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Abstrat

In this paper we propose three re�nements to Miller's algorithm for om-

puting Weil/Tate Pairing. The �rst one is an overall improvement and ahieves

its optimal behavior if the binary expansion of the involved integer has more

zeros. If more ones are presented in the binary expansion, seond improvement

is suggested. The third one is espeially eÆient in the ase base three. We

also have some performane analysis.
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1 Introdution

The Weil and Tate pairings are nondegenerate bilinear maps on ertain pairs of

points on ellipti urves to a multipliative subgroup of an appropriate order in a

ertain �nite �eld.

The �rst notable appliation of pairings to ryptography was the work of Menezes

et al [10℄ who showed that the Weil pairing on supersingular ellipti urves (whose

Frobenius trae is divisible by the harateristi of the �eld of urve de�nition) an

be used to imbed the disrete logarithm problem on the ellipti urve into a disrete

logarithm problem on a ertain subgroup of a suitable extension of the �nite �eld

of the urve de�nition. The omplexity of the logarithm problem on the urve is

often (for non-supersingular urves) assumed to have a omplexity on the order of

the square root of the group order while that in �nite �elds is of subexponential

omplexity. The work showed that disrete logarithm problems on supersingular

urves are unsuitable for many ryptographi appliations. This represented a dra-

mati lesson on the aution required in hoosing suh urves. Frey and R�uk [5℄ also

onsider this situation using the Tate pairing, whih has ertain advantages.

Reent work on parings in ryptography has onsidered their use in the de�nition

and implementation of ertain new and potentially very useful protools. Boneh and

Franklin [3℄ used pairings to develop an eÆient identity-based enryption (IBE) sys-

tem, the �rst suh system sine the notion of IBE was �rst desribed by Shamir [14℄.

In suh a system a user's publi information suh as his identity, email address et.
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an be used as their publi key with their seret key being derived by a entral au-

thority possessing ertain additional information on the urve. Sine then pairings

have been used to de�ne numerous interesting protools inluding the identity-based

key exhange and signature shemes by Sakai, Ohgishi and Kashahara[13℄, the one

round protool for tripartite DiÆe-Hellman key exhange by Joux[7℄, the short sig-

nature sheme by Boneh, Lynn and Shaham[4℄, and many others. Interestingly

these protools invariably require the use of supersingular urves. The working of

the protool depends on the properties of the pairing while the seurity of the proto-

ol depends on the diÆulty of the disrete logarithm problem in the multipliative

group of an extension of the �nite �eld whih must then be hosen suÆiently large.

Thus the omputation of Weil and Tate pairings is an important issue for suh pro-

tools whih has attrated attention. The original algorithm for omputing pairings

is due to Miller[11℄ and most urrent algorithms are based in some manner on it.

It is an eÆient probabilisti polynomial-time algorithm for omputing the pair-

ings. What the algorithm does is the evaluation of a rational funtion assoiated

with an n-torsion point of the ellipti urve. The work of Barreto, Kim, Lynn

and Sott[1℄ and Galbraith, Harrison and Soldera[6℄ fous in partiular on the Tate

pairing and they propose methods for its fast omputation. They also onsider a

pratially useful ase of �elds of harateristi three. In [8℄, Eisentr�ager, Lauter

and Montgomery give an algorithm to speed up point multipliation of an ellipti

urve. Using their method, H(n) �eld multipliations and H(n) �eld squarings is

eliminated when performing salar multipliation of nP for some point P , where

H(n) denotes the Hamming weight of the number n, i.e., the number of one bits in

the binary expansion of n. This observation, ombined with a parabola substitu-

tion, enables them to get an improvement to Miller's algorithm for general ellipti

urves. In the framework of this paper, their improvement requires H(n) fewer �eld

multipliations in addition. All of these ontributions use ideas very di�erent than

those used in this work.

In this paper, we present three versions of improvement to Miller's algorithm. They

apply to general ellipti urves. Version 1 is eÆient in any ase and log

2

n �eld

multipliations are saved. In partiular, this improvement inludes some pratially

interesting ases (for example, when n is a Solinas number of the form 2

a

� 2

b

� 1,

see [1℄ ) that our version 2 and the algorithm of [8℄ are not strong enough to deal

with. Version 2 gains more saving in the ase where n has relatively high Hamming

weight, to be more spei�, 2H(n) �eld multipliations are removed. It is remarked

that the tehnique of Eisentr�ager, Lauter and Montgomery does not apply here.

