m2) without any oracle queries since EK(i1) and EK(i2) have been pre-
computed for any K that was output by g. If x1 = x2, then A halts returning the collsion m1,m2. If not,
A adds an edge (h0, x1) labeled m1 and an edge (h0, x2) labeled m2. Then A continues at the leaves of T ,
doubling their number using the same technique as above; no additional oracle queries are required. This
process is continued by A until a collision occurs. Since there are only 2n possible output values for f and
because the number of leaves doubles at each step, we are guaranteed that A will find a collision among the
leaves within n + 1 iterations of this process.

Note that the proof holds even if EK is not a permutation; we require only that EK be a map from n bits
to n bits. Also notice that the colliding messages produced by A are the same length; this means that a
length-encoding scheme like MD-strengthening does not help avert the attack.

There are several obvious extensions to the two-fiber attack: for example, had we not insisted that
messages be of the same length, a single well-balanced fiber would have sufficed. Also, if f1 did not have the
two-fiber property, perhaps it had ℓ fibers in which every h ∈ {0, 1}

n
occurred at least twice among the first

coordinates in those ℓ fibers. This would admit an analogous attack using ℓ|K| oracle queries. Rather than
pursue these ideas further, we instead proceed to the generalized attack that shows that |K|(n + ⌈lg(n)⌉))
oracle queries are sufficient to find distinct same-length messages that collide for any generalized compression
function.

Main Result. The central result of this paper is to show that no rate-1 compression function using
blockcipher keys from a small fixed set K can give rise to a provably collision-resistant hash function when
iterated. We show this by using at most |K|(n+ ⌈lg(n)⌉) oracle queries to produce an overwhelming number
of hash outputs that correspond to distinct messages. More specifically, our attack implements an algorithm
to grow a tree of messages where the number of nodes in the tree at least doubles with each level added to
it. We then show that the tree will have height at most n + ⌈lg(n)⌉ but with more than 2n(n + ⌈lg(n)⌉)
nodes which means there must exist a collision at some level of the tree.

Although the theorems below hold for all n > 0, we restrict our statements to n ≥ 8 since small values
are of no interest and addressing them would introduce special cases into the proofs.

Theorem 5 [General Attack] Fix k > 0, n ≥ 8 and let E : {0, 1}
k
× {0, 1}

n
→ {0, 1}

n
be a blockcipher.

Fix K ⊂ {0, 1}
k
, S ⊆ {0, 1}

∗
, and let g : S × {0, 1}

n
× {0, 1}

n
→ S ×K be a key-selection function. Define

function f : Perm(n) × ({0, 1}
n
× {0, 1}

n
) → {0, 1}

n
as usual by fπ(h,m) = f2(h,m, π(f1(h,m))), with f1

and f2 arbitrary. Let H[g,K] : Bloc(k, n) × D → {0, 1}
n

be the iterated hash of f . Then Advcoll
H (|K|(n +

⌈lg(n)⌉)) = 1.

Proof: Like the two-fiber attack above, we will focus our attention on f1. We will conduct the proof initially
for the case |K| = 1, and then generalize at the end. This means we may assume that g is trivial and K
is fixed for all oracle queries. We construct an adversary A with oracles E,E−1. We begin the proof by
introducing an abstraction that will allow us to focus on the most important features of the problem. Let
N = 2n and for all i ∈ [0..N − 1] define Ri = {(h,m, f(h,m)) : h,m ∈ {0, 1}

n
∧ f1(h,m) = i)}. Define

R = {R0, · · · ,RN−1} and notice several things about R:

6



• Over all of the Ri there are exactly N ordered triples of the form (h, ·, ·) for each h ∈ {0, 1}
n

since
there are exactly N possible values for m.

• Since f1 is a public function, A can sort each triple (h,m, ·) into the appropriate set Ri, since mem-
bership depends only on f1(h,m).

• Since evaluating f(h,m) requires an oracle query, A will not initially know the value of the last
coordinate of any ordered triple.

