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Abstra
t

In this paper we propose three re�nements to Miller's algorithm for 
om-

puting Weil/Tate Pairing. The �rst one is an overall improvement and a
hieves

its optimal behavior if the binary expansion of the involved integer has more

zeros. If more ones are presented in the binary expansion, se
ond improvement

is suggested. The third one is espe
ially eÆ
ient in the 
ase base three. We

also have some performan
e analysis.

keywords: algorithm, ellipti
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1 Introdu
tion

The Weil and Tate pairings are nondegenerate bilinear maps on 
ertain pairs of

points on ellipti
 
urves to a multipli
ative subgroup of an appropriate order in a


ertain �nite �eld.

The �rst notable appli
ation of pairings to 
ryptography was the work of Menezes

et al [10℄ who showed that the Weil pairing on supersingular ellipti
 
urves (whose

Frobenius tra
e is divisible by the 
hara
teristi
 of the �eld of 
urve de�nition) 
an

be used to imbed the dis
rete logarithm problem on the ellipti
 
urve into a dis
rete

logarithm problem on a 
ertain subgroup of a suitable extension of the �nite �eld

of the 
urve de�nition. The 
omplexity of the logarithm problem on the 
urve is

often (for non-supersingular 
urves) assumed to have a 
omplexity on the order of

the square root of the group order while that in �nite �elds is of subexponential


omplexity. The work showed that dis
rete logarithm problems on supersingular


urves are unsuitable for many 
ryptographi
 appli
ations. This represented a dra-

mati
 lesson on the 
aution required in 
hoosing su
h 
urves. Frey and R�u
k [5℄ also


onsider this situation using the Tate pairing, whi
h has 
ertain advantages.

Re
ent work on parings in 
ryptography has 
onsidered their use in the de�nition

and implementation of 
ertain new and potentially very useful proto
ols. Boneh and

Franklin [3℄ used pairings to develop an eÆ
ient identity-based en
ryption (IBE) sys-

tem, the �rst su
h system sin
e the notion of IBE was �rst des
ribed by Shamir [14℄.

In su
h a system a user's publi
 information su
h as his identity, email address et
.
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an be used as their publi
 key with their se
ret key being derived by a 
entral au-

thority possessing 
ertain additional information on the 
urve. Sin
e then pairings

have been used to de�ne numerous interesting proto
ols in
luding the identity-based

key ex
hange and signature s
hemes by Sakai, Ohgishi and Kashahara[13℄, the one

round proto
ol for tripartite DiÆe-Hellman key ex
hange by Joux[7℄, the short sig-

nature s
heme by Boneh, Lynn and Sha
ham[4℄, and many others. Interestingly

these proto
ols invariably require the use of supersingular 
urves. The working of

the proto
ol depends on the properties of the pairing while the se
urity of the proto-


ol depends on the diÆ
ulty of the dis
rete logarithm problem in the multipli
ative

group of an extension of the �nite �eld whi
h must then be 
hosen suÆ
iently large.

Thus the 
omputation of Weil and Tate pairings is an important issue for su
h pro-

to
ols whi
h has attra
ted attention. The original algorithm for 
omputing pairings

is due to Miller[11℄ and most 
urrent algorithms are based in some manner on it.

It is an eÆ
ient probabilisti
 polynomial-time algorithm for 
omputing the pair-

ings. What the algorithm does is the evaluation of a rational fun
tion asso
iated

with an n-torsion point of the elli
pti
 
urve. The work of Barreto, Kim, Lynn

and S
ott[1℄ and Galbraith, Harrison and Soldera[6℄ fo
us in parti
ular on the Tate

pairing and they propose methods for its fast 
omputation. They also 
onsider a

pra
ti
ally useful 
ase of �elds of 
hara
teristi
 three. In [8℄, Eisentr�ager, Lauter

and Montgomery give an algorithm to speed up point multipli
ation of an ellipti



urve. Using their method, H(n) �eld multipli
ations and H(n) �eld squarings is

eliminated when performing s
alar multipli
ation of nP for some point P , where

H(n) denotes the Hamming weight of the number n, i.e., the number of one bits in

the binary expansion of n. This observation, 
ombined with a parabola substitu-

tion, enables them to get an improvement to Miller's algorithm for general ellipti



urves. In the framework of this paper, their improvement requires H(n) fewer �eld

multipli
ations in addition. All of these 
ontributions use ideas very di�erent than

those used in this work.

