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Abstract. We propose a one-round1-out-of-n computationally-private informa-
tion retrieval protocol forℓ-bit strings with low-degree polylogarithmic receiver-
computation, linear sender-computation and communication Θ(k · log2 n + ℓ ·

log n), wherek is a possibly non-constant security parameter. The new proto-
col is receiver-private if the underlying length-flexible additively homomorphic
public-key cryptosystem is IND-CPA secure. It can be transformed to a one-round
computationally receiver-private and information-theoretically sender-private1-
out-of-n oblivious-transfer protocol forℓ-bit strings, that has the same asymptotic
communication and is private in the standard complexity-theoretic model.
Keywords. Computationally-private information retrieval, length-flexible addi-
tively homomorphic public-key cryptosystem, oblivious transfer.

1 Introduction

During a 1-out-of-n computationally-private information retrieval protocolfor ℓ-
bit strings, CPIRn

ℓ , Receiver retrieves an entry from Sender’s databaseS =

(S[1], . . . , S[n]), S[j] ∈ {0, 1}ℓ, so that a computationally bounded Sender will not
obtain any information on which element was retrieved. The first and up to now
the only CPIRn

ℓ protocol, CMSn
ℓ , with polylogarithmic in n communication was

proposed in [CMS99]. Alternatively, based on an earlier work by Kushilevitz and
Ostrovsky [KO97], Julien P. Stern [Ste98] proposed anotherfamily—that we call
HomCPIRn

ℓ (α)—of CPIRn
ℓ protocols, based on an arbitrary IND-CPA secure addi-

tively homomorphic public-key cryptosystem. If sayn < 240, then Stern’s protocol
is quite communication-efficient. In particular, for all realistic values ofn andℓ, it is
vastly more communication-efficient thanCMSn

ℓ .
However, the communication ofHomCPIRn

ℓ (α) is not polylogarithmic, and may
be even more importantly, it has superpolylogarithmic Receiver’s computation and su-
perlinear Sender’s computation inn. In particular, Sender’s superlinear computation
makes Stern’s protocol inapplicable for sayn > 215. This can be compared with essen-
tially constant-time Receiver’s computation and linear-time Sender’s computation in the
linear-communicationCPIRn

ℓ protocols of [NP01,AIR01]. Construction of an efficient-
in-practice (this involves both communication-efficiencyand computation-efficiency)
and yet polylogarithmicCPIRn

ℓ protocol has been a major open problem.
In this paper, we propose a newCPIRn

ℓ protocol with log-squared communication
that has a very low computational overhead. It takes advantage of the concept of length-
flexible additively homomorphic (LFAH) public-key cryptosystems [DJ01,DJ03]. Re-
call that a LFAH public-key cryptosystem has an additional length parameters ∈ Z

+,



such that given a public and private key pair of the receiver and a random value be-
longing to ans-independent set, the encryption algorithm mapssk-bit plaintexts, for
anys and for a security parameterk, to (s + ξ)k-bit ciphertexts for some small integer
ξ ≥ 1; ξ = 1 in the case of the cryptosystem from [DJ01]. This can be compared to the
conventional additively homomorphic public-key cryptosystems [Pai99] that mapk-bit
plaintexts toηk-bit ciphertexts for someη ≥ 2.

Now, assume thats = ⌈ℓ/k⌉. Assume the existence of an LFAH public-key cryp-
tosystem with the mentioned properties. We show that for anyα ∈ [log n], there exists a
CPIRn

ℓ protocolLFCPIRn
ℓ (α) with communication(α ·(s+ ξ

2 (α+1))(n1/α−1)+s+
αξ) ·k bits. In particular, in the asymptotically optimal caseα = log n, the communica-
tion of LFCPIRn

ℓ (log n) is ( ξ
2 · log2 n+(s+ 3ξ

2 ) · log n+s) ·k = Θ(k · log2 n+ℓ · logn)
bits. Moreover, ifℓ ≥ k · log n, thenLFCPIRn

ℓ (log n) has communicationΘ(ℓ · log n)
bits with the constant in theΘ-expression being arbitrary close to1; this is very close
to the communication of non-private information retrieval, ⌈log n⌉ + ℓ. An important
property of our protocols is that they are simple to understand and to implement.

Additionally, we describe some variants of our basic protocol that are especially
efficient for particular values ofℓ andn, and that enable to balance communication
and computation. For example, we describe anCPIRn

ℓ protocol with communication
(1 + ξ)((n − 1)k + ℓ); this results in close-to-optimal communication in the case of
small databases but long documents.

If one uses a fast exponentiation algorithm, Sender’s work in a slight variant of
LFCPIRn

ℓ (log n) is equivalent toΘ(nℓ) · k2+o(1) bit-operations; this is optimal inn
up to a multiplicative constant. Receiver’s work is low-degree polylogarithmic inn,
Θ((k · log n + ℓ)2+o(1)) bit-operations, and therefore also close to optimal.

Our results indicate that in the case ofCPIRn
ℓ protocols, one should not over-

emphasise complexity-theoretic notions like polylogarithmicity, but instead study the
communication of a protocol in a very concrete framework. This is best illustrated
by the fact that forn ≤ 240, the only previous polylogarithmicCPIRn

ℓ protocol by
Cachin, Micali and Stadler requires more communication then just transferring the
whole database. On the other hand, we do not deny that having polylogarithmic com-
munication is important in theoretic frameworks. The new protocols, proposed in this
paper, are both polylogarithmic (“good in theory”) and require less communication than
any of the previousCPIRn

ℓ protocols for practically any values ofn andℓ (“good in
practice”).

All previous protocols that use LFAH public-key cryptosystems utilise encryptions
only under a single, although possible very large, value of the length parameters. A
transcript of theLFCPIRn

ℓ (α) protocol includes encryptions of interrelated plaintexts
under different values of the length parameter. This use of LFAH public-key cryptosys-
tems is novel and therefore interesting by itself. We define anew security require-
ment for cryptosystems,α-IND-LFCPA-security, and show that known IND-CPA se-
cure LFAH public-key cryptosystems are secure in the sense of α-IND-LFCPA (under
a tight reduction), and thatLFCPIRn

ℓ (α) is secure under a tight reduction to theα-IND-
LFCPA-security of the underlying public-key cryptosystem, or under a looser reduction
to the IND-CPA-security of the underlying public-key cryptosystem.



