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Abstrat

The bilinear pairing suh as Weil pairing or Tate pairing on ellipti and hyperellipti urves

have reently been found appliations in design of ryptographi protools. In this survey, we

have tried to over di�erent ryptographi protools based on bilinear pairings whih possess,

to the best of our knowledge, proper seurity proofs in the existing seurity models.

1 Introdution

The onept of identity-based ryptosystem is due to Shamir [40℄. Suh a sheme has the property

that a user's publi key is an easily alulated funtion of his identity, while a user's private key

an be alulated for him by a trusted authority, alled private key generator (PKG). The ID-based

publi key ryptosystem an be an alternative for erti�ate-based publi key infrastruture (PKI),

espeially when eÆient key management and moderate seurity are required.

Earlier bilinear pairings, namely Weil pairing and Tate pairing of algebrai urves were used in

ryptography for the MOV attak [35℄ using Weil pairing and FR attak [22℄ using Tate pairing.

These attaks redue the disrete logarithm problem on some ellipti or hyperellipti urves to the

disrete logarithm problem in a �nite �eld. In reent years, bilinear pairings have found positive

appliation in ryptography to onstrut new ryptographi primitives. The urrent work is an

attempt to survey this �eld.

Protools from pairings an be broadly lassi�ed into two types:

{ Constrution of primitives whih an not be onstruted using other tehniques (ex: ID-based

enryption, non-trivial aggregate signature et).

{ Constrution of primitives whih an be onstruted using other tehniques, but for whih

pairings provide improved funtionality (ex: Joux's three-party key agreement, threshold sheme,

searhable publi key enryption et).

Joux [27℄, in 2000, showed that the Weil pairing an be used for \good" by using it in a protool to

onstrut three-party one-round DiÆe-Hellman key aggrement. This was one of the breakthroughs

in key agreement protools. After this, Boneh and Franklin [11℄ presented in Crypto 2001 an ID-

based enryption sheme based on properties of bilinear pairings on ellipti urves whih is the �rst

fully funtional, eÆient and provably seure identity-based enryption sheme. In Asiarypt 2001,

Boneh, Lynn and Shaham proposed a basi signature sheme using pairing, the BLS [13℄ sheme,

that has the shortest length among signature shemes in lassial ryptography. Subsequently nu-

merous ryptographi shemes based on BLS signature sheme were proposed.

Apart from the three fundamental ryptographi primitives: enryption, signature and key agree-

ment, there are protool designs for signryption, threshold deryption, key sharing, identi�ation

sheme, hameleon hashes et. We provide the following lassi�ation of the protools:

1. Enryption: Enryption shemes are used for the purpose of ahieving privay and on�den-

tiality. In reent years, pairings made ID-based publi key enryption feasible. In identity-

based publi key enryption, the publi key distribution problem is eliminated by making eah

user's publi key derivable from some known aspet of his identity, suh as his email address.
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When Alie wants to send a message to Bob, she simply enrypts her message using Bob's

publi key whih she merely derives from Bob's identifying information. Bob, on reeiving

reeives the enrypted message, obtains his private key from a third party alled a Private

Key generator (PKG) after authentiating himself to PKG and derypts the message. The

private key that PKG generates on Bob's query is a funtion of it's master key and Bob's

identity.

2. Signature:

{ Short Signature: These are required in environments with spae and bandwidth onstraints.

When a human is asked to manually key in the signature, the shortest possible signature is

needed.

{ Blind Signature: Blind signatures play a entral role in digital ash shemes. A user an

obtain from a bank a digital oin using a blind signature protool. The oin is essentially a

token properly signed by the bank. The blind signature protools enable a user to obtain a

signature from a signer so that the signer does not learn any information about the message it

signed and so that the user an not obtain more than one valid signature after one interation

with the signer. The onept of blind signatures provides anonymity of users in appliations

suh as eletroni voting, eletroni payment systems et.

{ Multisignature: Multisignature sheme allows any subgroup of a group of users to jointly

sign a message suh that a veri�er is onvined that eah member of the subgroup partiipated

in signing. The goal of multisignature is to prove that eah member of the stated subgroup

signed the message and the size of this subgroup an be arbitrary. It is up to a partiular

appliation to deide what subgroup is required to sign a message. A veri�er might rejet

a multisignature not beause it's invalid, but beause the veri�er in not satis�ed with the

subgroup whih signed the message. Multisignatures an be applied to provide eÆient bath

veri�ation of several signatures of the same message under di�erent publi keys.

{ Aggregate Signature: Consider n users U = f1; 2; : : : ; ng. Eah user i 2 U has a publi-

private key pair (PK

i

; SK

i

). User i signs message M

i

and outputs signature �

i

. A publi

aggregation algorithm outputs a ompressed short signature � on input all of �

1

; �

2

; : : : ; �

n

.

This aggregation of n signatures an be done by anyone. Additionally, there is an aggregate

veri�ation algorithm that takes PK

1

;PK

2

; : : : ;PK

n

, M

1

;M

2

; : : : ;M

n

, and � as input and de-

ides whether the aggregate signature � is valid. Aggregate signature sheme has use in the

seure border gateway protool for ompressing the list of signatures on distint messages

issued by distint parties.

{ Veri�ably Enryption Signature: These signatures enable user Alie to give Bob a signature

on a message M enrypted using a third party's publi key and Bob to verify o�ine that the

enrypted signature is valid. Bob an verify that Alie has signed the message, but an not

dedue any information about her signature. To enable fair exhange, veri�ably enrypted

signatures are used in optimisti ontrat signing protools.

{ Ring Signature: Consider a set of n users U = f1; 2; : : : ; ng. Eah user i 2 U has a publi-

private key pair (PK

i

; SK

i

). A ring signature on U is a signature that is onstruted using all

the publi keys of the users in U , and a single private key of any user in U . A ring signature

protets the anonymity of a signer sine the veri�er knows that the signature is from a member

of the ring U , but does not know exatly who the signer is. There is also no way to revoke the

anonymity of the signer. Ring signatures have appliations in authentiated (yet repudiable)
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ommuniation and leaking serets.

{ Group Signature: Group signatures permits any member of a group to sign on behalf of

the group. Anyone an verify the signature with a group publi key while no one an know

the identity of the signer exept the group manager. Group signature provides anonymity of

users with the property that group manager an identify the signer. In group signature, it

is omputationally hard to deide whether two di�erent signatures were issued by the same

member.

{ Proxy Signature: A proxy signature allows an entity, alled the delegator to delegate its

signing rights to another entity, alled a proxy signer. The proxy signer signs messages on

behalf of the delegator, in ase of say, temporal absene, lak of time or omputational power,

et. Proxy signatures have found numerous pratial appliations where delegation of rights

is quite ommon, partiularly in distributed systems, Grid Computing, mobile agent applia-

tions, distributed shared objet systems and mobile ommuniations [7℄.

{ Unique Signature: Unique signature shemes are seure signature shemes where the sig-

nature is hard-to-ompute funtion of the publi key and the message. Unique signature

shemes, also known as invariant signature shemes, are desirable in ryptography and have

an important appliation to onstrut veri�able random funtions (VRFs). VRFs are objets

that ombine the properties of pseudorandom funtions with the veri�ability property and

an be viewed as a ommitment to an arbitrary number of bits.

3. Key Agreement: Key agreement is required in situations where two or more parties want to

ommuniate seurely among themeselves. The situation where three or more parties share

a seret key is often alled onferene keying. In this situation, the parties an seurely send

and reeive message from eah other. An adversary not having aess to the seret key will

not be able to derypt the message.

4. Threshold: Threshold ryptography approah is useful to remove single point failure. When

the entralization of the power is a onern, threshold deryption an be used in partiular.

In the (t; n)-threshold sheme, t � n, there are n users. A seret information is distributed

among these n-users. Any subset of more than t users are allowed to reonstrut the seret.

The omputation is performed preserving seurity even in the presene of an ative adversary

that an orrupt up to t users.

5. Misellaneous:

{ Chameleon Hash: Chameleon hashing is basially non-interative ommitment sheme. A

hameleon hash funtion is assoiated with a pair of publi-private keys. Anyone who knows

the publi key, an ompute the assoiated hash funtion. Without the knowledge of asso-

iated trapdoor, the hameleon hash funtion is ollision resistant. However, the trapdoor

information holder an easily �nd ollisions for every given input. Chameleon hashes have

appliations in onstruting hameleon signatures. The reipient an verify that the signature

of a ertain message m is valid, but an not prove others that the signer atually signed m

and not another message. These are losely related to undeniable signature [17℄.

{ Signryption: A signryption sheme is a sheme that provides private and authentiated

delivery of messages between two parties in a more eÆient manner than a straightforward

omposition of an enryption sheme with a signature sheme. It ombines the funtionality

of signature and enryption. The idea of signryption sheme is to perform enryption and
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signature in a single logial step in order to obtain on�dentiality, integrity, authentiation

and non-repudiation more eÆiently than the sign-then-enrypt approah.

{ Identi�ation: Identi�ation sheme is another important and useful ryptographi tool

where a prover P interats with a veri�er V to onvine him of his identity. Only P knows the

seret value orresponding to his publi one, and this seret information permits to onvine

V of his identity.

In this paper, we have tried to survey di�erent ryptographi primitives and inlude only those

shemes whih have, to the best of our knowledge, onrete seurity proofs in the existing adversarial

models. Barretto's pairing based rypto lounge [4℄ is an exellent ompilation of existing work

on pairing based ryptography. This survey does not onsider algebrai theory of pairings nor

algorithms to ompute them. The rest of our paper is organized as follows: Setion 2 briey explains

the ryptographi bilinear map and some versions of DH problems. The ID-based enryption

shemes are disussed in Setion 3. We desribe various pairing based signature shemes in Setion

4. Setion 5 onsists of key agreement shemes and Setion 6 disusses threshold shemes using

bilinear map. In Setion 7, misellaneous appliations are desribed. Finally we onlude in Setion

8.

2 Preliminaries

Let G

1

; G

2

be two groups of the same prime order q. We view G

1

as an additive group and G

2

as a multipliative group. Let P be an arbitrary generator of G

1

. (aP denotes P added to itself

a times). Assume that disrete logarithm problem (DLP) is hard in both G

1

and G

2

. A mapping

e : G

2

1

! G

2

satisfying the following properties is alled a ryptographi bilinear map.

{ Bilinearity : e(aP; bQ) = e(P;Q)

ab

for all P;Q 2 G

1

and a; b 2 Z

�

q

. This an be restated in the

following way. For P;Q;R 2 G

1

, e(P +Q;R) = e(P;R) e(Q;R) and e(P;Q+R) = e(P;Q) e(P;R).

{ Non-degeneray : If P is a generator of G

1

, then e(P; P ) is a generator of G

2

. In other words,

e(P; P ) 6= 1.

{ Computable : There exists an eÆient algorithm to ompute e(P;Q) for all P;Q 2 G

1

.

Modi�ed Weil Pairing [11℄ and Tate Pairing [5℄, [24℄ are examples of ryptographi bilinear maps.

Currently, ative researh is being arried out to obtain eÆient algorithms to ompute pairings.

Our survey exludes this area.

Now we speify some versions of DiÆe-Hellman problems. Eah problem omes in two avours :

omputational followed by deisional. We de�ne the following two terms.

{ advantage : When adversary has to distinguish between two probability distribution.

{ suess probability : When adversary has to �nd an objet of interest.

For a set S, by a2

R

S, we mean that a is randomly hosen from S. A funtion f(m) is said to be

negligible if it is less than

1

m

l

for every �xed l > 0 and suÆiently large integer m.
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Unless otherwise stated, we assume that the messages are arbitrary length �nite binary strings and

the above setup holds for the ryptographi protools throughout the paper.

In the subsequent disussion, we formalize advantage of DDH and suess probability of CDH

problems and desribe the orresponding assumptions. For eah of the other problems, there is a

orresponding assumption whih an be formalized in a way similar to the DDH and CDH prob-

lems.The following lassi�ation of the problems is provided.

2.1 DiÆe-Hellman Problems

1. Computational DiÆe-Hellman (CDH) problem in G

1

:

Instane : (P; aP; bP ) for some a; b 2 Z

�

q

.

Output : abP .

The suess probability of any probabilisti, polynomial-time, 0/1-valued algorithm A in

solving CDH problem in G

1

is de�ned to be :

Su

CDH

A;G

1

= Prob[A(P; aP; bP; abP ) = 1 : a; b2

R

Z

�

q

℄:

CDH assumption : For every probabilisti, polynomial-time, 0/1-valued algorithm A, Su

CDH

A;G

1

is negligible.

(See setions 4.9, 4.12).

2. Deisional DiÆe-Hellman (DDH) problem in G

1

:

Instane : (P; aP; bP; P ) for some a; b;  2 Z

�

q

.

Output : yes if  = ab mod q and output no otherwise.

