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Abstra
t

The bilinear pairing su
h as Weil pairing or Tate pairing on ellipti
 and hyperellipti
 
urves

have re
ently been found appli
ations in design of 
ryptographi
 proto
ols. In this survey, we

have tried to 
over di�erent 
ryptographi
 proto
ols based on bilinear pairings whi
h possess,

to the best of our knowledge, proper se
urity proofs in the existing se
urity models.

1 Introdu
tion

The 
on
ept of identity-based 
ryptosystem is due to Shamir [40℄. Su
h a s
heme has the property

that a user's publi
 key is an easily 
al
ulated fun
tion of his identity, while a user's private key


an be 
al
ulated for him by a trusted authority, 
alled private key generator (PKG). The ID-based

publi
 key 
ryptosystem 
an be an alternative for 
erti�
ate-based publi
 key infrastru
ture (PKI),

espe
ially when eÆ
ient key management and moderate se
urity are required.

Earlier bilinear pairings, namely Weil pairing and Tate pairing of algebrai
 
urves were used in


ryptography for the MOV atta
k [35℄ using Weil pairing and FR atta
k [22℄ using Tate pairing.

These atta
ks redu
e the dis
rete logarithm problem on some ellipti
 or hyperellipti
 
urves to the

dis
rete logarithm problem in a �nite �eld. In re
ent years, bilinear pairings have found positive

appli
ation in 
ryptography to 
onstru
t new 
ryptographi
 primitives. The 
urrent work is an

attempt to survey this �eld.

Proto
ols from pairings 
an be broadly 
lassi�ed into two types:

{ Constru
tion of primitives whi
h 
an not be 
onstru
ted using other te
hniques (ex: ID-based

en
ryption, non-trivial aggregate signature et
).

{ Constru
tion of primitives whi
h 
an be 
onstru
ted using other te
hniques, but for whi
h

pairings provide improved fun
tionality (ex: Joux's three-party key agreement, threshold s
heme,

sear
hable publi
 key en
ryption et
).

Joux [27℄, in 2000, showed that the Weil pairing 
an be used for \good" by using it in a proto
ol to


onstru
t three-party one-round DiÆe-Hellman key aggrement. This was one of the breakthroughs

in key agreement proto
ols. After this, Boneh and Franklin [11℄ presented in Crypto 2001 an ID-

based en
ryption s
heme based on properties of bilinear pairings on ellipti
 
urves whi
h is the �rst

fully fun
tional, eÆ
ient and provably se
ure identity-based en
ryption s
heme. In Asia
rypt 2001,

Boneh, Lynn and Sha
ham proposed a basi
 signature s
heme using pairing, the BLS [13℄ s
heme,

that has the shortest length among signature s
hemes in 
lassi
al 
ryptography. Subsequently nu-

merous 
ryptographi
 s
hemes based on BLS signature s
heme were proposed.

Apart from the three fundamental 
ryptographi
 primitives: en
ryption, signature and key agree-

ment, there are proto
ol designs for sign
ryption, threshold de
ryption, key sharing, identi�
ation

s
heme, 
hameleon hashes et
. We provide the following 
lassi�
ation of the proto
ols:

1. En
ryption: En
ryption s
hemes are used for the purpose of a
hieving priva
y and 
on�den-

tiality. In re
ent years, pairings made ID-based publi
 key en
ryption feasible. In identity-

based publi
 key en
ryption, the publi
 key distribution problem is eliminated by making ea
h

user's publi
 key derivable from some known aspe
t of his identity, su
h as his email address.
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When Ali
e wants to send a message to Bob, she simply en
rypts her message using Bob's

publi
 key whi
h she merely derives from Bob's identifying information. Bob, on re
eiving

re
eives the en
rypted message, obtains his private key from a third party 
alled a Private

Key generator (PKG) after authenti
ating himself to PKG and de
rypts the message. The

private key that PKG generates on Bob's query is a fun
tion of it's master key and Bob's

identity.

2. Signature:

{ Short Signature: These are required in environments with spa
e and bandwidth 
onstraints.

When a human is asked to manually key in the signature, the shortest possible signature is

needed.

{ Blind Signature: Blind signatures play a 
entral role in digital 
ash s
hemes. A user 
an

obtain from a bank a digital 
oin using a blind signature proto
ol. The 
oin is essentially a

token properly signed by the bank. The blind signature proto
ols enable a user to obtain a

signature from a signer so that the signer does not learn any information about the message it

signed and so that the user 
an not obtain more than one valid signature after one intera
tion

with the signer. The 
on
ept of blind signatures provides anonymity of users in appli
ations

su
h as ele
troni
 voting, ele
troni
 payment systems et
.

{ Multisignature: Multisignature s
heme allows any subgroup of a group of users to jointly

sign a message su
h that a veri�er is 
onvin
ed that ea
h member of the subgroup parti
ipated

in signing. The goal of multisignature is to prove that ea
h member of the stated subgroup

signed the message and the size of this subgroup 
an be arbitrary. It is up to a parti
ular

appli
ation to de
ide what subgroup is required to sign a message. A veri�er might reje
t

a multisignature not be
ause it's invalid, but be
ause the veri�er in not satis�ed with the

subgroup whi
h signed the message. Multisignatures 
an be applied to provide eÆ
ient bat
h

veri�
ation of several signatures of the same message under di�erent publi
 keys.

{ Aggregate Signature: Consider n users U = f1; 2; : : : ; ng. Ea
h user i 2 U has a publi
-

private key pair (PK

i

; SK

i

). User i signs message M

i

and outputs signature �

i

. A publi


aggregation algorithm outputs a 
ompressed short signature � on input all of �

1

; �

2

; : : : ; �

n

.

This aggregation of n signatures 
an be done by anyone. Additionally, there is an aggregate

veri�
ation algorithm that takes PK

1

;PK

2

; : : : ;PK

n

, M

1

;M

2

; : : : ;M

n

, and � as input and de-


ides whether the aggregate signature � is valid. Aggregate signature s
heme has use in the

se
ure border gateway proto
ol for 
ompressing the list of signatures on distin
t messages

issued by distin
t parties.

{ Veri�ably En
ryption Signature: These signatures enable user Ali
e to give Bob a signature

on a message M en
rypted using a third party's publi
 key and Bob to verify o�ine that the

en
rypted signature is valid. Bob 
an verify that Ali
e has signed the message, but 
an not

dedu
e any information about her signature. To enable fair ex
hange, veri�ably en
rypted

signatures are used in optimisti
 
ontra
t signing proto
ols.

{ Ring Signature: Consider a set of n users U = f1; 2; : : : ; ng. Ea
h user i 2 U has a publi
-

private key pair (PK

i

; SK

i

). A ring signature on U is a signature that is 
onstru
ted using all

the publi
 keys of the users in U , and a single private key of any user in U . A ring signature

prote
ts the anonymity of a signer sin
e the veri�er knows that the signature is from a member

of the ring U , but does not know exa
tly who the signer is. There is also no way to revoke the

anonymity of the signer. Ring signatures have appli
ations in authenti
ated (yet repudiable)
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ommuni
ation and leaking se
rets.

{ Group Signature: Group signatures permits any member of a group to sign on behalf of

the group. Anyone 
an verify the signature with a group publi
 key while no one 
an know

the identity of the signer ex
ept the group manager. Group signature provides anonymity of

users with the property that group manager 
an identify the signer. In group signature, it

is 
omputationally hard to de
ide whether two di�erent signatures were issued by the same

member.

{ Proxy Signature: A proxy signature allows an entity, 
alled the delegator to delegate its

signing rights to another entity, 
alled a proxy signer. The proxy signer signs messages on

behalf of the delegator, in 
ase of say, temporal absen
e, la
k of time or 
omputational power,

et
. Proxy signatures have found numerous pra
ti
al appli
ations where delegation of rights

is quite 
ommon, parti
ularly in distributed systems, Grid Computing, mobile agent appli
a-

tions, distributed shared obje
t systems and mobile 
ommuni
ations [7℄.

{ Unique Signature: Unique signature s
hemes are se
ure signature s
hemes where the sig-

nature is hard-to-
ompute fun
tion of the publi
 key and the message. Unique signature

s
hemes, also known as invariant signature s
hemes, are desirable in 
ryptography and have

an important appli
ation to 
onstru
t veri�able random fun
tions (VRFs). VRFs are obje
ts

that 
ombine the properties of pseudorandom fun
tions with the veri�ability property and


an be viewed as a 
ommitment to an arbitrary number of bits.

3. Key Agreement: Key agreement is required in situations where two or more parties want to


ommuni
ate se
urely among themeselves. The situation where three or more parties share

a se
ret key is often 
alled 
onferen
e keying. In this situation, the parties 
an se
urely send

and re
eive message from ea
h other. An adversary not having a

ess to the se
ret key will

not be able to de
rypt the message.

4. Threshold: Threshold 
ryptography approa
h is useful to remove single point failure. When

the 
entralization of the power is a 
on
ern, threshold de
ryption 
an be used in parti
ular.

In the (t; n)-threshold s
heme, t � n, there are n users. A se
ret information is distributed

among these n-users. Any subset of more than t users are allowed to re
onstru
t the se
ret.

The 
omputation is performed preserving se
urity even in the presen
e of an a
tive adversary

that 
an 
orrupt up to t users.

5. Mis
ellaneous:

{ Chameleon Hash: Chameleon hashing is basi
ally non-intera
tive 
ommitment s
heme. A


hameleon hash fun
tion is asso
iated with a pair of publi
-private keys. Anyone who knows

the publi
 key, 
an 
ompute the asso
iated hash fun
tion. Without the knowledge of asso-


iated trapdoor, the 
hameleon hash fun
tion is 
ollision resistant. However, the trapdoor

information holder 
an easily �nd 
ollisions for every given input. Chameleon hashes have

appli
ations in 
onstru
ting 
hameleon signatures. The re
ipient 
an verify that the signature

of a 
ertain message m is valid, but 
an not prove others that the signer a
tually signed m

and not another message. These are 
losely related to undeniable signature [17℄.

{ Sign
ryption: A sign
ryption s
heme is a s
heme that provides private and authenti
ated

delivery of messages between two parties in a more eÆ
ient manner than a straightforward


omposition of an en
ryption s
heme with a signature s
heme. It 
ombines the fun
tionality

of signature and en
ryption. The idea of sign
ryption s
heme is to perform en
ryption and
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signature in a single logi
al step in order to obtain 
on�dentiality, integrity, authenti
ation

and non-repudiation more eÆ
iently than the sign-then-en
rypt approa
h.

{ Identi�
ation: Identi�
ation s
heme is another important and useful 
ryptographi
 tool

where a prover P intera
ts with a veri�er V to 
onvin
e him of his identity. Only P knows the

se
ret value 
orresponding to his publi
 one, and this se
ret information permits to 
onvin
e

V of his identity.

In this paper, we have tried to survey di�erent 
ryptographi
 primitives and in
lude only those

s
hemes whi
h have, to the best of our knowledge, 
on
rete se
urity proofs in the existing adversarial

models. Barretto's pairing based 
rypto lounge [4℄ is an ex
ellent 
ompilation of existing work

on pairing based 
ryptography. This survey does not 
onsider algebrai
 theory of pairings nor

algorithms to 
ompute them. The rest of our paper is organized as follows: Se
tion 2 brie
y explains

the 
ryptographi
 bilinear map and some versions of DH problems. The ID-based en
ryption

s
hemes are dis
ussed in Se
tion 3. We des
ribe various pairing based signature s
hemes in Se
tion

4. Se
tion 5 
onsists of key agreement s
hemes and Se
tion 6 dis
usses threshold s
hemes using

bilinear map. In Se
tion 7, mis
ellaneous appli
ations are des
ribed. Finally we 
on
lude in Se
tion

8.

2 Preliminaries

Let G

1

; G

2

be two groups of the same prime order q. We view G

1

as an additive group and G

2

as a multipli
ative group. Let P be an arbitrary generator of G

1

. (aP denotes P added to itself

a times). Assume that dis
rete logarithm problem (DLP) is hard in both G

1

and G

2

. A mapping

e : G

2

1

! G

2

satisfying the following properties is 
alled a 
ryptographi
 bilinear map.

{ Bilinearity : e(aP; bQ) = e(P;Q)

ab

for all P;Q 2 G

1

and a; b 2 Z

�

q

. This 
an be restated in the

following way. For P;Q;R 2 G

1

, e(P +Q;R) = e(P;R) e(Q;R) and e(P;Q+R) = e(P;Q) e(P;R).

{ Non-degenera
y : If P is a generator of G

1

, then e(P; P ) is a generator of G

2

. In other words,

e(P; P ) 6= 1.

{ Computable : There exists an eÆ
ient algorithm to 
ompute e(P;Q) for all P;Q 2 G

1

.

Modi�ed Weil Pairing [11℄ and Tate Pairing [5℄, [24℄ are examples of 
ryptographi
 bilinear maps.

Currently, a
tive resear
h is being 
arried out to obtain eÆ
ient algorithms to 
ompute pairings.

Our survey ex
ludes this area.

Now we spe
ify some versions of DiÆe-Hellman problems. Ea
h problem 
omes in two 
avours :


omputational followed by de
isional. We de�ne the following two terms.

{ advantage : When adversary has to distinguish between two probability distribution.

{ su

ess probability : When adversary has to �nd an obje
t of interest.

For a set S, by a2

R

S, we mean that a is randomly 
hosen from S. A fun
tion f(m) is said to be

negligible if it is less than

1

m

l

for every �xed l > 0 and suÆ
iently large integer m.
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Unless otherwise stated, we assume that the messages are arbitrary length �nite binary strings and

the above setup holds for the 
ryptographi
 proto
ols throughout the paper.

In the subsequent dis
ussion, we formalize advantage of DDH and su

ess probability of CDH

problems and des
ribe the 
orresponding assumptions. For ea
h of the other problems, there is a


orresponding assumption whi
h 
an be formalized in a way similar to the DDH and CDH prob-

lems.The following 
lassi�
ation of the problems is provided.

2.1 DiÆe-Hellman Problems

1. Computational DiÆe-Hellman (CDH) problem in G

1

:

Instan
e : (P; aP; bP ) for some a; b 2 Z

�

q

.

Output : abP .