In this paper, we present three versions of improvement to Miller's algorithm. They

apply to general ellipti
 
urves. Version 1 is eÆ
ient in any 
ase and log

2

n �eld

multipli
ations are saved. In parti
ular, this improvement in
ludes some pra
ti
ally

interesting 
ases (for example, when n is a Solinas number of the form 2

a

� 2

b

� 1,

see [1℄ ) that our version 2 and the algorithm of [8℄ are not strong enough to deal

with. Version 2 gains more saving in the 
ase where n has relatively high Hamming

weight, to be more spe
i�
, 2H(n) �eld multipli
ations are removed. It is remarked

that the te
hnique of Eisentr�ager, Lauter and Montgomery does not apply here.

However some modi�
ation 
an be still made to improve Miller's algorithm to save

H(n)(instead of 2H(n)) �eld multipli
ations. Moreover, with this modi�
ation,

we are able to use the method of Eisentr�ager, Lauter and Montgomery in point

multipli
ation and save H(n) �eld multipli
ations and H(n) �eld squarings. The

third one is espe
ially useful for the �eld of 
hara
teristi
 three where it saves log

3

n

�eld multipli
ations 
ompared to the original algorithm in 
hara
teristi
 three. It is

noti
ed that in this 
ase the point tripling 
an be made very eÆ
ient.

The work is organized as follows. After introdu
ing the pairings and Miller's algo-

rithm brie
y in se
tion 2, some basi
 fa
ts and observations on ellipti
 
urves are
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presented in se
tion 3. In se
tion 4, we use the results from se
tion 3 to simplify

some formulas used by Miller's algorithm and get three improved versions of the

algorithm. In se
tion 5, some detailed analysis of the three versions is given.

2 Weil Pairing, Tate pairing and Miller's Algorithm

Let E=K be an ellipti
 
urve. Re
all that a divisor is an element of the free

abelian group (denoted by Div(E)) generated by the set of points of E(K). Given

a divisor D =

P

P2E

n

P

(P ), the degree of D is de�ned by deg(D) =

P

P2E

n

P

.

We are interested in the subgroup of divisors of degree 0, namely Div

0

(E) =

fD 2 Div(E) : deg(D) = 0g. For a nonzero rational fun
tion f over E, we

de�ne div(f) =

P

P2E

ord

P

(f)(P ). It turns out that div(f) is an element in

Div

0

(E) and is 
alled a prin
ipal divisor. A 
hara
terization of prin
ipal divisors

is: D =

P

P2E

n

P

(P ) 2 Div

0

(E) is prin
ipal i�

P

P2E

n

P

P = O where O is the

point at in�nity. The relation � on Div

0

(E) is de�ned to be D

1

� D

2

i� D

1

�D

2

is prin
ipal.

The support of a divisor D =

P

P2E

n

P

(P ) is the set of points P with n

P

6= 0. If

f is a nonzero rational fun
tion su
h that div(f) and D have disjoint supports, we


an extend the evaluation of f at D by de�ning f(D) = �

P2E

f(P )

n

P

.

Let n be an integer whi
h is prime to p =
har(K) if p > 0, and E[n℄ = fP 2

E(K) : nP = Og. Take P;Q 2 E[n℄, there exist D

P

;D

Q

2 Div

0

(E) su
h that

D

P

� (P )� (O) and D

Q

� (Q)� (O). Then there exist fun
tions f

P

; f

Q

su
h that

div(f

P

) = nD

P

, div(f

Q

) = nD

Q

. Suppose that D

P

and D

Q

have disjoint supports,

then the following is meaningful:

e(P;Q) =

f

P

(D

Q

)

f

Q

(D

P

)

;

and this is the Weil pairing.

The Tate pairing 
an also be de�ned based on f

P

(D

Q

). By a suitable �eld extension

if ne
essary, we may assume that the �eld K 
ontains nth roots of unity. Let

P 2 E(K)[n℄ and Q 2 E(K). As before, there exits a fun
tion f

P

su
h that

div(f

P

) = n(P ) � n(O). Take a point S 2 E su
h that D

Q

= (Q+ S) � S and f

P

have disjoint supports. Then we have a map

�

n

: E(K)[n℄� (E(K)=nE(K)) ! K

�

=(K

�

)

n

with

�

n

(P;Q) = f

P

(D

Q

);

where Q is the equivalen
e 
lass in E(K)=nE(K) 
ontaining Q, and f

P

(D

Q

) is the

equivalen
e 
lass in K

�

=(K

�

)

n


ontaining f

P

(D

Q

). The fun
tion �

n

is 
alled Tate

pairing.

An essential part in 
omputing the Weil/Tate pairing is the evaluation of f

P

(R)

for ea
h point R in the support of D

Q

. In his unpublished manus
ript, Miller gave

an elegant and eÆ
ient algorithm for this 
al
ulation. The main idea of Miller's
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algorithm is as follows. Randomly pi
k a point R, and let D

P

= (P +R)� (R). For

ea
h integer k, there is a rational fun
tion f

k

su
h that

div(f

k

) = k(P +R)� k(R)� (kP ) + (O):

In parti
ular, f

n

= f

P

.