Comments : DDH problem in G

1

is easy. DDH problem in G

1

an be solved in polynomial

time by verifying e(aP; bP ) = e(P; P ). This is the well known MOV redution [11℄ : The

DLP in G

1

is no harder than the DLP in G

2

.

The advantage of any probabilisti, polynomial-time, 0/1-valued algorithm A in solving DDH

problem in G

1

is de�ned to be :

Adv

DDH

A;G

1

= jProb[A(P; aP; bP; P ) = 1℄� Prob[A(P; aP; bP; abP ) = 1℄ : a; b; 2

R

Z

�

q

j:

DDH assumption : For every probabilisti, polynomial-time, 0/1-valued algorithm A, Adv

DDH

A;G

2

is negligible.

Gap DiÆe-Hellman (GDH) group : A prime order group G

1

is a GDH group if there exists

an eÆient polynomial-time algorithm whih solves the DDH problem in G

1

and there is no

probabilisti polynomial-time algorithm whih solves the CDH problem with non-negligible

probability of suess. The domains of bilinear pairings provide examples of GDH groups. The

MOV redution provides a method to solve DDH in G

1

, whereas there is no known eÆient

algorithm for CDH in G

1

. (See setions 4.1, 4.3, 4.11, 7.4).

3. Weak DiÆe-Hellman (W-DH) problem in a group G

1

:

Instane : (P;Q; sP ) for P;Q 2 G

1

and for some s 2 Z

�

q

:

Output : sQ.

7



Comments : W-DH problem is no harder than CDH problem.

(See setion 4.10).

4. Reversion of CDH (RCDH) problem in G

1

:

Instane : (P; aP; rP ) for some a; r 2 Z

�

q

.

Output : bP; b 2 Z

�

q

satisfying a = rb mod q.

Comments : RCDH problem is equivalent to CDH problem in G

1

[18℄.

5. (k + 1)-exponent problem ((k + 1)-EP) in G

1

:

Instane : (P; yP; y

2

P; : : : ; y

k

P )for a random y 2 Z

�

q

.

Output : y

k+1

P .

Comments : (k + 1)-EP is no harder than the CDH problem.

(See setion 4.7).

6. k-DiÆe-Hellman Inversion (k-DHI) problem in G

1

:

Instane : (P; yP; y

2

P; : : : ; y

k

P ) for a random y 2 Z

�

q

.

Output :

1

y

P .

Comments : k-DHI problem is polynomially equivalent to (k + 1)-EP.

7. k-Strong DiÆe-Hellman (k-SDH) problem in G

1

:

Instane : (P; yP; y

2

P; : : : ; y

k

P ) for a random y 2 Z

�

q

.

Output : (;

1

y+

P ) where  2 Z

�

q

.

Comments : k-SDH problem is a stronger version of k-DHI problem. When  is pre-spei�ed,

k-SDH problem is polynomially equivalent to k-DHI. k-SDH problem has a simple random

self redution in G

1

.

(See setion 4.13).

8. Collusion Attak Algorithm with k-traitors (k-CAA) :

Instane : (P; yP; h

1

; : : : ; h

k

2 Z

�

q

;

1

h

1

+y

P; : : : ;

1

h

k

+y

P ) for a random y 2 Z

�

q

.

Output :

1

h+y

P for some h =2 fh

1

; : : : ; h

k

g.

Comments : k-CAA is polynomially equivalent to (k � 1)-DHI problem.

9. l- Many DiÆe-Hellman problem in G

1

:

Orale : O

P;~y

(J) = (

Q

j2J

y

j

)P 2 G

1

where vetor ~y = (y

1

; y

2

; : : : ; y

l

)2

R

(Z

�

q

)

l

and J is any

strit subset of f1; 2; : : : ; lg.

Instane : (P;O

P;~y

; J) for any vetor ~y = (y

1

; y

2

; : : : ; y

l

)2

R

(Z

�

q

)

l

and for all J � f1; 2; : : : ; lg.

Output: (

Q

l

j=1

y

j

)P .

Comments : (l � 1)-DHI assumption implies l-Many-DH assumption. This redution is also

valid for the deision version of DHI and Many-DH problems. l-DHI assumption is easier to

state than l-Many-DH assumption sine there is no need for an orale.

(See setion 4.11).

10. Chosen-target CDH problem in G

1

:

Let s be a random element of Z

�

q

and Q = sP .

Orales : 1) A target orale T

G

1

that returns a random element U

i

2 G

1

. 2) A helper orale

s(�) that returns sU on a randomly hosen input U 2 G

1

.

Instane : (q; P;Q;H

1

) where H

1

: f0; 1g

�

! G

�

1

is a ryptographi hash funtion and aess
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to the target and helper orales with at most q

T

and q

H

queries respetively.

Output : A set V of, say l pairs ((V

1

; j

1

); (V

2

; j

2

); : : : ; (V

l

; j

l

)), where for all i; 1 � i � l, there

exists j

i

; 1 � j

i

� q

T

suh that V

i

= sU

j

i

where all V

i

are distint and q

H

< q

T

; l.

(See setion 4.1).

11. Chosen-target Inverse CDH problem in G

1

:

Let s be a random element of Z

�

q

and Q = sP .

Orales : 1) A target orale T

G

1

that returns a random element U

i

2 G

1

. 2) A helper orale

Inv� dh� s(�) that omputes s

�1

U for a randomly hosen input U 2 G

1

.

Instane : (q; P;Q;H

1

) where H

1

: f0; 1g

�

! G

�

1

is a ryptographi hash funtion and aess

to the target and helper orales with at most q

T

and q

H

queries respetively.

Output : A set V of, say l pairs ((V

1

; j

1

); (V

2

; j

2

); : : : ; (V

l

; j

l

)), where for all i; 1 � i � l, there

exists j

i

; 1 � j

i

� q

T

suh that V

i

= s

�1

U

j

i

where all V

i

are distint and q

H

< q

T

; l.

2.2 Bilinear DiÆe-Hellman Problems

1. Bilinear DiÆe-Hellman (BDH) problem in (G

1

; G

2

; e) :

Instane : (P; aP; bP; P ) for some a; b;  2 Z

�

q

:

Output : e(P; P )

ab

.

(See setions 3.1, 3.2, 3.3, 3.4, 5.1, 6.2, 6.3, 7.1, 7.3.1).

2. Deisional Bilinear DiÆe-Hellman (DBDH) problem in (G

1

; G

2

; e) :

Instane : (P; aP; bP; P; r) for some a; b; 2

R

Z

�

q

, r2

R

G

2

.

Output : yes if r = e(P; P )

ab

and output no otherwise.

(See setions 3.6, 7.3.2).

3. Deisional Hash Bilinear DiÆe-Hellman (DHBDH) problem in (G

1

; G

2

; e) :

Instane : (P; aP; bP; P; r) for some a; b; ; r 2 Z

�

q

and a one way hash funtion H : G

2

! Z

�

q

.

Output : yes if r = H(e(P; P )

ab

) mod q and output no otherwise.

Comments : The DHBDH problem in (G

1

; G

2

; e) is a hash version of the deisional BDH

problem in (G

1

; G

2

; e) .

(See setion 5.2).

4. k-Bilinear DiÆe-Hellman Inversion (k-BDHI) problem in (G

1

; G

2

; e) :

Instane : (P; yP; y

2

P; : : : ; y

k

P ) for some y 2 Z

�

q

.

Output : e(P; P )

1

y

2 G

2

.

Comments : 1-BDHI assumption is polynomially equivalent to the standard BDH assumption.

It is not known if the k-BDHI assumption, for k > 1, is polynomially equivalent to BDH.

5. k-Deisional Bilinear DiÆe-Hellman Inversion (k-DBDHI) problem in (G

1

; G

2

; e) :

Instane : (P; yP; y

2

P; : : : ; y

k

P; r) for some y 2 Z

�

q

, r2

R

G

2

.

Output : yes if r = e(P; P )

1

y

2 G

2

and output no otherwise.

(See setion 3.5).
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2.3 Misellaneous Problems

1. ROS problem : (Shnorr)

Orale : A random funtion F : Z

l

q

! Z

q

.

Instane : A system of t equations in l unknowns 

1

; 

2

; : : : ; 

l

over Z

�

q

: a

k;1



1

+ � � �+ a

k;l



l

=

F (a

k;1

; : : : ; a

k;l

) for k = 1; 2; : : : ; t, t � l + 1.

Output : Co-eÆients a

k;i

2 Z

�

q

and a solvable subsystem of l + 1 equations in the unknowns



1

; 

2

; : : : ; 

l

.

(See setion 4.8).

2. Co-Gap DiÆe-Hellman (Co-GDH) group : Consider a ryptographi bilinear map in the follow-

ing setup :

a) G

1

; G

2

are two additive groups and G

T

is a multipliative group of prime order q;

b) P

1

is a generator of G

1

and P

2

is a generator of G

2

;

)  is a omputable isomorphism from G

1

to G

2

, with  (P

1

) = P

2

; and

d) e is an eÆiently omputable bilinear map e : G

1

� G

2

! G

T

satisfying the following

properties :

{ Bilinearity : For all Q

1

2 G

1

; Q

2

2 G

2

and a; b 2 Z

�

q

, e(aQ

1

; bQ

2

) = e(Q

1

; Q

2

)

ab

:

{ Non-degeneray : e(P

1

; P

2

) 6= 1.

These properties imply one more : for any Q

1

; Q

2

2 G

1

, e(Q

1

;  (Q

2

)) = e(Q

2

;  (Q

1

)). (Suh

bilinear maps an be derived from Weil pairing and Tate pairing; for simpliity the reader

may assume G

1

= G

2

). We refer this setup as the Co-GDH setup. With this setup, we obtain

natural generalizations of the CDH and DDH problems :

Computational Co-DiÆe-Hellman (Co-CDH) problem :

Instane : (P

1

; P

2

; aP

1

; bP

2

) for some a; b 2 Z

�

q

.

Output : abP

2

2 G

2

.

Deisional Co-DiÆe-Hellman (Co-DDH) problem :

Instane : (P

1

; P

2

; aP

1

; bP

2

; P

2

) for some a; b;  2 Z

�

q

.

Output : yes if  = ab mod q and output no otherwise.

When G

1

= G

2

and P

1

= P

2

, these problems redued to the standard CDH and DDH prob-

lems respetively.

Groups G

1

; G

2

are said to be Co-GDH groups if there exists an eÆient algorithm to solve

the Co-DDH problem and there is no polynomial-time (in jqj) algorithm to solve the Co-CDH

problem. The existene of a ryptographi bilinear map ensures the existene of Co-GDH

groups. (See setions 4.4, 4.5, 4.6).
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3 Enryption Shemes

In identity-based publi key enryption, the publi key distribution problem is eliminated by making

eah user's publi key derivable from some known aspet of his identity, suh as his email address.

When Alie wants to send a message to Bob, she simply enrypts her message using Bob's publi key

whih she derives from Bob's identifying information. Bob, after reeiving the enrypted message,

obtains his private key from a third party alled a Private Key generator (PKG) after authentiating

himself to PKG and an then derypt the message. The private key that PKG generates on Bob's

query is a funtion of it's master key and Bob's identity.

Shamir [40℄ introdued this onept of identity-based ryptosystem. The �rst ID-based enryption

was proposed by Boneh and Franklin [11℄ in 2001 that uses bilinear pairing.

The advantage of ID-based enryption are ompelling. It makes maintaining authentiated publi

key diretories unneessary. Instead, a diretory for authentiated publi parameters of PKG's is

required whih is less burdensome than maintaining a publi key diretory sine there are substan-

tially fewer PKGs than total users. In partiular, if everyone uses a single PKG, then everyone in

the system an ommuniate seurely and users need not perform online lookup of publi keys or

publi parameters.

Some disadvantages of ID-based system are : (1) the PKG knows Bob's private key, i.e. key esrow

is inherent in the system whih for some appliations may be a serious problem, (2) Bob has to

authentiate himself to it's PKG in the same way as he would authentiate himself to a ertifying

authority (CA), (3) Bob's PKG requires a seure hannel to send Bob his private key, (4) Bob has

to publish his PKG's publi parameters and Alie must obtain these parameters before sending an

enrypted message to Bob.

3.1 ID-Based Enryption Sheme

(Boneh, Franklin, [11℄, 2001)

� Protool Desription :

{ Setup : Choose s2

R

Z

�

q

and set P

pub

= sP . Choose ryptographi hash funtionsH

1

: f0; 1g

�

! G

�

1

and H

2

: G

2

! f0; 1g

n

, n is the bit length of messages. The master key is s and the global publi

key is P

pub

.

{ Extrat : Given a publi identity ID 2 f0; 1g

�

, ompute the publi key Q

ID

= H

1

(ID) 2 G

1

and

the private key S

ID

= sQ

ID

. The omputation Q

ID

= H

1

(ID) maps an arbitrary string to a point

of the group G

1

. This operation is alled Map-to-point and is more expensive than omputation of

usual message digest.