In light of the last bullet above, we will think of each triple in eachRi as (h,m, ?) where “?” is a distinguished
symbol indicating we do not yet know the value. Once we have A perform an oracle query (K, i) for some
i ∈ [0..N − 1], we may fill in the last-coordinates for each triple in Ri. Of course we are going to be stingy
with our oracle queries, since we can spend at most |K|(n + ⌈lg n⌉) of them. Now A grows a rooted tree T ,
the same as we did for the two-fiber attack: tree T will be annotated with node-labels and edge-labels;
the edge-labels will represent message blocks and the node-labels will contain the intermediate hash values
obtained by traversing T from the root to that node. Edges are added by specifying an ordered pair (u, v) of
node labels where u is already in T and v is a new node with label v. Thus each edge-addition always creates
a leaf. Each time we add an edge to T we will also specify the label for that edge. Edges (h, f(h,m)) added
to T will indicate that message block m gets us from chaining-value h to chaining-value f(h,m). Therefore,
we would label edge (h, f(h,m)) with m. We start with T having just one node labeled h0. Because A has
not yet queried E, the tree can be extended no further at this point.

Before doing any E-queries, we make the following three simplifications to the abstraction all of which
remove power from the adversary, and therefore an attack in this simplified setting still yields an attack in
the original setting.

Recall that each time A queries E at point (K, i), we may fill in all last-coordinates in set Ri. Our first
simplification is to fill in only those triples that are of immediate use. In other words, for each ordered
triple (h,m, ?) in Ri, we replace “?” with f(h,m) only if a node labelled h appears in T . We think of the
remaining triples in Ri as being distributed arbitrarily among the sets Rj where j has not yet been queried.
This adjustment clearly does not increase the power of A.

The second simpification is to impose a restriction on T : it may grow at most one level for each query A
makes. This means that if A makes a query that adds an edge e to T that increases its height, A may not
then extend T with a new edge attached to e. This limitation also does not increase A’s power.

Finally, our third simplification is to notice that two triples (h,m, j) and (h,m′, j) in the ordered triples
contained in the sets of R only helps A. This is because repeating h and j allows an immediate collision
at the same level of T as soon as h appears in T . So we will assume that for every pair of triples (h,m, j)
and (h′,m′, j′) in the sets of R, that h = h′ implies j 6= j′. Once again, this assumption only makes A’s job
harder.

Before proceeding to the attack, we establish some notation. At any time during the attack, we define t
as the number of nodes in T and we let E be the set of triples used in T thus far. (Note that the number
of edges in T may be larger than the number of triples used: if several nodes labeled h appear in T , then
triple (h,m, j) may be used to create an edge from each of them.) Let R∗ be all ordered triples in R; that
is R∗ = ∪N−1

i=0 Ri. Let E denote the set of ordered triples not in E . That is, E = R∗ − E . The attack now
proceeds as follows: define v : [0..N − 1]→ N as v(i) = the number of nodes in T with label i. Now A scores
each unqueried set Ri according to the function s(Ri) =

∑
(h,m,j)∈Ri

v(h).

The score of Ri measures the number of nodes we can add to T as a direct result of querying E(K, i). The
tree-building algorithm for A is the natural greedy algorithm: ask the query (K, i) that maximizes s(Ri)
where ties are broken arbitrarily. Once A has filled in the triples of Ri, it extends T by each relevant triple
available; that is, if (h,m, f(h,m)) ∈ Ri and h is a node in T , add edge (h, f(h,m)) to T with edge-label m.
But A may be able to add further edges for already-discovered triples as well. So for each triple (h,m, j) in
E , adversary A also adds an edge to any h in T where (h, j) does not already appear as an edge. See Figure 4
for the complete algorithm.

7



Algorithm BuildTree
J ← {0, 1}

n
; E ← ∅; T ← ∅; AddNode(T, h0)

for ℓ← 1 to n + ⌈lg(n)⌉ do
i← maxj∈J{s(Rj)}
p← E(K, i); J ← J − {i}
for (h,m, ?) ∈ Ri do

(h,m, ?)← (h,m, f2(h,m, p))
for (h,m, j) ∈ Ri do

for v ∈ T do
if h = v then AddEdge(T, (v, j),m); E ← E ∪ {(v,m, j)}

for (h,m, j) ∈ E do
for v ∈ T do

if h = v and (v, j) 6∈ T then AddEdge(T, (v, j),m)
if collision on any level of T then halt