We briefly discuss the potentially stronger setting where one needs security against
adversaries that work in timepoly(nℓ). Since the Decisional Composite Residuos-
ity Problem moduloM can be solved in timeexp(O(1) log1/3 M · (log log M)2/3)

by using general number field sieve, one must havek = Ω(log3−o(1)(nℓ)). Thus,
if security against such adversaries is required,LFCPIRn

ℓ (log n) has communication
Ω(log3−o(1)(nℓ) · log2 n + ℓ · log n). If one comes up with a suitable cryptosystem that
has better security guarantees, then the exponent3−o(1) can be improved to2−o(1) or
even to1. Additionally, we show thatLFCPIRn

ℓ (log n), if based on the cryptosystems
from [DJ01,DJ03], has communicationΘ(κ3−o(1) · log2 n + ℓ · log n), whereκ is a
security parameter that corresponds to theexponentialsecurity level.

Finally, we show that one can transformLFCPIRn
ℓ (α) to a computationally receiver-

private and information-theoretically sender-private one-roundOTn
ℓ protocol, with log-

squared communication, that is secure in the standard complexity-theoretic model.
An early version of this paper (that in particular had the description ofLFCPIRn

ℓ (α))
was posted on the IACR eprint server [Lip04] in Spring 2004. The conference version
has been shortened due to the lack of space. The full version is available from [Lip04].

2 Preliminaries

For a t ∈ Z
+, let [t] denote the set{1, . . . , t}. All logarithms in this paper will be

on base2, unless explicitly mentioned. Lete be the base of the natural logarithm,
that is, ln e = 1. For a distribution (random variable)X , let x ← X denote the as-
signment ofx according toX . We often identify sets with the uniform distributions
on them, and algorithms with their output distributions, assuming that the algorithm
that outputs this distribution is clear from the context or just straightforward to con-
struct. Letk andκ be two security parameters, wherek corresponds to the superpoly-
nomial security (breaking some primitive is hard in timepoly(k)) andκ corresponds
to the exponential security (breaking some primitive is hard in time 2o(κ)). Denote
LM [a, b] := exp(a(ln M)b · (ln lnM)1−b). Throughout this paper, we denote Sender’s
database size byn, assume that database elements belong to{0, 1}ℓ = Z2ℓ for some
fixed positive integerℓ, and denotes := ⌈ℓ/k⌉. We denotesqrtlog(a, b) :=

√
loga b.

Assume thatM = p1p2 is a product of two large primes. A numberz is said to
be anM -th residue moduloM2 if there exists a numbery ∈ ZM2 such thatz =
yM mod M2. The decisional composite residuosity problem[Pai99] (DCRP) is to
distinguishM -th residues fromM -th non-residues. The fastest known way to break
DCRP is to factor the modulusM , which can be done in timeO(LM [(64/9)1/3 +
o(1), 1/3]) by using general number field sieve.

A length-flexible additively homomorphic (LFAH) public-key cryptosystemis a tuple
Π = (Gen, Enc, Dec), where (a)Gen is a key generation algorithm, that on input1k,
returns(sk, pk), wheresk is a secret key andpk is a public key, (b)Enc is an encryption
algorithm, that on input(pk, s, m, r), wherepk is a public key,s ∈ Z

+ is a length
parameter,m is a plaintext andr is a random coin, returns a ciphertextEncs

pk(m; r),
and (c)Dec is an decryption algorithm that on input(sk, s, c), wheresk is a secret
key,s is a length parameter andc is a ciphertext, returns a plaintextDecs

sk(c). For any
(sk, pk) ← Gen(1k) and for anys ∈ Z

+, Encs
pk : Ms × R → Cs andDecs

pk : Cs →



Ms, whereCs is the ciphertext space andMs is the plaintext space corresponding tos,
andR is thes-independent randomness space. We require that for some positive integer
a, Cs ⊆ Ms+a for everys; we assume thatξ is the minimal among sucha’s. Length-
flexible cryptosystems not satisfying the latter requirement exist but are not interesting
in the context of our application. An LFAH public-key cryptosystemΠ is additively
homomorphicif for any key pair(sk, pk), any length parameters, anym, m′ ∈ Ms =
Z♯Ms

and anyr, r′ ∈ R, Encs
pk(m; r) · Encs

pk(m
′; r′) = Encs

pk(m + m′; r ◦ r′), where
· is a multiplicative group operation inCs, + is addition inZ♯Ms

, and◦ is a groupoid
operation inR. We assume thatk = log ♯M1 is the security parameter. For the sake of
simplicity, in our computations we will assume that♯Ms = (♯M1)

s with log ♯Ms =
sk, and that♯Cs = ♯Ms+ξ.

Let Π = (Gen, Enc, Dec) be a LFAH public-key cryptosystem. We define the ad-
vantage of a randomised algorithmA in breaking its IND-CPA security as follows:
Adv

indcpa
Π,k (A) := 2 ·

∣∣Pr[(sk, pk) ← Gen(1k), (m0, m1, s) ← A(pk), b ← {0, 1} , r ←

R : A(pk, m0, m1, s, Encs
pk(mb; r)) = b] − 1

2

∣∣. Here, the probability is taken over the
random coin tosses ofGen, A, Encs

pk and over the choice ofb andr. We say thatΠ is

(ε, τ)-secure in the sense of IND-CPAif Adv
indcpa
Π,k (A) ≤ ε for any randomised algo-

rithm A that works in timeτ . If τ(k) is polynomial ink andε(k) is negligible ink, then
we sometimes just say thatΠ is secure in the sense of IND-CPA.

The Damgård-Jurik cryptosystemDJ01 from PKC 2001 [DJ01] was the first pub-
lished IND-CPA secure LFAH public-key cryptosystem. Assume thatM = p1p2 is
an RSA modulus. Here, for a fixed length parameters, Ms = ZMs , R = Z

∗
M

and Cs = Z
∗
Ms+1 , thus log ♯Cs/ log ♯Ms ≈ 1 + 1/s and ξ = 1. Encryption is

defined byEncs
pk(m; r) := (1 + M)m · rMs

mod M s+1, wherer ← ZM . The
DJ01 cryptosystem is additively homomorphic sinceEncs

pk(m1; r1) · Encs
pk(m2; r2) =

Encs
pk(m1 + m2; r1r2). The DJ01 LFAH public-key cryptosystem is secure in the

sense of IND-CPA, assuming that the DCRP is hard [DJ01]. The Damgård-Jurik cryp-
tosystemDJ03 from ACISP 2003 [DJ03] is slightly less efficient thanDJ01, with
log ♯Cs/ log ♯Ms ≈ 1 + 2/s, that is, withξ = 2.