{ Enrypt : Choose a random r 2 Z

�

q

, set the iphertext for the message M to be

C = hrP;M �H

2

(g

r

ID

)i;

where g

ID

= e(Q

ID

; P

pub

)

{ Derypt : Given C = hU; V i, ompute

V �H

2

(e(S

ID

; U)):

11



� Assumption :

BDH problem is hard.

�Seurity :

This is the basi sheme. Seurity against adaptive hosen iphertext attak in the random orale

model under the BDH assumption is obtained after the Fujisaki-Okamoto [23℄ transformation.

� EÆieny :

{ Setup : 1 salar multipliation in G

1

.

{ Extrat : 1 Map-to-point hash operation; 1 salar multipliation in G

1

.

{ Enrypt : 1 Map-to-point hash operation; 1 salar multipliation in G

1

; 1 hash funtion (H

2

)

evaluation; 1 XOR operation; 1 pairing omputation; 1 group exponent in G

2

.

{ Derypt : 1 hash funtion (H

2

) evaluation; 1 XOR operation; 1 pairing omputation.

3.2 Searhable Publi Key Enryption

(Boneh, Cresenzo, Ostrovsky, Persiano, [10℄, 2003)

Suppose Alie wishes to read her email on a number of devies : laptop, desktop, pager, et. Alie's

mail gateway is supposed to route email to the appropriate devie based on the keywords in the

email. Suppose Bob sends an email with keyword \urgent". The gateway routes the email to Alie's

pager, after testing whether the email ontains this keyword \urgent" without learning anything

else about the mail. This mehanism is referred to as Searhable Publi Key Enryption (SPKE).

To send a message M with keywords W

1

; : : : ;W

n

, Bob sends

E

A

pub

(M)jjSPKE(A

pub

;W

1

)jj : : : jjSPKE(A

pub

;W

n

)

where E

A

pub

(M) is the enryption of M using Alie's publi key A

pub

. The point of searhable

enryption is that given SPKE(A

pub

;W

0

) and a ertain trapdoor T

W

(that is given to the gateway

by Alie), the gateway an test whether W = W

0

. If W 6= W

0

the gateway learns nothing more

about W

0

.

A SPKE sheme using bilinear map :

� Protool Desription :

{ KeyGen : Choose s2

R

Z

�

q

and set P

pub

= sP . The seret key is s and the publi key is P

pub

. Let

K be the set of all keywords and H

1

: K ! G

1

, H

2

: G

2

! Z

�

q

be two hash funtions.

{ SPKE : Given a keyword W and the publi key P

pub

, hoose a random r 2 Z

�

q

and output

hrP;H

2

(e(H

1

(W ); P

pub

)

r

)i:

{ Trapdoor : Given a keyword W and the seret key s, output T

W

= sH

1

(W ).

12



{ Test : Given Trapdoor T

W

, a SPKE S = hU; V i and the publi key P

pub

, test if V = H

2

(e(T

W

; U)).

If true, output yes, else output no.

� Assumption :

BDH problem is hard.

� Seurity :

Semantially seure against a hosen keyword attak in the random orale model assuming BDH

problem is intratable.

� EÆieny :

{ KeyGen : 1 salar multipliation in G

1

.

{ SPKE : 1 Map-to-point hash operation; 1 salar multipliation in G

1

; 1 hash funtion (H

2

)

evaluation; 1 pairing omputation; 1 group exponent in G

2

.

{ Trapdoor : 1 salar multipliation in G

1

.

{ Test : 1 pairing omputation; 1 hash funtion (H

2

) evaluation.

3.3 Hierarhial ID-Based Enryption (HIDE) Sheme

(Gentry, Silverberg, [25℄, 2002)

Although having a single private key generator (PKG) would ompletely eliminate online lookup,

it is undesirable for a large network beause the PKG has a burdensome job. Not only is private

key generation omputationally expensive, but also the PKG must verify proofs of identity and

must establish seure hannels to transmit private keys. HIDE allows a root PKG to distribute the

workload by delegating private key generation and identity authentiation to lower-level PKGs. In

a HIDE sheme, a root PKG need only generate private keys for domain-level PKGs, who in turn

generate private keys for users in their domains in the next level. Authentiation and private key

transmission an be done loally. To enrypt a message to Bob, Alie only needs to obtain the pub-

li parameters of Bob's parent PKG (and Bob's identifying information); there are no \lower-level

parameters". HIDE has the advantage of damage ontrol : dislosure of a domain PKG's seret

does not ompromise the serets of higher-level PKGs.

� Protool Desription : BasiHIDE :

The entities in the tree (other than the root) are the users of the tree. Let Level

i

be the set of

entities at level i, where Level

0

= fRoot PKGg.

{ Root Setup : The root PKG hooses an arbitrary generator P

0

2 G

1

, piks a random s

0

2 Z

�

q

and

sets Q

0

= s

0

P

0

. Let H

1

: f0; 1g

�

! G

1

and H

2

: G

2

! f0; 1g

n

be two ryptographi hash funtions.

The message spae isM = f0; 1g

n

. The iphertext spae is C = G

t

1

�f0; 1g

n

where t is the level of

the reipient.

The root PKG's seret is s

0

2 Z

�

q

and global publi key is (P

0

; Q

0

).

{ Lower-level Setup : Entity E

t

2 Level

t

piks a random s

t

2 Z

�

q

whih it keeps seret.

13



{ Extrat : Let E

t

be an entity in Level

t

with ID-tuple (ID

1

; : : : ; ID

t

), where (ID

1

; : : : ; ID

i

) for

1 � i � t is the ID-tuple of E

t

's anestor at Level

i

. Set S

0

to be the identity element of G

1

.

Then E

t

's (t � 1) parent :

1. omputes P

t

= H

1

(ID

1

; : : : ; ID

t

) 2 G

1

;

2. sets E

t

's seret point S

t

to be S

t�1

+ s

t�1

P

t

=

P

t

i=1

s

i�1

P

i

,

3. also gives E

t

the values Q

i

= s

i

P

0

for 1 � i � t� 1.

{ Enrypt : To enrypt M 2 M with the ID-tuple (ID

1

; : : : ; ID

t

), do the following :

1. ompute P

i

= H

1

(ID

1

; : : : ; ID

i

) 2 G

1

for 1 � i � t,

2. hoose a random r 2 Z

�

q

,

3. set the iphertext to be

C = hrP

0

; rP

2

; : : : ; rP

t

;M �H

2

(g

r

)i

where g = e(Q

0

; P

1

) 2 G

2

.

{ Derypt : Let C = hU

0

; U

2

; : : : ; U

t

; V i 2 C be the iphertext enrypted using the ID-tuple

(ID

1

; : : : ; ID

t

). To derypt C, E

t

omputes :

V �H

2

 

e(U

0

; S

t

)

Q

t

i=2

e(Q

i�1

; U

i

)

!

=M:

Note : The sheme is derived from Boneh-Franklin [11℄ sheme. An interesting fat is that lower-

level PKGs need not always use the same s

t

for eah private key extration. Rather, s

t

ould

be generated randomly for eah of the PKG's hildren. Another fat is that H

1

an be hosen

to be an iterated hash funtion, for example, P

i

may be omputed as H

1

(P

i�1

; ID

i

) rather than

H

1

(ID

1

; : : : ; ID

i

).

� Assumption :

BDH problem is hard.

� Seurity :

Chosen iphertext seurity of this basi sheme is obtained by using Fujisaki-Okamoto [23℄ padding

in the random orale model under the assumption that BDH problem is hard.

� EÆieny :

{ Setup : 1 salar multipliation in G

1

.

{ Extrat : 1 Map-to-point hash operation; 2 salar multipliations in G

1

; 1 addition in G

1

.

{ Enrypt : For an identity at level t, t salar multipliations in G

1

; 1 Map-to-point hash operation;

1 hash funtion (H

2

) evaluation; 1 group exponent in G

2

; 1 XOR operation; 1 pairing omputation.

{ Derypt : For an identity at level t, t pairing omputations; 1 hash funtion (H

2

) evaluation; 1

XOR operation.

The bit-length of the iphertext and the omplexity of deryption grow linearly with the level of

the message reipient.
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3.4 Dual-HIDE : Dual-Hierarhial-Identity-Based Enryption

(Gentry, Silverberg [25℄, 2002)

� Protool Desription :

Suppose two users, Alie and Bob, have the ID-tuples (ID

y

1

; : : : ; ID

y

l

; : : : ; ID

y

m

) and (ID

z

1

; : : : ; ID

z

l

; : : : ; ID

z

n

)

respetively, where (ID

y

1

; : : : ; ID

y

l

) = (ID

z

1

; : : : ; ID

z

l

).

In other words, Alie is in Level

m

, Bob is in Level

n

and their ommon anestor upto Level

l

are same.

Alie may use Dual-HIDE to enrypt a message to Bob as follows :

{ Enrypt : To enrypt M 2 M, Alie :

1. omputes P

z

i

= H

1

(ID

z

1

; : : : ; ID

z

i

) 2 G

1

for l + 1 � i � n,

2. hooses a random r 2 Z

�

q

,

3. sets the iphertext to be

C = hrP

0

; rP

z

l+1

; : : : ; rP

z

n

;M �H

2

(g

r

y

l

)i

where

g

y

l

=

e(P

0

; S

y

)

Q

m

i=l+1

e(Q

y

(i�1)

; P

y

i

)

= e(P

0

; S

y

l

):

S

y

is Alie's seret point, S

y

l

is the seret point of Alie's and Bob's ommon anestor at level l and

Q

y

i

= s

y

i

P

0

where s

y

i

is the seret number hosen by Alie's anestor at level i.

{ Derypt : Let C = hU

0

; U

l+1

; : : : ; U

n

; V i be the iphertext. To derypt C, Bob omputes :

V �H

2

 

e(U

0

; S

z

)

Q

n

i=l+1

e(Q

z

(i�1)

; U

i

)

!

=M:

� Assumption :

BDH problem is hard.

� Seurity :

Seure in the random orale model assuming the hardness of BDH problem.

� EÆieny :

{ Enrypt : 1 Map-to-point hash operation; (n� l+1) salar multipliations in G

1

; 1 hash funtion

(H

2

) evaluation; 1 XOR operation; (m� l + 1) pairing omputation; 1 group exponent in G

2

.

{ Derypt : (n� l + 1) pairing omputation; 1 hash funtion (H

2

) evaluation; 1 XOR operation.

If Alie and Bob have a ommon anestor below the root PKG, then the iphertext is shorter than

for normal HIDE. Further, using Dual HIDE, the enrypter Alie omputes (m � l + 1) pairings

while the derypter Bob omputes (n� l+1) pairings. In the non-dual HIDE sheme, the enrypter

omputes one pairing while the derypter omputes n pairings. Thus when m < (2l� 1), the total

work is less with Dual-HIDE than with non-dual HIDE. Dual-HIDE also makes domain-spei�

broadast enryption possible. Furthermore, one an restrit key esrow using Dual-HIDE.
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3.5 ID-Based Enryption Sheme Without Random Orale

(Boneh, Boyen [9℄, 2004)

� Protool Desription :

{ Setup : The publi keys (ID) are assumed to be elements of Z

�

q

and messages are elements of G

2

.

Selet random elements x; y 2 Z

�

q

and set U = xP; V = yP . The publi parameters are (U; V ) and

the master key is (x; y).

{ Extrat : Given a publi key ID 2 Z

�

q

, hoose a random r 2 Z

�

q

and ompute K =

1

ID+x+ry

P 2 G

1

.

Output the private key S

ID

= (r;K).

{ Enrypt : To enrypt a message M 2 G

1

under publi key ID 2 Z

�

q

, pik a random s 2 Z

�

q

and

output the iphertext

C = hs(ID)P + sU; sV; e(P; P )

s

Mi:

{ Derypt : To derypt a iphertext C = hX; Y; Zi using the private key S

ID

= (r;K), output

Z=e(X + rY;K).

� Assumption :

q-DBDHI problem is hard.

� Seurity :

Seure against seletive-ID adaptive hosen iphertext attak without random orales under q-

DBDHI assumption.

� EÆieny :

{ Setup : 2 salar multipliations.

{ Extrat : 1 inversion in Z

�

q

; 1 salar multipliation in G

1

.

{ Enrypt : 4 salar multipliations in G

1

; 1 group exponent in G

1

; 1 multipliation in G

2

.

Note that e(P; P ) an be preomputed one and for all so that enryption requires no pairing

omputation.

{ Derypt : 1 salar multipliation in G

1

; 1 addition in G

1

; 1 inversion in G

2

.

3.6 Hierarhial ID-Based Enryption (HIBE) Sheme Without Ran-

dom Orale

(Boneh, Boyen [9℄, 2004)

� Protool Desription :

{ Setup : The publi keys (ID) of depth l are assumed to be vetors of elements in Z

l

q

. The j-th

omponent for an identity ID = (ID

1

; : : : ; ID

l

) 2 Z

l

q

orresponds to the identity at level j.

The system parameters for an HIBE of maximum depth l is generated as follows :

Choose a random � 2 Z

�

q

and set P

1

= �P 2 G

1

.