Figure 4: The tree-building algorithm used by adversary A. Set J tracks the unqueried points; set E tracks the triples
used in tree T . The algorithm chooses the maximum-scoring set Ri that has not been previously queried, and queries E

at (K, i). It then expands the tree using triples from the newly-discovered Ri and from E . Function AddEdge(T, (u, v), m)
inserts into tree T an edge from the node labeled u to a new leaf labeled v using edge-label m. With each iteration of
the main loop, the height of T grows by exactly one while the number of nodes in T at least doubles. We stop any time
a collision occurs at some level of T ; we omit specifying the data structures for T and how collisions are detected.

Our goal here is to argue that T increases exponentially in the number of nodes as it increases linearly in
height. First, notice that an invariant of T is that s(E)+s(E) = tN . This is because s(E)+s(E) = s(E ∪E) =
s(R∗) = tN . We now state and prove the key lemma.

Lemma 6 [Tree-Doubling Lemma] At any point during the attack, if t > 1
there exists some unqueried value i ∈ {0, 1}

n
such that querying E(K, i) allows at

least t + 1 nodes to be added to T . Furthermore, if t = 1 there exists a query that
allows at least 1 node to be added to T .

Proof: For t = 1 no E-queries have been asked. Therefore there must exist some
Ri ∈ R with at least one triple of the form (h0,m, ?) for any m ∈ {0, 1}

n
, which

means there exists some Ri with s(Ri) ≥ 1.

Now assume t > 1, which means at least one E-query has been asked by A. Thus
there are at most N − 1 unqueried values remaining. We will now bound s(E).
Let d be the number of “free extensions” we can make to T by applying triples
already in E . Now, notice that s(E) = t − 1 + d. This is because s(E) gets a score
of t − 1 from each of the t − 1 added nodes thus far, but also gets an added score
of d from the d triples in E we can add for free. Therefore s(E) = tN − t + 1 − d
and since this score must be distributed among at most N − 1 sets we can use the
pigeonhole principle to show that the minimum node-expansion possible when using
the maximally-scoring set Ri is

⌈
tN − t + 1− d

N − 1

⌉
+d =

⌈
t(N − 1)

N − 1
−

d− 1

N − 1

⌉
+d =

⌈
t−

d− 1

N − 1

⌉
+d ≥

⌈
t−d+1

⌉
+d = t+1.

8



0

20

01 R3 = {(0, 3, ?), (1, 1, ?), (2, 3, ?), (3, 1, ?)}

R0 = {(0, 1, ?), (1, 2, ?), (1, 3, ?), (2, 2, ?)}

R1 = {(1, 0, ?), (2, 0, ?), (3, 2, ?), (3, 3, ?)}

R2 = {(0, 0, 1), (0, 2, 0), (2, 1, 3), (3, 0, 0)}

Figure 5: An example tree built during the attack for N = 4. We assume h0 = 0n and label the root accordingly. Thus
far A has queried E at (K, 2), so the last coordinates of R2 are filled in. Only the first two ordered triples of R2 were
useful, so E = {(0, 0, 1), (0, 2, 0)} and the edges (0, 1) and (0, 0) were added to T with edge labels 0 and 2, respectively.
Also, t = 3, d = 2, and s(E) = 4, so s(E) = 8.

See Figure 5 for a small example. With this result in hand we can now conclude the proof of the theorem.
Since t increases by at least 1 from the first query, and by at least t + 1 from subsequent queries, we can see
by induction that after ℓ queries we will have at least 2ℓ + 2ℓ−1 − 1 nodes in T .

Let m = ⌈lg(n)⌉. Then after n + m queries we are guaranteed at least nN + 2m−1N − 1 nodes in n + m + 1
levels of T . Ignoring the root node, this is nN + 2m−1N − 2 nodes in n + m levels. Since n ≥ 8 then
2m−1 ≥ m + 1 and

nN + 2m−1N − 2 ≥ (n + m)N + N − 2 > (n + m)N.

Thus there are more than (n + ⌈lg(n)⌉)N nodes on n + ⌈lg(n)⌉ levels of T yielding a collision on some
level. The same-length messages M and M ′ that collide under hash function H are extracted from T by
traversing T from the root to each colliding node and reading off the edge labels that form the message
blocks of M and M ′.