IND-CPA secure LFAH public-key cryptosystems have been used before, in partic-
ular, to implement multi-candidate electronic voting [DJ01,DJ03] and large-scale elec-
tronic auctions [LAN02] over large plaintext spaces. We useLFAH cryptosystems in
a more complicated setup that requires the transfer of encryptions of related plaintexts
modulo different length parameters during the same protocol instance.

During a (single-server)1-out-of-n computationally-private information retrieval
(CPIRn

ℓ ) protocol for ℓ-bit strings, Receiver fetchesS[q] from the databaseS =

(S[1], . . . , S[n]), S[j] ∈ {0, 1}ℓ, so that a computationally bounded Sender does not
know which entry Receiver is learning. We do not require Sender to commit to or even
“know” a database to which Client’s search is effectively applied. Such a relaxation
is standard in the case of protocols like oblivious transfer, computationally-private in-
formation retrieval and oblivious keyword search; our security definitions correspond
closely to the formalisation given in [NP01,AIR01].

Formally, a one-roundCPIRn
ℓ protocol Γ is a triple of algorithms,

(Query, Transfer, Recover), corresponding to the two messages of the protocol
and the recovery phase.Query and Transfer are randomised andRecover is, in the



context of this paper, deterministic. LetRQ andRT be two distributions, associated
with Γ , and letk be the security parameter. As usually, we assume that the database size
n is known to Receiver. The first message,msgq ← Query(1k, q, n; rQ), of a protocol
run is by ReceiverRec, whereq is his input (index to the database),n is the database
size andrQ ←RQ is a new random value. The second message is bySen, who replies
with msgt ← Transfer(1k, S, msgq; rT ), whereS is her input (the database),msgq

is the first message of the protocol, andrT ← RT is a new random value. After the
second message, Receiver returns his private outputRecover(1k, q, msgq, msgt). In
general, thecommunicationof Γ is equal to|msgq| + |msgt|. However, we make a
convention that transferring Receiver’s public key—that is a part of several well-known
CPIRn

ℓ protocols—does not increase the communication ofΓ . We can do this because
the usually very short public key can often be transferred before the actual data itself
becomes available; the key can also be shared between many protocol runs. However,
we will not prove security in this setting. Note that the communication complexity
of information retrieval, without any privacy requirements and with no additional
information on the structure of the data that would enable tocompress it, is⌈log n⌉+ ℓ.

We say that aCPIRn
ℓ protocolΓ = (Query, Transfer, Recover) is correct if for

anyn, S ∈ {0, 1}nℓ, q ∈ [n], Recover(1k, q, msgq, msgt) = S[q], given thatmsgq ←
Query(1k, q, n; rQ) for somerQ ∈ RQ andmsgt ← Transfer(1k, S, msgq; rT ) for
somerT ∈ RT . For a randomised algorithmA executing Sender’s part in aCPIRn

ℓ

protocolΓ and for a positive integern, define

Adv
cpir
Γ,n,k(A) := 2 ·max

q0,q1

∣∣∣∣∣Pr

[
b← {0, 1} , rQ ←RQ :

A(1k, q0, q1, n, Query(1k, qb, n; rQ)) = b

]
−

1

2

∣∣∣∣∣

to be the scaled advantage over random coin-tossing thatA has in guessing, which of the
two possible choicesq0 andq1 was used by the receiver, after observing a single query
from Receiver. Here,q0 andq1 are supposed to be valid inputs toQuery(·, ·, n; ·). The
probability is taken over the coin tosses ofA andQuery, and over the choices ofb and
rQ. We callΓ a (τ, ε)-receiver-privateCPIRn

ℓ protocol, if Adv
cpir
Rec,n,k(A) ≤ ε(k, n, ℓ)

for any probabilistic algorithmA that works in timeτ(k, n, ℓ). In Sect. 4, we study an
alternative definition whereτ is an unspecified value withτ > poly(nℓ).

The firstCPIRn
1 protocol with sublinear communication,O(2sqrtlog(2,n)·sqrtlog(2,k)),

was proposed by Kushilevitz and Ostrovsky in [KO97]. The first CPIRn
1 protocol

CMSn
1 with polylogarithmic communication was proposed by Cachin, Micali and

Stadler in [CMS99]. The security of theCMSn
1 protocol is based on theΦ Assump-

tion that basically states that there exists a constantf , such that given a large composite
M with unknown factorisation and a small primep with M ≈ pf , it is hard to decide
whetherp | φ(M). The CMSn

1 protocol has receiver-side communication2κf + κ4

(Receiver sends a triple(m, x, Y ) with log m = log x = κf and log Y = κ4) and
sender-side communicationκf (Sender sends a valuer with log r = κf ). Its total com-
munication isκ4 + 3κf = Ω(log8 n + log2f n) for some constantf and a security pa-
rameterκ > log2 n. In particular, its communication depends onf , existence of which
is conjectured by theΦ Assumption. No hypothesis about the value off was made
in [CMS99], except thatf ≥ 4 to provide security against Coppersmith’s algorithm that
efficiently factorsm on inputs(p, m), wherep > m1/4 is a prime such thatp | φ(m).
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Fig. 1. Logarithm of communication of some of the previously known CPIR’s on the logarithmic
scale inn, assuming thatk = 1024 andη = 2. (Except for theCMSn

ℓ protocol that has a security
parameterκ = max(80, log2 n).) Here,ℓ = 1024

One can transformCMSn
1 to aCPIRn

ℓ protocol by running itℓ times in parallel (with
the same Receiver’s query); thusCMSn

ℓ has communicationΩ(ℓ · log2f n + log8 n).
Even if polylogarithmic, the communication of theCMSn

ℓ protocol is larger than just
sending the database to Receiver for all relevant database sizes. (See Fig. 1.) In the
CMSn

ℓ protocol, Receiver’s computation is polylogarithmic inn.
The Kushilevitz-OstrovskyCPIRn

ℓ was generalised by Julien P. Stern [Ste98];
Stern’s protocol was later rediscovered by Chang [Cha04]. Stern’s CPIRn