For any points S; T , let h

S;T

and h

S

be linear fun
tions su
h that h

S;T

= 0 and

h

S

= 0 are the line passing through S; T and the verti
al line passing through S

respe
tively.

Noti
e that

div(h

k

1

P;k

2

P

) = (k

1

P ) + (k

2

P ) + (�(k

1

+ k

2

)P )� 3(O)

and

div(h

(k

1

+k

2

)P

) = ((k

1

+ k

2

)P ) + (�(k

1

+ k

2

)P )� 2(O);

and we have

div(f

k

1

+k

2

) = div(f

k

1

) + div(f

k

2

) + div(h

k

1

P;k

2

P

)� div(h

(k

1

+k

2

)P

);

and hen
e

f

k

1

+k

2

=

f

k

1

f

k

2

h

k

1

P;k

2

P

h

(k

1

+k

2

)P

: (2.1)

This is a re
ursive equation with initial 
onditions f

0

= 1 and f

1

=

h

P;R

h

P+R

: The latter

is be
ause div(f

1

) = (P +R)� (R)� (P ) + (O):

Miller's algorithm is given more formally below and its simliarity to the algorithms

in [1, 3℄ is noted:

Algorithm 2.1 (Miller's algorithm)

INPUT: Integer n =

P

t

i=0

b

i

2

i

with b

i

2 f0; 1g and b

t

= 1, and a point S 2 E

OUTPUT: f = f

n

(S).

f  f

1

; Z  P ;

For j  t� 1; t� 2; : : : ; 1; 0 do

f  f

2

h

Z;Z

(S)

h

2Z

(S)

; Z  2Z;

If b

j

= 1 then

f  f

1

f

h

Z;P

(S)

h

Z+P

(S)

; Z  Z + P ;

Endif

Endfor

Return f

As indi
ated in [1℄, when we 
onsider Tate pairing, the fun
tion f

k


an be 
hoosen

so that

div(f

k

) = k(P )� (kP ) + (k � 1)(O):

4



In this 
ase the above Miller's algorithm remains the same ex
ept f

1

= 1.

For �elds of 
hara
teristi
 three, the following version of Miller's algorithm is more

eÆ
ient, taking advantage of the fast implementation of point triples in su
h a 
ase

(see [1, 6℄):

Algorithm 2.2 (Miller's algorithm in 
hara
teristi
 three)

INPUT: Integer n =

P

r

i=0

t

i

3

i

with t

i

2 f0; 1; 2g and t

r

6= 0, and a point S 2 E

OUTPUT: f = f

n

(S).

If t

r

= 1 then

f  f

1

; Z  P ;

Endif

If t

r

= 2 then

f  f

1

2

h

P;P

(S)

h

2P

(S)

; Z  2P ;

Endif

For j  r � 1; r � 2; : : : ; 1; 0 do

f  f

3

h

Z;Z

(S)

h

2Z

(S)

h

2Z;Z

(S)

h

3Z

(S)

; Z  3Z;

If t

j

= 1 then

f

1

f  f

h

Z;P

(S)

h

Z+P

(S)

; Z  Z + P ;

Endif

If t

j

= 2 then

f  f

1

2

f

h

Z;2P

(S)

h

Z+2P

(S)

; Z  Z + 2P ;

Endif

Endfor

Return f

3 Preliminary Observations and Fa
ts

Some well known fa
ts and observations that 
an be used to simplify 
omputations

in Miller's algorithm are noted in this se
tion.

Consider the ellipti
 
urve E of the form

E : y

2

+ a

1

xy + a

3

y = x

3

+ a

2

x

2

+ a

4

x+ a

6

:

For a linear fun
tion

h(x; y) = k(x� a) + b� y

on E, where a; b and k are 
onstants, de�ne h(x; y) as the 
onjugate of h as follows:

h(x; y) = k(x� a) + b+ y + a

1

x+ a

3

:

Note that for a pointR 2 E, h(R) = h(�R). Also note that the produ
t h(x; y)h(x; y)

is exa
tly the norm N

K(x;y)=K(x)

(h).
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The following fa
t will be useful. It is apparently well known although no proof of

it in the literature was found.