Choose random elements h

1

; : : : h

l

2 G

1

and another generator P

2

2 G

�

1

. The publi parameters are

(P; P

1

; P

2

; h

1

; : : : ; h

l

) and master key is �P

2

.
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For j = 1; : : : ; l, de�ne F

j

(x) = xP

1

+ h

j

.

The messages are assumed to be elements of G

2

.

{ Extrat : For an identity ID = (ID

1

; : : : ; ID

j

) 2 Z

j

q

of depth j � l, pik random r

1

; : : : ; r

j

2 Z

q

and

set the private key

S

ID

= (�P

2

+

j

X

k=1

r

k

F

k

(ID

k

); r

1

P; : : : ; r

j

P ):

Note that, if at depth (j � 1), the private key for identity ID

jj�1

= (ID

1

; : : : ; ID

j�1

) 2 Z

j�1

q

is

S

IDjj�1

= (d

0

; : : : ; d

j�1

) , then the private key S

ID

for ID is generated by hoosing randomly r

j

2 Z

q

and setting S

ID

= (d

0

+ r

j

F

j

(ID

j

); d

1

; : : : ; d

j�1

; r

j

P ).

{ Enrypt : To enrypt a message M 2 G

2

under the publi key ID = (ID

1

; : : : ; ID

j

) 2 Z

j

q

, pik

randomly s 2 Z

�

q

and output

C = he(P

1

; P

2

)

s

M; sP; sF

1

(ID

1

); : : : ; sF

j

(ID

j

)i:

{Derypt : Consider an identity ID = (ID

1

; : : : ; ID

j

). To derypt a iphertext C = hA;B;C

1

; : : : ; C

j

i

using the private key S

ID

= (d

0

; d

1

; : : : ; d

j

), output

A

j

Y

k=1

e(C

j

; d

j

)=e(B; d

0

) =M:

� Assumption :

DBDH problem is hard.

� Seurity :

Seure against seletive-ID adaptive hosen iphertext attak without random orales under DBDH

assumption.

� EÆieny :

{ Setup : 2 salar multipliations in G

1

.

{ Extrat : For an identity at depth j, (2j+1) salar multipliations in G

1

; (j +1) additions in G

1

.

{ Enrypt : 1 group exponent in G

2

; 1 multipliations in G

2

; (j � 1) salar multipliations in G

1

.

Note that enryption does not require any pairing omputation as e(P

1

; P

2

) an be preomputed

one and inluded in the system parameters.

{ Derypt : For an identity at depth j, j multipliations in G

2

; j pairing omputations; 1 inversion

in G

2

.

4 Signature Shemes

Digital signatures are one of the most important ryptographi primitives. In traditional publi key

signature algorithms, the binding between the publi key and the identity of the signer is obtained

via a digital erti�ate. Shamir [40℄ �rst notied that it would be more eÆient if there was no need

for suh bindings, in that ase given the user's identity, the publi key ould be easily derived using

some publi deterministi algorithm. This makes eÆient ID-based signature shemes desirable. In
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ID-based signature shemes, veri�ation funtion is easily obtained from the identity, possibly the

same key and the same underlying omputation primitives an be used. Boneh, Lynn, Shaham [13℄

proposed a pairing based short signature sheme in 2001. This was followed by a large number of

pairing based signature shemes for di�erent appliations.

4.1 BLS Short Signature Sheme

(Boneh, Lynn, Shaham, [13℄, 2001)

Short signatures are needed in environments with spae and bandwidth onstraints. For example,

when a human is asked to type in a digital signature the shortest possible signatures are desired.

Two most frequently used signature shemes are RSA and DSA. If one uses 1024 bit modulus, RSA

signatures are 1024 bit long and standard DSA or ECDSA (ellipti urve DSA) signatures are 320

bit long. These signatures are too long to be keyed. The following signature sheme provides short

signature of length approximately 160 bits with a level of seurity similar to 320 bit DSA signatures.

� Protool Desription :

{ KeyGen : Let H : f0; 1g

�

! G

1

be a Map-to-point hash funtion. The seret key is x2

R

Z

�

q

and

the publi key is P

pub

= xP for a signer.

{ Sign : Given seret key x and a message m 2 f0; 1g

�

, ompute the signature � = xH(m).

{Verify : Given publi key P

pub

= xP , a messagem and a signature �, verify e(P; �) = e(P

pub

; H(m)).

� Assumption :

Existene of GDH group.

� Seurity :

Seure against existential forgery under adaptive hosen message attak in the random orale model

assuming CDH problem is hard in G

1

.

� EÆieny :

{ KeyGen : 1 salar multipliation in G

1

.

{ Sign : 1 Map-to-point hash operation; 1 salar multipliation in G

1

.

{ Verify : 1 Map-to-point hash operation; 2 pairing omputations.

4.2 Blind Signature Sheme

(Boldyreva [6℄, 2003)

Blind signatures are the basi tools of digital ash shemes. The goal of a blind signature protool is

to enable a user to obtain a signature from a signer so that the signer does not learn any information

about the message it signed and so that the user an not obtain more than one valid signature after

one interation with the signer.
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� Protool Desription :

{ KeyGen : Let H : f0; 1g

�

! G

1

be a Map-to-point hash funtion. The seret key is x2

R

Z

�

q

and

the publi key is P

pub

= xP for a signer.

{ Blind Signature Issuing Protool : Given seret key x and a message m 2 f0; 1g

�

,

{ (Blinding) The user hooses randomly r 2 Z

�

q

, omputesM

0

= rH(m) and sends M

0

to signer.

{ (Signing) The signer omputes �

0

= xM

0

and sends bak �

0

to the user.

{ (Unblinding) The user then omputes the signature � = r

�1

�

0

and outputs (m; �).

{ Verify : Given publi key P

pub

, a message m and a signature �, verify e(P

pub

; H(m)) = e(P; �):

� Assumption :

Chosen-target CDH problem is hard.

� Seurity :

Seure against one more forgery under hosen message attak assuming the hardness of hosen-

target CDH problem.

� EÆieny :

{ KeyGen : 1 salar multipliation in G

1

.

{ Blind Signature Issuing Protool : 1 Map-to-point hash operation; 3 salar multipliations in G

1

.

{ Verify : 2 pairing omputations; 1 Map-to-point hash operation.

4.3 Multisignature Sheme

(Boldyreva, [6℄, 2003)

A multisignature sheme allows any subgroup of a group of users to jointly sign a doument suh

that a veri�er is onvined that eah member of the subgroup partiipated in signing.

� Protool Desription :

{ KeyGen : Let H; f0; 1g

�

! G

1

be a Map-to-point hash funtion. Consider a set U of n users.

The seret key is x

i

2

R

Z

�

q

and the publi key is P

pub

i

= x

i

P; for user u

i

2 U; 1 � i � n.

{ Multisignature Creation : Any user u

i

2 U with seret key x

i

that wishes to partiipate in signing

a message m 2 f0; 1g

�

, omputes �

i

= x

i

H(m) and sends it to a designated signer D (whih an be

implemented by any user). Let L = fu

i

1

; : : : u

i

l

g � U be a subset of users ontributed to the signing.

After getting all the �

j

for j 2 J = fi

1

; : : : ; i

l

g, D omputes the multisignature � =

P

j2J

�

j

and

outputs (m;L; �).

{ Multisignature Veri�ation : Given T = (m;L; �) and the list of publi keys of the users in L :

P

pub

j

= x

j

P; j 2 J = fi

1

; : : : ; i

l

g, the veri�er omputes P

pub

L

=

P

j2J

P

pub

j

=

P

j2J

x

j

P and veri�es
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e(P; �) = e(P

pub

L

; H(m)):

� Assumption :

Existene of GDH group.

� Seurity :

Seure against existential forgery under hosen message attak in the random orale model under

the assumption that the CDH problem is hard in G

1

.

� EÆieny :

{ KeyGen : n salar multipliations in G

1

.

{ Multisignature Creation : If l � n users are partiipating in signing, then 1 Map-to-point hash

operation; l salar multipliations in G

1

; (l � 1) additions in G

1

.

{ Multisignature Veri�ation : If number of users in the list L is l, then (l � 1) additions in G

1

; 2

pairing omputations.

4.4 Aggregate Signature

(Boneh, Gentry, Lynn, Shaham [12℄, 2003)

An aggregate signature sheme is a digital signature that supports aggregation : Given n signa-

tures on n distint messages m

i

from n distint users i, 1 � i � n, it is possible to aggregate all

these signatures into a single short signature. This single signature and the n original messages

m

i

; 1 � i � n will onvine the veri�er that user i indeed signed message m

i

, 1 � i � n.

� Protool Desription :

{ KeyGen : Consider the Co-GDH setup. Let U be a set of n users and H : f0; 1g

�

! G

2

be a

Map-to-point hash funtion. The seret key is x

i

2

R

Z

�

q

and the publi key is P

pub

i

= x

i

P

1

for user

u

i

2 U; 1 � i � n.

{ Aggregation : User u

i

2 U signs messagem

i

2 f0; 1g

�

to generate BLS signature �

i

= x

i

H(m

i

), 1 �

i � n. The messagesm

i

must be all distint. The aggregate signature is � = (�

1

+�

2

+� � �+�

n

) 2 G

2

.

{ Aggregate veri�ation : Given publi keys P

pub

i

, distint messages m

i

; 1 � i � n and an aggregate

signature �, verify e(P

1

; �) =

Q

n

i=1

e(P

pub

i

; H(m

i

)):

� Assumption :

Existene of Co-GDH group and a bilinear map.

� Seurity :

Seure against existential forgery in the aggregate hosen key model assuming that the Co-CDH

problem is hard in (G

1

; G

2

).

� EÆieny :

{ KeyGen : n salar multipliations in G

1

.
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{ Aggregation : n Map-to-point hash operations; n salar multipliations in G

2

; (n � 1) additions

in G

2

.

{ Aggregate veri�ation : n Map-to-point hash operations; (n + 1) pairing omputations.

4.5 The Bilinear Veri�ably Enrypted Signature

(Boneh, Gentry, Lynn, Shaham [12℄, 2003)

When Alie wants to sign a message for Bob but does not want Bob to possess her signature on

the message immediately, Alie enrypts her signature using the publi key of a trusted third party

(adjudiator), and sending the result to Bob along with a proof that she has given him a valid

enryption of her signature. Bob an verify that Alie has signed the message but an not dedue

any information about her signature. Later in the protool, Bob an either obtain the signature

from Alie or resort to the adjudiator who an reveal Alie's signature.

� Protool Desription :

{ KeyGen : Consider the Co-GDH setup. Let H : f0; 1g

�

! G

2

be a Map-to-point hash funtion.

Choose x; x

0

2

R

Z

�

q

and set P

pub

= xP

1

; P

0

pub

= x

0

P

1

. The private/publi key pair for signer is (x; P

pub

)

and that of the adjudiator is (x

0

; P

0

pub

).

{ Sign, Verify : For a message m 2 f0; 1g

�

, the signature of a signer with private key x is

� = xH(m) 2 G

2

and the veri�ation is e(P

1

; �) = e(P

pub

; H(m)):

{ Veri�ably Enrypted Signature Creation : Given a seret key x 2 Z

�

q

, a message m 2 f0; 1g

�

and

an adjudiator's publi key P

0

pub

2 G

1

, ompute h = H(m) 2 G

2

and � = xh. Selet a random

r 2 Z

�

q

and set � = r (P

1

) and �

0

= r (P

0

pub

). Aggregate �; �

0

as w = (� + �

0

) 2 G

2

and output

the pair (w; �).

{ Veri�ably Enrypted Signature Veri�ation : Given a publi key P

pub

, a message m, an ad-

judiator's publi key P

0

pub

and a veri�ably enrypted signature (w; �), set h = H(m); aept if

e(P

1

; w) = e(P

pub

; h) e(P

0

pub

; �) holds.

{ Adjudiation : Given an adjudiator's publi key P

0

pub

and orresponding private key x

0

2

R

Z

�

q

, a

publi key P

pub

and a veri�ably enrypted signature (w; �) on some message m, ensure the veri�ably

enrypted signature is valid; then ompute � = w � x

0

�.

(Before giving the signature, the adjudiator must perform the validity test to prevent a maliious

user from triking him into signing arbitrary messages under his adjudiation key).

No involvement of adjudiator during generation of enrypted signature or its veri�ation. Adjudi-

ator involves only during signature revelation phase.

� Assumption :

Existene of Co-GDH group and a bilinear map.

� Seurity :

Seure against existential forgery and aggregate extration assuming that Co-GDH [13℄ signature
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sheme is seure against existential forgery and extration respetively. Co-GDH signature sheme

is infat the BLS signature sheme in Co-GDH setup.

� EÆieny :

{ KeyGen : 2 salar multipliations in G

1

.

{ Sign : 1 Map-to-point hash operation; 1 salar multipliation in G

2

.