ℓ is based
on an arbitrary IND-CPA secure additively homomorphic cryptosystemΠ . Simi-
larly to our previous convention,M is Π ’s plaintext space andC is Π ’s ciphertext
space. Letη := ⌈log ♯C/ log ♯M⌉ be theciphertext expansion ratioof Π ; η = 2
for the Paillier cryptosystem [Pai99] and for the Damgård-Jurik cryptosystem from
PKC 2001 [DJ01] andη ∈ {2, 3} for another cryptosystem by Damgård and Ju-
rik [DJ03]. W.l.o.g., assume that Sender’s databaseS = (S[1], . . . , S[n]) contains
n = λα entries from{0, 1}ℓ for some positive integerλ and forα ∈ [logη n]. As always,
let s := ⌈ℓ/k⌉. As shown in [Ste98], there exists anCPIRn

ℓ protocolHomCPIRn
ℓ (α)

with the communication(ηαn1/α + sηα) · k bits. In particular, forδ := sqrtlog(η, n),
HomCPIRn

ℓ (δ) has communication(ηδ + s)ηδ · k bits. ([Ste98,Cha04] erroneously
claims that the communication ofHomCPIRn

ℓ (δ) is Θ(ηδ) · k.) While even in the opti-
mal case,HomCPIRn

ℓ (α) has superpolylogarithmic communication,HomCPIRn
ℓ (δ) is

significantly more communication-efficient thanCMSn
ℓ for all relevant database sizes

n ≤ 280. (See Fig. 1.) Finally, Sender’s (resp., Receiver’s) computation is dominated



by Θ(sn2δ) (resp.,Θ(snδ2δ)) k-bit exponentiations. This means that Stern’s CPIR is
computationally less efficient than the Cachin-Micali-Stadler CPIR.

A CPIRn
ℓ protocol (Query, Transfer, Recover) is an (computationally receiver-

private and information-theoretically sender-private)1-out-of-n oblivious transfer pro-
tocol for ℓ-bit strings(anOTn

ℓ protocol) if also Sender’s privacy is guaranteed. For the
formal definition, we make a comparison to the ideal implementation, using a trusted
third party that receivesS from Sender, receivesq from Receiver, and sendsS[q] to
Receiver. We assume that Receiver receives garbage (that is, a random value from some
S-independent setT ) if q 6∈ [n]. We do not need an explicit security definition of a
secure oblivious transfer protocol in this paper. (See, forexample, [NP01].)

3 New CPIR
n

ℓ
with Log-Squared Communication

In this section, we use a LFAH public-key cryptosystemΠ = (Gen, Enc, Dec) to
improve over the concrete and the asymptotic communication(and computation) of
HomCPIRn

ℓ (α), by presenting a familyLFCPIRn
ℓ (α) of CPIRn

ℓ protocols. As always,
we defines := ⌈ℓ/k⌉.

The basic idea of Protocol 1 is relatively simple. Fixα ∈ [log n]. Assume that
the databaseS = (S[1], . . . , S[n]) is arranged as anα-dimensionalλ1 × · · · × λα

hyperrectangle, for some positive integersλj that will be defined later. W.l.o.g., we
assume thatn =

∏α
j=1 λj . In the simplest case,α = log n andλj = 2, then the

database is just arranged on a2×· · ·×2 hypercube. We index every elementS[i] in the
database by its coordinates(i1, . . . , iα) on this hyperrectangle, whereij ∈ Zλj

. I.e.,

S(i1, . . . , iα) := S[i1 ·
α∏

j=2

λj + i2 ·
α∏

j=3

λj + · · ·+ iα−1 · λα + iα + 1]

for ij ∈ Zλj
. Analogously, Receiver’s query isq = (q1, . . . , qα) with qj ∈ Zλj

.
We use homomorphic properties ofΠ to create a new databaseS1 that hasα−1 di-

mensions, such thatS1(i2, . . . , iα) is equal to an encryption ofS0(q1, i2, . . . , iα), where
S0 = S. We use this procedure repeatedly forj ∈ [α], to create(α − j)-dimensional
databasesSj , where the(s + jξ)k-bit elementSj(ij, . . . , iα) encryptsj times the
valueS(q1, . . . , qj−1, ij , . . . , iα). At the end of theαth iteration, Sender has a single
(s+αξ)k-bit elementSα that is anα-times encryption ofS(q1, . . . , qα) = S[q]. There-
fore, it suffices for Sender to just transfer one valueSα, with length|Sα| = (s + αξ)k,
to Receiver. After that, Receiver recoversS[q] by decryptingSα α times. Thus, the
basic idea of the new protocol is similar to that ofHomCPIRn

ℓ (α). SinceΠ is length-
flexible, instead of dividing every intermediate ciphertext into η chunks as in the case
of HomCPIRn

ℓ (α), we additively increase the length of the plaintexts. Our underlying
observation is thatEnc

s+ξ
pk (m2; r2)

Encs
pk(m1;r1) = Enc

s+ξ
pk (m2 · Encs

pk(m1; r1); r3) ∈
Ms+2ξ for anym1 ∈ Ms, m2 ∈ Ms+ξ andr1, r2 ∈ R, and for somer3 ∈ R. In
particular, it is equal to an encryption of zero ifm2 = 0 and to a double-encryption
of m1 if m2 = 1. Protocol 1 depicts the newLFCPIRn

ℓ (α) protocol with parameters,
optimised for large values ofℓ. Note that hereRQ = R

P

j∈[α] λj andRT = ∅.



Private Input: Receiver hasn andq = (q1, . . . , qα), Sender hasS.
Private Output: Receiver obtainsS(q1, . . . , qα).

Receiver, Query(1k, q, n;RQ):
Generate a key pair(sk, pk)← Gen(1k).
For j ← 1 to α do, fort← 0 to λj − 1 do:

Generaterjt ←R.
If qj = t then setbjt ← 1 else setbjt ← 0.
Setβjt ← Enc

s+(j−1)ξ
pk (bjt; rjt).

Send(pk, (βjt)j∈[α],t∈Zλj
) to Sender.

Sender, Transfer(1k, S0, msgq;RT ):
For j ← 1 to α do

For ij+1 ← 0 to λj+1 − 1, . . . , iα ← 0 to λα − 1 do:

SetSj(ij+1, . . . , iα)←
Q

t∈Zλj

β
Sj−1(t,ij+1,...,iα)

jt .

SendSα to Receiver.
Receiver Recover(1k, q, msgq, S′

α):
For j ← α downto1 do: SetS′

j−1 ← Dec
s+(j−1)ξ
sk (S′

j).
OutputS′

0.