Lemma 3.1 If the line h(x; y) = 0 interse
ts with E at points P = (a; b); Q = (
; d)

and �(P +Q) with P +Q = (�; �), then

N

K(x;y)=K(x)

(h) = �(x� a)(x� 
)(x� �):

Proof: Noti
e that N

K(x;y)=K(x)

(h) 
an be redu
ed to a fun
tion of the form

�x

3

+ t

2

x

2

+ t

1

x+ t

0

;

where t

0

; t

1

; t

2

2 K. Moreover, ea
h of (x � a); (x � 
) and (x � �) is a fa
tor of

N

K(x;y)=K(x)

(h), and so the desired fa
torization follows.

[℄

For a point Q 2 E, we write Q = (x

Q

; y

Q

), i.e., x

Q

is the x�
oordinate of Q and y

Q

the y�
oordinate of Q.

The following observations will play a key role in the re�nements of Miller's algo-

rithm.

Lemma 3.2 Let Q 2 E[n℄ and S 6= Q; 2Q; � � � ; nQ. Then

1.

h

Q;Q

(S)

h

2

Q

(S)h

2Q

(S)

= �

1

h

Q;Q

(�S)

:

2. For any integer k,

h

(k+1)Q;kQ

(S)

h

(k+1)Q

(S)h

(2k+1)Q

(S)

= �

h

kQ

(S)

h

(k+1)Q;kQ

(�S)

:

3.

h

Q;Q

(S)h

2Q;Q

(S)

h

2Q

(S)h

3Q

(S)

= �

h

Q;Q

(S)h

Q

(S)

h

2Q;Q

(�S)

:

Proof: By Lemma 3.1, we have

1.

h

Q;Q

(S)

h

2

Q

(S)h

2Q

(S)

=

h

Q;Q

(S)h

Q;Q

(�S)

h

2

Q

(S)h

2Q

(S)h

Q;Q

(�S)

=

N

K(x;y)=K(x)

(h

Q;Q

)(S)

(x

S

� x

Q

)

2

(x

S

� x

2Q

)h

Q;Q

(�S)

= �

1

h

Q;Q

(�S)

:
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2.

h

(k+1)Q;kQ

(S)

h

(k+1)Q

(S)h

(2k+1)Q

(S)

=

h

(k+1)Q;kQ

(S)h

(k+1)Q;kQ

(�S)

h

(k+1)Q

(S)h

(2k+1)Q

(S)h

(k+1)Q;kQ

(�S)

=

N

K(x;y)=K(x)

(h

(k+1)Q;kQ

)(S)

(x� x

(k+1)Q

)(x� x

(2k+1)Q

)h

(k+1)Q;kQ

(�S)

=

h

kQ

(S)

h

(k+1)Q;kQ

(�S)

:

3.

h

Q;Q

(S)h

2Q;Q

(S)

h

2Q

(S)h

3Q

(S)

=

h

Q;Q

(S)h

2Q;Q

(S)h

2Q;Q

(�S)

h

2Q

(S)h

3Q

(S)h

2Q;Q

(�S)

=

h

Q;Q

(S)N

K(x;y)=K(x)

(h

2Q;Q

)(S)

(x

S

� x

2Q

)(x

S

� x

3Q

)h

2Q;Q

(�S)

= �

h

Q;Q

(S)(x

S

� x

Q

)

h

2Q;Q

(�S)

= �

h

Q;Q

(S)h

Q

(S)

h

2Q;Q

(�S)

:

[℄

Remark 3.3 1. Sin
e div(f) = div(
f) for any nonzero 
onstant 
 2 K, the sign

does not a�e
t the 
al
ulation of either pairing and therefore, minus signs will

be omitted in the use of the above lemma.

2. In the rest of the dis
ussion, the point P 2 E[n℄ will be �xed and Q is taken

to be some multiple of P . In order to satisfy the 
ondition of the lemma, it is

suÆ
ient to let S 6= P; 2P; : : : ; nP . This is also the requirement of the original

Miller algorithm.

4 The Re�nements

Noti
e that Miller's algorithm 2.1 uses the double-and-add method, and we 
an

display an expli
it formula for the fun
tion f

n

as

f

n

= f

n

1

�

1

i=t

 

h

b

n

2

i


P;b

n

2

i


P

h

2b

n

2

i


P

h

2b

n

2

i


P;b

i�1

P

h

b

n

2

i�1


P

!

2

i�1

; (4.1)

where t = blg

2

n
 and b

i�1

= b

n

2

i�1


 � 2b

n

2

i


. In this formula, if b

i�1

= 0, then

h

2b

n

2

i


P;b

i�1

P

= h

2b

n

2

i


P;O

= h

b

n

2

i�1


P

. Without loss of generality, we also assume

that h

O

= 1: We arrange the produ
t to start from term t down to term 1. This is

the way that the algorithm works.
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Similarly, in the 
ase of base three, f

n


an be expressed as

f

n

= f

n

1

�

h

(3�b

n

3

r


)P;(b

n

3

r


�1)P

h

2P

�

3

r

�

1

i=r

 

h

b

n

3

i


P;b

n

3

i


P

h

2b

n

3

i


P

h

2b

n

3

i


P;b

n

3

i


P

h

3b

n

3

i


P

h

3b

n

3

i


P;t

i�1

P

h

b

n

3

i�1


P

!