However some modi�ation an be still made to improve Miller's algorithm to save

H(n)(instead of 2H(n)) �eld multipliations. Moreover, with this modi�ation,

we are able to use the method of Eisentr�ager, Lauter and Montgomery in point

multipliation and save H(n) �eld multipliations and H(n) �eld squarings. The

third one is espeially useful for the �eld of harateristi three where it saves log

3

n

�eld multipliations ompared to the original algorithm in harateristi three. It is

notied that in this ase the point tripling an be made very eÆient.

The work is organized as follows. After introduing the pairings and Miller's algo-

rithm briey in setion 2, some basi fats and observations on ellipti urves are
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presented in setion 3. In setion 4, we use the results from setion 3 to simplify

some formulas used by Miller's algorithm and get three improved versions of the

algorithm. In setion 5, some detailed analysis of the three versions is given.

2 Weil Pairing, Tate pairing and Miller's Algorithm

Let E=K be an ellipti urve. Reall that a divisor is an element of the free

abelian group (denoted by Div(E)) generated by the set of points of E(K). Given

a divisor D =

P

P2E

n

P

(P ), the degree of D is de�ned by deg(D) =

P

P2E

n

P

.

We are interested in the subgroup of divisors of degree 0, namely Div

0

(E) =

fD 2 Div(E) : deg(D) = 0g. For a nonzero rational funtion f over E, we

de�ne div(f) =

P

P2E

ord

P

(f)(P ). It turns out that div(f) is an element in

Div

0

(E) and is alled a prinipal divisor. A haraterization of prinipal divisors

is: D =

P

P2E

n

P

(P ) 2 Div

0

(E) is prinipal i�

P

P2E

n

P

P = O where O is the

point at in�nity. The relation � on Div

0

(E) is de�ned to be D

1

� D

2

i� D

1

�D

2

is prinipal.

The support of a divisor D =

P

P2E

n

P

(P ) is the set of points P with n

P

6= 0. If

f is a nonzero rational funtion suh that div(f) and D have disjoint supports, we

an extend the evaluation of f at D by de�ning f(D) = �

P2E

f(P )

n

P

.

Let n be an integer whih is prime to p =har(K) if p > 0, and E[n℄ = fP 2

E(K) : nP = Og. Take P;Q 2 E[n℄, there exist D

P

;D

Q

2 Div

0

(E) suh that

D

P

� (P )� (O) and D

Q

� (Q)� (O). Then there exist funtions f

P

; f

Q

suh that

div(f

P

) = nD

P

, div(f

Q

) = nD

Q

. Suppose that D

P

and D

Q

have disjoint supports,

then the following is meaningful:

e(P;Q) =

f

P

(D

Q

)

f

Q

(D

P

)

;

and this is the Weil pairing.

The Tate pairing an also be de�ned based on f

P

(D

Q

). By a suitable �eld extension

if neessary, we may assume that the �eld K ontains nth roots of unity. Let

P 2 E(K)[n℄ and Q 2 E(K). As before, there exits a funtion f

P

suh that

div(f

P

) = n(P ) � n(O). Take a point S 2 E suh that D

Q

= (Q+ S) � S and f

P

have disjoint supports. Then we have a map

�

n

: E(K)[n℄� (E(K)=nE(K)) ! K

�

=(K

�

)

n

with

�

n

(P;Q) = f

P

(D

Q

);

where Q is the equivalene lass in E(K)=nE(K) ontaining Q, and f

P

(D

Q

) is the

equivalene lass in K

�

=(K

�

)

n

ontaining f

P

(D

Q

). The funtion �

n

is alled Tate

pairing.

An essential part in omputing the Weil/Tate pairing is the evaluation of f

P

(R)

for eah point R in the support of D

Q

. In his unpublished manusript, Miller gave

an elegant and eÆient algorithm for this alulation. The main idea of Miller's
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algorithm is as follows. Randomly pik a point R, and let D

P

= (P +R)� (R). For

eah integer k, there is a rational funtion f

k

suh that

div(f

k

) = k(P +R)� k(R)� (kP ) + (O):

In partiular, f

n

= f

P

.