The su

ess probability of any probabilisti
, polynomial-time, 0/1-valued algorithm A in

solving CDH problem in G

1

is de�ned to be :

Su



CDH

A;G

1

= Prob[A(P; aP; bP; abP ) = 1 : a; b2

R

Z

�

q

℄:

CDH assumption : For every probabilisti
, polynomial-time, 0/1-valued algorithm A, Su



CDH

A;G

1

is negligible.

(See se
tions 4.9, 4.12).

2. De
isional DiÆe-Hellman (DDH) problem in G

1

:

Instan
e : (P; aP; bP; 
P ) for some a; b; 
 2 Z

�

q

.

Output : yes if 
 = ab mod q and output no otherwise.

Comments : DDH problem in G

1

is easy. DDH problem in G

1


an be solved in polynomial

time by verifying e(aP; bP ) = e(P; 
P ). This is the well known MOV redu
tion [11℄ : The

DLP in G

1

is no harder than the DLP in G

2

.

The advantage of any probabilisti
, polynomial-time, 0/1-valued algorithm A in solving DDH

problem in G

1

is de�ned to be :

Adv

DDH

A;G

1

= jProb[A(P; aP; bP; 
P ) = 1℄� Prob[A(P; aP; bP; abP ) = 1℄ : a; b; 
2

R

Z

�

q

j:

DDH assumption : For every probabilisti
, polynomial-time, 0/1-valued algorithm A, Adv

DDH

A;G

2

is negligible.

Gap DiÆe-Hellman (GDH) group : A prime order group G

1

is a GDH group if there exists

an eÆ
ient polynomial-time algorithm whi
h solves the DDH problem in G

1

and there is no

probabilisti
 polynomial-time algorithm whi
h solves the CDH problem with non-negligible

probability of su

ess. The domains of bilinear pairings provide examples of GDH groups. The

MOV redu
tion provides a method to solve DDH in G

1

, whereas there is no known eÆ
ient

algorithm for CDH in G

1

. (See se
tions 4.1, 4.3, 4.11, 7.4).

3. Weak DiÆe-Hellman (W-DH) problem in a group G

1

:

Instan
e : (P;Q; sP ) for P;Q 2 G

1

and for some s 2 Z

�

q

:

Output : sQ.

7



Comments : W-DH problem is no harder than CDH problem.

(See se
tion 4.10).

4. Reversion of CDH (RCDH) problem in G

1

:

Instan
e : (P; aP; rP ) for some a; r 2 Z

�

q

.

Output : bP; b 2 Z

�

q

satisfying a = rb mod q.

Comments : RCDH problem is equivalent to CDH problem in G

1

[18℄.

5. (k + 1)-exponent problem ((k + 1)-EP) in G

1

:

Instan
e : (P; yP; y

2

P; : : : ; y

k

P )for a random y 2 Z

�

q

.

Output : y

k+1

P .

Comments : (k + 1)-EP is no harder than the CDH problem.

(See se
tion 4.7).

6. k-DiÆe-Hellman Inversion (k-DHI) problem in G

1

:

Instan
e : (P; yP; y

2

P; : : : ; y

k

P ) for a random y 2 Z

�

q

.

Output :

1

y

P .

Comments : k-DHI problem is polynomially equivalent to (k + 1)-EP.

7. k-Strong DiÆe-Hellman (k-SDH) problem in G

1

:

Instan
e : (P; yP; y

2

P; : : : ; y

k

P ) for a random y 2 Z

�

q

.

Output : (
;

1

y+


P ) where 
 2 Z

�

q

.

Comments : k-SDH problem is a stronger version of k-DHI problem. When 
 is pre-spe
i�ed,

k-SDH problem is polynomially equivalent to k-DHI. k-SDH problem has a simple random

self redu
tion in G

1

.

(See se
tion 4.13).

8. Collusion Atta
k Algorithm with k-traitors (k-CAA) :

Instan
e : (P; yP; h

1

; : : : ; h

k

2 Z

�

q

;

1

h

1

+y

P; : : : ;

1

h

k

+y

P ) for a random y 2 Z

�

q

.

Output :

1

h+y

P for some h =2 fh

1

; : : : ; h

k

g.

Comments : k-CAA is polynomially equivalent to (k � 1)-DHI problem.

9. l- Many DiÆe-Hellman problem in G

1

:

Ora
le : O

P;~y

(J) = (

Q

j2J

y

j

)P 2 G

1

where ve
tor ~y = (y

1

; y

2

; : : : ; y

l

)2

R

(Z

�

q

)

l

and J is any

stri
t subset of f1; 2; : : : ; lg.

Instan
e : (P;O

P;~y

; J) for any ve
tor ~y = (y

1

; y

2

; : : : ; y

l

)2

R

(Z

�

q

)

l

and for all J � f1; 2; : : : ; lg.

Output: (

Q

l

j=1

y

j

)P .

Comments : (l � 1)-DHI assumption implies l-Many-DH assumption. This redu
tion is also

valid for the de
ision version of DHI and Many-DH problems. l-DHI assumption is easier to

state than l-Many-DH assumption sin
e there is no need for an ora
le.

(See se
tion 4.11).

10. Chosen-target CDH problem in G

1

:

Let s be a random element of Z

�

q

and Q = sP .

Ora
les : 1) A target ora
le T

G

1

that returns a random element U

i

2 G

1

. 2) A helper ora
le

s(�) that returns sU on a randomly 
hosen input U 2 G

1

.

Instan
e : (q; P;Q;H

1

) where H

1

: f0; 1g

�

! G

�

1

is a 
ryptographi
 hash fun
tion and a

ess

8



to the target and helper ora
les with at most q

T

and q

H

queries respe
tively.

Output : A set V of, say l pairs ((V

1

; j

1

); (V

2

; j

2

); : : : ; (V

l

; j

l

)), where for all i; 1 � i � l, there

exists j

i

; 1 � j

i

� q

T

su
h that V

i

= sU

j

i

where all V

i

are distin
t and q

H

< q

T

; l.

(See se
tion 4.1).

11. Chosen-target Inverse CDH problem in G

1

:

Let s be a random element of Z

�

q

and Q = sP .

Ora
les : 1) A target ora
le T

G

1

that returns a random element U

i

2 G

1

. 2) A helper ora
le

Inv� 
dh� s(�) that 
omputes s

�1

U for a randomly 
hosen input U 2 G

1

.

Instan
e : (q; P;Q;H

1

) where H

1

: f0; 1g

�

! G

�

1

is a 
ryptographi
 hash fun
tion and a

ess

to the target and helper ora
les with at most q

T

and q

H

queries respe
tively.

Output : A set V of, say l pairs ((V

1

; j

1

); (V

2

; j

2

); : : : ; (V

l

; j

l

)), where for all i; 1 � i � l, there

exists j

i

; 1 � j

i

� q

T

su
h that V

i

= s

�1

U

j

i

where all V

i

are distin
t and q

H

< q

T

; l.

2.2 Bilinear DiÆe-Hellman Problems

1. Bilinear DiÆe-Hellman (BDH) problem in (G

1

; G

2

; e) :

Instan
e : (P; aP; bP; 
P ) for some a; b; 
 2 Z

�

q

:

Output : e(P; P )

ab


.

(See se
tions 3.1, 3.2, 3.3, 3.4, 5.1, 6.2, 6.3, 7.1, 7.3.1).

2. De
isional Bilinear DiÆe-Hellman (DBDH) problem in (G

1

; G

2

; e) :

Instan
e : (P; aP; bP; 
P; r) for some a; b; 
2

R

Z

�

q

, r2

R

G

2

.

Output : yes if r = e(P; P )

ab


and output no otherwise.

(See se
tions 3.6, 7.3.2).

3. De
isional Hash Bilinear DiÆe-Hellman (DHBDH) problem in (G

1

; G

2

; e) :

Instan
e : (P; aP; bP; 
P; r) for some a; b; 
; r 2 Z

�

q

and a one way hash fun
tion H : G

2

! Z

�

q

.

Output : yes if r = H(e(P; P )

ab


) mod q and output no otherwise.

Comments : The DHBDH problem in (G

1

; G

2

; e) is a hash version of the de
isional BDH

problem in (G

1

; G

2

; e) .

(See se
tion 5.2).

4. k-Bilinear DiÆe-Hellman Inversion (k-BDHI) problem in (G

1

; G

2

; e) :

Instan
e : (P; yP; y

2

P; : : : ; y

k

P ) for some y 2 Z

�

q

.

Output : e(P; P )

1

y

2 G

2

.

Comments : 1-BDHI assumption is polynomially equivalent to the standard BDH assumption.

It is not known if the k-BDHI assumption, for k > 1, is polynomially equivalent to BDH.

5. k-De
isional Bilinear DiÆe-Hellman Inversion (k-DBDHI) problem in (G

1

; G

2

; e) :

Instan
e : (P; yP; y

2

P; : : : ; y

k

P; r) for some y 2 Z

�

q

, r2

R

G

2

.

Output : yes if r = e(P; P )

1

y

2 G

2

and output no otherwise.

(See se
tion 3.5).
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2.3 Mis
ellaneous Problems

1. ROS problem : (S
hnorr)

Ora
le : A random fun
tion F : Z

l

q

! Z

q

.

Instan
e : A system of t equations in l unknowns 


1

; 


2

; : : : ; 


l

over Z

�

q

: a

k;1




1

+ � � �+ a

k;l




l

=

F (a

k;1

; : : : ; a

k;l

) for k = 1; 2; : : : ; t, t � l + 1.

Output : Co-eÆ
ients a

k;i

2 Z

�

q

and a solvable subsystem of l + 1 equations in the unknowns




1

; 


2

; : : : ; 


l

.

(See se
tion 4.8).

2. Co-Gap DiÆe-Hellman (Co-GDH) group : Consider a 
ryptographi
 bilinear map in the follow-

ing setup :

a) G

1

; G

2

are two additive groups and G

T

is a multipli
ative group of prime order q;

b) P

1

is a generator of G

1

and P

2

is a generator of G

2

;


)  is a 
omputable isomorphism from G

1

to G

2

, with  (P

1

) = P

2

; and

d) e is an eÆ
iently 
omputable bilinear map e : G

1

� G

2

! G

T

satisfying the following

properties :

{ Bilinearity : For all Q

1

2 G

1

; Q

2

2 G

2

and a; b 2 Z

�

q

, e(aQ

1

; bQ

2

) = e(Q

1

; Q

2

)

ab

:

{ Non-degenera
y : e(P

1

; P

2

) 6= 1.

These properties imply one more : for any Q

1

; Q

2

2 G

1

, e(Q

1

;  (Q

2

)) = e(Q

2

;  (Q

1

)). (Su
h

bilinear maps 
an be derived from Weil pairing and Tate pairing; for simpli
ity the reader

may assume G

1

= G

2

). We refer this setup as the Co-GDH setup. With this setup, we obtain

natural generalizations of the CDH and DDH problems :

Computational Co-DiÆe-Hellman (Co-CDH) problem :

Instan
e : (P

1

; P

2

; aP

1

; bP

2

) for some a; b 2 Z

�

q

.

Output : abP

2

2 G

2

.

De
isional Co-DiÆe-Hellman (Co-DDH) problem :

Instan
e : (P

1

; P

2

; aP

1

; bP

2

; 
P

2

) for some a; b; 
 2 Z

�

q

.

Output : yes if 
 = ab mod q and output no otherwise.

When G

1

= G

2

and P

1

= P

2

, these problems redu
ed to the standard CDH and DDH prob-

lems respe
tively.

Groups G

1

; G

2

are said to be Co-GDH groups if there exists an eÆ
ient algorithm to solve

the Co-DDH problem and there is no polynomial-time (in jqj) algorithm to solve the Co-CDH

problem. The existen
e of a 
ryptographi
 bilinear map ensures the existen
e of Co-GDH

groups. (See se
tions 4.4, 4.5, 4.6).
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3 En
ryption S
hemes

In identity-based publi
 key en
ryption, the publi
 key distribution problem is eliminated by making

ea
h user's publi
 key derivable from some known aspe
t of his identity, su
h as his email address.

When Ali
e wants to send a message to Bob, she simply en
rypts her message using Bob's publi
 key

whi
h she derives from Bob's identifying information. Bob, after re
eiving the en
rypted message,

obtains his private key from a third party 
alled a Private Key generator (PKG) after authenti
ating

himself to PKG and 
an then de
rypt the message. The private key that PKG generates on Bob's

query is a fun
tion of it's master key and Bob's identity.

Shamir [40℄ introdu
ed this 
on
ept of identity-based 
ryptosystem. The �rst ID-based en
ryption

was proposed by Boneh and Franklin [11℄ in 2001 that uses bilinear pairing.

The advantage of ID-based en
ryption are 
ompelling. It makes maintaining authenti
ated publi


key dire
tories unne
essary. Instead, a dire
tory for authenti
ated publi
 parameters of PKG's is

required whi
h is less burdensome than maintaining a publi
 key dire
tory sin
e there are substan-

tially fewer PKGs than total users. In parti
ular, if everyone uses a single PKG, then everyone in

the system 
an 
ommuni
ate se
urely and users need not perform online lookup of publi
 keys or

publi
 parameters.

Some disadvantages of ID-based system are : (1) the PKG knows Bob's private key, i.e. key es
row

is inherent in the system whi
h for some appli
ations may be a serious problem, (2) Bob has to

authenti
ate himself to it's PKG in the same way as he would authenti
ate himself to a 
ertifying

authority (CA), (3) Bob's PKG requires a se
ure 
hannel to send Bob his private key, (4) Bob has

to publish his PKG's publi
 parameters and Ali
e must obtain these parameters before sending an

en
rypted message to Bob.

3.1 ID-Based En
ryption S
heme

(Boneh, Franklin, [11℄, 2001)

� Proto
ol Des
ription :

{ Setup : Choose s2

R

Z

�

q

and set P

pub

= sP . Choose 
ryptographi
 hash fun
tionsH

1

: f0; 1g

�

! G

�

1

and H

2

: G

2

! f0; 1g

n

, n is the bit length of messages. The master key is s and the global publi


key is P

pub

.