Finally, we extend this attack to the case where |K| > 1. We proceed exactly as above, except that each
time that attack calls for a single E(K, i) query we now ask |K| queries E(K, i), one for each K ∈ K. Since
g at each step will choose one K ∈ K based on the path taken in the tree, we are guaranteed to have covered
the query and therefore the scoring function will still accurately count the tree expansion that would result
from our queries. We therefore will make a total of |K|(n + ⌈lg(n)⌉) queries to E.

Interpreting the Result. We have used the ideal-cipher model for the blockcipher and endowed the
adversary with limitless computational abilities. In this setting we were able to find an attack far more
efficient than we can for known-secure constructions like MMO. However, we must realize that this model
is not realistic in two ways: (1) When we plug a real blockcipher in for E, say 256-bit Rijndael, and fix
a key-selection algorithm g and key-set K, we do not then have a random object. We have a fixed public
object that can be attacked via directed cryptanalysis. (2) If we attempt to mount the attacks described
here, we will be using real computers with real computational limitations. Building a tree with Ω(2n) nodes
is not feasible for typical values of n. Of course collisions will appear long before the tree reaches this size,
under reasonable probabilistic assumptions, but even a tree containing Ω(2n/2) nodes is impractical to store
when n is (say) 160 or 256.

So one might reasonably ask if the attacks just shown are really of any concern at all. Perhaps we can
use 256-bit Rijndael, fix a single key 0256, and find some fast and simple functions f1 and f2 that do not
admit any “obvious” attacks on the resulting iterated hash function. This may very well produce a collision-
resistant hash function in the same sense that SHA-1 or RIPEMD-160 is thought to be collision resistant:
no one has yet found collisions. However, we are taking a step backwards in this way of thinking because
we are once again relying on the lack of effective attacks to give evidence of security. In a sense, we would
be designing yet another primitive when we already have several primitives without any known attacks (at
the time of this writing) and a longer established presence. But one thing we can guarantee about such an
object is this: it will never admit a proof of security in the established model.

9



TCH-CBC π(m1m2)

m2

π

π π

π

m1

h0

Figure 6: Two rounds of the TCH-CBC
π hash function. Function π : {0, 1}n → {0, 1}n is a fixed permutation. We can

easily generate an infinite number of same-length message pairs that collide using this construction.

4 The Tweak Chain Hash

Tweakable blockciphers [7] are a map Ẽ : {0, 1}
k
×{0, 1}

t
×{0, 1}

n
→ {0, 1}

n
where the inputs are called the

“key,” the “tweak,” and the “message,” respectively. We sometimes write ẼK(T,M) instead of Ẽ(K,T,M).

For any fixed K ∈ {0, 1}
k

and T ∈ {0, 1}
t
, we require that Ẽ(K,T, ·) is a permutation on n bits. The idea is

for the tweakable blockcipher to act like a normal blockcipher but with an extra (public) input, the tweak,
which adds variability. The key may be expensive to schedule and to change, but changes to the tweak
should be cheap. Security for a tweakable blockcipher was defined in Section 2.

In their paper, Liskov et al. give (among other things) two proposals for constructing tweakable blockci-
phers from conventional blockciphers, along with several other constructions for using tweakable blockciphers.
Their paper suggests a new hash-function construction built on tweakable blockciphers called the “Tweak
Chain Hash” (TCH), defined as follows: for any m ∈ ({0, 1}

n
)+ write M = m1 · · ·mℓ where each |mi| = n,

define TCH
eEK (M) as

function TCH
eEK (m1 · · ·mℓ)

for i← 1 to ℓ do hi ← ẼK(hi−1,mi)⊕ mi

return hℓ

where h0 is a fixed constant, say 0n, and Ẽ is a tweakable blockcipher with n = t and key K a constant;
see Figure 3. Their is idea is that this construction should be faster than blockcipher-based constructions
that rekey: the key K is fixed and only the tweak and message change for each message block digested. Since
changing these two inputs should be cheap (ie, nothing equivalent to rescheduling a key should be required),
each round of TCH should be faster than a round of, say, MMO. The authors leave the security of TCH as
an open question. This is a question we aim to address in this section.