For any points S; T , let h

S;T

and h

S

be linear funtions suh that h

S;T

= 0 and

h

S

= 0 are the line passing through S; T and the vertial line passing through S

respetively.

Notie that

div(h

k

1

P;k

2

P

) = (k

1

P ) + (k

2

P ) + (�(k

1

+ k

2

)P )� 3(O)

and

div(h

(k

1

+k

2

)P

) = ((k

1

+ k

2

)P ) + (�(k

1

+ k

2

)P )� 2(O);

and we have

div(f

k

1

+k

2

) = div(f

k

1

) + div(f

k

2

) + div(h

k

1

P;k

2

P

)� div(h

(k

1

+k

2

)P

);

and hene

f

k

1

+k

2

=

f

k

1

f

k

2

h

k

1

P;k

2

P

h

(k

1

+k

2

)P

: (2.1)

This is a reursive equation with initial onditions f

0

= 1 and f

1

=

h

P;R

h

P+R

: The latter

is beause div(f

1

) = (P +R)� (R)� (P ) + (O):

Miller's algorithm is given more formally below and its simliarity to the algorithms

in [1, 3℄ is noted:

Algorithm 2.1 (Miller's algorithm)

INPUT: Integer n =

P

t

i=0

b

i

2

i

with b

i

2 f0; 1g and b

t

= 1, and a point S 2 E

OUTPUT: f = f

n

(S).

f  f

1

; Z  P ;

For j  t� 1; t� 2; : : : ; 1; 0 do

f  f

2

h

Z;Z

(S)

h

2Z

(S)

; Z  2Z;

If b

j

= 1 then

f  f

1

f

h

Z;P

(S)

h

Z+P

(S)

; Z  Z + P ;

Endif

Endfor

Return f

As indiated in [1℄, when we onsider Tate pairing, the funtion f

k

an be hoosen

so that

div(f

k

) = k(P )� (kP ) + (k � 1)(O):
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In this ase the above Miller's algorithm remains the same exept f

1

= 1.

For �elds of harateristi three, the following version of Miller's algorithm is more

eÆient, taking advantage of the fast implementation of point triples in suh a ase

(see [1, 6℄):

Algorithm 2.2 (Miller's algorithm in harateristi three)

INPUT: Integer n =

P

r

i=0

t

i

3

i

with t

i

2 f0; 1; 2g and t

r

6= 0, and a point S 2 E

OUTPUT: f = f

n

(S).

If t

r

= 1 then

f  f

1

; Z  P ;

Endif

If t

r

= 2 then

f  f

1

2

h

P;P

(S)

h

2P

(S)

; Z  2P ;

Endif

For j  r � 1; r � 2; : : : ; 1; 0 do

f  f

3

h

Z;Z

(S)

h

2Z

(S)

h

2Z;Z

(S)

h

3Z

(S)

; Z  3Z;

If t

j

= 1 then

f

1

f  f

h

Z;P

(S)

h

Z+P

(S)

; Z  Z + P ;

Endif

If t

j

= 2 then

f  f

1

2

f

h

Z;2P

(S)

h

Z+2P

(S)

; Z  Z + 2P ;

Endif

Endfor

Return f

3 Preliminary Observations and Fats

Some well known fats and observations that an be used to simplify omputations

in Miller's algorithm are noted in this setion.

Consider the ellipti urve E of the form

E : y

2

+ a

1

xy + a

3

y = x

3

+ a

2

x

2

+ a

4

x+ a

6

:

For a linear funtion

h(x; y) = k(x� a) + b� y

on E, where a; b and k are onstants, de�ne h(x; y) as the onjugate of h as follows:

h(x; y) = k(x� a) + b+ y + a

1

x+ a

3

:

Note that for a pointR 2 E, h(R) = h(�R). Also note that the produt h(x; y)h(x; y)

is exatly the norm N

K(x;y)=K(x)

(h).
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The following fat will be useful. It is apparently well known although no proof of

it in the literature was found.