{ Extra
t : Given a publi
 identity ID 2 f0; 1g

�

, 
ompute the publi
 key Q

ID

= H

1

(ID) 2 G

1

and

the private key S

ID

= sQ

ID

. The 
omputation Q

ID

= H

1

(ID) maps an arbitrary string to a point

of the group G

1

. This operation is 
alled Map-to-point and is more expensive than 
omputation of

usual message digest.

{ En
rypt : Choose a random r 2 Z

�

q

, set the 
iphertext for the message M to be

C = hrP;M �H

2

(g

r

ID

)i;

where g

ID

= e(Q

ID

; P

pub

)

{ De
rypt : Given C = hU; V i, 
ompute

V �H

2

(e(S

ID

; U)):

11



� Assumption :

BDH problem is hard.

�Se
urity :

This is the basi
 s
heme. Se
urity against adaptive 
hosen 
iphertext atta
k in the random ora
le

model under the BDH assumption is obtained after the Fujisaki-Okamoto [23℄ transformation.

� EÆ
ien
y :

{ Setup : 1 s
alar multipli
ation in G

1

.

{ Extra
t : 1 Map-to-point hash operation; 1 s
alar multipli
ation in G

1

.

{ En
rypt : 1 Map-to-point hash operation; 1 s
alar multipli
ation in G

1

; 1 hash fun
tion (H

2

)

evaluation; 1 XOR operation; 1 pairing 
omputation; 1 group exponent in G

2

.

{ De
rypt : 1 hash fun
tion (H

2

) evaluation; 1 XOR operation; 1 pairing 
omputation.

3.2 Sear
hable Publi
 Key En
ryption

(Boneh, Cres
enzo, Ostrovsky, Persiano, [10℄, 2003)

Suppose Ali
e wishes to read her email on a number of devi
es : laptop, desktop, pager, et
. Ali
e's

mail gateway is supposed to route email to the appropriate devi
e based on the keywords in the

email. Suppose Bob sends an email with keyword \urgent". The gateway routes the email to Ali
e's

pager, after testing whether the email 
ontains this keyword \urgent" without learning anything

else about the mail. This me
hanism is referred to as Sear
hable Publi
 Key En
ryption (SPKE).

To send a message M with keywords W

1

; : : : ;W

n

, Bob sends

E

A

pub

(M)jjSPKE(A

pub

;W

1

)jj : : : jjSPKE(A

pub

;W

n

)

where E

A

pub

(M) is the en
ryption of M using Ali
e's publi
 key A

pub

. The point of sear
hable

en
ryption is that given SPKE(A

pub

;W

0

) and a 
ertain trapdoor T

W

(that is given to the gateway

by Ali
e), the gateway 
an test whether W = W

0

. If W 6= W

0

the gateway learns nothing more

about W

0

.

A SPKE s
heme using bilinear map :

� Proto
ol Des
ription :

{ KeyGen : Choose s2

R

Z

�

q

and set P

pub

= sP . The se
ret key is s and the publi
 key is P

pub

. Let

K be the set of all keywords and H

1

: K ! G

1

, H

2

: G

2

! Z

�

q

be two hash fun
tions.

{ SPKE : Given a keyword W and the publi
 key P

pub

, 
hoose a random r 2 Z

�

q

and output

hrP;H

2

(e(H

1

(W ); P

pub

)

r

)i:

{ Trapdoor : Given a keyword W and the se
ret key s, output T

W

= sH

1

(W ).
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{ Test : Given Trapdoor T

W

, a SPKE S = hU; V i and the publi
 key P

pub

, test if V = H

2

(e(T

W

; U)).

If true, output yes, else output no.

� Assumption :

BDH problem is hard.

� Se
urity :

Semanti
ally se
ure against a 
hosen keyword atta
k in the random ora
le model assuming BDH

problem is intra
table.

� EÆ
ien
y :

{ KeyGen : 1 s
alar multipli
ation in G

1

.

{ SPKE : 1 Map-to-point hash operation; 1 s
alar multipli
ation in G

1

; 1 hash fun
tion (H

2

)

evaluation; 1 pairing 
omputation; 1 group exponent in G

2

.

{ Trapdoor : 1 s
alar multipli
ation in G

1

.

{ Test : 1 pairing 
omputation; 1 hash fun
tion (H

2

) evaluation.

3.3 Hierar
hi
al ID-Based En
ryption (HIDE) S
heme

(Gentry, Silverberg, [25℄, 2002)

Although having a single private key generator (PKG) would 
ompletely eliminate online lookup,

it is undesirable for a large network be
ause the PKG has a burdensome job. Not only is private

key generation 
omputationally expensive, but also the PKG must verify proofs of identity and

must establish se
ure 
hannels to transmit private keys. HIDE allows a root PKG to distribute the

workload by delegating private key generation and identity authenti
ation to lower-level PKGs. In

a HIDE s
heme, a root PKG need only generate private keys for domain-level PKGs, who in turn

generate private keys for users in their domains in the next level. Authenti
ation and private key

transmission 
an be done lo
ally. To en
rypt a message to Bob, Ali
e only needs to obtain the pub-

li
 parameters of Bob's parent PKG (and Bob's identifying information); there are no \lower-level

parameters". HIDE has the advantage of damage 
ontrol : dis
losure of a domain PKG's se
ret

does not 
ompromise the se
rets of higher-level PKGs.

� Proto
ol Des
ription : Basi
HIDE :

The entities in the tree (other than the root) are the users of the tree. Let Level

i

be the set of

entities at level i, where Level

0

= fRoot PKGg.

{ Root Setup : The root PKG 
hooses an arbitrary generator P

0

2 G

1

, pi
ks a random s

0

2 Z

�

q

and

sets Q

0

= s

0

P

0

. Let H

1

: f0; 1g

�

! G

1

and H

2

: G

2

! f0; 1g

n

be two 
ryptographi
 hash fun
tions.

The message spa
e isM = f0; 1g

n

. The 
iphertext spa
e is C = G

t

1

�f0; 1g

n

where t is the level of

the re
ipient.

The root PKG's se
ret is s

0

2 Z

�

q

and global publi
 key is (P

0

; Q

0

).

{ Lower-level Setup : Entity E

t

2 Level

t

pi
ks a random s

t

2 Z

�

q

whi
h it keeps se
ret.
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{ Extra
t : Let E

t

be an entity in Level

t

with ID-tuple (ID

1

; : : : ; ID

t

), where (ID

1

; : : : ; ID

i

) for

1 � i � t is the ID-tuple of E

t

's an
estor at Level

i

. Set S

0

to be the identity element of G

1

.

Then E

t

's (t � 1) parent :

1. 
omputes P

t

= H

1

(ID

1

; : : : ; ID

t

) 2 G

1

;

2. sets E

t

's se
ret point S

t

to be S

t�1

+ s

t�1

P

t

=

P

t

i=1

s

i�1

P

i

,

3. also gives E

t

the values Q

i

= s

i

P

0

for 1 � i � t� 1.

{ En
rypt : To en
rypt M 2 M with the ID-tuple (ID

1

; : : : ; ID

t

), do the following :

1. 
ompute P

i

= H

1

(ID

1

; : : : ; ID

i

) 2 G

1

for 1 � i � t,

2. 
hoose a random r 2 Z

�

q

,

3. set the 
iphertext to be

C = hrP

0

; rP

2

; : : : ; rP

t

;M �H

2

(g

r

)i

where g = e(Q

0

; P

1

) 2 G

2

.

{ De
rypt : Let C = hU

0

; U

2

; : : : ; U

t

; V i 2 C be the 
iphertext en
rypted using the ID-tuple

(ID

1

; : : : ; ID

t

). To de
rypt C, E

t


omputes :

V �H

2

 

e(U

0

; S

t

)

Q

t

i=2

e(Q

i�1

; U

i

)

!

=M:

Note : The s
heme is derived from Boneh-Franklin [11℄ s
heme. An interesting fa
t is that lower-

level PKGs need not always use the same s

t

for ea
h private key extra
tion. Rather, s

t


ould

be generated randomly for ea
h of the PKG's 
hildren. Another fa
t is that H

1


an be 
hosen

to be an iterated hash fun
tion, for example, P

i

may be 
omputed as H

1

(P

i�1

; ID

i

) rather than

H

1

(ID

1

; : : : ; ID

i

).

� Assumption :

BDH problem is hard.

� Se
urity :

Chosen 
iphertext se
urity of this basi
 s
heme is obtained by using Fujisaki-Okamoto [23℄ padding

in the random ora
le model under the assumption that BDH problem is hard.

� EÆ
ien
y :

{ Setup : 1 s
alar multipli
ation in G

1

.

{ Extra
t : 1 Map-to-point hash operation; 2 s
alar multipli
ations in G

1

; 1 addition in G

1

.

{ En
rypt : For an identity at level t, t s
alar multipli
ations in G

1

; 1 Map-to-point hash operation;

1 hash fun
tion (H

2

) evaluation; 1 group exponent in G

2

; 1 XOR operation; 1 pairing 
omputation.

{ De
rypt : For an identity at level t, t pairing 
omputations; 1 hash fun
tion (H

2

) evaluation; 1

XOR operation.

The bit-length of the 
iphertext and the 
omplexity of de
ryption grow linearly with the level of

the message re
ipient.
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3.4 Dual-HIDE : Dual-Hierar
hi
al-Identity-Based En
ryption

(Gentry, Silverberg [25℄, 2002)

� Proto
ol Des
ription :

Suppose two users, Ali
e and Bob, have the ID-tuples (ID

y

1

; : : : ; ID

y

l

; : : : ; ID

y

m

) and (ID

z

1

; : : : ; ID

z

l

; : : : ; ID

z

n

)

respe
tively, where (ID

y

1

; : : : ; ID

y

l

) = (ID

z

1

; : : : ; ID

z

l

).

In other words, Ali
e is in Level

m

, Bob is in Level

n

and their 
ommon an
estor upto Level

l

are same.

Ali
e may use Dual-HIDE to en
rypt a message to Bob as follows :

{ En
rypt : To en
rypt M 2 M, Ali
e :

1. 
omputes P

z

i

= H

1

(ID

z

1

; : : : ; ID

z

i

) 2 G

1

for l + 1 � i � n,

2. 
hooses a random r 2 Z

�

q

,

3. sets the 
iphertext to be

C = hrP

0

; rP

z

l+1

; : : : ; rP

z

n

;M �H

2

(g

r

y

l

)i

where

g

y

l

=

e(P

0

; S

y

)

Q

m

i=l+1

e(Q

y

(i�1)

; P

y

i

)

= e(P

0

; S

y

l

):

S

y

is Ali
e's se
ret point, S

y

l

is the se
ret point of Ali
e's and Bob's 
ommon an
estor at level l and

Q

y

i

= s

y

i

P

0

where s

y

i

is the se
ret number 
hosen by Ali
e's an
estor at level i.

{ De
rypt : Let C = hU

0

; U

l+1

; : : : ; U

n

; V i be the 
iphertext. To de
rypt C, Bob 
omputes :

V �H

2

 

e(U

0

; S

z

)

Q

n

i=l+1

e(Q

z

(i�1)

; U

i

)

!

=M:

� Assumption :

BDH problem is hard.

� Se
urity :

Se
ure in the random ora
le model assuming the hardness of BDH problem.

� EÆ
ien
y :

{ En
rypt : 1 Map-to-point hash operation; (n� l+1) s
alar multipli
ations in G

1

; 1 hash fun
tion

(H

2

) evaluation; 1 XOR operation; (m� l + 1) pairing 
omputation; 1 group exponent in G

2

.

{ De
rypt : (n� l + 1) pairing 
omputation; 1 hash fun
tion (H

2

) evaluation; 1 XOR operation.

If Ali
e and Bob have a 
ommon an
estor below the root PKG, then the 
iphertext is shorter than

for normal HIDE. Further, using Dual HIDE, the en
rypter Ali
e 
omputes (m � l + 1) pairings

while the de
rypter Bob 
omputes (n� l+1) pairings. In the non-dual HIDE s
heme, the en
rypter


omputes one pairing while the de
rypter 
omputes n pairings. Thus when m < (2l� 1), the total

work is less with Dual-HIDE than with non-dual HIDE. Dual-HIDE also makes domain-spe
i�


broad
ast en
ryption possible. Furthermore, one 
an restri
t key es
row using Dual-HIDE.
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3.5 ID-Based En
ryption S
heme Without Random Ora
le

(Boneh, Boyen [9℄, 2004)

� Proto
ol Des
ription :

{ Setup : The publi
 keys (ID) are assumed to be elements of Z

�

q

and messages are elements of G

2

.

Sele
t random elements x; y 2 Z

�

q

and set U = xP; V = yP . The publi
 parameters are (U; V ) and

the master key is (x; y).

{ Extra
t : Given a publi
 key ID 2 Z

�

q

, 
hoose a random r 2 Z

�

q

and 
ompute K =

1

ID+x+ry

P 2 G

1

.

Output the private key S

ID

= (r;K).

{ En
rypt : To en
rypt a message M 2 G

1

under publi
 key ID 2 Z

�

q

, pi
k a random s 2 Z

�

q

and

output the 
iphertext

C = hs(ID)P + sU; sV; e(P; P )

s

Mi:

{ De
rypt : To de
rypt a 
iphertext C = hX; Y; Zi using the private key S

ID

= (r;K), output

Z=e(X + rY;K).

� Assumption :

q-DBDHI problem is hard.

� Se
urity :

Se
ure against sele
tive-ID adaptive 
hosen 
iphertext atta
k without random ora
les under q-

DBDHI assumption.

� EÆ
ien
y :

{ Setup : 2 s
alar multipli
ations.

{ Extra
t : 1 inversion in Z

�

q

; 1 s
alar multipli
ation in G

1

.

{ En
rypt : 4 s
alar multipli
ations in G

1

; 1 group exponent in G

1

; 1 multipli
ation in G

2

.

Note that e(P; P ) 
an be pre
omputed on
e and for all so that en
ryption requires no pairing


omputation.

{ De
rypt : 1 s
alar multipli
ation in G

1

; 1 addition in G

1

; 1 inversion in G

2

.

3.6 Hierar
hi
al ID-Based En
ryption (HIBE) S
heme Without Ran-

dom Ora
le

(Boneh, Boyen [9℄, 2004)

� Proto
ol Des
ription :

{ Setup : The publi
 keys (ID) of depth l are assumed to be ve
tors of elements in Z

l

q

. The j-th


omponent for an identity ID = (ID

1

; : : : ; ID

l

) 2 Z

l

q


orresponds to the identity at level j.