The First Attack: TCH-CBC. Liskov et al. give two provably-secure constructions of tweakable blockci-
phers from conventional blockciphers. The first construction is the CBC MAC of the two-block message M‖T .

In other words, for a given blockcipher E they define ẼK(T,M) = EK(T ⊕ EK(M)). They show that this
construction is birthday-close to the underlying blockcipher E. That is, Advtprp

eE
(q) < Advprp

E (q) + q2/2n.
We call this the “CBC construction.”

Taking the CBC construction and inserting it into the TCH construction seems like a natural try at
building a collision-resistant hash function from a blockcipher. However, we immediately notice that the
resulting TCH-CBC scheme is rate-1/2; that is, two blockcipher calls are required for each message block
digested. (This means that our analysis from Section 3 does not apply because the compression function
here is not rate-1.) This may in fact be more expensive than a rate-1 scheme that rekeys (like MMO). But
TCH-CBC would be an interesting scheme nonetheless because it fixes the blockcipher key; no secure scheme
has ever been exhibited that does this.

Unfortunately TCH-CBC is not collision resistant, as we now show. Fix a key K: this induces a fixed
permutation that, for notational convenience, we name π = EK . For any M ∈ ({0, 1}

n
)+ write M =

m1 · · ·mℓ where each |mi| = n, define TCH-CBC π(M) as

10



TCH-AXU π(m1m2)π πu

m1

h0 u

m2

Figure 7: Two rounds of the TCH-AXU
π hash function. Function π : {0, 1}n → {0, 1}n is a fixed permutation and

u : {0, 1}n → {0, 1}n is a fixed arbitrary function. We can easily generate an infinite number of same-length message pairs
that collide using this construction.

function TCH-CBC π(m1 · · ·mℓ)
for i← 1 to ℓ do hi ← π(hi−1⊕ π(mi))⊕ mi

return hℓ

where as usual, h0 is some fixed constant. See Figure 6. Now for a two-block message M = m1m2 we have

TCH-CBC π(M) = π(π(h0⊕ π(m1))⊕ m1⊕ π(m2))⊕ m2.

Let M∗
c = π−1(c ⊕ h0) ‖ c and notice that h(M∗

c ) = h0 for any c ∈ {0, 1}
n
, yielding a large number of

2-block collisions. This idea can easily be generalized to generate collisions for messages of any even number
of blocks > 2 as well.

The Second Attack: TCH-AXU. The second tweakable blockcipher construction proposed by Liskov
et al. is based on the use of a universal hash family [3]. The flavor they used are known as ǫ-AXU2 hash
families. This is the preferred flavor because it leads to an efficient tweakable-blockcipher construction with
good security. However, as we will see, plugging their construction into TCH allows a simple attack, and
this attack does not depend on the ǫ-AXU2 property.

Definition 7 [ǫ-AXU2 Hash Families] Fix n > 0. We say a set of functions U = {u : {0, 1}
n
× {0, 1}

n
}

is ǫ-AXU2 if for all x, y, z ∈ {0, 1}
n

with x 6= y,

Pr
u∈U

[u(x)⊕u(y) = z] ≤ ǫ.

Now let E be a blockcipher, let U be an ǫ-AXU2 hash family whose functions map n bits to n bits
and define ẼK,u(T,M) = EK(M ⊕u(T ))⊕u(T ) where K ∈ {0, 1}

k
and u ∈ U . Liskov et al. show that

Advtprp
eE

(q) < Advprp
E (q) + 3ǫq2. We call this the “AXU construction.”

Let’s try inserting the AXU construction into TCH and see if the resulting TCH-AXU construction is
secure. Note that the AXU construction has a longer key since both the key for the underlying blockcipher
and the function u must be specified. However, since TCH is a keyless object, we once again must fix both
of these keys. Of course, fixing u means selecting some single function from U , and since U is an ǫ-AXU2

hash family, most of the functions in this set will be “good” in the sense that they will be injective or nearly
injective. However, as we will see, the properties of the particular function u are irrelevant in our attack: it
is effective no matter what n-bit to n-bit function is supplied.