3

i�1

;

(4.2)

where r = blg

3

n
 and t

i�1

= b

n

3

i�1


 � 3b

n

3

i


.

4.1 Re�nement 1

Consider the binary represenation of n =

P

t

i=0

b

i

2

i

, and group every two terms in

Formula 4.1 together. Then we get the following relation by applying Lemma 3.1.

 

h

b

n

2

i


P;b

n

2

i


P

h

2b

n

2

i


P

h

2b

n

2

i


P;b

i�1

P

h

b

n

2

i�1


P

!

2

i�1
 

h

b

n

2

i�1


P;b

n

2

i�1


P

h

2b

n

2

i�1


P

h

2b

n

2

i�1


P;b

i�2

P

h

b

n

2

i�2


P

!

2

i�2

=

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

�

h

b

n

2

i


P;b

n

2

i


P

h

2b

n

2

i


P

h

2b

n

2

i


P;P

h

b

n

2

i�1


P

�

2

i�1 �

h

b

n

2

i�1


P;b

n

2

i�1


P

h

2b

n

2

i�1


P

h

2b

n

2

i�1


P;P

h

b

n

2

i�2


P

�

2

i�2

if b

i�1

= b

i�2

= 1

�

h

b

n

2

i


P;b

n

2

i


P

h

2b

n

2

i


P

h

2b

n

2

i


P;P

h

b

n

2

i�1


P

�

2

i�1 �

h

b

n

2

i�1


P;b

n

2

i�1


P

h

2b

n

2

i�1


P

�

2

i�2

if b

i�1

= 1; b

i�2

= 0

�

h

b

n

2

i


P;b

n

2

i


P

h

2b

n

2

i


P

h

2b

n

2

i


P;P

h

b

n

2

i�1


P

�

2

i�1
�

h

b

n

2

i�1


P;b

n

2

i�1


P

h

2b

n

2

i�1


P

�

2

i�2

if b

i�1

= 0; b

i�2

= 1

�

h

b

n

2

i


P;b

n

2

i


P

h

2b

n

2

i


P

�

2

i�1
�

h

b

n

2

i�1


P;b

n

2

i�1


P

h

2b

n

2

i�1


P

�

2

i�2

if b

i�1

= b

i�2

= 0

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�

h

b

n

2

i


P;b

n

2

i


P

h

2b

n

2

i


P;P

h

2b

n

2

i


P

�

2

i�1

 

h

2b

n

2

i�1


P;P

h

b

n

2

i�1


P;b

n

2

i�1


P

h

b

n

2

i�2


P

!

2

i�2

if b

i�1

= b

i�2

= 1

�

h

b

n

2

i


P;b

n

2

i


P

h

2b

n

2

i


P;P

h

2b

n

2

i


P

�

2

i�1

 

1

h

b

n

2

i�1


P;b

n

2

i�1


P

!

2

i�2

if b

i�1

= 1; b

i�2

= 0

�

h

b

n

2

i


P;b

n

2

i


P

�

2

i�1

 

h

2b

n

2

i�1


P;P

h

b

n

2

i�1


P;b

n

2

i�1


P

h

b

n

2

i�2


P

!

2

i�2

if b

i�1

= 0; b

i�2

= 1

�

h

b

n

2

i


P;b

n

2

i


P

�

2

i�1

 

1

h

b

n

2

i�1


P;b

n

2

i�1


P

!

2

i�2

if b

i�1

= b

i�2

= 0

This relation provides the 
orre
tness of an improved Miller's algorithm whi
h is

generally eÆ
ient and a
hieves greater eÆ
ien
y as the number of zero b

i

's in
reases.

As the simpli�
ation is a
hieved by grouping two terms together, it is natural to

expand n in terms of base 4 whi
h is given in the next algorithm.