The system parameters for an HIBE of maximum depth l is generated as follows :

Choose a random � 2 Z

�

q

and set P

1

= �P 2 G

1

.

Choose random elements h

1

; : : : h

l

2 G

1

and another generator P

2

2 G

�

1

. The publi
 parameters are

(P; P

1

; P

2

; h

1

; : : : ; h

l

) and master key is �P

2

.
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For j = 1; : : : ; l, de�ne F

j

(x) = xP

1

+ h

j

.

The messages are assumed to be elements of G

2

.

{ Extra
t : For an identity ID = (ID

1

; : : : ; ID

j

) 2 Z

j

q

of depth j � l, pi
k random r

1

; : : : ; r

j

2 Z

q

and

set the private key

S

ID

= (�P

2

+

j

X

k=1

r

k

F

k

(ID

k

); r

1

P; : : : ; r

j

P ):

Note that, if at depth (j � 1), the private key for identity ID

jj�1

= (ID

1

; : : : ; ID

j�1

) 2 Z

j�1

q

is

S

IDjj�1

= (d

0

; : : : ; d

j�1

) , then the private key S

ID

for ID is generated by 
hoosing randomly r

j

2 Z

q

and setting S

ID

= (d

0

+ r

j

F

j

(ID

j

); d

1

; : : : ; d

j�1

; r

j

P ).

{ En
rypt : To en
rypt a message M 2 G

2

under the publi
 key ID = (ID

1

; : : : ; ID

j

) 2 Z

j

q

, pi
k

randomly s 2 Z

�

q

and output

C = he(P

1

; P

2

)

s

M; sP; sF

1

(ID

1

); : : : ; sF

j

(ID

j

)i:

{De
rypt : Consider an identity ID = (ID

1

; : : : ; ID

j

). To de
rypt a 
iphertext C = hA;B;C

1

; : : : ; C

j

i

using the private key S

ID

= (d

0

; d

1

; : : : ; d

j

), output

A

j

Y

k=1

e(C

j

; d

j

)=e(B; d

0

) =M:

� Assumption :

DBDH problem is hard.

� Se
urity :

Se
ure against sele
tive-ID adaptive 
hosen 
iphertext atta
k without random ora
les under DBDH

assumption.

� EÆ
ien
y :

{ Setup : 2 s
alar multipli
ations in G

1

.

{ Extra
t : For an identity at depth j, (2j+1) s
alar multipli
ations in G

1

; (j +1) additions in G

1

.

{ En
rypt : 1 group exponent in G

2

; 1 multipli
ations in G

2

; (j � 1) s
alar multipli
ations in G

1

.

Note that en
ryption does not require any pairing 
omputation as e(P

1

; P

2

) 
an be pre
omputed

on
e and in
luded in the system parameters.

{ De
rypt : For an identity at depth j, j multipli
ations in G

2

; j pairing 
omputations; 1 inversion

in G

2

.

4 Signature S
hemes

Digital signatures are one of the most important 
ryptographi
 primitives. In traditional publi
 key

signature algorithms, the binding between the publi
 key and the identity of the signer is obtained

via a digital 
erti�
ate. Shamir [40℄ �rst noti
ed that it would be more eÆ
ient if there was no need

for su
h bindings, in that 
ase given the user's identity, the publi
 key 
ould be easily derived using

some publi
 deterministi
 algorithm. This makes eÆ
ient ID-based signature s
hemes desirable. In
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ID-based signature s
hemes, veri�
ation fun
tion is easily obtained from the identity, possibly the

same key and the same underlying 
omputation primitives 
an be used. Boneh, Lynn, Sha
ham [13℄

proposed a pairing based short signature s
heme in 2001. This was followed by a large number of

pairing based signature s
hemes for di�erent appli
ations.

4.1 BLS Short Signature S
heme

(Boneh, Lynn, Sha
ham, [13℄, 2001)

Short signatures are needed in environments with spa
e and bandwidth 
onstraints. For example,

when a human is asked to type in a digital signature the shortest possible signatures are desired.

Two most frequently used signature s
hemes are RSA and DSA. If one uses 1024 bit modulus, RSA

signatures are 1024 bit long and standard DSA or ECDSA (ellipti
 
urve DSA) signatures are 320

bit long. These signatures are too long to be keyed. The following signature s
heme provides short

signature of length approximately 160 bits with a level of se
urity similar to 320 bit DSA signatures.

� Proto
ol Des
ription :

{ KeyGen : Let H : f0; 1g

�

! G

1

be a Map-to-point hash fun
tion. The se
ret key is x2

R

Z

�

q

and

the publi
 key is P

pub

= xP for a signer.

{ Sign : Given se
ret key x and a message m 2 f0; 1g

�

, 
ompute the signature � = xH(m).

{Verify : Given publi
 key P

pub

= xP , a messagem and a signature �, verify e(P; �) = e(P

pub

; H(m)).

� Assumption :

Existen
e of GDH group.

� Se
urity :

Se
ure against existential forgery under adaptive 
hosen message atta
k in the random ora
le model

assuming CDH problem is hard in G

1

.

� EÆ
ien
y :

{ KeyGen : 1 s
alar multipli
ation in G

1

.

{ Sign : 1 Map-to-point hash operation; 1 s
alar multipli
ation in G

1

.

{ Verify : 1 Map-to-point hash operation; 2 pairing 
omputations.

4.2 Blind Signature S
heme

(Boldyreva [6℄, 2003)

Blind signatures are the basi
 tools of digital 
ash s
hemes. The goal of a blind signature proto
ol is

to enable a user to obtain a signature from a signer so that the signer does not learn any information

about the message it signed and so that the user 
an not obtain more than one valid signature after

one intera
tion with the signer.
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� Proto
ol Des
ription :

{ KeyGen : Let H : f0; 1g

�

! G

1

be a Map-to-point hash fun
tion. The se
ret key is x2

R

Z

�

q

and

the publi
 key is P

pub

= xP for a signer.

{ Blind Signature Issuing Proto
ol : Given se
ret key x and a message m 2 f0; 1g

�

,

{ (Blinding) The user 
hooses randomly r 2 Z

�

q

, 
omputesM

0

= rH(m) and sends M

0

to signer.

{ (Signing) The signer 
omputes �

0

= xM

0

and sends ba
k �

0

to the user.

{ (Unblinding) The user then 
omputes the signature � = r

�1

�

0

and outputs (m; �).

{ Verify : Given publi
 key P

pub

, a message m and a signature �, verify e(P

pub

; H(m)) = e(P; �):

� Assumption :

Chosen-target CDH problem is hard.

� Se
urity :

Se
ure against one more forgery under 
hosen message atta
k assuming the hardness of 
hosen-

target CDH problem.

� EÆ
ien
y :

{ KeyGen : 1 s
alar multipli
ation in G

1

.

{ Blind Signature Issuing Proto
ol : 1 Map-to-point hash operation; 3 s
alar multipli
ations in G

1

.

{ Verify : 2 pairing 
omputations; 1 Map-to-point hash operation.

4.3 Multisignature S
heme

(Boldyreva, [6℄, 2003)

A multisignature s
heme allows any subgroup of a group of users to jointly sign a do
ument su
h

that a veri�er is 
onvin
ed that ea
h member of the subgroup parti
ipated in signing.

� Proto
ol Des
ription :

{ KeyGen : Let H; f0; 1g

�

! G

1

be a Map-to-point hash fun
tion. Consider a set U of n users.

The se
ret key is x

i

2

R

Z

�

q

and the publi
 key is P

pub

i

= x

i

P; for user u

i

2 U; 1 � i � n.

{ Multisignature Creation : Any user u

i

2 U with se
ret key x

i

that wishes to parti
ipate in signing

a message m 2 f0; 1g

�

, 
omputes �

i

= x

i

H(m) and sends it to a designated signer D (whi
h 
an be

implemented by any user). Let L = fu

i

1

; : : : u

i

l

g � U be a subset of users 
ontributed to the signing.

After getting all the �

j

for j 2 J = fi

1

; : : : ; i

l

g, D 
omputes the multisignature � =

P

j2J

�

j

and

outputs (m;L; �).

{ Multisignature Veri�
ation : Given T = (m;L; �) and the list of publi
 keys of the users in L :

P

pub

j

= x

j

P; j 2 J = fi

1

; : : : ; i

l

g, the veri�er 
omputes P

pub

L

=

P

j2J

P

pub

j

=

P

j2J

x

j

P and veri�es
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e(P; �) = e(P

pub

L

; H(m)):

� Assumption :

Existen
e of GDH group.

� Se
urity :

Se
ure against existential forgery under 
hosen message atta
k in the random ora
le model under

the assumption that the CDH problem is hard in G

1

.

� EÆ
ien
y :

{ KeyGen : n s
alar multipli
ations in G

1

.

{ Multisignature Creation : If l � n users are parti
ipating in signing, then 1 Map-to-point hash

operation; l s
alar multipli
ations in G

1

; (l � 1) additions in G

1

.

{ Multisignature Veri�
ation : If number of users in the list L is l, then (l � 1) additions in G

1

; 2

pairing 
omputations.

4.4 Aggregate Signature

(Boneh, Gentry, Lynn, Sha
ham [12℄, 2003)

An aggregate signature s
heme is a digital signature that supports aggregation : Given n signa-

tures on n distin
t messages m

i

from n distin
t users i, 1 � i � n, it is possible to aggregate all

these signatures into a single short signature. This single signature and the n original messages

m

i

; 1 � i � n will 
onvin
e the veri�er that user i indeed signed message m

i

, 1 � i � n.

� Proto
ol Des
ription :

{ KeyGen : Consider the Co-GDH setup. Let U be a set of n users and H : f0; 1g

�

! G

2

be a

Map-to-point hash fun
tion. The se
ret key is x

i

2

R

Z

�

q

and the publi
 key is P

pub

i

= x

i

P

1

for user

u

i

2 U; 1 � i � n.

{ Aggregation : User u

i

2 U signs messagem

i

2 f0; 1g

�

to generate BLS signature �

i

= x

i

H(m

i

), 1 �

i � n. The messagesm

i

must be all distin
t. The aggregate signature is � = (�

1

+�

2

+� � �+�

n

) 2 G

2

.

{ Aggregate veri�
ation : Given publi
 keys P

pub

i

, distin
t messages m

i

; 1 � i � n and an aggregate

signature �, verify e(P

1

; �) =

Q

n

i=1

e(P

pub

i

; H(m

i

)):

� Assumption :

Existen
e of Co-GDH group and a bilinear map.

� Se
urity :

Se
ure against existential forgery in the aggregate 
hosen key model assuming that the Co-CDH

problem is hard in (G

1

; G

2

).

� EÆ
ien
y :

{ KeyGen : n s
alar multipli
ations in G

1

.
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{ Aggregation : n Map-to-point hash operations; n s
alar multipli
ations in G

2

; (n � 1) additions

in G

2

.

{ Aggregate veri�
ation : n Map-to-point hash operations; (n + 1) pairing 
omputations.

4.5 The Bilinear Veri�ably En
rypted Signature

(Boneh, Gentry, Lynn, Sha
ham [12℄, 2003)

When Ali
e wants to sign a message for Bob but does not want Bob to possess her signature on

the message immediately, Ali
e en
rypts her signature using the publi
 key of a trusted third party

(adjudi
ator), and sending the result to Bob along with a proof that she has given him a valid

en
ryption of her signature. Bob 
an verify that Ali
e has signed the message but 
an not dedu
e

any information about her signature. Later in the proto
ol, Bob 
an either obtain the signature

from Ali
e or resort to the adjudi
ator who 
an reveal Ali
e's signature.

� Proto
ol Des
ription :

{ KeyGen : Consider the Co-GDH setup. Let H : f0; 1g

�

! G

2

be a Map-to-point hash fun
tion.

Choose x; x

0

2

R

Z

�

q

and set P

pub

= xP

1

; P

0

pub

= x

0

P

1

. The private/publi
 key pair for signer is (x; P

pub

)

and that of the adjudi
ator is (x

0

; P

0

pub

).

{ Sign, Verify : For a message m 2 f0; 1g

�

, the signature of a signer with private key x is

� = xH(m) 2 G

2

and the veri�
ation is e(P

1

; �) = e(P

pub

; H(m)):

{ Veri�ably En
rypted Signature Creation : Given a se
ret key x 2 Z

�

q

, a message m 2 f0; 1g

�

and

an adjudi
ator's publi
 key P

0

pub

2 G

1

, 
ompute h = H(m) 2 G

2

and � = xh. Sele
t a random

r 2 Z

�

q

and set � = r (P

1

) and �

0

= r (P

0

pub

). Aggregate �; �

0

as w = (� + �

0

) 2 G

2

and output

the pair (w; �).

{ Veri�ably En
rypted Signature Veri�
ation : Given a publi
 key P

pub

, a message m, an ad-

judi
ator's publi
 key P

0

pub

and a veri�ably en
rypted signature (w; �), set h = H(m); a

ept if

e(P

1

; w) = e(P

pub

; h) e(P

0

pub

; �) holds.

{ Adjudi
ation : Given an adjudi
ator's publi
 key P

0

pub

and 
orresponding private key x

0

2

R

Z

�

q

, a

publi
 key P

pub

and a veri�ably en
rypted signature (w; �) on some message m, ensure the veri�ably

en
rypted signature is valid; then 
ompute � = w � x

0

�.

(Before giving the signature, the adjudi
ator must perform the validity test to prevent a mali
ious

user from tri
king him into signing arbitrary messages under his adjudi
ation key).

No involvement of adjudi
ator during generation of en
rypted signature or its veri�
ation. Adjudi-


ator involves only during signature revelation phase.

� Assumption :

Existen
e of Co-GDH group and a bilinear map.

� Se
urity :

Se
ure against existential forgery and aggregate extra
tion assuming that Co-GDH [13℄ signature
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s
heme is se
ure against existential forgery and extra
tion respe
tively. Co-GDH signature s
heme

is infa
t the BLS signature s
heme in Co-GDH setup.

� EÆ
ien
y :

{ KeyGen : 2 s
alar multipli
ations in G

1

.