{ Verify : 1 Map-to-point hash operation; 2 pairing omputations.

{ Veri�ably Enrypted Signature Creation : 1 Map-to-point hash operation; 3 salar multipliations

in G

2

; 1 addition in G

2

;

{ Veri�ably Enrypted Signature Veri�ation : 1 Map-to-point hash operation; 3 pairing omputa-

tions; 1 multipliation in G

T

.

{ Adjudiation : 1 salar multipliation in G

2

+ 1 inversion in G

2

.

4.6 Bilinear Ring Signature

(Boneh, Gentry, Lynn, Shaham [12℄, 2003)

Consider a set U of n users eah having a publi/private key pair. Ring signature on U is a sig-

nature that is onstruted using all these publi keys of the users in U , and a single private key of

any user in U . A ring signature has the property of signer-ambiguity : a veri�er is onvined that

the signature was produed using one of the private keys of U , but is not able to determine whih one.

� Protool Desription :

{ KeyGen : Consider the Co-GDH setup. Let H : f0; 1g

�

! G

2

be a Map-to-point hash funtion.

The seret key is x

i

2

R

Z

�

q

and the publi key is P

pub

i

= x

i

P

1

for user u

i

2 U .

{ Ring Signing : Given publi keys P

pub

1

; : : : ; P

pub

n

2 G

1

, a message m 2 f0; 1g

�

, and a private key

x

s

for a ertain s; 1 � s � n, hoose a

i

2

R

Z

q

for all i 6= s, ompute h = H(m) 2 G

2

and set

�

s

=

1

x

s

(h�  (

X

i 6=s

a

i

P

pub

i

)):

For all i 6= s, let �

i

= a

i

P

2

. Output the ring signature � = (�

1

; : : : ; �

n

) 2 G

n

2

.

{ Ring Veri�ation : Given publi keys P

pub

1

; : : : ; P

pub

n

2 G

1

, a message m 2 f0; 1g

�

, and a ring

signature �, ompute h = H(m) and verify e(P

1

; h) =

Q

n

i=1

e(P

pub

i

; �

i

):

� Assumption :

Existene of Co-GDH group and a bilinear map.

� Seurity :

The identity of the signer is unonditionally proteted and the sheme is resistant to forgery in the

random orale model assuming that the Co-CDH problem is hard in (G

1

; G

2

).

� EÆieny :

{ KeyGen : n salar multipliations in G

1

.
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{ Ring Signing : 1 inversion in Z

�

q

; 1 Map-to-point hash operation; (n� 1) salar multipliations in

G

2

; (n� 1) salar multipliations in G

1

; 1 inversion in G

2

.

{ Ring Veri�ation : 1 Map-to-point hash operation; (n+ 1) pairing omputations.

4.7 ZSS Short Signature Sheme

(Zhang, Safavi-Naini, Susilo, [42℄, 2004)

� Protool Desription :

{ KeyGen : Let H : f0; 1g

�

! Z

�

q

be a hash funtion. The seret key is x2

R

Z

�

q

and the publi key

is P

pub

= xP for a signer.

{ Sign : Given a seret key x and a message m 2 f0; 1g

�

, ompute signature S =

1

H(m)+x

P:

{ Verify : Given a publi key P

pub

, a message m and a signature S, verify e(H(m)P + P

pub

; S) =

e(P; P ):

� Assumption :

(k + 1)-exponent problem is hard.

� Seurity :

Existentially unforgeable under an adaptive hosen message attak in the random orale model

assuming that (k + 1)-exponent problem is hard.

� EÆieny :

{ KeyGen : 1 salar multipliation in G

1

.

{ Sign : 1 inversion in Z

�

q

; 1 hash funtion (H) evaluation; 1 salar multipliation in G

1

.

{ Verify : 2 pairing omputation (one of whih, e(P; P ) an be preomputed); 1 salar multipliation

in G

1

; 1 hash funtion (H) evaluation; 1 addition in G

1

.

This sheme is more eÆient than BLS sheme as it requires less pairing omputation and no om-

putation of the expensive speial hash funtion Map-to-point that enodes �nite strings to elements

of group G

1

.

4.8 ID-Based Blind Signature Sheme (Shnorr type)

(Zhang, Kim [41℄, 2002)

� Protool Desription :

{ Setup : Let H : f0; 1g

�

! G

1

be a Map-to-point hash funtion. Consider another hash funtion

H

1

: f0; 1g

�

� G

2

! Z

q

. Choose s2

R

Z

�

q

and set P

pub

= sP . The master key is s and the global

publi key is P

pub

.

{ Extrat : Given signer's publi identity ID 2 f0; 1g

�

, ompute the publi key Q

ID

= H

1

(ID) and

the private key S

ID

= sQ

ID

.
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{ Blind Signature Issuing Protool : Given a signer's private key S

ID

and a message m 2 f0; 1g

�

,

{(Initialization) The signer randomly hooses a number r 2 Z

q

, omputes R = rP and sends R

to the user as a ommitment.

{(Blinding) The user randomly hooses a; b 2 Z

�

q

as blinding fators, omputes  = H(m; e(bQ

ID

+

R + aP; P

pub

)) + b and sends  to the signer.

{(Signing) The signer sends bak S, where S = S

ID

+ rP

pub

.

{(Unblinding) The user omputes S

0

= S + aP

pub

and 

0

=  � b and outputs (m;S

0

; 

0

). Then

(S

0

; 

0

) is the blind signature of the message m.

{ Veri�ation : Aept if and only if 

0

= H(m; e(S

0

; P )e(Q

ID

; P

pub

)

�

0

):

� Assumption :

ROS-problem is hard.

� Seurity :

Seure against one more forgery in the random orale model under the assumption that ROS prob-

lem is hard.

� EÆieny :

{ Setup : 1 salar multipliation in G

1

.

{ Extrat : 1 Map-to-point hash operation; 1 salar multipliation in G

1

.

{ Blind Signature Issuing Protool : 6 salar multipliations in G

1

; 1 pairing omputation; 1 hash

funtion (H) evaluation; 1 addition in Z

q

; 4 additions in G

1

; 1 inversion in Z

q

.

{ Veri�ation : 1 hash (H) funtion evaluation; 2 pairing omputations; 1 exponentiation in G

2

.

4.9 ID-Based Ring Signature

(Zhang, Kim [41℄, 2002)

� Protool Desription :

{ Setup : Let H

1

: f0; 1g

�

! G

1

be a Map-to-point hash funtion and H : f0; 1g

�

! Z

�

q

be another

hash funtion. Choose s2

R

Z

�

q

and set P

pub

= sP . The master key is s and the global publi key is

P

pub

.

{ Extrat : Given publi identity ID 2 f0; 1g

�

, ompute the publi key Q

ID

= H

1

(ID) and the seret

key S

ID

= sQ

ID

.

Let ID

i

be a user's identity and S

ID

i

be the private key assoiated with ID

i

for i = 1; : : : ; n. Let

L = fID

i

: 1 � i � ng be the set of identities. The real signer's identity ID

k

is listed in L.
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{ Signing : Given signer's private key S

ID

k

and a message m 2 f0; 1g

�

,

{(Initialization) : Choose randomly an element A 2 G

1

and ompute 

k+1

= H(Ljjmjje(A; P )).

{(Generate forward ring sequene) : For i = k + 1; : : : n � 1; 0; 1; : : : ; k � 1, hoose randomly

T

i

2 G

1

and ompute 

i+1

= H(Ljjmjje(T

i

; P )e(

i

H

1

(ID

i

); P

pub

)):

{(Forming the ring) : Compute T

k

= A� 

k

S

ID

k

.

{(Output the ring signature) : The resulting signature for m and L is the (n + 1)-tuple :

(

0

; T

0

; T

1

; : : : ; T

n�1

).

{ Veri�ation : Given (

0

; T

0

; T

1

; : : : ; T

n�1

), m and L, ompute



i+1

= H(Ljjmjje(T

i

; P )e(

i

H

1

(ID

i

); P

pub

)) for i = 0; 1; : : : n� 1. Aept if 

n

= 

0

and rejet other-

wise.

� Assumption :

CDH problem is hard.

� Seurity :

The sheme is unonditionally signer-ambiguous and non-forgeable in the random orale model un-

der the assumption that CDH problem is hard.

� EÆieny :

{ Setup : 1 salar multipliation in G

1

.

{ Extrat : 1 Map-to-point hash operation; 1 salar multipliation in G

1

.

{ Signing : n hash funtion (H) evaluation; (2n� 1) pairing omputations.

{ Veri�ation : 2n pairing omputations; n hash funtion (H) evaluation.

4.10 ID-Based Signature from Pairing

(Hess, [26℄, 2002)

� Protool Desription :

{ Setup : Choose s2

R

Z

�

q

and set P

pub

= sP . The master key is s and the global publi key is P

pub

.

Let H

1

: f0; 1g

�

! G

1

be a Map-to-point hash funtion and H : f0; 1g

�

�G

2

! Z

�

q

be another hash

funtion.

{ Extrat : Given a publi identity ID 2 f0; 1g

�

, ompute the publi identity Q

ID

= H

1

(ID) and the

seret key S

ID

= sQ

ID

.

{ Sign : Given a seret key S

ID

and a message m 2 f0; 1g

�

, the signer hooses an arbitrary P

1

2 G

�

1

and a random k 2 Z

�

q

and omputes

1. r = e(P

1

; P )

k

,

2. v = H(m; r),
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3. u = vS

ID

+ kP

1

:

The signature is then the pair (u; v) 2 G� Z

�

q

.

{ Verify : Given a publi key Q

ID

, a message m and a signature (u; v) the veri�er omputes :

1. r = e(u; P )e(Q

ID

;�P

pub

)

v

2. Aept the signature if and only if v = H(m; r).

� Assumption :

Weak-DH problem is hard.

� Seurity :

Seure against existential forgery under adaptive hosen message attak in the random orale model

assuming Weak-DH problem is hard.

� EÆieny :

{ Setup : 1 salar multipliation in G

1

.

{ Extrat : 1 Map-to-point hash operation; 1 salar multipliation in G

1

.

{ Sign : The signing operation an be optimized by the signer pre-omputing e(P

1

; P ) for P

1

of

his hoie, for example P

1

= P , and storing this value with the signing key. This means that the

signing operation involves one exponentiation in the group G

2

, one hash funtion (H) evaluation

and one simultaneous multipliation in the group G

1

.

{ Verify : The veri�ation operation requires one exponentiation in G

2

, one hash funtion (H)

evaluation and two evaluations of the pairing. One of the pairing evaluation an be eliminated,

if a large number of veri�ations are to be performed for the same identity, by pre-omputing

e(Q

ID

;�P

pub

).

This sheme is very eÆient in terms of ommuniation requirements. One needs to transmit one

element of the group G

1

and one element of Z

�

q

.

4.11 Unique Signature Sheme Without Random Orale

(Lysyanskaya [33℄, 2002)

Unique signature shemes, also known as invariant signature shemes, are seure signature shemes

where the signature is a hard-to-ompute funtion of the publi key and the message. One must

verify a signature again even if it has been aepted before. Beause this time the signature may

ome from an unauthorized party. If a signature sheme allows the signer to easily generate many

signatures on the same message, then it simply leads to denial-of-servie attak on a veri�er who

is fored to verify many signatures on the same message. This illustrates that intutively unique

signatures are desirable. Boneh and Silverberg [15℄ proposed a unique signature sheme based on

the existene of multi-linear maps. Currently, no suh suitable maps are known and the existene

of suh maps is presently a researh problem [15℄. Lysyanskaya proposed a unique signature sheme

based on this idea while making use of bilinear pairing. This sheme is proved to be seure in the

standard model under Many-DH assumption.
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� Protool Desription :

{ KeyGen : Choose n pairs of random elements in Z

�

q

: (a

1;0

; a

1;1

); (a

2;0

; a

2;1

); : : : ; (a

n;0

; a

n;1

): This

is the seret key for a signer. Compute A

i;b

= a

i;b

P; 1 � i � n; b 2 f0; 1g: The publi key for the

signer is P

pub

= fA

i;0

; A

i;1

j1 � i � ng:

{ Sign : Assume that the messages being signed are n-bit odewords of a ode of distane Cn,

where 0 < C � 1=2 is a onstant. Given the seret key and an n-bit odeword m = m

1

Æm

2

Æ: : :Æm

n

,

output the signature

� = fs

m;i

= (

i

Y

j=1

a

j;m

j

)P : 1 � i � ng:

{ Verify : Let s

m;0

= 1. Given the publi key P

pub

, verify that, for all i; 1 � i � n, e(P; s

m;i

) =

e(s

m;i�1

; A

i;m

i

):

Graphially, we view the message spae as the leaves of a balaned binary tree of depth n. Eah

internal node of the tree is assigned a label, as follows : the label of the root is P . The label of a

hild, denoted l



is obtained from the label of it's parent, denoted l

p

as follows : if the depth of the

hild is i, and it is the left hild, then its label is l



= a

i;0

l

p

, while if it is the right hild, its label

will be l



= a

i;1

l

p

. The signature on an n-bit message onsists of all the labels on the path from the

leaf orresponding to this message all the way to the root. To verify the orretness of a signature,

the fat that Deision DiÆe-Hellman is easy in G

1

is used.