Lemma 3.1 If the line h(x; y) = 0 intersets with E at points P = (a; b); Q = (; d)

and �(P +Q) with P +Q = (�; �), then

N

K(x;y)=K(x)

(h) = �(x� a)(x� )(x� �):

Proof: Notie that N

K(x;y)=K(x)

(h) an be redued to a funtion of the form

�x

3

+ t

2

x

2

+ t

1

x+ t

0

;

where t

0

; t

1

; t

2

2 K. Moreover, eah of (x � a); (x � ) and (x � �) is a fator of

N

K(x;y)=K(x)

(h), and so the desired fatorization follows.

[℄

For a point Q 2 E, we write Q = (x

Q

; y

Q

), i.e., x

Q

is the x�oordinate of Q and y

Q

the y�oordinate of Q.

The following observations will play a key role in the re�nements of Miller's algo-

rithm.

Lemma 3.2 Let Q 2 E[n℄ and S 6= Q; 2Q; � � � ; nQ. Then

1.

h

Q;Q

(S)

h

2

Q

(S)h

2Q

(S)

= �

1

h

Q;Q

(�S)

:

2. For any integer k,

h

(k+1)Q;kQ

(S)

h

(k+1)Q

(S)h

(2k+1)Q

(S)

= �

h

kQ

(S)

h

(k+1)Q;kQ

(�S)

:

3.

h

Q;Q

(S)h

2Q;Q

(S)

h

2Q

(S)h

3Q

(S)

= �

h

Q;Q

(S)h

Q

(S)

h

2Q;Q

(�S)

:

Proof: By Lemma 3.1, we have

1.

h

Q;Q

(S)

h

2

Q

(S)h

2Q

(S)

=

h

Q;Q

(S)h

Q;Q

(�S)

h

2

Q

(S)h

2Q

(S)h

Q;Q

(�S)

=

N

K(x;y)=K(x)

(h

Q;Q

)(S)

(x

S

� x

Q

)

2

(x

S

� x

2Q

)h

Q;Q

(�S)

= �

1

h

Q;Q

(�S)

:
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2.

h

(k+1)Q;kQ

(S)

h

(k+1)Q

(S)h

(2k+1)Q

(S)

=

h

(k+1)Q;kQ

(S)h

(k+1)Q;kQ

(�S)

h

(k+1)Q

(S)h

(2k+1)Q

(S)h

(k+1)Q;kQ

(�S)

=

N

K(x;y)=K(x)

(h

(k+1)Q;kQ

)(S)

(x� x

(k+1)Q

)(x� x

(2k+1)Q

)h

(k+1)Q;kQ

(�S)

=

h

kQ

(S)

h

(k+1)Q;kQ

(�S)

:

3.

h

Q;Q

(S)h

2Q;Q

(S)

h

2Q

(S)h

3Q

(S)

=

h

Q;Q

(S)h

2Q;Q

(S)h

2Q;Q

(�S)

h

2Q

(S)h

3Q

(S)h

2Q;Q

(�S)

=

h

Q;Q

(S)N

K(x;y)=K(x)

(h

2Q;Q

)(S)

(x

S

� x

2Q

)(x

S

� x

3Q

)h

2Q;Q

(�S)

= �

h

Q;Q

(S)(x

S

� x

Q

)

h

2Q;Q

(�S)

= �

h

Q;Q

(S)h

Q

(S)

h

2Q;Q

(�S)

:

[℄

Remark 3.3 1. Sine div(f) = div(f) for any nonzero onstant  2 K, the sign

does not a�et the alulation of either pairing and therefore, minus signs will

be omitted in the use of the above lemma.

2. In the rest of the disussion, the point P 2 E[n℄ will be �xed and Q is taken

to be some multiple of P . In order to satisfy the ondition of the lemma, it is

suÆient to let S 6= P; 2P; : : : ; nP . This is also the requirement of the original

Miller algorithm.

4 The Re�nements

Notie that Miller's algorithm 2.1 uses the double-and-add method, and we an

display an expliit formula for the funtion f

n

as

f

n

= f

n

1

�

1

i=t

 

h

b

n

2

i

P;b

n

2

i

P

h

2b

n

2

i

P

h

2b

n

2

i

P;b

i�1

P

h

b

n

2

i�1

P

!