{ Sign : 1 Map-to-point hash operation; 1 s
alar multipli
ation in G

2

.

{ Verify : 1 Map-to-point hash operation; 2 pairing 
omputations.

{ Veri�ably En
rypted Signature Creation : 1 Map-to-point hash operation; 3 s
alar multipli
ations

in G

2

; 1 addition in G

2

;

{ Veri�ably En
rypted Signature Veri�
ation : 1 Map-to-point hash operation; 3 pairing 
omputa-

tions; 1 multipli
ation in G

T

.

{ Adjudi
ation : 1 s
alar multipli
ation in G

2

+ 1 inversion in G

2

.

4.6 Bilinear Ring Signature

(Boneh, Gentry, Lynn, Sha
ham [12℄, 2003)

Consider a set U of n users ea
h having a publi
/private key pair. Ring signature on U is a sig-

nature that is 
onstru
ted using all these publi
 keys of the users in U , and a single private key of

any user in U . A ring signature has the property of signer-ambiguity : a veri�er is 
onvin
ed that

the signature was produ
ed using one of the private keys of U , but is not able to determine whi
h one.

� Proto
ol Des
ription :

{ KeyGen : Consider the Co-GDH setup. Let H : f0; 1g

�

! G

2

be a Map-to-point hash fun
tion.

The se
ret key is x

i

2

R

Z

�

q

and the publi
 key is P

pub

i

= x

i

P

1

for user u

i

2 U .

{ Ring Signing : Given publi
 keys P

pub

1

; : : : ; P

pub

n

2 G

1

, a message m 2 f0; 1g

�

, and a private key

x

s

for a 
ertain s; 1 � s � n, 
hoose a

i

2

R

Z

q

for all i 6= s, 
ompute h = H(m) 2 G

2

and set

�

s

=

1

x

s

(h�  (

X

i 6=s

a

i

P

pub

i

)):

For all i 6= s, let �

i

= a

i

P

2

. Output the ring signature � = (�

1

; : : : ; �

n

) 2 G

n

2

.

{ Ring Veri�
ation : Given publi
 keys P

pub

1

; : : : ; P

pub

n

2 G

1

, a message m 2 f0; 1g

�

, and a ring

signature �, 
ompute h = H(m) and verify e(P

1

; h) =

Q

n

i=1

e(P

pub

i

; �

i

):

� Assumption :

Existen
e of Co-GDH group and a bilinear map.

� Se
urity :

The identity of the signer is un
onditionally prote
ted and the s
heme is resistant to forgery in the

random ora
le model assuming that the Co-CDH problem is hard in (G

1

; G

2

).

� EÆ
ien
y :

{ KeyGen : n s
alar multipli
ations in G

1

.
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{ Ring Signing : 1 inversion in Z

�

q

; 1 Map-to-point hash operation; (n� 1) s
alar multipli
ations in

G

2

; (n� 1) s
alar multipli
ations in G

1

; 1 inversion in G

2

.

{ Ring Veri�
ation : 1 Map-to-point hash operation; (n+ 1) pairing 
omputations.

4.7 ZSS Short Signature S
heme

(Zhang, Safavi-Naini, Susilo, [42℄, 2004)

� Proto
ol Des
ription :

{ KeyGen : Let H : f0; 1g

�

! Z

�

q

be a hash fun
tion. The se
ret key is x2

R

Z

�

q

and the publi
 key

is P

pub

= xP for a signer.

{ Sign : Given a se
ret key x and a message m 2 f0; 1g

�

, 
ompute signature S =

1

H(m)+x

P:

{ Verify : Given a publi
 key P

pub

, a message m and a signature S, verify e(H(m)P + P

pub

; S) =

e(P; P ):

� Assumption :

(k + 1)-exponent problem is hard.

� Se
urity :

Existentially unforgeable under an adaptive 
hosen message atta
k in the random ora
le model

assuming that (k + 1)-exponent problem is hard.

� EÆ
ien
y :

{ KeyGen : 1 s
alar multipli
ation in G

1

.

{ Sign : 1 inversion in Z

�

q

; 1 hash fun
tion (H) evaluation; 1 s
alar multipli
ation in G

1

.

{ Verify : 2 pairing 
omputation (one of whi
h, e(P; P ) 
an be pre
omputed); 1 s
alar multipli
ation

in G

1

; 1 hash fun
tion (H) evaluation; 1 addition in G

1

.

This s
heme is more eÆ
ient than BLS s
heme as it requires less pairing 
omputation and no 
om-

putation of the expensive spe
ial hash fun
tion Map-to-point that en
odes �nite strings to elements

of group G

1

.

4.8 ID-Based Blind Signature S
heme (S
hnorr type)

(Zhang, Kim [41℄, 2002)

� Proto
ol Des
ription :

{ Setup : Let H : f0; 1g

�

! G

1

be a Map-to-point hash fun
tion. Consider another hash fun
tion

H

1

: f0; 1g

�

� G

2

! Z

q

. Choose s2

R

Z

�

q

and set P

pub

= sP . The master key is s and the global

publi
 key is P

pub

.

{ Extra
t : Given signer's publi
 identity ID 2 f0; 1g

�

, 
ompute the publi
 key Q

ID

= H

1

(ID) and

the private key S

ID

= sQ

ID

.

23



{ Blind Signature Issuing Proto
ol : Given a signer's private key S

ID

and a message m 2 f0; 1g

�

,

{(Initialization) The signer randomly 
hooses a number r 2 Z

q

, 
omputes R = rP and sends R

to the user as a 
ommitment.

{(Blinding) The user randomly 
hooses a; b 2 Z

�

q

as blinding fa
tors, 
omputes 
 = H(m; e(bQ

ID

+

R + aP; P

pub

)) + b and sends 
 to the signer.

{(Signing) The signer sends ba
k S, where S = 
S

ID

+ rP

pub

.

{(Unblinding) The user 
omputes S

0

= S + aP

pub

and 


0

= 
 � b and outputs (m;S

0

; 


0

). Then

(S

0

; 


0

) is the blind signature of the message m.

{ Veri�
ation : A

ept if and only if 


0

= H(m; e(S

0

; P )e(Q

ID

; P

pub

)

�


0

):

� Assumption :

ROS-problem is hard.

� Se
urity :

Se
ure against one more forgery in the random ora
le model under the assumption that ROS prob-

lem is hard.

� EÆ
ien
y :

{ Setup : 1 s
alar multipli
ation in G

1

.

{ Extra
t : 1 Map-to-point hash operation; 1 s
alar multipli
ation in G

1

.

{ Blind Signature Issuing Proto
ol : 6 s
alar multipli
ations in G

1

; 1 pairing 
omputation; 1 hash

fun
tion (H) evaluation; 1 addition in Z

q

; 4 additions in G

1

; 1 inversion in Z

q

.

{ Veri�
ation : 1 hash (H) fun
tion evaluation; 2 pairing 
omputations; 1 exponentiation in G

2

.

4.9 ID-Based Ring Signature

(Zhang, Kim [41℄, 2002)

� Proto
ol Des
ription :

{ Setup : Let H

1

: f0; 1g

�

! G

1

be a Map-to-point hash fun
tion and H : f0; 1g

�

! Z

�

q

be another

hash fun
tion. Choose s2

R

Z

�

q

and set P

pub

= sP . The master key is s and the global publi
 key is

P

pub

.

{ Extra
t : Given publi
 identity ID 2 f0; 1g

�

, 
ompute the publi
 key Q

ID

= H

1

(ID) and the se
ret

key S

ID

= sQ

ID

.

Let ID

i

be a user's identity and S

ID

i

be the private key asso
iated with ID

i

for i = 1; : : : ; n. Let

L = fID

i

: 1 � i � ng be the set of identities. The real signer's identity ID

k

is listed in L.
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{ Signing : Given signer's private key S

ID

k

and a message m 2 f0; 1g

�

,

{(Initialization) : Choose randomly an element A 2 G

1

and 
ompute 


k+1

= H(Ljjmjje(A; P )).

{(Generate forward ring sequen
e) : For i = k + 1; : : : n � 1; 0; 1; : : : ; k � 1, 
hoose randomly

T

i

2 G

1

and 
ompute 


i+1

= H(Ljjmjje(T

i

; P )e(


i

H

1

(ID

i

); P

pub

)):

{(Forming the ring) : Compute T

k

= A� 


k

S

ID

k

.

{(Output the ring signature) : The resulting signature for m and L is the (n + 1)-tuple :

(


0

; T

0

; T

1

; : : : ; T

n�1

).

{ Veri�
ation : Given (


0

; T

0

; T

1

; : : : ; T

n�1

), m and L, 
ompute




i+1

= H(Ljjmjje(T

i

; P )e(


i

H

1

(ID

i

); P

pub

)) for i = 0; 1; : : : n� 1. A

ept if 


n

= 


0

and reje
t other-

wise.

� Assumption :

CDH problem is hard.

� Se
urity :

The s
heme is un
onditionally signer-ambiguous and non-forgeable in the random ora
le model un-

der the assumption that CDH problem is hard.

� EÆ
ien
y :

{ Setup : 1 s
alar multipli
ation in G

1

.

{ Extra
t : 1 Map-to-point hash operation; 1 s
alar multipli
ation in G

1

.

{ Signing : n hash fun
tion (H) evaluation; (2n� 1) pairing 
omputations.

{ Veri�
ation : 2n pairing 
omputations; n hash fun
tion (H) evaluation.

4.10 ID-Based Signature from Pairing

(Hess, [26℄, 2002)

� Proto
ol Des
ription :

{ Setup : Choose s2

R

Z

�

q

and set P

pub

= sP . The master key is s and the global publi
 key is P

pub

.

Let H

1

: f0; 1g

�

! G

1

be a Map-to-point hash fun
tion and H : f0; 1g

�

�G

2

! Z

�

q

be another hash

fun
tion.

{ Extra
t : Given a publi
 identity ID 2 f0; 1g

�

, 
ompute the publi
 identity Q

ID

= H

1

(ID) and the

se
ret key S

ID

= sQ

ID

.

{ Sign : Given a se
ret key S

ID

and a message m 2 f0; 1g

�

, the signer 
hooses an arbitrary P

1

2 G

�

1

and a random k 2 Z

�

q

and 
omputes

1. r = e(P

1

; P )

k

,

2. v = H(m; r),
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3. u = vS

ID

+ kP

1

:

The signature is then the pair (u; v) 2 G� Z

�

q

.

{ Verify : Given a publi
 key Q

ID

, a message m and a signature (u; v) the veri�er 
omputes :

1. r = e(u; P )e(Q

ID

;�P

pub

)

v

2. A

ept the signature if and only if v = H(m; r).

� Assumption :

Weak-DH problem is hard.

� Se
urity :

Se
ure against existential forgery under adaptive 
hosen message atta
k in the random ora
le model

assuming Weak-DH problem is hard.

� EÆ
ien
y :

{ Setup : 1 s
alar multipli
ation in G

1

.

{ Extra
t : 1 Map-to-point hash operation; 1 s
alar multipli
ation in G

1

.

{ Sign : The signing operation 
an be optimized by the signer pre-
omputing e(P

1

; P ) for P

1

of

his 
hoi
e, for example P

1

= P , and storing this value with the signing key. This means that the

signing operation involves one exponentiation in the group G

2

, one hash fun
tion (H) evaluation

and one simultaneous multipli
ation in the group G

1

.

{ Verify : The veri�
ation operation requires one exponentiation in G

2

, one hash fun
tion (H)

evaluation and two evaluations of the pairing. One of the pairing evaluation 
an be eliminated,

if a large number of veri�
ations are to be performed for the same identity, by pre-
omputing

e(Q

ID

;�P

pub

).

This s
heme is very eÆ
ient in terms of 
ommuni
ation requirements. One needs to transmit one

element of the group G

1

and one element of Z

�

q

.

4.11 Unique Signature S
heme Without Random Ora
le

(Lysyanskaya [33℄, 2002)

Unique signature s
hemes, also known as invariant signature s
hemes, are se
ure signature s
hemes

where the signature is a hard-to-
ompute fun
tion of the publi
 key and the message. One must

verify a signature again even if it has been a

epted before. Be
ause this time the signature may


ome from an unauthorized party. If a signature s
heme allows the signer to easily generate many

signatures on the same message, then it simply leads to denial-of-servi
e atta
k on a veri�er who

is for
ed to verify many signatures on the same message. This illustrates that intutively unique

signatures are desirable. Boneh and Silverberg [15℄ proposed a unique signature s
heme based on

the existen
e of multi-linear maps. Currently, no su
h suitable maps are known and the existen
e

of su
h maps is presently a resear
h problem [15℄. Lysyanskaya proposed a unique signature s
heme

based on this idea while making use of bilinear pairing. This s
heme is proved to be se
ure in the

standard model under Many-DH assumption.
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� Proto
ol Des
ription :

{ KeyGen : Choose n pairs of random elements in Z

�

q

: (a

1;0

; a

1;1

); (a

2;0

; a

2;1

); : : : ; (a

n;0

; a

n;1

): This

is the se
ret key for a signer. Compute A

i;b

= a

i;b

P; 1 � i � n; b 2 f0; 1g: The publi
 key for the

signer is P

pub

= fA

i;0

; A

i;1

j1 � i � ng:

{ Sign : Assume that the messages being signed are n-bit 
odewords of a 
ode of distan
e Cn,

where 0 < C � 1=2 is a 
onstant. Given the se
ret key and an n-bit 
odeword m = m

1

Æm

2

Æ: : :Æm

n

,

output the signature

� = fs

m;i

= (

i

Y

j=1

a

j;m

j

)P : 1 � i � ng:

{ Verify : Let s

m;0

= 1. Given the publi
 key P

pub

, verify that, for all i; 1 � i � n, e(P; s

m;i

) =

e(s

m;i�1

; A

i;m

i

):

Graphi
ally, we view the message spa
e as the leaves of a balan
ed binary tree of depth n. Ea
h

internal node of the tree is assigned a label, as follows : the label of the root is P . The label of a


hild, denoted l




is obtained from the label of it's parent, denoted l

p

as follows : if the depth of the


hild is i, and it is the left 
hild, then its label is l




= a

i;0

l

p

, while if it is the right 
hild, its label

will be l




= a

i;1

l

p

. The signature on an n-bit message 
onsists of all the labels on the path from the

leaf 
orresponding to this message all the way to the root. To verify the 
orre
tness of a signature,

the fa
t that De
ision DiÆe-Hellman is easy in G

1

is used.