Algorithm 4.1 (Improved Miller's algorithm (version 1))

INPUT: Integer n =

P

r

i=0

q

i

4

i

with q

i

2 f0; 1; 2; 3g and q

r

6= 0, and a point S 2 E

OUTPUT:f = f

n

(S).
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f  f

1

; Z  P ;

If q

r

= 2 then

f  f

2

h

P;P

(S)

h

2P

(S)

; Z  2P ;

Endif

If q

r

= 3 then

f  f

3

h

2

P;P

(S)h

P

(S)

h

2P;P

(�S)

; Z  3P ;

Endif

For j  r � 1; r � 2; : : : ; 1; 0 do

If q

j

= 0 then

f  

f

4

h

2

Z;Z

(S)

h

2Z;2Z

(�S)

; Z  4Z;

Endif

If q

j

= 1 then

f  f

1

f

4

h

2

Z;Z

(S)h

4Z;P

(S)

h

4Z+P

(S)h

2Z;2Z

(�S)

; Z  4Z + P ;

Endif

If q

j

= 2 then

f  f

1

2

f

4

h

2

Z;Z

(S)h

2

2Z;P

(S)

h

2

2Z

(S)h

2Z+P;2Z+P

(�S)

; Z  4Z + 2P ;

Endif

If q

j

= 3 then

f  f

1

3

f

4

h

2

Z;Z

(S)h

2

2Z;P

(S)h

4Z+2P;P

(S)

h

2

2Z

(S)h

2Z+P;2Z+P

(�S)h

4Z+3P

(S)

; Z  4Z + 3P ;

Endif

Endfor

Return f

4.2 Re�nement 2

Suppose that most bits in the binary represenation of n =

P

t

i=0

b

i

2

i

are 1, then

Miller's algorithm 
an be modi�ed to save more �eld operations based on the fol-

lowing observation:

By rearranging Formula 4.1 and then applying Lemma 3.2, the following 
omputa-

tions are obtained:

f

n

= f

n

1

�

h

P;P

h

2P;b

t�1

P

h

2P

�

2

t�1

�

1

i=t�1

 

h

b

n

2

i


P;b

n

2

i


P

(h

b

n

2

i


P

)

2

h

2b

n

2

i


P;b

i�1

P

h

2b

n

2

i


P

!

2

i�1

= f

n

1

�

h

P;P

h

2P;b

t�1

P

h

2P

�

2

t�1

�

1

i=t�1

 

h

2b

n

2

i


P;b

i�1

P

h

b

n

2

i


P;b

n

2

i


P

!

2

i�1

The fa
t that h

nP

= 1 has been used and the last term inside the produ
t symbol

is

1

h

b

n

2


P;b

n

2


P

.
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Algorithm 4.2 (Improved Miller's algorithm (version 2))

INPUT: Integer n =

P

t

i=0

b

i

2

i

with b

i

2 f0; 1g and b

t

= 1, and a point S 2 E

OUTPUT: f = f

n

(S).

If b

t�1

= 0 then

f  f

1

2

h

P;P

(S); Z  2P ;

Else

f  f

1

3

h

P;P

(S)h

2P;P

(S)

h

2P

(S)

; Z  3P ;

Endif

For j  t� 2; : : : ; 1; 0 do

If b

j

= 0 then

f  f

2

h

2Z

(S)

h

Z;Z

(�S)

; Z  2Z;

Else

f  f

1

f

2

h

2Z;P

(S)

h

Z;Z

(�S)

; Z  2Z + P ;

Endif

Endfor

Return f

In [8℄, Eisentr�ager, Lauter and Montgomery suggested a method that eliminates a

�eld multipli
ation and a �eld squaring in the 
omputation of 2Q+P . They obtained

an improvement of Miller's algorithm by using this observation and a parabola sub-

stitution. Their algorithm speeds up the 
omputations in the 
ase that most bits

in the binary represenation of n are 1. However, although their method 
an not be


ombined with the above algorithm, we may modify and simplify the fun
tion f

n

as

follows so that the method of Eisentr�ager, Lauter and Montgomery 
an be used.

f

n

= f

n

1

�

1

i=t

 

h

b

n

2

i


P;b

i�1

P

h

(b

n

2

i


+b

i�1

)P;b

n

2

i


P

h

(b

n

2

i


+b

i�1

)P

h

(2b

n

2

i


+b

i�1

)P

!

2

i�1

= f

n

1

�

1

i=t

 

h

b

n

2

i


P;b

i�1

P

h

b

n

2

i


P

h

(b

n

2

i


+b

i�1

)P;b

n

2

i


P

!

2

i�1

:

An algorithm 
an be formed as before based on the above formula.

4.3 Re�nement 3

As stated in [1, 6℄, point tripling is a relatively 
heap operation in the 
ase of


hara
teristi
 three and the base three version of Miller's algorithm 2.2 should be

used in this 
ase.