2

i�1

; (4.1)

where t = blg

2

n and b

i�1

= b

n

2

i�1

 � 2b

n

2

i

. In this formula, if b

i�1

= 0, then

h

2b

n

2

i

P;b

i�1

P

= h

2b

n

2

i

P;O

= h

b

n

2

i�1

P

. Without loss of generality, we also assume

that h

O

= 1: We arrange the produt to start from term t down to term 1. This is

the way that the algorithm works.
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Similarly, in the ase of base three, f

n

an be expressed as

f

n

= f

n

1

�

h

(3�b

n

3

r

)P;(b

n

3

r

�1)P

h

2P

�

3

r

�

1

i=r

 

h

b

n

3

i

P;b

n

3

i

P

h

2b

n

3

i

P

h

2b

n

3

i

P;b

n

3

i

P

h

3b

n

3

i

P

h

3b

n

3

i

P;t

i�1

P

h

b

n

3

i�1

P

!

3

i�1

;

(4.2)

where r = blg

3

n and t

i�1

= b

n

3

i�1

 � 3b

n

3

i

.

4.1 Re�nement 1

Consider the binary represenation of n =

P

t

i=0

b

i

2

i

, and group every two terms in

Formula 4.1 together. Then we get the following relation by applying Lemma 3.1.

 

h

b

n

2

i

P;b

n

2

i

P

h

2b

n

2

i

P

h

2b

n

2

i

P;b

i�1

P

h

b

n

2

i�1

P

!

2

i�1
 

h

b

n

2

i�1

P;b

n

2

i�1

P

h

2b

n

2

i�1

P

h

2b

n

2

i�1

P;b

i�2

P

h

b

n

2

i�2

P

!

2

i�2

=

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

�

h

b

n

2

i

P;b

n

2

i

P

h

2b

n

2

i

P

h

2b

n

2

i

P;P

h

b

n

2

i�1

P

�

2

i�1 �

h

b

n

2

i�1

P;b

n

2

i�1

P

h

2b

n

2

i�1

P

h

2b

n

2

i�1

P;P

h

b

n

2

i�2

P

�

2

i�2

if b

i�1

= b

i�2

= 1

�

h

b

n

2

i

P;b

n

2

i

P

h

2b

n

2

i

P

h

2b

n

2

i

P;P

h

b

n

2

i�1

P

�

2

i�1 �

h

b

n

2

i�1

P;b

n

2

i�1

P

h

2b

n

2

i�1

P

�

2

i�2

if b

i�1

= 1; b

i�2

= 0

�

h

b

n

2

i

P;b

n

2

i

P

h

2b

n

2

i

P

h

2b

n

2

i

P;P

h

b

n

2

i�1

P

�

2

i�1
�

h

b

n

2

i�1

P;b

n

2

i�1

P

h

2b

n

2

i�1

P

�

2

i�2

if b

i�1

= 0; b

i�2

= 1

�

h

b

n

2

i

P;b

n

2

i

P

h

2b

n

2

i

P

�

2

i�1
�

h

b

n

2

i�1

P;b

n

2

i�1

P

h

2b

n

2

i�1

P

�

2

i�2

if b

i�1

= b

i�2

= 0

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�

h

b

n

2

i

P;b

n

2

i

P

h

2b

n

2

i

P;P

h

2b

n

2

i

P

�

2

i�1

 

h

2b

n

2

i�1

P;P

h

b

n

2

i�1

P;b

n

2

i�1

P

h

b

n

2

i�2

P

!

2

i�2

if b

i�1

= b

i�2

= 1

�

h

b

n

2

i

P;b

n

2

i

P

h

2b

n

2

i

P;P

h

2b

n

2

i

P

�

2

i�1

 

1

h

b

n

2

i�1

P;b

n

2

i�1

P

!

2

i�2

if b

i�1

= 1; b

i�2

= 0

�

h

b

n

2

i

P;b

n

2

i

P

�

2

i�1

 

h

2b

n

2

i�1

P;P

h

b

n

2

i�1

P;b

n

2

i�1

P

h

b

n

2

i�2

P

!

2

i�2

if b

i�1

= 0; b

i�2

= 1

�

h

b

n

2

i

P;b

n

2

i

P

�

2

i�1

 

1

h

b

n

2

i�1

P;b

n

2

i�1

P

!