� Assumption :

Existene of GDH group, Many-DH problem is hard.

� Seurity :

Provably seure against existential forgery under adaptive hosen message attak in the standard

model assuming the underlying group is a GDH group and the hardness of Many-DH problem.

� EÆieny :

{ KeyGen : 2n salar multipliations in G

1

.

{ Sign : n salar multipliations in G

1

, (n� 1) multipliations in Z

�

q

.

{ Verify : 2n pairing omputations.

4.12 An Authentiation-Tree Based Seure Signature Sheme Without

Random Orale

(Boneh, Mironov, Shoup [14℄, 2003)

In an authentiation-tree based sheme, signatures are produed that represent paths onneting

messages and the root of the tree. Messages are usually plaed in the very bottom level of the

tree. The authentiation mehanism works indutively : the root authentiates its hildren, they

authentiate their hildren, and so on, down to the message authentiated by its parent.
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� Protool Desription :

{ KeyGen : Consider a keyed family of ollision resistant hash funtions H

k

:M! f0; 1g

s

where

M is the message spae. The signature sheme allows signing l

n

messages, where l and n are arbi-

trary positive integer, n is the branhing fator of the authentiation tree.

1. Pik randomly �

i

2 Z

�

q

; 1 � i � n and Q2

R

G

1

. Choose a random key k for the ollision resistant

hash funtion H

k

. Compute Q

1

= (1=�

1

)Q; : : : ; Q

n

= (1=�

n

)Q 2 G

1

.

2. Pik randomly R 2 G

1

. Compute y = e(R;Q).

3. Pik randomly �

0

2 Z

q

. Compute x

0

= y

�

0

.

4. The publi key for a signer is (k;Q;Q

1

; : : : ; Q

n

; y; x

0

) and the orresponding private key is

(�

1

; �

2

; : : : ; �

n

; �

0

; R).

{ Sign : Eah node in the tree is authentiated with respet to its parent; messages to be signed are

authentiated with respet to the leaves, whih are seleted in sequential order and never reused. To

sign i-th message m 2 M, the signer generates the i-th leaf of the authentiated tree together with

a path from the leaf to the root. Denote the path from leaf to root by (x

l

; i

l

; x

l�1

; i

l�1

; : : : ; i

1

; x

0

) :

x

j

is the i

j

-th hild of x

j�1

(i

j

2 f1; : : : ; ng).

1. x

j

= y

�

j

for some �

j

2

R

Z

�

q

; 1 � j � l. The seret �

j

is stored for as long as node x

j

is an ansestor

of the urrent signing leaf.

2. Compute f

j

= �

i

j

(�

j�1

+H

k

(x

j

))R. This is the authentiated value of x

j

, the i

j

-th hild of x

j�1

.

3. Compute f = (�

l

+H

k

(m))R. This is the authentiated value of m.

4. The signature on m is (f; f

l

; i

l

; : : : ; f

1

; i

1

).

{ Verify : Given a signature (

^

f;

^

f

l

;

^

i

l

; : : : ;

^

f

1

;

^

i

1

) on a message m, do the followings :

1. Compute x̂

l

= e(

^

f;Q)y

�H

k

(m)

.

2. Compute x̂

j�1

= e(

^

f

j

; Q

i

j

)y

�H

k

(x̂

j

)

for l � j � 1.

3. Aept the signature if x̂

0

= x

0

.

� Assumption :

CDH problem is hard.

� Seurity :

Provably seure against existential forgery against adaptive hosen message attak assuming that

the CDH problem is hard.

� EÆieny :

{ KeyGen : n salar multipliations in G

1

; 1 pairing omputation; 1 exponentiation in G

2

.

{ Sign : l exponentiations in G

2

; (l + 1) hash funtion (H

k

) evaluations; (l + 1) additions in Z

�

q

; l

multipliations in Z

�

q

, l salar multipliations in G

1

.

{ Verify : (l+1) pairing omputations; (l+1) hash funtion (H

k

) evaluations; (l+1) exponentiations

in G

2

; (l + 1) multipliations in G

2

.
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4.13 Short Signature Sheme Without Random Orale

(Boneh, Boyen [8℄, 2004)

� Protool Desription :

{ KeyGen : The seret key is (x; y)2

R

Z

�

q

� Z

�

q

and the publi key is (P; U; V ) where U = xP and

V = yP for a signer. The messages are assumed to be elements of Z

�

q

.

{ Sign : Given a seret key (x; y), a message m 2 Z

�

q

, hoose a random r 2 Z

�

q

and ompute

� =

1

x+m+yr

P . Here

1

x+m+yr

is omputed modulo q and the unlikely event x+m+ yr = 0 is avoided

by hoosing a di�erent r. The signature is (�; r).

{ Verify : Given a publi key (P; U; V ), a message m 2 Z

�

q

and a signature (�; r), verify e(�; U +

mP + rV ) = e(P; P ):

� Assumption :

q-SDH problem is hard.

� Seurity :

Seure against existential forgery under hosen message attak under SDH assumption and without

using the random orale model.

� EÆieny :

{ KeyGen : 2 salar multipliations in G

1

.

{ Sign : 1 inversion in Z

�

q

; 1 salar multipliation in G

1

.

{ Verify : 2 salar multipliation in G

1

; 2 additions in G

1

; 2 pairing omputations one of whih,

e(P; P ) an be preomputed.

5 Key Agreement Shemes

Key agreement is one of the fundamental ryptographi primitives. This is required when two

or more parties want to ommuniate seurely. In one of the breakthroughs in key agreement,

Joux [27℄ proposed a three party single round key agreement protool using pairing. This was the

�rst positive appliation of bilinear pairing in ryptography. Afterwards, pairings were used widely

to get a large number of ryptographi protools some of whih have been previously mentioned.

Several key agreement protools were proposed that prevents man-in-the-middle attak against a

passive adversary. These protools are alled unauthentiated. The protools for authentiated

key agreement enables a group of parties within a large and ompletely inseure publi network

to establish a ommon seret key and furthermore ensures that they are indeed sharing this key

with eah other. Ahieving authentiated key agreement are ruial for allowing symmetri-key

enryption/authentiation of data among the parties. Authentiated key agreement protools are

the basi tools for group-oriented and ollaborative appliations suh as, distributed simulation,

multi-user games, audio or video-onferening, and also peer-to-peer appliation that are likely to

involve a large number of users. These are used to onstrut seure hannels whih are the base

for desiging, analyzing and implimenting higher-level protools in a modular approah. A formal
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model of seurity for group authentiated key agreement an be found in [16℄. Muh researh work

remaines to be done in this area.

5.1 Joux's One Round Three Party Key Agreement Protool

(Joux [27℄, 2000)

� Protool Desription :

Consider three parties A;B;C with seret keys a; b;  2 Z

�

q

respetively.

A sends aP to both B;C

B sends bP to both A;C

C sends P to both A;B

A omputes K

A

= e(bP; P )

a

B omputes K

B

= e(aP; P )

b

C omputes K

C

= e(aP; bP )



Common agreed key of A;B;C is K

ABC

= K

A

= K

B

= K

C

= e(P; P )

ab

:

� Assumption :

BDH problem is hard.

� Seurity :

Seure against passive adversary under the assumption that BDH problem is hard.

� EÆieny :

{ Communiation : Round required is 1; group elements (of G

1

) sent are 3.

{ Computation : 3 salar multipliations in G

1

; 3 pairing omputations; 3 exponentiations in G

2

.

5.2 Extending Joux's Protool to Multi Party Key Agreement

(Barua, Dutta, Sarkar, [2℄, 2003)

� Protool Desription :

Let H : G

2

! Z

�

q

be a hash funtion. Consider the set of n users U = f1; 2; : : : ; ng. Let p = b

n

3



and r = n mod 3. The set U is partitioned into three user sets U

1

; U

2

; U

3

with ardinality p; p; p re-

spetively if r = 0 or with ardinality p; p; p+1 respetively if r = 1 or with ardinality p; p+1; p+1

respetively if r = 2.

This top down proedure is used reursively for further partitioning. Essentially a ternary tree

struture is obtained. The lower level 0 onsists of singleton users having a seret key. Key agree-

ment is done by invoking the proedure CombineTwo for user sets of two users and the proedure

CombineThree for user sets of three users in the key tree as desribed below. With this tree stru-

ture, CombineTwo is never invoked above level 1.
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proedure CombineThree (3-group DH protool)

Consider three user sets U

1

; U

2

; U

3

with s

1

; s

2

; s

3

2 Z

�

q

respetively as their private keys. Let Rep(U

i

)

be the representative of the user set U

i

.

Rep(U

1

) sends s

1

P to all members of both U

2

; U

3

;

Rep(U

2

) sends s

2

P to all members of both U

1

; U

3

;

Rep(U

3

) sends s

3

P to all members of both U

1

; U

2

;

eah member of U

1

omputes H(e(s

2

P; s

3

P )

s

1

);

eah member of U

2

omputes H(e(s

1

P; s

3

P )

s

2

);

eah member of U

3

omputes H(e(s

1

P; s

2

P )

s

3

);

Common agreed key of user sets U

1

; U

2

; U

3

is H(e(P; P )

s

1

s

2

s

3

);

proedure CombineTwo (2-group DH protool)

Consider two user sets U

1

; U

2

with s

1

; s

2

2 Z

�

q

respetively as their private keys and Rep(U

i

) is the

representative of the user set U

i

.

Rep(U

1

) generates s 2 Z

�

q

at random and sends sP to the rest of the users;

Rep(U

1

) sends s

1

P to all members of U

2

;

Rep(U

2

) sends s

2

P to all members of U

1

;

eah member of U

1

omputes H(e(s

2

P; sP )

s

1

);

eah member of U

2

omputes H(e(s

1

P; sP )

s

2

);

Common agreed key of user sets U

1

; U

2

is H(e(P; P )

s

1

s

2

s

);

� Assumption :

DHBDH problem is hard.

� Seurity :

Seure against passive adversary under the assumption that DHBDH problem is hard.

� EÆieny :

{ Communiation : Rounds required is dlog

3

ne; group elements (of G

1

) sent are ndlog

3

ne.

{ Computation : <

5

2

(n� 1) salar multipliations in G

1

; ndlog

3

ne pairing omputations; ndlog

3

ne

exponentiations in G

2

; ndlog

3

ne hash funtion (H) evaluation.

6 Threshold Shemes

The idea behind the (t; n)-threshold ryptosystem approah is to distribute seret information (i.e.

the seret key) and omputation (i.e. signature generation or deryption) among n parties in order

to remove single point failure. The goal is to allow a subset of more than t players to jointly
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reonstrut a seret and perform the omputation while preserving seurity even in the presene of

an ative adversary whih an orrupt upto t (a threshold) parties. The seret key is distributed

among n parties with the help of a trusted dealer or without it by running an interative protool

among all parties.

6.1 Threshold Signature Sheme

(Boldyreva, [6℄, 2003)

� Protool Desription :

{ KeyGen : Let H : f0; 1g

�

! G

1

be a Map-to-point hash funtion. Suppose there are n servers

u

i

; 1 � i � n. The private key x 2 Z

�

q

is shared among these users using Shamir's seret sharing

sheme suh that any subset S of t+ 1 servers an reonstrut x using Lagrange interpolation :

x =

X

i2S

L

i

x

i

;

where L

i

=

Q

j2S

�x

j

(x

i

�x

j

)

is the Lagrange o-eÆient, x

i

is the private key share and P

pub

i

= x

i

P is

the publi key share of user u

i

.

{ Signature Share Generation : To sign a message m 2 f0; 1g

�

, user u

i

outputs �

i

= x

i

H(m).

{ Signature Share Veri�ation : Given m; �

i

; P

pub

i

, anyone an hek whether user u

i

is honestly

behaving in giving it's share �

i

of signature by heking

e(P; �

i

) = e(P

pub

i

; H(m)):

If �

i

passes through this test, all it an aeptable share.

{ Signature Reonstrution : Suppose a set S of (t + 1) honest servers are found and aordingly

(t+ 1) aeptable shares �

i

; i 2 S. The resulting signature on m is � =

P

i2S

L

i

�

i

.

The orretness of the sheme is easy to verify sine

e(P; �) = e(H(m); xP ):

� Assumption :

Existene of GDH group.

� Seurity :

Seure in the random orale model against an adversary whih is allowed to orrupt any t < n=2

players under the assumption that the underlying group is GDH.

� EÆieny :

{ KeyGen : n salar multipliations in G

1

.

{ Signature Share Generation : For eah user, 1 Map-to-point hash operation; 1 salar multipliation

in G

1

.

{ Signature Share Veri�ation : 2 pairing omputations; 1 Map-to-point hash operation.