Protocol 1: ProtocolLFCPIRn
ℓ (α) (non-optimised version), for fixedΠ and fixeds.

Here,βjt, Sj(ij+1, . . . , iα) ∈ Cs+(j−1)ξ

We make the next simple observation that Sender can computeβj,λj−1 by him-

self, by settingβj,λj−1 ← Enc
s+(j−1)ξ
pk (1; 0)/

∏λj−2
t=0 βjt; this optimisation is valid

since
∏λj−1

t=1 βjt is always an encryption of1. Therefore, in Protocol 1, Receiver does
not have to sendβj,λj−1 to Sender. In the most practical case, whereλj = 2, this
optimisation reduces communication by a factor of2. In this case, this optimisation
also substantially simplifies some of the oblivious transfer protocols, mentioned later
in Sect. 4. In the following, when we talk about theLFCPIRn

ℓ (α) protocol, we always
assume that one applies this optimisation. Moreover, recall that the communication of
aCPIRn

ℓ protocol does not includepk.

Theorem 1. Let Π = (Gen, Enc, Dec) be an LFAH public-key cryptosystem. Assume
thatMs+1 < 2ℓ ≤ Ms for some fixeds ≥ 1, that Receiver has private inputq and
Sender has private inputS = (S[1], . . . , S[n]). Assume thatλj = n1/α for all j ∈ [α].

1. For everyα ∈ [log n], there exists a correctCPIRn
ℓ protocolLFCPIRn

ℓ (α) with the
receiver-side and the sender-side communicationα(s + (α + 1) ξ

2 )(n1/α − 1) · k
and(αξ + s) · k bits.

2. LFCPIRn
ℓ (log n) has receiver-side communication( ξ

2 · log2 n+(s+ ξ
2 ) · logn) ·k =

Θ(k · log2 n + ℓ · log n) and sender-side communication(ξ · log n + s) · k =
Θ(k · log n + ℓ). In this case, Receiver’s workload isτRec = Θ((s2+o(1) · log n +

ξs · log2+o(1) n + ξ2+o(1) · log3+o(1) n)k2+o(1) and Sender’s workload isτSen :=
Θ(n) · (sk)2+o(1).



Proof. Correctness: clear, since Sj(ij+1, . . . , iα) is an j-times encryption of
S(q1, . . . , qj , ij+1, . . . , iα) and thusS′

α−1 = Sα−1(qα), S′
α−2 = Sα−2(qα−1, qα), . . . ,

S′
i−1 = Si−1(qi, . . . , qα), . . . , andS′

0 = S(q1, . . . , qα).
Communication:The receiver-side communication|msgq| is

α∑

j=1

λj−1∑

t=1

(s + jξ)k =

α∑

j=1

(s + jξ) · (n1/α− 1) · k = α · (s + (α + 1)ξ/2)(n1/α− 1) · k

bits. This is asymptotically optimal ins · log n if α = log n.
Computation (in the case (2)):Sender’s work is dominated by2log n−j exponen-

tiations moduloM s+jξ for every j ∈ [2, α]. Assume that ak-bit exponentiation
can be done in timeΘ(ka) for somea. Then, Sender’s workload is dominated by
n ·

∑log n
j=2 2−j · Θ((s + jξ)aka) bit-operations. Asymptotically inn, this is equal to

Θ(n) · (sk)a; fast exponentiation algorithms result in Sender’s timeΘ(n) · (sk)2+o(1).

Receiver must doλj−1 encryptionsEnc
s+(j−1)ξ
pk for anyj ∈ [n]. Thus, Receiver’s work

is
∑log n

j=1 Θ((s + (j − 1)ξ)aka) =
∑log n

j=1 Θ((sa + (jξ)a)ka) = Θ((s2+o(1) log n +

ξs log2+o(1) n + ξ2+o(1) · log3+o(1) n)k2+o(1) bit-operations, if using asymptotically
fast exponentiation algorithms. ⊓⊔

It is surprising that such a seemingly simple modification ofHomCPIRn
ℓ (α) results

in the important asymptotic improvement, stated by Thm. 1: namely, using an LFAH
public-key cryptosystem where(s + jξ)k-bit plaintexts are encrypted to(s + (j +
1)ξ)k-bit ciphertexts, we achieve communicationΘ(k · log2 n + ℓ · log n), while using
an additively homomorphic public-key cryptosystem where(s + j)k-bit plaintexts are
encrypted toη(s + j)k-bit ciphertexts, enabled [Ste98] to get communicationΘ(ℓ ·
sqrtlog(η, n) ·2sqrtlog(η,n)+k ·sqrtlog(η, n) ·2sqrtlog(η,n)). Additionally,LFCPIRn

ℓ (n) is
also more computation-efficient. These substantial improvements are possible because
a LFAH public-key cryptosystem is essentially a new primitive and not just another
off-the-shelf homomorphic cryptosystem.

We will prove the receiver-privacy of this protocol later inSection 4. In the rest of
this section, we propose some quite important optimisations.

Optimisation for long documents and in Sender’s computation. For long documents,
LFCPIRn

ℓ (α) gains even more on the competitors than for short documents.For ℓ =
Ω(k·log n), the asymptotic communication ofLFCPIRn

ℓ (α) isΘ(ℓ·log n) that is asymp-
totically optimal. Note that the constant inside theΘ expression gets arbitrary close to
1. If ℓ > k, then one can executes = ⌈ℓ/k⌉ instances ofLFCPIRn

2k(α)’s in parallel,
with the same Receiver’s message, with the receiver-side and the sender-side communi-
cation of respectively

∑α
j=1

∑λj−1
t=1 (1 + jξ)k =

∑α
j=1(1 + jξ) · (n1/α − 1) · k =

α · (1 + (α + 1)ξ/2)(n1/α − 1) · k and s(αξ + 1) · k bits. We call this version
LFCPIRBIGn

ℓ (α). For α = log n it has (s − 1)(ξ − 1)k · log n bits more computa-
tion thanLFCPIRBIGn

ℓ (α), however, Sender’s computation is onlyΘ(nℓ) · k2+o(1),
which is an important gain compared toLFCPIRn

ℓ (log n). If needed, one can optimise
asymptotic communication ofLFCPIRBIGn

ℓ (α) in ℓ by settingα ← 1, then the com-
munication is(1 + ξ)(n − 1 + s) · k = Θ(n · k + ℓ) bits; however,LFCPIRBIGn

ℓ (1)



is the same asHomCPIRn
ℓ (1). A variant like LFCPIRBIGn

ℓ (sqrtlog(2, n)) seems to
perform reasonably well in the practice, with typically less communication than
HomCPIRn

ℓ (sqrtlog(2, n)).