2

i�2

if b

i�1

= b

i�2

= 0

This relation provides the orretness of an improved Miller's algorithm whih is

generally eÆient and ahieves greater eÆieny as the number of zero b

i

's inreases.

As the simpli�ation is ahieved by grouping two terms together, it is natural to

expand n in terms of base 4 whih is given in the next algorithm.

Algorithm 4.1 (Improved Miller's algorithm (version 1))

INPUT: Integer n =

P

r

i=0

q

i

4

i

with q

i

2 f0; 1; 2; 3g and q

r

6= 0, and a point S 2 E

OUTPUT:f = f

n

(S).

8



f  f

1

; Z  P ;

If q

r

= 2 then

f  f

2

h

P;P

(S)

h

2P

(S)

; Z  2P ;

Endif

If q

r

= 3 then

f  f

3

h

2

P;P

(S)h

P

(S)

h

2P;P

(�S)

; Z  3P ;

Endif

For j  r � 1; r � 2; : : : ; 1; 0 do

If q

j

= 0 then

f  

f

4

h

2

Z;Z

(S)

h

2Z;2Z

(�S)

; Z  4Z;

Endif

If q

j

= 1 then

f  f

1

f

4

h

2

Z;Z

(S)h

4Z;P

(S)

h

4Z+P

(S)h

2Z;2Z

(�S)

; Z  4Z + P ;

Endif

If q

j

= 2 then

f  f

1

2

f

4

h

2

Z;Z

(S)h

2

2Z;P

(S)

h

2

2Z

(S)h

2Z+P;2Z+P

(�S)

; Z  4Z + 2P ;

Endif

If q

j

= 3 then

f  f

1

3

f

4

h

2

Z;Z

(S)h

2

2Z;P

(S)h

4Z+2P;P

(S)

h

2

2Z

(S)h

2Z+P;2Z+P

(�S)h

4Z+3P

(S)

; Z  4Z + 3P ;

Endif

Endfor

Return f

4.2 Re�nement 2

Suppose that most bits in the binary represenation of n =

P

t

i=0

b

i

2

i

are 1, then

Miller's algorithm an be modi�ed to save more �eld operations based on the fol-

lowing observation:

By rearranging Formula 4.1 and then applying Lemma 3.2, the following omputa-

tions are obtained:

f

n

= f

n

1

�

h

P;P

h

2P;b

t�1

P

h

2P

�

2

t�1

�

1

i=t�1

 

h

b

n

2

i

P;b

n

2

i

P

(h

b

n

2

i

P

)

2

h

2b

n

2

i

P;b

i�1

P

h

2b

n

2

i

P

!

2

i�1

= f

n

1

�

h

P;P

h

2P;b

t�1

P

h

2P

�

2

t�1

�

1

i=t�1

 

h

2b

n

2

i

P;b

i�1

P

h

b

n

2

i

P;b

n

2

i

P

!

2

i�1

The fat that h

nP

= 1 has been used and the last term inside the produt symbol

is

1

h

b

n

2

P;b

n

2

P

.
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Algorithm 4.2 (Improved Miller's algorithm (version 2))

INPUT: Integer n =

P

t

i=0

b

i

2

i

with b

i

2 f0; 1g and b

t

= 1, and a point S 2 E

OUTPUT: f = f

n

(S).

If b

t�1

= 0 then

f  f

1

2

h

P;P

(S); Z  2P ;

Else

f  f

1

3

h

P;P

(S)h

2P;P

(S)

h

2P

(S)

; Z  3P ;

Endif

For j  t� 2; : : : ; 1; 0 do

If b

j

= 0 then

f  f

2

h

2Z

(S)

h

Z;Z

(�S)

; Z  2Z;

Else

f  f

1

f

2

h

2Z;P

(S)

h

Z;Z

(�S)

; Z  2Z + P ;

Endif

Endfor

Return f

In [8℄, Eisentr�ager, Lauter and Montgomery suggested a method that eliminates a

�eld multipliation and a �eld squaring in the omputation of 2Q+P . They obtained

an improvement of Miller's algorithm by using this observation and a parabola sub-

stitution. Their algorithm speeds up the omputations in the ase that most bits

in the binary represenation of n are 1. However, although their method an not be

ombined with the above algorithm, we may modify and simplify the funtion f

n

as

follows so that the method of Eisentr�ager, Lauter and Montgomery an be used.

f

n

= f

n

1

�

1

i=t

 

h

b

n

2

i

P;b

i�1

P

h

(b

n

2

i

+b

i�1

)P;b

n

2

i

P

h

(b

n

2

i

+b

i�1

)P

h

(2b

n

2

i

+b

i�1

)P

!