{ Signature Reonstrution : (t+1) salar multipliations in G

1

; t additions in G

1

; (t+1) Lagrange

o-eÆient (L

i

) omputations.
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6.2 Pairing Based (t; n)-Threshold Deryption

(Libert, Quisquater [31℄, 2003)

The following sheme is a threshold adaption of the Boneh-Franklin IBE sheme where a �xed PKG

plays the role of a trusted dealer.

� Protool Desription:

{ KeyGen : Choose a (t � 1)-degree polynomial f(x) = s + a

1

x + � � � + a

t�1

x

t�1

for random

a

1

; : : : ; a

t�1

2 Z

�

q

. For i = 1; 2; : : : ; n, ompute P

(i)

pub

= f(i)P 2 G

1

and P

pub

= sP .

Let H

1

: f0; 1g

�

! G

1

be a Map-to-point hash funtion and H

2

: G

2

! f0; 1g

l

be another hash

funtion.

Before requesting his private share, eah player an hek that

P

i2S

L

i

P

(i)

pub

= P

pub

for any subset

S � f1; : : : ; ng suh that jSj = t where L

i

denotes the appropriate Lagrange o-eÆient expliitely

given by the formula

L

i

=

Y

j2S

�x

j

(x

i

� x

j

)

:

Given a user's identity ID 2 f0; 1g

�

, the PKG playes the role of the trusted dealer. For i = 1; : : : ; n,

it delivers d

ID

i

= f(i)Q

ID

2 G

1

to player i. After reeiving d

ID

i

, player i heks

e(P

(i)

pub

; Q

ID

) = e(P; d

ID

i

):

If veri�ation fails, he omplains to the PKG whih then issues a new share.

{ Enrypt : Given message m 2 f0; 1g

l

and identity ID, ompute Q

ID

= H

1

(ID). Choose a random

r 2 Z

�

q

and set the iphertext to be C = hrP;m�H

2

(e(P

pub

; Q

ID

)

r

)i:

{ Deryption Share Generation : When reeiving hU; V i, player i omputes his deryption share

e(U; d

ID

i

) and gives it to the reombiner who may be a designated player.

{ Reombination : The reombiner selets a set S � f1; : : : ; ng of t aeptable share e(U; d

ID

i

) and

omputes

g =

Y

i2S

e(U; d

ID

i

)

L

i

:

One he has g, he reovers the plaintext m = V �H

2

(g):

Corretness of the sheme is easy to verify sine g = e(rP;

P

i2S

L

i

d

ID

i

) = e(rP; sQ

ID

) = e(P

pub

; Q

ID

)

r

:

To hek publily whether the share of a player is aeptable or not, do the following :

Eah player hooses a random R 2 G

1

and omputes w

1

= e(P;R); w

2

= e(U;R) and h =

H(e(U; d

ID

i

); e(P

pub

; Q

ID

); w

1

; w

2

): Next, player i omputes V = R + hd

ID

i

2 G

1

and joins the tuple

(w

1

; w

2

; h; V ) to it's share. The other players an hek that

e(P; V ) = e(P;R)e(P

(i)

pub

; Q

ID

)

h

e(U; V ) = e(U;R)e(U; d

ID

i

)

h

:
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If this test fails, player i is a dishonest player.

� Assumption :

BDH problem is hard.

� Seurity :

This threshold IBE sheme is provably seure against hosen plaintext attaks in the ID-based set-

ting under the BDH assumption.

� EÆieny :

{ KeyGen : n funtion (f) evaluation; (2n+1) salar multipliations inG

1

; 2n pairing omputations.

{ Enrypt : 1 Map-to-point hash operation; 1 hash funtion (H

2

) evaluation; 1 XOR operation; 1

exponentiation in G

2

; 1 salar multipliation in G

1

.

{ Deryption Share Generation : For eah share holder, 1 pairing omputation.

{ Reombination : jSj pairing omputations; (jSj�1) multipliations in G

2

; jSj Lagrange o-eÆient

omputations.

6.3 ID-based (t; n)-Threshold Deryption

(Baek, Zheng [1℄, 2003)

Consider the following senario : Alie wishes to send a on�dential message to a ommittee in an

organization. She an �rst enrypt the message using the identity of the ommittee and then send

over the iphertext. Suppose Bob who is the ommittee's president has reated the identity and

has obtained a mathing private deryption key from the PKG. Preparing for the time when Bob is

away, he an share his private key out among a member of deryption server in suh a way that any

ommittee member an suessfully derypt the iphertext if and only if the ommittee member

obtains a ertain number of deryption shares from the deryption servers. i.e. Bob himself plays

the role of a trusted dealer.

The following sheme provides the feature that a user who obtained a private key from the PKG an

share the key among deryption servers at will. After key generation, the PKG an be losed. Also

this protool ahieves hosen iphertext seurity under BDH assumption in random orale model.

� Protool Desription :

{ KeyGen : PKG hooses x2

R

Z

�

q

and omputes P

pub

= xP . The master key of PKG is x and the

publi key is P

pub

. Consider four hash funtions : H

1

: G

2

! f0; 1g

l

, H

2

: G

1

� f0; 1g

l

! G

1

,

H

3

: f0; 1g

�

! G

1

, H

4

: G

3

2

! Z

�

q

. H

3

is a Map-to-point hash funtion.

{ Extrat : Given an identity ID 2 f0; 1g

�

, ompute Q

ID

= H

3

(ID); D

ID

= xQ

ID

and returns D

ID

.

{ Private Key Distribution : Given a private key D

ID

, n deryption shares and a threshold

parameter t � n, pik randomly R

1

; R

2

; : : : ; R

t�1

2 G

�

1

and ompute

F (u) = D

ID

+ uR

1

+ u

2

R

2

+ : : :+ u

t�1

R

t�1
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for u 2 f0g [ N . Compute S

i

= F (i); y

i

= e(S

i

; P ); 1 � i � n and sends (S

i

; y

i

) seretly to server

�

i

; 1 � i � n. �

i

then keeps S

i

as seret while it publishes y

i

.

{ Enrypt : Given a plaintext m 2 f0; 1g

l

, identity ID 2 f0; 1g

�

, hoose r 2 Z

�

q

at random and set

U = rP . Compute Q

ID

= H

3

(ID); d = e(Q

ID

; P

pub

), � = d

r

, V = H

1

(�) �m, W = rH

2

(U; V ) and

set the iphertext to be C = (U; V;W ).

{ Deryption Share Generation : Given a iphertext C = (U; V;W ), deryption server �

i

with seret

key S

i

omputes H

2

= H

2

(U; V ) and heks if e(P;W ) = e(U;H

2

).

If the test holds then ompute

�

i

= e(S

i

; U);

e

�

i

= e(Q

i

; U);

e

y

i

= e(Q

i

; P ); �

i

= H

4

(�

i

;

e

�

i

;

e

y

i

); L

i

= Q

i

+ �

i

S

i

;

where Q

i

is hosen randomly from G

1

. Output Æ

i

= (i; �

i

;

e

�

i

;

e

y

i

; L

i

).

{ Deryption Share Veri�ation : Given a iphertext C = (U; V;W ) and a deryption share Æ

i

=

(i; �

i

;

e

�

i

;

e

y

i

; L

i

), ompute �

i

= H

4

(�

i

;

e

�

i

;

e

y

i

). Chek if

e(L

i

; U)

�

�

i

i

=

e

�

i

;

e(L

i

; P )

y

�

i

i

=

e

y

i

:

If the above test holds, then share Æ

i

of server �

i

is an aeptable share. Given aeptable shares

S

j

; j 2 S � f1; : : : ; ng where jSj � t, D

ID

an be reovered as follows :

D

ID

= F (0) =

X

j2S



oj

S

j

;



0j

are appropriate Lagrange o-eÆients.

{ Share Combining : Given a iphertext C = (U; V;W ) and a set of deryption shares fÆ

j

g

j2S�f1;2;:::;ng

where jSj � t, ompute H

2

= H

2

(U; V ), hek if e(P;W ) = e(U;H

2

). If C passes this test (i.e. C

is a valid iphertext), ompute � =

Q

j2S

�



0j

j

and m = H

1

(�)� V . Output m.

The orretness of the sheme is easy to verify sine

Y

j2S

�



0j

j

=

Y

j2S

e(S

j

; U)



0j

= e(

X

j2S



0j

S

j

; U) = e(

X

j2S



0j

S

j

; rP ) = e(D

ID

; P )

r

:

� Assumption :

BDH problem is hard.

� Seurity :

This protool ahieves hosen iphertext seurity in the random orale model under BDH assump-

tion.

� EÆieny :

{ KeyGen : 1 salar multipliation.

{ Extrat : 1 Map-to-point hash operation; 1 salar multipliation in G

1

.

35



{ Private Key Distribution : For eah share holder, (t � 1) salar multipliations in G

1

; (t � 1)

additions in G

1

; 1 pairing omputation.

{ Enrypt : 1 salar multipliation; 1 Map-to-point hash operation; 1 pairing omputation; 1 expo-

nentiation in G

2

.

{ Deryption Share Generation : For eah share holder, 1 hash funtion H

2

evaluation, 5 pairing

omputations; 1 hash funtion H

4

evaluation; 1 salar multipliation in G

1

; 1 addition in G

1

.

{ Deryption Share Veri�ation : 1 hash funtion H

4

evaluation; 2 pairing omputations; 2 expo-

nentiations in G

2

.

{ Share Combining : 1 hash funtionH

2

evaluation; 2 pairing omputations; jSj Lagrange o-eÆient

omputations; (jSj � 1) multipliations in G

2

; 1 hash funtion H

1

evaluation; 1 XOR operation.

7 Misellaneous Appliations

7.1 Key Sharing Sheme :

(Sakai, Ohgishi, Kasahara [38℄, 2000)

� Protool Desription :

Let H

:

f0; 1g

�

be a Map-to-point hash funtion.

The idea of Key Sharing Sheme is quite simple : Suppose a PKG has a master key s, and it issues

private keys to users of the form sP

y

, where P

y

= H

1

(ID

y

) and ID

y

2 f0; 1g

�

is the identity of user

y. Then users y and z have a shared seret that only they (and the PKG) may ompute, namely

e(sP

y

; P

z

) = e(P

y

; P

z

)

s

= e(P

y

; sP

z

):

They may use this shared seret to enrypt their ommuniations. This key sharing sheme is non-

interative and an be viewed as a type of \dual-identity-based enryption", where the word \dual"

indiates that the identities of both the sender and the reipient (rather than just the reipient) are

required as input into the enryption and deryption algorithm.

� Assumption :

BDH problem is hard.

� EÆieny :

For eah party, 1 pairing omputation for key sharing; 1 salar multipliation in G

1

; 1 Map-to-point

hash operation for private key extration.

7.2 ID-Based Chameleon Hashes from Bilinear Pairings :

(Zhang, Safavi- Naini, Susilo [45℄, 2003)

A hameleon hash funtion is a trapdoor one-way hash funtion : without knowledge of the as-

soiated trapdoor, the hameleon hash funtion is resistant to the omputation of pre-images and

ollisions. However, with the knowledge of the trapdoor, ollisions are eÆiently omputable.

Appliations : ID-based hameleon hash funtions an be used to onstrut ID-based hameleon
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signature shemes whih ahieves the goal of ID-based undeniable signature and is non-interative.

An ID-based hameleon signature sheme is an ID-based signature omputed over the ID-based

hameleon hash of m under the identity of the intended reipient. The reipient an verify that the

signature of a ertain message m is valid, but an not prove to others that the signer atually signed

m and not another message. Indeed, the reipient an �nd ollisions of the hameleon hash fun-

tion, thus �nding a message di�erent from m whih would pass the signature veri�ation proedure.

Sheme 1 :

� Protool Desription :

{ Setup : PKG hooses a random number s 2 Z

�

q

and sets P

pub

= sP . The master key of PKG is s

and the publi key is P

pub

. Consider a Map-to-point hash funtion H

0

: f0; 1g

�

! G

1

and another

hash funtion H

1

: f0; 1g

l

! Z

�

q

.

{ Extrat : A user submits his identity ID 2 f0; 1g

�

to PKG whih omputes the publi key as

Q

ID

= H

0

(ID) and returns S

ID

= sQ

ID

to the user as his private key.

{ Hash : Given a message m 2 f0; 1g

l

, hoose a random element R from G

1

, de�ne the hash as

Hash(ID; m;R) = e(R;P )e(H

1

(m)H

0

(ID); P

pub

):

{ Forge :

Forge(ID; S

ID

; m;R;m

0

) = R

0

= (H

1

(m)�H

1

(m

0

))S

ID

+R:

The forgery is orret beause

Hash(ID; m

0

; R

0

) = e(R

0

; P ) e(H

1

(m

0

)H

0

(ID); P

pub

)

= e((H

1

(m)�H

1

(m

0

))S

ID

+R;P ) e(H

1

(m

0

)H

0

(ID); P

pub

)

= e((H

1

(m)�H

1

(m

0

))S

ID

; P ) e(R;P ) e(H

1

(m

0

)H

0

(ID); P

pub

)

= e((H

1

(m)�H

1

(m

0

))H

0

(ID); P

pub

) e(R;P ) e(H

1

(m

0

)H

0

(ID); P

pub

)

= e(R;P ) e(H

1

(m)H

0

(ID); P

pub

)

= Hash(ID; m;R)

� Assumption :

BLS signature sheme is seure.