Optimisation for short documents.For short documents, we can apply a different
optimisation strategy. As always, lets := ⌈ℓ/k⌉. Let W be Lambert’sW func-
tion, that is,W satisfies the functional identityW (x)eW (x) = x. First, we can use
LFCPIRn

ℓ (α0 · log n) with α0 = ln 2/(W (−2e−2) + 2) ≈ 0.435; this results in the
minimal communication≈ (0.371 · ξ · log2 n+1.706 ·s · logn+1.288 · ξ · log n+s) ·k
for small values of the length parameters. Second, we can redefine the values ofλj

asλj ← ((s + α)!/s!)
1/α · (s + j)−1 · n1/α. This choice ofλj results in the mini-

mal value of
∑α

j=1(λj − 1)(s + j) =
∑α

j=1 λj(s + j) − α(s + (α + 1)/2) under
the constraint that

∏α
j=1 λj = n. (In practice, we must roundλi-s to the nearest inte-

gers. For the simplicity of exposition, we will not explicitly mention such issues any-
more.) Call the resulting instantiation of the protocolLFCPIRHRn

ℓ (α). LFCPIRHRn
ℓ (α)

has receiver-side and sender-side communication of respectively ((s + α)!/s!)
1/α · α ·

(n1/α − 1) · k and(s + α) · k bits. In particular,LFCPIRHRn
ℓ (α0 · log n) has com-

munication≈ (0.273 · log n + (0.627 · s + 0.314) · log log n + O(1))k · log n =
Θ(k · log2 n + ℓ · log n · log log n). For s = 1, LFCPIRHRn

ℓ (α) is asymptotically ap-
proximately1.348 times more communication-efficient thanLFCPIRn

ℓ (α).
If z := ⌊sk/ℓ⌋ > 1, then one can use the next optimisation. ExecuteLFCPIRn

ℓ (ᾱ)
with the queryq̄ := ⌊q/z⌋ and the databasēS = (S̄[1], . . . , S̄ [⌊n/z⌋]), whereS̄[j] is
the concatenation ofz different consequent elementsS [⌈j/z⌉] , . . . , S [⌈j/z⌉+ z − 1]
from the databaseS. Fixing ᾱ = log(n/z), one can construct aCPIRn

ℓ with total
communication≈ (0.273 · log2(nℓ/(sk))+0.435 ·s · log(nℓ/(sk)) · log log(nℓ/(sk))+
O(1))·k. This optimisation can be quite important in practice. In the extreme case when
n = k = 1024 andℓ = 1, the optimised version is100 times more communication-
efficient than the unoptimised version.

4 On Security of LFCPIR And Transformation to OT

In all CPIRn
ℓ protocols, proposed in Sect. 3, we have the next novel adversarial sit-

uation. Given a LFAH public-key cryptosystemΠ = (Gen, Enc, Dec), the adversary
obtains encryptions of interrelated plaintexts by using potentially different values of the
length parameters, wheres is possibly chosen by herself. It must be the case that the ad-
versary obtains no new knowledge about the encrypted values. Clearly, security in this
adversarial situation is a generally desirable feature of LFAH public-key cryptosystems
whenever it might be the case that the adversary obtains different-length encryptions
of related plaintexts. This may happen almost always, except when all participants are
explicitly prohibited to encrypt related messages by usingdifferent values ofs. There-
fore, we will introduce the corresponding security requirement formally and prove that
some of the previously introduced LFAH public-key cryptosystems havetight security
also in such an adversarial situation.

Let Π = (Gen, Enc, Dec) be a LFAH public-key cryptosystem. We define the ad-
vantage of a randomised algorithmA in breakingΠ ’s α-IND-LFCPA security as fol-



lows:

Adv
lf-indcpa
Π,k (A, α) := 2 ·

∣∣∣∣∣∣∣∣∣∣∣∣

Pr





(sk, pk)← Gen(1k),

(m0, m1, s1, . . . , sα)← A(pk), b← {0, 1} ,

c1 ← Encs1

pk(mb mod ♯Ms1 ;R), . . . ,

cα ← Encsα

pk (mb mod ♯Msα
;R) :

A(pk, m0, m1, s1, . . . , sα, c1, . . . , cα) = b




−

1

2

∣∣∣∣∣∣∣∣∣∣∣∣

.

(To prove the security ofLFCPIRn
ℓ (α), we could use a slightly weaker assumption

where s1, . . . , sα are not chosen byA; it is sufficient to consider the casesj =
s + (j − 1)ξ. We omit discussion because of the lack of space.) Here, probability is
taken over random coin tosses ofGen, Enc

sj

pk, A and over the choice ofb and of ran-
dom elements fromR. We say thatΠ is (ε, τ)-secure in the sense ofα-IND-LFCPA if
Adv

lf-indcpa
Π,k (A, α) ≤ ε for any probabilistic algorithmA that works in timeτ . If τ(k)

is polynomial ink andε(k) is negligible ink, then we just say thatΠ is secure in the
sense ofα-IND-LFCPA. We omitα if α may be any polynomial ink.

By a standard hybrid argument,(αε, τ − O(α))-security in the sense ofα-IND-
LFCPA follows from the(ε, τ)-security in the sense of IND-CPA. However, since IND-
LFCPA security is such a basic notion for LFAH public-key cryptosystems, it makes
sense to prove the IND-LFCPA security directly, without theintermediateα-times se-
curity degradation. Next, we will show that for both well-known LFAH public-key
cryptosystems (DJ01 andDJ03), IND-LFCPA security follows from IND-CPA secu-
rity under a tight reduction. First, we prove the following lemma that is motivated by
the observation that IND-LFCPA is a potentially stronger security notion than IND-CPA
only in situations where the adversary cannot herself compute, givenEncs

pk(m;R), en-
cryptions of related plaintexts with different values of the length parameters.