2

i�1

= f

n

1

�

1

i=t

 

h

b

n

2

i

P;b

i�1

P

h

b

n

2

i

P

h

(b

n

2

i

+b

i�1

)P;b

n

2

i

P

!

2

i�1

:

An algorithm an be formed as before based on the above formula.

4.3 Re�nement 3

As stated in [1, 6℄, point tripling is a relatively heap operation in the ase of

harateristi three and the base three version of Miller's algorithm 2.2 should be

used in this ase.

Let n =

P

r

i=0

t

i

3

i

with t

r

6= 0. Applying part 2 of Lemma 3.1 to Formula 4.2, we

10



see that

f

n

= f

n

1

�

h

(3�b

n

3

r

)P;(b

n

3

r

�1)P

h

2P

�

3

r

�

1

i=r

 

h

b

n

3

i

P;b

n

3

i

P

h

2b

n

3

i

P

h

2b

n

3

i

P;b

n

3

i

P

h

3b

n

3

i

P

h

3b

n

3

i

P;t

i�1

P

h

b

n

3

i�1

P

!

3

i�1

= f

n

1

�

h

(3�b

n

3

r

)P;(b

n

3

r

�1)P

h

2P

�

3

r

�

1

i=r

 

h

b

n

3

i

P;b

n

3

i

P

h

b

n

3

i

P

h

2b

n

3

i

P;b

n

3

i

P

h

3b

n

3

i

P;t

i�1

P

h

b

n

3

i�1

P

!

3

i�1

:

This formula is realised by the algorithm 4.3 whih improves algorithm 2.2.

Algorithm 4.3 ( Improved Miller's algorithm (version 3))

INPUT: Integer n =

P

r

i=0

t

i

3

i

with t

i

2 f0; 1; 2g and t

r

6= 0, and a point S 2 E

OUTPUT: f = f

n

(S).

f

2

 f

1

2

h

P;P

(S)

h

2P

S)

;

f  f

1

; Z  P ;

If t

r

= 2 then

f  f

2

; Z  2P ;

Endif

For j  r � 1; r � 2; : : : ; 1; 0 do

f = f

3

h

Z;Z

(S)h

Z

(S)

h

2Z;Z

(�S)

; Z  3Z;

If t

j

= 1 then

f  f

1

f

h

Z;P

(S)

h

Z+P

(S)

; Z  Z + P ;

Endif

If t

j

= 2 then

f  f

2

f

h

Z;2P

(S)

h

Z+2P

(S)

; Z  Z + 2P ;

Endif

Endfor

Return f

5 Analysis

In this setion, some detailed analysis of the re�nements are given and the number

of operations that an be saved disussed.

As indiated in [1, 6, 8℄, in the atual implementaion of the algorithms, the operations

in the numerator and denominator in eah step are separated and the single division

is used at the end of the proedure.

Observe that the savings ome from the elimination of terms like h

X;Y

(S) and h

X

(S).

It is easy to see that h

X;Y

(S) and h

X;Y

(�S) both ost one �eld multiplition if

the slope has been prealulated. Also note that both algorithm 4.1 and algo-

rithm 4.2 use the same method for doing point operations (doubling and addition)

11



as in Miller's original algorithm 2.1. So we only ount the �eld operations used to

evaluate h

X;Y

; h

X

and to multiply (or square) terms like h

X;Y

(�S); h

X

(S).