Let n =

P

r

i=0

t

i

3

i

with t

r

6= 0. Applying part 2 of Lemma 3.1 to Formula 4.2, we

10



see that

f

n

= f

n

1

�

h

(3�b

n

3

r


)P;(b

n

3

r


�1)P

h

2P

�

3

r

�

1

i=r

 

h

b

n

3

i


P;b

n

3

i


P

h

2b

n

3

i


P

h

2b

n

3

i


P;b

n

3

i


P

h

3b

n

3

i


P

h

3b

n

3

i


P;t

i�1

P

h

b

n

3

i�1


P

!

3

i�1

= f

n

1

�

h

(3�b

n

3

r


)P;(b

n

3

r


�1)P

h

2P

�

3

r

�

1

i=r

 

h

b

n

3

i


P;b

n

3

i


P

h

b

n

3

i


P

h

2b

n

3

i


P;b

n

3

i


P

h

3b

n

3

i


P;t

i�1

P

h

b

n

3

i�1


P

!

3

i�1

:

This formula is realised by the algorithm 4.3 whi
h improves algorithm 2.2.

Algorithm 4.3 ( Improved Miller's algorithm (version 3))

INPUT: Integer n =

P

r

i=0

t

i

3

i

with t

i

2 f0; 1; 2g and t

r

6= 0, and a point S 2 E

OUTPUT: f = f

n

(S).

f

2

 f

1

2

h

P;P

(S)

h

2P

S)

;

f  f

1

; Z  P ;

If t

r

= 2 then

f  f

2

; Z  2P ;

Endif

For j  r � 1; r � 2; : : : ; 1; 0 do

f = f

3

h

Z;Z

(S)h

Z

(S)

h

2Z;Z

(�S)

; Z  3Z;

If t

j

= 1 then

f  f

1

f

h

Z;P

(S)

h

Z+P

(S)

; Z  Z + P ;

Endif

If t

j

= 2 then

f  f

2

f

h

Z;2P

(S)

h

Z+2P

(S)

; Z  Z + 2P ;

Endif

Endfor

Return f

5 Analysis

In this se
tion, some detailed analysis of the re�nements are given and the number

of operations that 
an be saved dis
ussed.

As indi
ated in [1, 6, 8℄, in the a
tual implementaion of the algorithms, the operations

in the numerator and denominator in ea
h step are separated and the single division

is used at the end of the pro
edure.

Observe that the savings 
ome from the elimination of terms like h

X;Y

(S) and h

X

(S).

It is easy to see that h

X;Y

(S) and h

X;Y

(�S) both 
ost one �eld multipli
tion if

the slope has been pre
al
ulated. Also note that both algorithm 4.1 and algo-

rithm 4.2 use the same method for doing point operations (doubling and addition)

11



as in Miller's original algorithm 2.1. So we only 
ount the �eld operations used to

evaluate h

X;Y

; h

X

and to multiply (or square) terms like h

X;Y

(�S); h

X

(S).

First, the savings made by using our �rst improvement, (algorithm 4.1) are esti-

mated. Consider a single round of the for loop of algorithm 4.1. Two �eld mul-

tipli
ations will be saved for ea
h 
ase. For example, q

j

= 1, then the dedu
tion

is

f  f

1

f

4

h

2

Z;Z

(S)h

4Z;P

(S)

h

2Z;2Z

(�S)h

4Z+P

(S)

:

If we assume that f

1

and f have already been written as quotients on the right

hand side, then it takes 2 squarings and 6 multipli
ations for the numerator, and

2 squarings and 4 multipli
ations for the denominator. This should be 
ompared

with 2 rounds of the for loop of the original Miller's algorithm 2.1 with the following

result:

f  f

1

f

4

h

2

Z;Z

(S)h

2Z;2Z

(S)h

4Z;P

(S)

h

2

2Z

(S)h

4Z

(S)h

4Z+P

(S)

:

It requires 2 squarings and 8 multipli
ations for the numerator, and 2 squarings and

4 multipli
ations for the denominator. So, the number of �eld multipli
ation saved

in total is 2 log

4

n = log

2

n.

Next, the savings made by using algorithm 4.2 are 
onsidered. For ea
h single round

in the for loop, if b

j

= 1, our 
omputation of

f  f

1

f

2

h

2Z;P

(S)

h

Z;Z

(�S)

needs 1 squaring and 3 multipli
ations for the numerator, and 1 squaring and 3

multipli
ations for the denominator. This is two �eld multipli
ations fewer then the


omputation of

f  f

1

f

2

h

Z;Z

(S)h

2Z;P

(S)

h

2Z

(S)h

2Z+P

(S)

whi
h is from the original algorithm. Thus the overall savings is 2H(n), where again,

H(n) is the weight of the binary expansion of n.