Lemma 1. AssumeΠ = (Gen, Enc, Dec) is a LFAH cryptosystem that is(ε, τ)-
secure in the sense of IND-CPA. Assume there exists an algorithm Shorten, such
that for all (sk, pk) ← Gen(1k), any s1 < s2, any m ∈ Ms1 and anyr ∈ R,
Shorten(pk, s1, s2, Encs2

pk(m; r)) = Encs1

pk(m;R). AssumeShorten can be computed
in time tShorten(k, s2). ThenΠ is (ε, τ − α · tShorten(k, smax) − O(α))-secure in the
sense ofα-IND-LFCPA wheresmax is the largestsi that an admissible adversary can
choose.

Proof. Really, assumeA is an adversary who breaks theα-IND-LFCPA security in
time τ ′ and with probabilityε. Construct the next adversaryMA that breaks the IND-
CPA security ofΠ : Obtain a new random public keypk, send this toA. M asks
A to produce(m0, m1, s1, . . . , sα). Assume thats1 ≤ s2 ≤ · · · ≤ sα ≤ smax.
Give (m0, m1, sα) to the black box, who returnscα ← Encsα

pk (mb;R). Compute
ci ← Shorten(pk, si, sα, Encs2

pk(mb;R)) for i ∈ [α−1]. Send(c1, . . . , cα) to A, obtain
her guessb′. Returnb′. Clearly, ifA has guessed correctly thenb′ = b. ⊓⊔

For bothDJ01 andDJ03 it is straightforward to construct the required functionShorten.
In the case of theDJ01, Encs1

pk(m;R) = (Encs2

pk(m; r) mod M s) · Encs1

pk(0;R).
In the case of theDJ03 cryptosystem,Encs

pk(m; r) = (gr mod M, (1 + M)m(hr



mod M)Ms

mod M s+1). Therefore, givenEncs2

pk(m; r) = (a, b), one can compute
Encs1

pk(m;R) = (a, b mod M s1) · Encs1

pk(0;R). We would get a similar security re-
sult, if there existed an efficient functionExpand, such that fors2 < s1, and for any
m ∈ Ms2 , Expand(pk, s1, s2, Encs2

pk(m;R)) = Encs1

pk(m;R). As we show in the full
version, the existence of such a function would additionally result in aCPIRn

ℓ protocol
with logarithmic communication. Now, we can prove the next result.

Theorem 2. Fix n andα ∈ [log n]. Let Π = (Gen, Enc, Dec) be a LFAH public-key
cryptosystem that is(ε, τ)-secure in the sense ofα-IND-LFCPA, whereτ ≫ τSen. Fix s.
ThenLFCPIRn

ℓ (α) is (ε, τ ′)-receiver-private. Here,τ ′ = τ − τRec−O(α · (sk)1+o(1)),
whereτRec is the time to execute the honest Receiver.

Proof. Assume that some adversaryA that works in timeτ breaks the receiver-privacy
of LFCPIRn

ℓ (α) with probabilityε. More precisely,A generates a key pair(sk, pk) ←
Gen(1k). Givenpk and an arbitrary(q0, q1), A generatesS and sendsn to Receiver.
Receiver picks a random bit̂b and sends the first messageQuery(1k, q

bb, n; rQ) =
(pk, (βjt)jt) of the LFCPIRn

ℓ (α) protocol, whererQ is randomly chosen fromRQ,
to A. A outputs a guesŝb′, such that2 · |Pr[̂b = b̂′] − 1

2 | ≥ ε. Next, we construct a
machineM that usesA as an oracle to break theα-IND-LFCPA security ofΠ with
probabilityAdv

indcpa
Π,k (MA) = ε. That is, given a random key pair(sk, pk), M comes

up with a message pair(m0, m1) and length parameters(s1, . . . , sα), such that after
seeingEncsi

pk(mb;R) for a randomb← {0, 1} and fori ∈ [α], M outputs a bitb′, such
that2 · |Pr[b = b′]− 1

2 | ≥ ε.
M does the next: Let Receiver to generate(pk, sk), obtain pk and forward it

to A. Obtain (q0, q1) where qi = (qi1, . . . , qiα). Assume thatq0 and q1 differ in
the coordinate setJ . M setsm0 ← 0, m1 ← 1 and asks for a challenge on
(m0, m1, (s + (j − 1)ξ)j∈J ). For a randomb← {0, 1}, M obtains the challenge tuple

(cj ← Enc
s+(j−1)ξ
pk (mb;R))j∈J . M constructs the query(βjt)j,t exactly as in Proto-

col 1, except that whenj ∈ J , he setsβj,q0j
← cj andβj,q1j

← Enc
s+(j−1)ξ
pk (1; 0)·c−1

j .
Therefore,(pk, (βjt)j,t) = Query(1k, qb, n;RQ). M sends(pk, (βjt)j,t) to A and ob-
tains her guesŝb′. M returnsb′ = b̂′. Clearly,b = b′ if A guessed correctly. Therefore,
M has success probabilityε. M ’s time is equal toτ + τRec + O(α · (sk)1+o(1)). ⊓⊔

This result means in particular thatLFCPIRn
ℓ (α) is receiver-private (a) under loose re-

duction withα-times security degradation, in the caseΠ is an arbitrary IND-CPA se-
cure LFAH public-key cryptosystem; (b) under tight reduction to the underlying cryp-
tographic problems, in the caseΠ is DJ01 or DJ03.

On Concrete Versus Polynomial Security. It is necessary to use concrete security
(that is, always talking about adversaries, working in timeτ and breaking a primi-
tive with probabilityε) when one wants to be able to precisely quantify the value of
the used security parameter. However, recall that the inputsize of Sender in aCPIRn

ℓ

protocol isnℓ and that Sender’s computation is at least linear innℓ (this follows di-
rectly from the privacy requirement). Clearly, an adversary should be given time that
is vastly larger than the time, given to the honest Sender. InThm. 2, we resolved this



by requiring thatτ ≫ τSen. Alternatively, one can require that no adversary is able
to breakCPIRn

ℓ in time, polynomial innℓ, with a non-negligible probability innℓ.
Assume also that the underlying hard problem, with inputsM of sizek, can be bro-
ken in timeLM [a, b]. In the case ofLFCPIRn

ℓ (α), when based on theDJ01 or the
DJ03 cryptosystem,b = 1/3. Then, it is necessary thatLM [a, b] = ω((nℓ)c) for ev-
ery constantc, or thatkb log1−b k = ω(log(nℓ)). Omitting the logarithmic factor, we
get thatk = Ω(log1/b(nℓ)). Therefore, if we want security against adversaries, work-
ing in time poly(nℓ), when basingLFCPIRn

ℓ (α) on the DCRP, we must assume that
k = Ω(log3−o(1)(nℓ)) and thus the communication of theLFCPIRn

ℓ (log n) becomes
Θ(log3−o(1)(nℓ) · log2 n + ℓ · log n). While such an analysis is usually not necessary
in stand-alone applications of computationally-private information retrieval, there are
theoretical settings where polynomial security is desired(e.g., when a CPIR protocol is
a subprotocol of a higher level application).