Once we have selected a fixed key K and function u, we have a rate-1 fixed-key blockcipher-based hash
function, and our results from Section 3 immediately tell us the construction is insecure. However, it is even
worse than this: there is a very simple attack that yields an infinite number of same-length message pairs
that collide, as we now demonstrate.

Fix a key K and a function u from the family U . For notational convenience we name π = EK . For any
M ∈ ({0, 1}

n
)+ write M = m1 · · ·mℓ where each |mi| = n, define TCH-AXU π(M) as

function TCH-AXU π(m1 · · ·mℓ)
for i← 1 to ℓ do hi ← π(mi⊕ u(hi−1))⊕ mi⊕ u(hi−1)
return hℓ

11



where as usual, h0 is some fixed constant. See Figure 7. Now for a two-block message M = m1m2 we have

TCH-AXU π(M) = π(m2⊕u(π(m1⊕ u(h0))⊕ m1⊕ u(h0)))

⊕ m2⊕u(π(m1⊕ u(h0))⊕ m1⊕ u(h0)).

Let M∗
c = u(h0)⊕ c ‖u(π(c) ⊕ c) and notice that h(M∗

c ) = π(0) for any c ∈ {0, 1}
n
, yielding a large number

of 2-block collisions. This idea can easily be generalized to generate collisions for messages of any even
number of blocks > 2 as well.

The Security of TCH. The preceding two attacks do not imply that any tweakable blockcipher constructed
as a mode on a conventional blockcipher will yield an easily-breakable TCH construction. It just so happened
that the two modes given by the authors did fall to simple attacks. However, we can imagine other tweakable-
blockcipher constructions where attacks on the resulting TCH are not so obvious. But the results of this paper
tell us that if the tweakable blockcipher were constructed from a single call to a conventional blockcipher,
the resulting TCH would not have a proof of security and would therefore have to be treated as a primitive.

A New Model. It is natural to ask whether TCH works under any model for tweakable blockciphers. And
it’s fairly clear that extending the ideal-cipher model to the tweakable setting does the trick: let k, t, n ≥ 1 be
numbers. Define TBloc(k, t, n) be the set of all tweakable blockciphers Ẽ : {0, 1}

k
×{0, 1}

t
×{0, 1}

n
→ {0, 1}

n
.

Choosing a random element of TBloc(k, t, n) means that for each (K,T ) ∈ {0, 1}
k
× {0, 1}

t
one chooses a

random permutation EK(T, ·).
For TCH, we require t = n and we fix the key K to some constant. But this immediately reduces to

MMO in the ideal-cipher model for conventional blockciphers, which was proven secure previously [2]. We
have essentially lost the distinction between the key and the tweak since in our new ideal-tweakable-cipher
model they are equivalent. The notion that the tweak is public and the key is secret has been lost. The
notion that the tweak should be cheap to change while the key is normally expensive to change has similarly
been lost.

What does provable security in the ideal-tweakable-cipher model mean? Notice that in each of the above
attacks on TCH we exploited details of the construction of the underlying tweakable blockcipher. Had we
treated these underlying objects as black boxes, we would have had no effective course of attack; we can
therefore conclude that any attack on TCH must exploit the internal features of the tweakable blockcipher
upon which it is constructed, meaning that perhaps a a tweakable blockcipher primitive might yield a secure
TCH. The Hasty Pudding cipher is the only tweakable blockcipher primitive we know of [13]. Whether using
Hasty Pudding in TCH yields an efficient collision resistant hash function is left as an open question, but we
can be certain that any attacks on TCH-HP would require the cryptanalyst delve into the inner workings of
the Hasty Pudding cipher.

5 Conclusion and Open Problems

Our results give strong evidence that we cannot build rate-1 collision-resistant hash functions from a block-
cipher that uses only a small set of keys. Does this mean we are forced to accept constructions that change
the key arbitrarily with each round if we want provable security? Not necessarily. Our results say nothing
about schemes in this framework that rekey, say, every other round. It would be interesting to show sufficient
conditions on how often the blockcipher must be rekeyed in order to maintain a good collision resistance
bound. Alternatively, perhaps the key can be fixed in a non-Merkle-Damg̊ard construction; the results of
Gennaro et al. [5], although for a different security property than we considered here, may provide some
insight. Or perhaps there is some relaxation of the model and weakening of the adversary that admit security
proofs for highly-efficient blockcipher-based schemes. We leave these as open questions.