As indi
ated in se
tion 4.2, we 
an rewrite the 
ase of b

j

= 1 of the for loop in the

original Miller's algorithm as

f  f

1

f

2

h

Z;P

(S)h

Z+P;Z

(S)

h

Z+P

(S)h

2Z+P

(S)

and simplify it to

f  f

1

f

2

h

Z;P

(S)h

Z

(S)

h

Z+P;Z

(�S)

:

One �eld multipli
ation is saved from the numerator and hen
e a total of H(n) �eld

multipli
ations are saved. But sin
e there is no need to referen
e (the y-
oordinate

of) 2Z, the tri
k of Eisentr�ager, Lauter and Montgomery 
an be used, so another

H(n) �eld multipli
ations and H(n) �eld squares 
an be saved.

Similar to the previous dis
ussion, it 
an be 
he
ked that the algorithm 4.3 saves

log

3

n �eld multipli
ations 
ompared with its base three 
ounterpart. Note that in

12



this 
ase, log

3

n of point triplings are performed. Sin
e tripling 
an be made very

eÆ
ient, therefore algorithm 4.3 is a good 
hoi
e here.

Table 1 summarizes the performan
e of the new algorithms, where the numbers in

the saving 
olumn indi
ate the number of �eld multipli
ations eliminated in the

respe
tive algorithms.

Table 1: Performan
e of the improved algorithms

Algorithm Saving Condition for improvement

Algorithm 4.1 log

2

n All values of n

Algorithm 4.2 2H(n) Higher Hamming weight

Algorithm 4.3 log

3

n Chara
teristi
 three

Finally, two examples are given. We list the 
al
ulation formulas for f

191

; f

257

using

Miller's algorithm from [1, 3℄ (Algorithm2.1), our improved version 1(Algorithm4.1)

and our improved version 2(Algorithm4.2). Noti
e that the prime numbers 191 and

257 represent two extreme situations sin
e the �rst has only the one zero in its

binary expansion and the se
ond is of weight two, the minimal weight possible for

a nontrivial prime number. Here the symbols h

kP;mP

; h

kP

are shortened as h

k;m

; h

k

respe
tively. Also h

k;m

is used to denote h

kP;mP

(�S).

Example 5.1 Compute f

191

:

Number 191 = (10111111)

2

= (2333)

4

Algorithm 2.1 f = f

1

191

h

64

1;1

h

64

2

h

32

2;2

h

32

4

h

32

4;1

h

32

5

h

16

5;5

h

16

10

h

16

10;1

h

16

11

h

8

11;11

h

8

22

h

8

22;1

h

8

23

h

4

23;23

h

4

46

h

4

46;1

h

4

47

�

h

2

47;47

h

2

94

h

2

94;1

h

2

95

h

95;95

h

190

h

190;1

h

191

Algorithm 4.1 f = f

1

191

h

64

1;1

h

64

2

h

32

2;2

h

32

4

h

32

4;1

h

16

5;5

h

16

10;1

h

16

11

h

8

11;11

h

8

22

h

8

22;1

h

4

23;23

h

4

46;1

h

4

47

h

2

47;47

h

2

94

h

2

94;1

h

95;95

h

190;1

h

191

Algorithm 4.2 f = f

1

191

h

64

1;1

h

32

4;1

h

32

2;2

h

16

5;5

h

16

10

h

16

10;1

h

16

5;5

h

8

22;1

h

8

11;11

h

4

46;1

h

4

23;23

h

2

94;1

h

2

47;47

h

190;1

h

95;95

Compute f

257

:

Number 257 = (100000001)

2

= (10001)

4

Algorithm 2.1 f = f

1

257

h

128

1;1

h

128

2

h

64

2;2

h

64

4

h

32

4;4

h

32

8

h

16

8;8

h

16

16

h

8

16;16

h

8

32

h

4

32;32

h

4

64

h

2

64;64

h

2

128

h

128;128

h

256

h

256;1

h

257

Algorithm 4.1 f = f

1

257

h

128

1;1

h

64

2;2

h

32

4;4

h

16

8;8

h

8

16;16

h

4

32;32

h

2

64;64

h

128;128

h

256;1

h

257

Algorithm 4.2 f = f

1

257

h

128

1;1

h

64

4

h

64

2;2

h

32

8

h

32

4;4

h

16

16

h

16

8;8

h

8

32

h

8

16;16

h

4

64

h

4

32;32

h

2

128

h

2

64;64

h

256;1

h

128;128

6 Comments

Three re�nements for the 
omputation of the Tate/Weil pairing have been given

and the 
orresponding performan
e analyzed. The savings in the number of mul-
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tipli
ations noted 
ould prove important for the performan
e of algorithms in the

implementations of many of the new and interesting proto
ols that have been, and

will 
ontinue to be, developed using these pairings.
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