Alternatively, one can define another security parameter,κ, corresponding to the
desideratum that breaking theCPIRn

ℓ protocol should be hard in time2o(κ), and
then expressing the communication in the terms ofκ. Based on the hypothesis that
the best attack against the DCRP is the general number field sieve, it means that

k · (ln k)2 = Ω(9(ln 2)2κ3

64 ) = Ω(κ3) and thusLFCPIRn
ℓ (α), based on any LFAH

public-key cryptosystem that relies on the DCRP being hard,has communication
Θ(κ3−o(1) · log2 n + ℓ · log n). In particular, this captures reasonably well the natu-
ral requirement that the adversary should be able to spend atleast as much time as
Sender: in practice, given large enoughκ (say,κ = 80), we may assume that a honest
Sender always spends considerably less time than2κ units. This also means thatn is
restricted to be considerably smaller than2κ, but we do not see now problems with that
in practice; it is hard to imagine anybody executing aCPIRn

ℓ protocol withn larger
than240! Additionally, this gives us another argument why small sender-side computa-
tion is important for aCPIRn

ℓ protocol. As mentioned before,LFCPIRn
ℓ (·) does better

thanHomCPIRn
ℓ (·) also in this sense.

Oblivious Transfer with Log-Squared Communication. We can use one of several
existing techniques to transform theLFCPIRn

ℓ (α) protocol into an oblivious transfer
protocol. For these techniques to apply, one must first modify Protocol 1 so that it
would be sender-private if the receiver is semi-honest. IfR is a quasigroup (that is, if
∀a, b ∈ R there exist uniquex, y ∈ R such thatax = b andya = b, then alsoxR = R
for anyx ∈ R), then it is sufficient that Sender masks all intermediate valueswj by mul-
tiplying them with a random encryption of0. Additionally, it is necessary for Receiver
to prove the correctness of his public key; this step can be done in a setup phase of the
protocol only once per every Sender, after that the same key can be used in many execu-
tions of the same protocol. We will assume that Protocol 1 hasbeen modified like that,
thus this proof of correctness does not increase the number of rounds. Due to the lack
of space we omit the proof that this can be done in a secure way.We omit description of
some possible resulting oblivious transfer protocols—based on the Naor-Pinkas trans-
formation [NP99] and on the zero-knowledge proofs—from theproceedings version
of this paper. The Aiello-Ishai-Reingold transformation,described next, is superior to
the Naor-Pinkas transformation, since the latter only guarantees computational sender-



privacy, and to the transformation based on zero-knowledgeproofs since the latter either
takes four rounds or works in a non-standard model (that is, either in the random oracle
model or in the common reference string model).

LetM be a plaintext space andC a ciphertext space, corresponding to some pa-
rameter choice of ElGamal public-key cryptosystem. In [AIR01], the authors proposed
the next generic transformation of aCPIRn

log ♯C protocol to anOTn
log ♯M protocol: Re-

ceiver sends an ElGamal encryptionc of the queryq, together with the first message of
CPIRn

log ♯C , to Sender. Sender applies the computations, corresponding to the second
step of theAIRn

♯M protocol, with inputc, to her database, and then the second step of the
CPIRn

log ♯C , to the resulting database of ciphertexts. When applied toLFCPIRn
ℓ (log n),

the resultingOTn
ℓ protocol has communicationlog ♯C+( ξ

2 ·log2 n+(s′+ 3ξ
2 log n+s′)k

instead of( ξ
2 ·log2 n+(s+ 3ξ

2 ) log n+s)k in theLFCPIRn
♯M(log n) protocol. Here,s and

s′ are the smallest integers, such thatsk ≥ log ♯M ands′k ≥ log ♯C; usuallys′ = 2s.
Therefore, this transformation increases communication by log ♯C + (s · log n + s)k
bits. The resulting

oblivious transfer protocol isinformation-theoretically sender-private(not like the
protocol based on the Naor-Pinkas transform) if ElGamal is IND-CPA secure andΠ
is IND-LFCPA secure, that is,in the standard complexity-theoretic model(not like the
protocol based on non-interactive honest-verifier zero-knowledge proofs). However, it
still makes the additional assumption that ElGamal is IND-CPA secure.

5 Comparisons

Fix k = 1024 and s = 1. The difference between the communications of the
linear Aiello-Ishai-Reingold CPIRAIRn

ℓ [AIR01] (with communication2(n + 1)k),
the polylogarithmic CPIRCMSn

ℓ [CMS99] (with possibly overly optimistic setting
κ = min(80, log2 n) and f = 4; whether theCMSn

ℓ CPIR is actually secure in
this setting is unknown), the superpolylogarithmicHomCPIRn

ℓ (sqrtlog(2, n)), and
LFCPIRn

ℓ (log n) is depicted by Fig. 1. For small values ofℓ, the best solution is to
use theLFCPIRn

ℓ ( ln 2
W (−2e−2)+2 · log n) protocol. For large values ofℓ, one might to use

LFCPIRBIGn
ℓ (α) with a suitably tunedα, sayα = sqrtlog(2, n).

Computation-efficiency is an important property of theLFCPIRn
ℓ (α) protocol since

otherwise in some applications one would prefer a protocol with a smaller computa-
tional complexity but with linear communication. Moreover, in practice, Sender’s huge
computation is mostly likely going to be the first obstacle inapplyingCPIRn

ℓ pro-
tocols on large databases. InLFCPIRn

ℓ (log n), Sender’s computation isΘ(nℓ) k-bit
exponentiations, which is asymptotically optimal inn. This compares favourable with
Θ(ℓ · n2sqrtlog(η,n)) k-bit exponentiations inHomCPIRn

ℓ (sqrtlog(η, n)). In particular,
Sender’s computation cost inLFCPIRn

ℓ (log n) is comparable to that of the1-out-of-n
oblivious transfer protocols from [NP01,AIR01] that have linear communication.
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