� Assumption :

Existen
e of GDH group, Many-DH problem is hard.

� Se
urity :

Provably se
ure against existential forgery under adaptive 
hosen message atta
k in the standard

model assuming the underlying group is a GDH group and the hardness of Many-DH problem.

� EÆ
ien
y :

{ KeyGen : 2n s
alar multipli
ations in G

1

.

{ Sign : n s
alar multipli
ations in G

1

, (n� 1) multipli
ations in Z

�

q

.

{ Verify : 2n pairing 
omputations.

4.12 An Authenti
ation-Tree Based Se
ure Signature S
heme Without

Random Ora
le

(Boneh, Mironov, Shoup [14℄, 2003)

In an authenti
ation-tree based s
heme, signatures are produ
ed that represent paths 
onne
ting

messages and the root of the tree. Messages are usually pla
ed in the very bottom level of the

tree. The authenti
ation me
hanism works indu
tively : the root authenti
ates its 
hildren, they

authenti
ate their 
hildren, and so on, down to the message authenti
ated by its parent.
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� Proto
ol Des
ription :

{ KeyGen : Consider a keyed family of 
ollision resistant hash fun
tions H

k

:M! f0; 1g

s

where

M is the message spa
e. The signature s
heme allows signing l

n

messages, where l and n are arbi-

trary positive integer, n is the bran
hing fa
tor of the authenti
ation tree.

1. Pi
k randomly �

i

2 Z

�

q

; 1 � i � n and Q2

R

G

1

. Choose a random key k for the 
ollision resistant

hash fun
tion H

k

. Compute Q

1

= (1=�

1

)Q; : : : ; Q

n

= (1=�

n

)Q 2 G

1

.

2. Pi
k randomly R 2 G

1

. Compute y = e(R;Q).

3. Pi
k randomly �

0

2 Z

q

. Compute x

0

= y

�

0

.

4. The publi
 key for a signer is (k;Q;Q

1

; : : : ; Q

n

; y; x

0

) and the 
orresponding private key is

(�

1

; �

2

; : : : ; �

n

; �

0

; R).

{ Sign : Ea
h node in the tree is authenti
ated with respe
t to its parent; messages to be signed are

authenti
ated with respe
t to the leaves, whi
h are sele
ted in sequential order and never reused. To

sign i-th message m 2 M, the signer generates the i-th leaf of the authenti
ated tree together with

a path from the leaf to the root. Denote the path from leaf to root by (x

l

; i

l

; x

l�1

; i

l�1

; : : : ; i

1

; x

0

) :

x

j

is the i

j

-th 
hild of x

j�1

(i

j

2 f1; : : : ; ng).

1. x

j

= y

�

j

for some �

j

2

R

Z

�

q

; 1 � j � l. The se
ret �

j

is stored for as long as node x

j

is an ans
estor

of the 
urrent signing leaf.

2. Compute f

j

= �

i

j

(�

j�1

+H

k

(x

j

))R. This is the authenti
ated value of x

j

, the i

j

-th 
hild of x

j�1

.

3. Compute f = (�

l

+H

k

(m))R. This is the authenti
ated value of m.

4. The signature on m is (f; f

l

; i

l

; : : : ; f

1

; i

1

).

{ Verify : Given a signature (

^

f;

^

f

l

;

^

i

l

; : : : ;

^

f

1

;

^

i

1

) on a message m, do the followings :

1. Compute x̂

l

= e(

^

f;Q)y

�H

k

(m)

.

2. Compute x̂

j�1

= e(

^

f

j

; Q

i

j

)y

�H

k

(x̂

j

)

for l � j � 1.

3. A

ept the signature if x̂

0

= x

0

.

� Assumption :

CDH problem is hard.

� Se
urity :

Provably se
ure against existential forgery against adaptive 
hosen message atta
k assuming that

the CDH problem is hard.

� EÆ
ien
y :

{ KeyGen : n s
alar multipli
ations in G

1

; 1 pairing 
omputation; 1 exponentiation in G

2

.

{ Sign : l exponentiations in G

2

; (l + 1) hash fun
tion (H

k

) evaluations; (l + 1) additions in Z

�

q

; l

multipli
ations in Z

�

q

, l s
alar multipli
ations in G

1

.

{ Verify : (l+1) pairing 
omputations; (l+1) hash fun
tion (H

k

) evaluations; (l+1) exponentiations

in G

2

; (l + 1) multipli
ations in G

2

.
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4.13 Short Signature S
heme Without Random Ora
le

(Boneh, Boyen [8℄, 2004)

� Proto
ol Des
ription :

{ KeyGen : The se
ret key is (x; y)2

R

Z

�

q

� Z

�

q

and the publi
 key is (P; U; V ) where U = xP and

V = yP for a signer. The messages are assumed to be elements of Z

�

q

.

{ Sign : Given a se
ret key (x; y), a message m 2 Z

�

q

, 
hoose a random r 2 Z

�

q

and 
ompute

� =

1

x+m+yr

P . Here

1

x+m+yr

is 
omputed modulo q and the unlikely event x+m+ yr = 0 is avoided

by 
hoosing a di�erent r. The signature is (�; r).

{ Verify : Given a publi
 key (P; U; V ), a message m 2 Z

�

q

and a signature (�; r), verify e(�; U +

mP + rV ) = e(P; P ):

� Assumption :

q-SDH problem is hard.

� Se
urity :

Se
ure against existential forgery under 
hosen message atta
k under SDH assumption and without

using the random ora
le model.

� EÆ
ien
y :

{ KeyGen : 2 s
alar multipli
ations in G

1

.

{ Sign : 1 inversion in Z

�

q

; 1 s
alar multipli
ation in G

1

.

{ Verify : 2 s
alar multipli
ation in G

1

; 2 additions in G

1

; 2 pairing 
omputations one of whi
h,

e(P; P ) 
an be pre
omputed.

5 Key Agreement S
hemes

Key agreement is one of the fundamental 
ryptographi
 primitives. This is required when two

or more parties want to 
ommuni
ate se
urely. In one of the breakthroughs in key agreement,

Joux [27℄ proposed a three party single round key agreement proto
ol using pairing. This was the

�rst positive appli
ation of bilinear pairing in 
ryptography. Afterwards, pairings were used widely

to get a large number of 
ryptographi
 proto
ols some of whi
h have been previously mentioned.

Several key agreement proto
ols were proposed that prevents man-in-the-middle atta
k against a

passive adversary. These proto
ols are 
alled unauthenti
ated. The proto
ols for authenti
ated

key agreement enables a group of parties within a large and 
ompletely inse
ure publi
 network

to establish a 
ommon se
ret key and furthermore ensures that they are indeed sharing this key

with ea
h other. A
hieving authenti
ated key agreement are 
ru
ial for allowing symmetri
-key

en
ryption/authenti
ation of data among the parties. Authenti
ated key agreement proto
ols are

the basi
 tools for group-oriented and 
ollaborative appli
ations su
h as, distributed simulation,

multi-user games, audio or video-
onferen
ing, and also peer-to-peer appli
ation that are likely to

involve a large number of users. These are used to 
onstru
t se
ure 
hannels whi
h are the base

for desiging, analyzing and implimenting higher-level proto
ols in a modular approa
h. A formal
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model of se
urity for group authenti
ated key agreement 
an be found in [16℄. Mu
h resear
h work

remaines to be done in this area.

5.1 Joux's One Round Three Party Key Agreement Proto
ol

(Joux [27℄, 2000)

� Proto
ol Des
ription :

Consider three parties A;B;C with se
ret keys a; b; 
 2 Z

�

q

respe
tively.

A sends aP to both B;C

B sends bP to both A;C

C sends 
P to both A;B

A 
omputes K

A

= e(bP; 
P )

a

B 
omputes K

B

= e(aP; 
P )

b

C 
omputes K

C

= e(aP; bP )




Common agreed key of A;B;C is K

ABC

= K

A

= K

B

= K

C

= e(P; P )

ab


:

� Assumption :

BDH problem is hard.

� Se
urity :

Se
ure against passive adversary under the assumption that BDH problem is hard.

� EÆ
ien
y :

{ Communi
ation : Round required is 1; group elements (of G

1

) sent are 3.

{ Computation : 3 s
alar multipli
ations in G

1

; 3 pairing 
omputations; 3 exponentiations in G

2

.

5.2 Extending Joux's Proto
ol to Multi Party Key Agreement

(Barua, Dutta, Sarkar, [2℄, 2003)

� Proto
ol Des
ription :

Let H : G

2

! Z

�

q

be a hash fun
tion. Consider the set of n users U = f1; 2; : : : ; ng. Let p = b

n

3




and r = n mod 3. The set U is partitioned into three user sets U

1

; U

2

; U

3

with 
ardinality p; p; p re-

spe
tively if r = 0 or with 
ardinality p; p; p+1 respe
tively if r = 1 or with 
ardinality p; p+1; p+1

respe
tively if r = 2.

This top down pro
edure is used re
ursively for further partitioning. Essentially a ternary tree

stru
ture is obtained. The lower level 0 
onsists of singleton users having a se
ret key. Key agree-

ment is done by invoking the pro
edure CombineTwo for user sets of two users and the pro
edure

CombineThree for user sets of three users in the key tree as des
ribed below. With this tree stru
-

ture, CombineTwo is never invoked above level 1.
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pro
edure CombineThree (3-group DH proto
ol)

Consider three user sets U

1

; U

2

; U

3

with s

1

; s

2

; s

3

2 Z

�

q

respe
tively as their private keys. Let Rep(U

i

)

be the representative of the user set U

i

.

Rep(U

1

) sends s

1

P to all members of both U

2

; U

3

;

Rep(U

2

) sends s

2

P to all members of both U

1

; U

3

;

Rep(U

3

) sends s

3

P to all members of both U

1

; U

2

;

ea
h member of U

1


omputes H(e(s

2

P; s

3

P )

s

1

);

ea
h member of U

2


omputes H(e(s

1

P; s

3

P )

s

2

);

ea
h member of U

3


omputes H(e(s

1

P; s

2

P )

s

3

);

Common agreed key of user sets U

1

; U

2

; U

3

is H(e(P; P )

s

1

s

2

s

3

);

pro
edure CombineTwo (2-group DH proto
ol)

Consider two user sets U

1

; U

2

with s

1

; s

2

2 Z

�

q

respe
tively as their private keys and Rep(U

i

) is the

representative of the user set U

i

.

Rep(U

1

) generates s 2 Z

�

q

at random and sends sP to the rest of the users;

Rep(U

1

) sends s

1

P to all members of U

2

;

Rep(U

2

) sends s

2

P to all members of U

1

;

ea
h member of U

1


omputes H(e(s

2

P; sP )

s

1

);

ea
h member of U

2


omputes H(e(s

1

P; sP )

s

2

);

Common agreed key of user sets U

1

; U

2

is H(e(P; P )

s

1

s

2

s

);

� Assumption :

DHBDH problem is hard.

� Se
urity :

Se
ure against passive adversary under the assumption that DHBDH problem is hard.

� EÆ
ien
y :

{ Communi
ation : Rounds required is dlog

3

ne; group elements (of G

1

) sent are ndlog

3

ne.

{ Computation : <

5

2

(n� 1) s
alar multipli
ations in G

1

; ndlog

3

ne pairing 
omputations; ndlog

3

ne

exponentiations in G

2

; ndlog

3

ne hash fun
tion (H) evaluation.

6 Threshold S
hemes

The idea behind the (t; n)-threshold 
ryptosystem approa
h is to distribute se
ret information (i.e.

the se
ret key) and 
omputation (i.e. signature generation or de
ryption) among n parties in order

to remove single point failure. The goal is to allow a subset of more than t players to jointly
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re
onstru
t a se
ret and perform the 
omputation while preserving se
urity even in the presen
e of

an a
tive adversary whi
h 
an 
orrupt upto t (a threshold) parties. The se
ret key is distributed

among n parties with the help of a trusted dealer or without it by running an intera
tive proto
ol

among all parties.

6.1 Threshold Signature S
heme

(Boldyreva, [6℄, 2003)

� Proto
ol Des
ription :

{ KeyGen : Let H : f0; 1g

�

! G

1

be a Map-to-point hash fun
tion. Suppose there are n servers

u

i

; 1 � i � n. The private key x 2 Z

�

q

is shared among these users using Shamir's se
ret sharing

s
heme su
h that any subset S of t+ 1 servers 
an re
onstru
t x using Lagrange interpolation :

x =

X

i2S

L

i

x

i

;

where L

i

=

Q

j2S

�x

j

(x

i

�x

j

)

is the Lagrange 
o-eÆ
ient, x

i

is the private key share and P

pub

i

= x

i

P is

the publi
 key share of user u

i

.

{ Signature Share Generation : To sign a message m 2 f0; 1g

�

, user u

i

outputs �

i

= x

i

H(m).

{ Signature Share Veri�
ation : Given m; �

i

; P

pub

i

, anyone 
an 
he
k whether user u

i

is honestly

behaving in giving it's share �

i

of signature by 
he
king

e(P; �

i

) = e(P

pub

i

; H(m)):

If �

i

passes through this test, 
all it an a

eptable share.

{ Signature Re
onstru
tion : Suppose a set S of (t + 1) honest servers are found and a

ordingly

(t+ 1) a

eptable shares �

i

; i 2 S. The resulting signature on m is � =

P

i2S

L

i

�

i

.

The 
orre
tness of the s
heme is easy to verify sin
e

e(P; �) = e(H(m); xP ):

� Assumption :

Existen
e of GDH group.

� Se
urity :

Se
ure in the random ora
le model against an adversary whi
h is allowed to 
orrupt any t < n=2

players under the assumption that the underlying group is GDH.

� EÆ
ien
y :

{ KeyGen : n s
alar multipli
ations in G

1

.

{ Signature Share Generation : For ea
h user, 1 Map-to-point hash operation; 1 s
alar multipli
ation

in G

1

.

{ Signature Share Veri�
ation : 2 pairing 
omputations; 1 Map-to-point hash operation.