� Seurity :

Semantially seure and resistant to ollision forgery under ative attaks provided BLS signature

sheme is seure.

� EÆieny :

{ Setup : 1 salar multipiation.
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{ Extrat : 1 Map-to-point hash operation; 1 salar multipliation in G

1

.

{ Hash : 2 pairing omputations; 1 salar multipliation in G

1

; 1 Map-to-point hash operation; 1

hash funtion H

1

evaluation. Using preomputation for a = e(P; P ) and b = e(H

0

(ID); P

pub

), to

ompute the hameleon hash of a message m, the sender requires only 1 EC salar multipliation

of G

1

+ 2 group exponentiation in G

2

. i.e. R = rP;Hash(ID; m;R) = a

r

b

H

1

(m)

.

{ Forge : 2 hash funtion H

1

evaluation; 1 salar multipliation in G

1

; 1 subtration in Z

�

q

; 1 addi-

tion in G

1

.

Sheme 2 :

� Protool Desription:

{ Setup : PKG hooses a random number s 2 Z

�

q

and sets P

pub

= sP . The master key of PKG

is s and the publi key is P

pub

. Consider two hash funtionsH

0

: f0; 1g

�

! Z

�

q

andH

1

: f0; 1g

l

! Z

�

q

.

{ Extrat : Given an identity ID 2 f0; 1g

�

, ompute S

ID

=

1

s+H

0

(ID)

P . S

ID

is the private key orre-

sponding to the publi identity ID.

{ Hash : Given a message m 2 f0; 1g

l

, an identity ID 2 f0; 1g

�

and a random element R 2 G

1

,

de�ne

Hash(ID; m;R) = e(P; P )

H

1

(m)

e(H

0

(ID) + P

pub

; R)

H

1

(m)

{ Forge :

Forge(ID; S

ID

; m;R;m

0

) = R

0

= H

1

(m

0

)

�1

((H

1

(m)�H

1

(m

0

))S

ID

+H

1

(m)R):

The forgery is orret beause

Hash(ID; m

0

; R

0

) = e(P; P )

H

1

(m

0

)

e(H

0

(ID) + P

pub

; R

0

)

H

1

(m

0

)

= e(P;H

1

(m

0

)P ) e(H

0

(ID) + P

pub

; H

1

(m

0

)H

1

(m

0

)

�1

((H

1

(m)�H

1

(m

0

))S

ID

+H

1

(m)R))

= e(P;H

1

(m

0

)P ) e(H

0

(ID) + P

pub

; (H

1

(m)�H

1

(m

0

))S

ID

)e(H

0

(ID) + P

pub

; H

1

(m)R)

= e(P;H

1

(m

0

)P ) e(P; (H

1

(m)�H

1

(m

0

))P ) e(H

1

(ID) + P

pub

; H

1

(m)R))

= e(P; P )

H

1

(m)

e(H

1

(ID) + P

pub

; R)

H

1

(m)

= Hash(ID; m;R):

� Assumption :

ZSS signature sheme is seure.

� Seurity :

Semantially seure and resistant to ollision forgery under ative attaks, provided ZSS signature

sheme is seure.
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� EÆieny :

{ Setup : 1 salar multipliation in G

1

.

{ Extrat : 1 hash funtion H

0

evaluation; 1 addition in Z

�

q

; 1 multipliative inverse in Z

�

q

; 1 salar

multipliation in G

1

.

{ Hash : 2 pairing omputations; 1 hash funtion H

0

evaluation; 2 exponentiations in G

2

; 1 addition

in G

1

. Preomputing a = e(P; P ), to ompute the hameleon hash of a message m, the sender

only needs to ompute 1 EC salar multipliation of G

1

+ 1 group exponentiation in G

2

. i.e.

R = rS

ID

;Hash(ID; m;R) = a

(r+1)H

1

(m)

.

{ Forge : 2 hash funtion H

1

evaluations; 2 salar multipliations in G

1

; 1 subtration in Z

�

q

; 1

multipliative inverse in Z

�

q

.

7.3 Signryption Shemes

The idea of this primitive is to perform enryption and signature in a single logial step in order to

obtain on�dentiality, integrity, authentiation and non-repudiation more eÆiently than the sign-

then-enrypt approah. The drawbak of this latter situation is to expand the �nal iphertext size

and inrease the sender and reeiver's omputing time whih may be impratial for low bandwidth

network. Malone-Lee [34℄ de�nes extended seurity notions for ID-based signryption shemes.

7.3.1 Identity-Based Signryption

(Malone-Lee [34℄, 2003)

� Protool Desription

{ Setup : Choose s  

R

Z

�

q

and set P

Pub

= sP . The master key generated by the trusted party is

s and the publi key is P

pub

. Consider three hash funtions : H

1

: f0; 1g

�

! G

1

, H

2

: f0; 1g

�

! Z

�

q

and H

3

: G

2

! f0; 1g

l

.

{ Extrat(ID) : Compute Q

ID

= H

1

(ID), S

ID

= sQ

ID

. The seret key orresponding to identity

ID 2 f0; 1g

�

is S

ID

and the publi key is Q

ID

.

{ Signrypt(S

ID

a

; ID

b

; m) : For a message m 2 f0; 1; g

l

, ompute Q

ID

b

= H

1

(ID

b

). Choose x 

R

Z

�

q

and set U = xP . Compute r = H

2

(U jjm), W = xP

pub

, V = rS

ID

a

+W , y = e(W;Q

ID

b

), � = H

3

(y),

 = ��m. Send � = (; U; V )

{ Unsignrypt (ID

a

; S

ID

b

; �) : Compute Q

ID

a

= H

1

(ID

a

). Parse � as (; U; V ). Compute y =

e(S

ID

b

; U), � = H

3

(y),m = ��, r = H

2

(U jjm). Returnm if and only if e(V; P ) = e(Q

ID

a

; P

pub

)

r

e(U; P

pub

).

Consisteny onstraint : if � = Signrypt(S

ID

a

; ID

b

; m), then m = Unsignrypt(ID

a

; S

ID

b

; �).

This sheme is the result of a ombination of the simpli�ed version of Boneh and Franklin's IBE

ryptosystem with a varient of Hess's identity based signature.

� Assumption :

BDH problem is hard.
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� Seurity :

This protool ahieves the seurity IND-ISC-CCA (indistinguishability of identity-based signryp-

tions under hosen iphertext attak) and also the seurity EF-ISC-ACMA (existentially unforge-

ability of identity-based signryptions under adaptive hosen message attak) in the random orale

model assuming BDH problem is hard.

� EÆieny :

{ Setup : 1 salar multipliation in G

1

.

{ Extrat : 1 Map-to-point hash operation; 1 salar multipliation in G

1

.

{ Signrypt : 1 Map-to-point hash operation; 3 salar multipliations in G

1

; 1 hash funtion H

2

evaluation; 1 pairing omputation; 1 hash funtion H

3

evaluation; 1 XOR operation, 1 addition in

G

1

.

{ Unsignrypt : 1 Map-to-point hash operation; 4 pairing omputations; 1 hash funtion H

3

evalu-

ation; 1 XOR operation; 1 hash funtion H

2

evaluation; 1 exponentiation in G

2

.

The size of the ryptogram is n + 2jG

1

j when a message of n-bit is sent.

7.3.2 A New Identity-Based Signryption :

(Libert, Quisquater [32℄, 2003 )

� Protool Desription :

{ Setup : Choose s  

R

Z

�

q

and set P

pub

 sP . The seret key is s and the publi key is P

pub

.

Choose a seure symmetri ipher (E;D) with keyspae K

s

and iphertext spae C

s

. Also onsider

three hash funtions : H

1

: f0; 1g

�

! G

1

, H

2

: G

2

! K

s

and H

3

: C

s

� G

2

! Z

�

q

. H

1

is a

Map-to-point hash funtion.

{ Extrat(ID) : Compute Q

ID

= H

1

(ID), S

ID

= sQ

ID

. The seret key orresponding to the identity

ID 2 f0; 1g

�

is S

ID

and the publi key is Q

ID

.

{ Signrypt(S

ID

a

; ID

b

; m) : For a message m 2 f0; 1g

l

, ompute Q

ID

b

= H

1

(ID

b

). Choose x  

R

Z

�

q

and set �

1

= e(P; P

pub

)

x

, �

2

= H

2

(e(P

pub

; Q

ID

b

)

x

). Compute  = E

�

2

(m), r = H

3

(; �

1

), S =

xP

pub

� rS

ID

a

. Send � = (; r; S).

{Unsignrypt(ID

a

; S

ID

b

; �) : ComputeQ

ID

a

= H

1

(ID

a

). Parse � as (; r; S) and set �

1

= e(P; S) e(P

pub

; Q

ID

a

)

r

,

� = e(S;Q

ID

b

) e(Q

ID

a

; S

ID

b

)

r

, �

2

= H

2

(�), m = D

�

2

(). Aept if and only if r = H

3

(; �

1

).

� Assumption :

DBDH problem is hard.

� Seurity :

This protool ahieves IND-ISC-CCA seurity for on�dentiality and also EF-ISC-ACMA seurity

for unforgeability in the random orale model assuming DBDH problem is hard.

� EÆieny :

{ Setup : 1 salar multipliation in G

1

.
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{ Extrat : 1 Map-to-point hash operation; 1 salar multipliation in G

1

.

{ Signrypt : 1 Map-to-point hash operation; 2 pairing omputations; 1 hash funtion H

2

evalua-

tion; 1 exponentiation in G

2

; 1 symmetri key enryption; 1 hash funtion H

3

evaluation; 2 salar

multipliations in G

1

; 1 inversion in G

1

.

{ Unsignrypt : 1 Map-to-point hash operation; 4 pairing omputations; 2 exponentiations in G

2

;

1 hash funtion H

2

evaluation; 1 symmetri key deryption; 1 hash funtion H

3

evaluation.

7.4 Identi�ation Sheme based on GDH

(Kim, Kim, [29℄, 2002 )

Identi�ation sheme is a very important and useful ryptographi tool. It is an interative proto-

ol where a prover P, tries to onvine a veri�er V, of his identity. Only P knows the seret value

orresponding to his publi one, and the seret value allows to onvine V of his identity.

� Protool Desription :

{ KeyGen : Choose randomly a; b;  2 Z

�

q

and ompute aP , bP , P , v = e(P; P )

ab

. The seret key

is (a; b; ) and make aP , bP , P , v publi.

{ Protool ations between P and V : This sheme onsists of several rounds, eah of whih is

performed as follows :

1. P hooses randomly r

1

; r

2

; r

3

2 Z

�

q

and omputes x = e(P; P )

r

1

r

2

r

3

, Q

1

= r

1

P , Q

2

= r

2

P and

Q

3

= r

3

P and sends hx;Q

1

; Q

2

; Q

3

i to V.

2. V pikd w 2 Z

�

q

at random and sends w to P.

3. P omputes y = e(wP; P )

ab

e(P; P )

r

1

r

2

r

3

and sends to V; V aepts if y = v

w

x and rejets

otherwise.

� Assumption :

Existene of GDH group.

� Seurity :

Seure against ative attaks assuming that the underlying group is a GDH group.

� EÆieny :

{ KeyGen : 3 salar multipliations in G

1

; 1 pairing omputations.

{ Protool ations between P and V : 3 pairing omputations and 4 salar multipliations in G

1

for

P; 1 exponentiation in G

2

and 1 multipliation in G

2

for V.

7.5 Other Signature Shemes

There are a large number of ryptographi protools that uses pairings. Disussing every prototool

is beyond the sope of the paper. This subsetion inludes a list of few other interesting signature

shemes that have various ryptographi appliations in digital world. For details, see the refer-

enes [3℄.
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1. Optimisti Fair Exhange [21℄.

2. Non-Interative Deniable Ring Authentiation [44℄.

3. A New Vari�ably Enrypted Signature Sheme [43℄.

4. Partially Blind Signature Sheme [43℄.

5. ID-Based Group Signature Sheme [18℄.

6. Delegation-By-Certi�ate Proxy Signature Sheme [7℄.

7. Hierarhial ID-Based Signatures (HIDS) Sheme [25℄.

8 Conlusion

Several ryptographi primitives using pairings have been desribed in this survey. Some others

have been left out, mainly due to the non-availability of proper seurity proofs. The area is still

growing and almost eah onferene proeedings inlude some new proposals. On the other hand,

we have overed the basi shemes whih will ontinue to be referred in the future. Thus we believe

that our survey will provide both an introdution to the area as well as serve as a ready referene

to the area in the next few years.
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