Acknowledgements

Thanks to Phillip Rogaway for suggesting to spell “blockcipher” as a single word (it saved typing a hyphen
more than 20 times) and for various suggestions and comments on an early draft of this manuscript. Thanks

12



as well to several Eurocrypt 2005 reviewers for their insightful suggestions. John Black’s work was supported
by NSF CAREER-0240000 and a gift from the Boettcher Foundation. Part of this work was conducted while
Tom Shrimpton was at UC Davis and was supported by NSF 0208842, NSF 0085961, and a gift from Cisco
Systems.

References

[1] Black, J., Cochran, M., and Shrimpton, T. On the impossibility of highly-efficient blockcipher-
based hash functions, 2005. To appear in Advances in Cryptology — Eurocrypt 2005.

[2] Black, J., Rogaway, P., and Shrimpton, T. Black-box analysis of the block-cipher-based hash-
function constructions from PGV. In Advances in Cryptology – CRYPTO ’02 (2002), vol. 2442 of
Lecture Notes in Computer Science, Springer-Verlag.

[3] Carter, L., and Wegman, M. Universal hash functions. J. of Computer and System Sciences, 18
(1979), 143–154.

[4] Damg̊ard, I. A design principle for hash functions. In Advances in Cryptology – CRYPTO ’89 (1990),
G. Brassard, Ed., vol. 435 of Lecture Notes in Computer Science, Springer-Verlag.

[5] Gennaro, R., Gertner, Y., Katz, J., and Trevisan, L. Bounds on the efficiency of generic
cryptographic constructions, 2005. To appear in the SIAM Journal on Computing.

[6] Handschuh, H., Knudsen, L., and Robshaw, M. Analysis of SHA-1 in encryption mode. In
Advances in Cryptology – CT-RSA ’01 (2001), D. Naccache, Ed., Lecture Notes in Computer Science,
Springer-Verlag, pp. 70–83.

[7] Liskov, M., Rivest, R., and Wagner, D. Tweakable block ciphers. In Advances in Cryptology –

CRYPTO ’02 (2002), M. Yung, Ed., Lecture Notes in Computer Science, Springer-Verlag, pp. 31–46.

[8] Matyas, S., Meyer, C., and Oseas, J. Generating strong one-way functions with cryptographic
algorithms. IBM Technical Disclosure Bulletin 27, 10a (1985), 5658–5659.

[9] Menezes, A., van Oorschot, P., and Vanstone, S. Handbook of Applied Cryptography. CRC
Press, 1996.

[10] Merkle, R. One way hash functions and DES. In Advances in Cryptology – CRYPTO ’89 (1990),
G. Brassard, Ed., vol. 435 of Lecture Notes in Computer Science, Springer-Verlag.

[11] Preneel, B., Govaerts, R., and Vandewalle, J. Hash functions based on block ciphers: A
synthetic approach. In Advances in Cryptology – CRYPTO ’93 (1994), Lecture Notes in Computer
Science, Springer-Verlag, pp. 368–378.

[12] Rabin, M. Digitalized signatures. In Foundations of Secure Computation (1978), R. DeMillo,
D. Dobkin, A. Jones, and R. Lipton, Eds., Academic Press, pp. 155–168.

[13] Schroeppel, R., and Orman, H. The hasty pudding cipher. AES candidate submitted to NIST,
1998.

[14] Shannon, C. Communication theory of secrecy systems. Bell Systems Technical Journal 28, 4 (1949),
656–715.

[15] Simon, D. Finding collsions on a one-way street: Can secure hash functions be based on general
assumptions? In Advances in Cryptology – EUROCRYPT ’98 (1998), Lecture Notes in Computer
Science, Springer-Verlag, pp. 334–345.

[16] Winternitz, R. A secure one-way hash function built from DES. In Proceedings of the IEEE Sympo-

sium on Information Security and Privacy (1984), IEEE Press, pp. 88–90.

13