{ Signature Re
onstru
tion : (t+1) s
alar multipli
ations in G

1

; t additions in G

1

; (t+1) Lagrange


o-eÆ
ient (L

i

) 
omputations.
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6.2 Pairing Based (t; n)-Threshold De
ryption

(Libert, Quisquater [31℄, 2003)

The following s
heme is a threshold adaption of the Boneh-Franklin IBE s
heme where a �xed PKG

plays the role of a trusted dealer.

� Proto
ol Des
ription:

{ KeyGen : Choose a (t � 1)-degree polynomial f(x) = s + a

1

x + � � � + a

t�1

x

t�1

for random

a

1

; : : : ; a

t�1

2 Z

�

q

. For i = 1; 2; : : : ; n, 
ompute P

(i)

pub

= f(i)P 2 G

1

and P

pub

= sP .

Let H

1

: f0; 1g

�

! G

1

be a Map-to-point hash fun
tion and H

2

: G

2

! f0; 1g

l

be another hash

fun
tion.

Before requesting his private share, ea
h player 
an 
he
k that

P

i2S

L

i

P

(i)

pub

= P

pub

for any subset

S � f1; : : : ; ng su
h that jSj = t where L

i

denotes the appropriate Lagrange 
o-eÆ
ient expli
itely

given by the formula

L

i

=

Y

j2S

�x

j

(x

i

� x

j

)

:

Given a user's identity ID 2 f0; 1g

�

, the PKG playes the role of the trusted dealer. For i = 1; : : : ; n,

it delivers d

ID

i

= f(i)Q

ID

2 G

1

to player i. After re
eiving d

ID

i

, player i 
he
ks

e(P

(i)

pub

; Q

ID

) = e(P; d

ID

i

):

If veri�
ation fails, he 
omplains to the PKG whi
h then issues a new share.

{ En
rypt : Given message m 2 f0; 1g

l

and identity ID, 
ompute Q

ID

= H

1

(ID). Choose a random

r 2 Z

�

q

and set the 
iphertext to be C = hrP;m�H

2

(e(P

pub

; Q

ID

)

r

)i:

{ De
ryption Share Generation : When re
eiving hU; V i, player i 
omputes his de
ryption share

e(U; d

ID

i

) and gives it to the re
ombiner who may be a designated player.

{ Re
ombination : The re
ombiner sele
ts a set S � f1; : : : ; ng of t a

eptable share e(U; d

ID

i

) and


omputes

g =

Y

i2S

e(U; d

ID

i

)

L

i

:

On
e he has g, he re
overs the plaintext m = V �H

2

(g):

Corre
tness of the s
heme is easy to verify sin
e g = e(rP;

P

i2S

L

i

d

ID

i

) = e(rP; sQ

ID

) = e(P

pub

; Q

ID

)

r

:

To 
he
k publi
ly whether the share of a player is a

eptable or not, do the following :

Ea
h player 
hooses a random R 2 G

1

and 
omputes w

1

= e(P;R); w

2

= e(U;R) and h =

H(e(U; d

ID

i

); e(P

pub

; Q

ID

); w

1

; w

2

): Next, player i 
omputes V = R + hd

ID

i

2 G

1

and joins the tuple

(w

1

; w

2

; h; V ) to it's share. The other players 
an 
he
k that

e(P; V ) = e(P;R)e(P

(i)

pub

; Q

ID

)

h

e(U; V ) = e(U;R)e(U; d

ID

i

)

h

:
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If this test fails, player i is a dishonest player.

� Assumption :

BDH problem is hard.

� Se
urity :

This threshold IBE s
heme is provably se
ure against 
hosen plaintext atta
ks in the ID-based set-

ting under the BDH assumption.

� EÆ
ien
y :

{ KeyGen : n fun
tion (f) evaluation; (2n+1) s
alar multipli
ations inG

1

; 2n pairing 
omputations.

{ En
rypt : 1 Map-to-point hash operation; 1 hash fun
tion (H

2

) evaluation; 1 XOR operation; 1

exponentiation in G

2

; 1 s
alar multipli
ation in G

1

.

{ De
ryption Share Generation : For ea
h share holder, 1 pairing 
omputation.

{ Re
ombination : jSj pairing 
omputations; (jSj�1) multipli
ations in G

2

; jSj Lagrange 
o-eÆ
ient


omputations.

6.3 ID-based (t; n)-Threshold De
ryption

(Baek, Zheng [1℄, 2003)

Consider the following s
enario : Ali
e wishes to send a 
on�dential message to a 
ommittee in an

organization. She 
an �rst en
rypt the message using the identity of the 
ommittee and then send

over the 
iphertext. Suppose Bob who is the 
ommittee's president has 
reated the identity and

has obtained a mat
hing private de
ryption key from the PKG. Preparing for the time when Bob is

away, he 
an share his private key out among a member of de
ryption server in su
h a way that any


ommittee member 
an su

essfully de
rypt the 
iphertext if and only if the 
ommittee member

obtains a 
ertain number of de
ryption shares from the de
ryption servers. i.e. Bob himself plays

the role of a trusted dealer.

The following s
heme provides the feature that a user who obtained a private key from the PKG 
an

share the key among de
ryption servers at will. After key generation, the PKG 
an be 
losed. Also

this proto
ol a
hieves 
hosen 
iphertext se
urity under BDH assumption in random ora
le model.

� Proto
ol Des
ription :

{ KeyGen : PKG 
hooses x2

R

Z

�

q

and 
omputes P

pub

= xP . The master key of PKG is x and the

publi
 key is P

pub

. Consider four hash fun
tions : H

1

: G

2

! f0; 1g

l

, H

2

: G

1

� f0; 1g

l

! G

1

,

H

3

: f0; 1g

�

! G

1

, H

4

: G

3

2

! Z

�

q

. H

3

is a Map-to-point hash fun
tion.

{ Extra
t : Given an identity ID 2 f0; 1g

�

, 
ompute Q

ID

= H

3

(ID); D

ID

= xQ

ID

and returns D

ID

.

{ Private Key Distribution : Given a private key D

ID

, n de
ryption shares and a threshold

parameter t � n, pi
k randomly R

1

; R

2

; : : : ; R

t�1

2 G

�

1

and 
ompute

F (u) = D

ID

+ uR

1

+ u

2

R

2

+ : : :+ u

t�1

R

t�1
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for u 2 f0g [ N . Compute S

i

= F (i); y

i

= e(S

i

; P ); 1 � i � n and sends (S

i

; y

i

) se
retly to server

�

i

; 1 � i � n. �

i

then keeps S

i

as se
ret while it publishes y

i

.

{ En
rypt : Given a plaintext m 2 f0; 1g

l

, identity ID 2 f0; 1g

�

, 
hoose r 2 Z

�

q

at random and set

U = rP . Compute Q

ID

= H

3

(ID); d = e(Q

ID

; P

pub

), � = d

r

, V = H

1

(�) �m, W = rH

2

(U; V ) and

set the 
iphertext to be C = (U; V;W ).

{ De
ryption Share Generation : Given a 
iphertext C = (U; V;W ), de
ryption server �

i

with se
ret

key S

i


omputes H

2

= H

2

(U; V ) and 
he
ks if e(P;W ) = e(U;H

2

).

If the test holds then 
ompute

�

i

= e(S

i

; U);

e

�

i

= e(Q

i

; U);

e

y

i

= e(Q

i

; P ); �

i

= H

4

(�

i

;

e

�

i

;

e

y

i

); L

i

= Q

i

+ �

i

S

i

;

where Q

i

is 
hosen randomly from G

1

. Output Æ

i

= (i; �

i

;

e

�

i

;

e

y

i

; L

i

).

{ De
ryption Share Veri�
ation : Given a 
iphertext C = (U; V;W ) and a de
ryption share Æ

i

=

(i; �

i

;

e

�

i

;

e

y

i

; L

i

), 
ompute �

i

= H

4

(�

i

;

e

�

i

;

e

y

i

). Che
k if

e(L

i

; U)

�

�

i

i

=

e

�

i

;

e(L

i

; P )

y

�

i

i

=

e

y

i

:

If the above test holds, then share Æ

i

of server �

i

is an a

eptable share. Given a

eptable shares

S

j

; j 2 S � f1; : : : ; ng where jSj � t, D

ID


an be re
overed as follows :

D

ID

= F (0) =

X

j2S




oj

S

j

;




0j

are appropriate Lagrange 
o-eÆ
ients.

{ Share Combining : Given a 
iphertext C = (U; V;W ) and a set of de
ryption shares fÆ

j

g

j2S�f1;2;:::;ng

where jSj � t, 
ompute H

2

= H

2

(U; V ), 
he
k if e(P;W ) = e(U;H

2

). If C passes this test (i.e. C

is a valid 
iphertext), 
ompute � =

Q

j2S

�




0j

j

and m = H

1

(�)� V . Output m.

The 
orre
tness of the s
heme is easy to verify sin
e

Y

j2S

�




0j

j

=

Y

j2S

e(S

j

; U)




0j

= e(

X

j2S




0j

S

j

; U) = e(

X

j2S




0j

S

j

; rP ) = e(D

ID

; P )

r

:

� Assumption :

BDH problem is hard.

� Se
urity :

This proto
ol a
hieves 
hosen 
iphertext se
urity in the random ora
le model under BDH assump-

tion.

� EÆ
ien
y :

{ KeyGen : 1 s
alar multipli
ation.

{ Extra
t : 1 Map-to-point hash operation; 1 s
alar multipli
ation in G

1

.
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{ Private Key Distribution : For ea
h share holder, (t � 1) s
alar multipli
ations in G

1

; (t � 1)

additions in G

1

; 1 pairing 
omputation.

{ En
rypt : 1 s
alar multipli
ation; 1 Map-to-point hash operation; 1 pairing 
omputation; 1 expo-

nentiation in G

2

.

{ De
ryption Share Generation : For ea
h share holder, 1 hash fun
tion H

2

evaluation, 5 pairing


omputations; 1 hash fun
tion H

4

evaluation; 1 s
alar multipli
ation in G

1

; 1 addition in G

1

.

{ De
ryption Share Veri�
ation : 1 hash fun
tion H

4

evaluation; 2 pairing 
omputations; 2 expo-

nentiations in G

2

.

{ Share Combining : 1 hash fun
tionH

2

evaluation; 2 pairing 
omputations; jSj Lagrange 
o-eÆ
ient


omputations; (jSj � 1) multipli
ations in G

2

; 1 hash fun
tion H

1

evaluation; 1 XOR operation.

7 Mis
ellaneous Appli
ations

7.1 Key Sharing S
heme :

(Sakai, Ohgishi, Kasahara [38℄, 2000)

� Proto
ol Des
ription :

Let H

:

f0; 1g

�

be a Map-to-point hash fun
tion.

The idea of Key Sharing S
heme is quite simple : Suppose a PKG has a master key s, and it issues

private keys to users of the form sP

y

, where P

y

= H

1

(ID

y

) and ID

y

2 f0; 1g

�

is the identity of user

y. Then users y and z have a shared se
ret that only they (and the PKG) may 
ompute, namely

e(sP

y

; P

z

) = e(P

y

; P

z

)

s

= e(P

y

; sP

z

):

They may use this shared se
ret to en
rypt their 
ommuni
ations. This key sharing s
heme is non-

intera
tive and 
an be viewed as a type of \dual-identity-based en
ryption", where the word \dual"

indi
ates that the identities of both the sender and the re
ipient (rather than just the re
ipient) are

required as input into the en
ryption and de
ryption algorithm.

� Assumption :

BDH problem is hard.

� EÆ
ien
y :

For ea
h party, 1 pairing 
omputation for key sharing; 1 s
alar multipli
ation in G

1

; 1 Map-to-point

hash operation for private key extra
tion.

7.2 ID-Based Chameleon Hashes from Bilinear Pairings :

(Zhang, Safavi- Naini, Susilo [45℄, 2003)

A 
hameleon hash fun
tion is a trapdoor one-way hash fun
tion : without knowledge of the as-

so
iated trapdoor, the 
hameleon hash fun
tion is resistant to the 
omputation of pre-images and


ollisions. However, with the knowledge of the trapdoor, 
ollisions are eÆ
iently 
omputable.

Appli
ations : ID-based 
hameleon hash fun
tions 
an be used to 
onstru
t ID-based 
hameleon
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signature s
hemes whi
h a
hieves the goal of ID-based undeniable signature and is non-intera
tive.

An ID-based 
hameleon signature s
heme is an ID-based signature 
omputed over the ID-based


hameleon hash of m under the identity of the intended re
ipient. The re
ipient 
an verify that the

signature of a 
ertain message m is valid, but 
an not prove to others that the signer a
tually signed

m and not another message. Indeed, the re
ipient 
an �nd 
ollisions of the 
hameleon hash fun
-

tion, thus �nding a message di�erent from m whi
h would pass the signature veri�
ation pro
edure.

S
heme 1 :

� Proto
ol Des
ription :

{ Setup : PKG 
hooses a random number s 2 Z

�

q

and sets P

pub

= sP . The master key of PKG is s

and the publi
 key is P

pub

. Consider a Map-to-point hash fun
tion H

0

: f0; 1g

�

! G

1

and another

hash fun
tion H

1

: f0; 1g

l

! Z

�

q

.

{ Extra
t : A user submits his identity ID 2 f0; 1g

�

to PKG whi
h 
omputes the publi
 key as

Q

ID

= H

0

(ID) and returns S

ID

= sQ

ID

to the user as his private key.

{ Hash : Given a message m 2 f0; 1g

l

, 
hoose a random element R from G

1

, de�ne the hash as

Hash(ID; m;R) = e(R;P )e(H

1

(m)H

0

(ID); P

pub

):

{ Forge :

Forge(ID; S

ID

; m;R;m

0

) = R

0

= (H

1

(m)�H

1

(m

0

))S

ID

+R:

The forgery is 
orre
t be
ause

Hash(ID; m

0

; R

0

) = e(R

0

; P ) e(H

1

(m

0

)H

0

(ID); P

pub

)

= e((H

1

(m)�H

1

(m

0

))S

ID

+R;P ) e(H

1

(m

0

)H

0

(ID); P

pub

)

= e((H

1

(m)�H

1

(m

0

))S

ID

; P ) e(R;P ) e(H

1

(m

0

)H

0

(ID); P

pub

)

= e((H

1

(m)�H

1

(m

0

))H

0

(ID); P

pub

) e(R;P ) e(H

1

(m

0

)H

0

(ID); P

pub

)

= e(R;P ) e(H

1

(m)H

0

(ID); P

pub

)

= Hash(ID; m;R)

� Assumption :

BLS signature s
heme is se
ure.

� Se
urity :

Semanti
ally se
ure and resistant to 
ollision forgery under a
tive atta
ks provided BLS signature

s
heme is se
ure.

� EÆ
ien
y :

{ Setup : 1 s
alar multipi
ation.
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{ Extra
t : 1 Map-to-point hash operation; 1 s
alar multipli
ation in G

1

.

{ Hash : 2 pairing 
omputations; 1 s
alar multipli
ation in G

1

; 1 Map-to-point hash operation; 1

hash fun
tion H

1

evaluation. Using pre
omputation for a = e(P; P ) and b = e(H

0

(ID); P

pub

), to


ompute the 
hameleon hash of a message m, the sender requires only 1 EC s
alar multipli
ation

of G

1

+ 2 group exponentiation in G

2

. i.e. R = rP;Hash(ID; m;R) = a

r

b

H

1

(m)

.

{ Forge : 2 hash fun
tion H

1

evaluation; 1 s
alar multipli
ation in G

1

; 1 subtra
tion in Z

�

q

; 1 addi-

tion in G

1

.

S
heme 2 :

� Proto
ol Des
ription:

{ Setup : PKG 
hooses a random number s 2 Z

�

q

and sets P

pub

= sP . The master key of PKG

is s and the publi
 key is P

pub

. Consider two hash fun
tionsH

0

: f0; 1g

�

! Z

�

q

andH

1

: f0; 1g

l

! Z

�

q

.

{ Extra
t : Given an identity ID 2 f0; 1g

�

, 
ompute S

ID

=

1

s+H

0

(ID)

P . S

ID

is the private key 
orre-

sponding to the publi
 identity ID.

{ Hash : Given a message m 2 f0; 1g

l

, an identity ID 2 f0; 1g

�

and a random element R 2 G

1

,

de�ne

Hash(ID; m;R) = e(P; P )

H

1

(m)

e(H

0

(ID) + P

pub

; R)

H

1

(m)

{ Forge :

Forge(ID; S

ID

; m;R;m

0

) = R

0

= H

1

(m

0

)

�1

((H

1

(m)�H

1

(m

0

))S

ID

+H

1

(m)R):

The forgery is 
orre
t be
ause

Hash(ID; m

0

; R

0

) = e(P; P )

H

1

(m

0

)

e(H

0

(ID) + P

pub

; R

0

)

H

1

(m

0

)

= e(P;H

1

(m

0

)P ) e(H

0

(ID) + P

pub

; H

1

(m

0

)H

1

(m

0

)

�1

((H

1

(m)�H

1

(m

0

))S

ID

+H

1

(m)R))

= e(P;H

1

(m

0

)P ) e(H

0

(ID) + P

pub

; (H

1

(m)�H

1

(m

0

))S

ID

)e(H

0

(ID) + P

pub

; H

1

(m)R)

= e(P;H

1

(m

0

)P ) e(P; (H

1

(m)�H

1

(m

0

))P ) e(H

1

(ID) + P

pub

; H

1

(m)R))

= e(P; P )

H

1

(m)

e(H

1

(ID) + P

pub

; R)

H

1

(m)

= Hash(ID; m;R):

� Assumption :

ZSS signature s
heme is se
ure.

� Se
urity :

Semanti
ally se
ure and resistant to 
ollision forgery under a
tive atta
ks, provided ZSS signature

s
heme is se
ure.
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� EÆ
ien
y :

{ Setup : 1 s
alar multipli
ation in G

1

.

{ Extra
t : 1 hash fun
tion H

0

evaluation; 1 addition in Z

�

q

; 1 multipli
ative inverse in Z

�

q

; 1 s
alar

multipli
ation in G

1

.

{ Hash : 2 pairing 
omputations; 1 hash fun
tion H

0

evaluation; 2 exponentiations in G

2

; 1 addition

in G

1

. Pre
omputing a = e(P; P ), to 
ompute the 
hameleon hash of a message m, the sender

only needs to 
ompute 1 EC s
alar multipli
ation of G

1

+ 1 group exponentiation in G

2

. i.e.

R = rS

ID

;Hash(ID; m;R) = a

(r+1)H

1

(m)

.

{ Forge : 2 hash fun
tion H

1

evaluations; 2 s
alar multipli
ations in G

1

; 1 subtra
tion in Z

�

q

; 1

multipli
ative inverse in Z

�

q

.

7.3 Sign
ryption S
hemes

The idea of this primitive is to perform en
ryption and signature in a single logi
al step in order to

obtain 
on�dentiality, integrity, authenti
ation and non-repudiation more eÆ
iently than the sign-

then-en
rypt approa
h. The drawba
k of this latter situation is to expand the �nal 
iphertext size

and in
rease the sender and re
eiver's 
omputing time whi
h may be impra
ti
al for low bandwidth

network. Malone-Lee [34℄ de�nes extended se
urity notions for ID-based sign
ryption s
hemes.

7.3.1 Identity-Based Sign
ryption

(Malone-Lee [34℄, 2003)

� Proto
ol Des
ription

{ Setup : Choose s  

R

Z

�

q

and set P

Pub

= sP . The master key generated by the trusted party is

s and the publi
 key is P

pub

. Consider three hash fun
tions : H

1

: f0; 1g

�

! G

1

, H

2

: f0; 1g

�

! Z

�

q

and H

3

: G

2

! f0; 1g

l

.

{ Extra
t(ID) : Compute Q

ID

= H

1

(ID), S

ID

= sQ

ID

. The se
ret key 
orresponding to identity

ID 2 f0; 1g

�

is S

ID

and the publi
 key is Q

ID

.

{ Sign
rypt(S

ID

a

; ID

b

; m) : For a message m 2 f0; 1; g

l

, 
ompute Q

ID

b

= H

1

(ID

b

). Choose x 

R

Z

�

q

and set U = xP . Compute r = H

2

(U jjm), W = xP

pub

, V = rS

ID

a

+W , y = e(W;Q

ID

b

), � = H

3

(y),


 = ��m. Send � = (
; U; V )

{ Unsign
rypt (ID

a

; S

ID

b

; �) : Compute Q

ID

a

= H

1

(ID

a

). Parse � as (
; U; V ). Compute y =

e(S

ID

b

; U), � = H

3

(y),m = ��
, r = H

2

(U jjm). Returnm if and only if e(V; P ) = e(Q

ID

a

; P

pub

)

r

e(U; P

pub

).

Consisten
y 
onstraint : if � = Sign
rypt(S

ID

a

; ID

b

; m), then m = Unsign
rypt(ID

a

; S

ID

b

; �).

This s
heme is the result of a 
ombination of the simpli�ed version of Boneh and Franklin's IBE


ryptosystem with a varient of Hess's identity based signature.

� Assumption :

BDH problem is hard.
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� Se
urity :

This proto
ol a
hieves the se
urity IND-ISC-CCA (indistinguishability of identity-based sign
ryp-

tions under 
hosen 
iphertext atta
k) and also the se
urity EF-ISC-ACMA (existentially unforge-

ability of identity-based sign
ryptions under adaptive 
hosen message atta
k) in the random ora
le

model assuming BDH problem is hard.

� EÆ
ien
y :

{ Setup : 1 s
alar multipli
ation in G

1

.

{ Extra
t : 1 Map-to-point hash operation; 1 s
alar multipli
ation in G

1

.

{ Sign
rypt : 1 Map-to-point hash operation; 3 s
alar multipli
ations in G

1

; 1 hash fun
tion H

2

evaluation; 1 pairing 
omputation; 1 hash fun
tion H

3

evaluation; 1 XOR operation, 1 addition in

G

1

.

{ Unsign
rypt : 1 Map-to-point hash operation; 4 pairing 
omputations; 1 hash fun
tion H

3

evalu-

ation; 1 XOR operation; 1 hash fun
tion H

2

evaluation; 1 exponentiation in G

2

.

The size of the 
ryptogram is n + 2jG

1

j when a message of n-bit is sent.

7.3.2 A New Identity-Based Sign
ryption :

(Libert, Quisquater [32℄, 2003 )

� Proto
ol Des
ription :

{ Setup : Choose s  

R

Z

�

q

and set P

pub

 sP . The se
ret key is s and the publi
 key is P

pub

.

Choose a se
ure symmetri
 
ipher (E;D) with keyspa
e K

s

and 
iphertext spa
e C

s

. Also 
onsider

three hash fun
tions : H

1

: f0; 1g

�

! G

1

, H

2

: G

2

! K

s

and H

3

: C

s

� G

2

! Z

�

q

. H

1

is a

Map-to-point hash fun
tion.

{ Extra
t(ID) : Compute Q

ID

= H

1

(ID), S

ID

= sQ

ID

. The se
ret key 
orresponding to the identity

ID 2 f0; 1g

�

is S

ID

and the publi
 key is Q

ID

.

{ Sign
rypt(S

ID

a

; ID

b

; m) : For a message m 2 f0; 1g

l

, 
ompute Q

ID

b

= H

1

(ID

b

). Choose x  

R

Z

�

q

and set �

1

= e(P; P

pub

)

x

, �

2

= H

2

(e(P

pub

; Q

ID

b

)

x

). Compute 
 = E

�

2

(m), r = H

3

(
; �

1

), S =

xP

pub

� rS

ID

a

. Send � = (
; r; S).

{Unsign
rypt(ID

a

; S

ID

b

; �) : ComputeQ

ID

a

= H

1

(ID

a

). Parse � as (
; r; S) and set �

1

= e(P; S) e(P

pub

; Q

ID

a

)

r

,

� = e(S;Q

ID

b

) e(Q

ID

a

; S

ID

b

)

r

, �

2

= H

2

(�), m = D

�

2

(
). A

ept if and only if r = H

3

(
; �

1

).

� Assumption :

DBDH problem is hard.

� Se
urity :

This proto
ol a
hieves IND-ISC-CCA se
urity for 
on�dentiality and also EF-ISC-ACMA se
urity

for unforgeability in the random ora
le model assuming DBDH problem is hard.

� EÆ
ien
y :

{ Setup : 1 s
alar multipli
ation in G

1

.
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{ Extra
t : 1 Map-to-point hash operation; 1 s
alar multipli
ation in G

1

.

{ Sign
rypt : 1 Map-to-point hash operation; 2 pairing 
omputations; 1 hash fun
tion H

2

evalua-

tion; 1 exponentiation in G

2

; 1 symmetri
 key en
ryption; 1 hash fun
tion H

3

evaluation; 2 s
alar

multipli
ations in G

1

; 1 inversion in G

1

.

{ Unsign
rypt : 1 Map-to-point hash operation; 4 pairing 
omputations; 2 exponentiations in G

2

;

1 hash fun
tion H

2

evaluation; 1 symmetri
 key de
ryption; 1 hash fun
tion H

3

evaluation.

7.4 Identi�
ation S
heme based on GDH

(Kim, Kim, [29℄, 2002 )

Identi�
ation s
heme is a very important and useful 
ryptographi
 tool. It is an intera
tive proto-


ol where a prover P, tries to 
onvin
e a veri�er V, of his identity. Only P knows the se
ret value


orresponding to his publi
 one, and the se
ret value allows to 
onvin
e V of his identity.

� Proto
ol Des
ription :

{ KeyGen : Choose randomly a; b; 
 2 Z

�

q

and 
ompute aP , bP , 
P , v = e(P; P )

ab


. The se
ret key

is (a; b; 
) and make aP , bP , 
P , v publi
.

{ Proto
ol a
tions between P and V : This s
heme 
onsists of several rounds, ea
h of whi
h is

performed as follows :

1. P 
hooses randomly r

1

; r

2

; r

3

2 Z

�

q

and 
omputes x = e(P; P )

r

1

r

2

r

3

, Q

1

= r

1

P , Q

2

= r

2

P and

Q

3

= r

3

P and sends hx;Q

1

; Q

2

; Q

3

i to V.

2. V pi
kd w 2 Z

�

q

at random and sends w to P.

3. P 
omputes y = e(wP; P )

ab


e(P; P )

r

1

r

2

r

3

and sends to V; V a

epts if y = v

w

x and reje
ts

otherwise.

� Assumption :

Existen
e of GDH group.

� Se
urity :

Se
ure against a
tive atta
ks assuming that the underlying group is a GDH group.

� EÆ
ien
y :

{ KeyGen : 3 s
alar multipli
ations in G

1

; 1 pairing 
omputations.

{ Proto
ol a
tions between P and V : 3 pairing 
omputations and 4 s
alar multipli
ations in G

1

for

P; 1 exponentiation in G

2

and 1 multipli
ation in G

2

for V.

7.5 Other Signature S
hemes

There are a large number of 
ryptographi
 proto
ols that uses pairings. Dis
ussing every prototo
ol

is beyond the s
ope of the paper. This subse
tion in
ludes a list of few other interesting signature

s
hemes that have various 
ryptographi
 appli
ations in digital world. For details, see the refer-

en
es [3℄.
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1. Optimisti
 Fair Ex
hange [21℄.

2. Non-Intera
tive Deniable Ring Authenti
ation [44℄.

3. A New Vari�ably En
rypted Signature S
heme [43℄.

4. Partially Blind Signature S
heme [43℄.

5. ID-Based Group Signature S
heme [18℄.

6. Delegation-By-Certi�
ate Proxy Signature S
heme [7℄.

7. Hierar
hi
al ID-Based Signatures (HIDS) S
heme [25℄.

8 Con
lusion

Several 
ryptographi
 primitives using pairings have been des
ribed in this survey. Some others

have been left out, mainly due to the non-availability of proper se
urity proofs. The area is still

growing and almost ea
h 
onferen
e pro
eedings in
lude some new proposals. On the other hand,

we have 
overed the basi
 s
hemes whi
h will 
ontinue to be referred in the future. Thus we believe

that our survey will provide both an introdu
tion to the area as well as serve as a ready referen
e

to the area in the next few years.
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