First, the savings made by using our �rst improvement, (algorithm 4.1) are esti-

mated. Consider a single round of the for loop of algorithm 4.1. Two �eld mul-

tipliations will be saved for eah ase. For example, q

j

= 1, then the dedution

is

f  f

1

f

4

h

2

Z;Z

(S)h

4Z;P

(S)

h

2Z;2Z

(�S)h

4Z+P

(S)

:

If we assume that f

1

and f have already been written as quotients on the right

hand side, then it takes 2 squarings and 6 multipliations for the numerator, and

2 squarings and 4 multipliations for the denominator. This should be ompared

with 2 rounds of the for loop of the original Miller's algorithm 2.1 with the following

result:

f  f

1

f

4

h

2

Z;Z

(S)h

2Z;2Z

(S)h

4Z;P

(S)

h

2

2Z

(S)h

4Z

(S)h

4Z+P

(S)

:

It requires 2 squarings and 8 multipliations for the numerator, and 2 squarings and

4 multipliations for the denominator. So, the number of �eld multipliation saved

in total is 2 log

4

n = log

2

n.

Next, the savings made by using algorithm 4.2 are onsidered. For eah single round

in the for loop, if b

j

= 1, our omputation of

f  f

1

f

2

h

2Z;P

(S)

h

Z;Z

(�S)

needs 1 squaring and 3 multipliations for the numerator, and 1 squaring and 3

multipliations for the denominator. This is two �eld multipliations fewer then the

omputation of

f  f

1

f

2

h

Z;Z

(S)h

2Z;P

(S)

h

2Z

(S)h

2Z+P

(S)

whih is from the original algorithm. Thus the overall savings is 2H(n), where again,

H(n) is the weight of the binary expansion of n.

As indiated in setion 4.2, we an rewrite the ase of b

j

= 1 of the for loop in the

original Miller's algorithm as

f  f

1

f

2

h

Z;P

(S)h

Z+P;Z

(S)

h

Z+P

(S)h

2Z+P

(S)

and simplify it to

f  f

1

f

2

h

Z;P

(S)h

Z

(S)

h

Z+P;Z

(�S)

:

One �eld multipliation is saved from the numerator and hene a total of H(n) �eld

multipliations are saved. But sine there is no need to referene (the y-oordinate

of) 2Z, the trik of Eisentr�ager, Lauter and Montgomery an be used, so another

H(n) �eld multipliations and H(n) �eld squares an be saved.

Similar to the previous disussion, it an be heked that the algorithm 4.3 saves

log

3

n �eld multipliations ompared with its base three ounterpart. Note that in

12



this ase, log

3

n of point triplings are performed. Sine tripling an be made very

eÆient, therefore algorithm 4.3 is a good hoie here.

Table 1 summarizes the performane of the new algorithms, where the numbers in

the saving olumn indiate the number of �eld multipliations eliminated in the

respetive algorithms.

Table 1: Performane of the improved algorithms

Algorithm Saving Condition for improvement

Algorithm 4.1 log

2

n All values of n

Algorithm 4.2 2H(n) Higher Hamming weight

Algorithm 4.3 log

3

n Charateristi three

Finally, two examples are given. We list the alulation formulas for f

191

; f

257

using

Miller's algorithm from [1, 3℄ (Algorithm2.1), our improved version 1(Algorithm4.1)

and our improved version 2(Algorithm4.2). Notie that the prime numbers 191 and

257 represent two extreme situations sine the �rst has only the one zero in its

binary expansion and the seond is of weight two, the minimal weight possible for

a nontrivial prime number. Here the symbols h

kP;mP

; h

kP

are shortened as h

k;m

; h

k

respetively. Also h

k;m

is used to denote h

kP;mP

(�S).

Example 5.1 Compute f

191

:

Number 191 = (10111111)

2

= (2333)

4

Algorithm 2.1 f = f

1

191

h

64

1;1

h

64

2

h

32

2;2

h

32

4

h

32

4;1

h

32

5

h

16

5;5

h

16

10

h

16

10;1

h

16

11

h

8

11;11

h

8

22

h

8

22;1

h

8

23

h

4

23;23

h

4

46

h

4

46;1

h

4

47

�

h

2

47;47

h

2

94

h

2

94;1

h

2

95

h

95;95

h

190

h

190;1

h

191

Algorithm 4.1 f = f

1

191

h

64

1;1

h

64

2

h

32

2;2

h

32

4

h

32

4;1

h

16

5;5

h

16

10;1

h

16

11

h

8

11;11

h

8

22

h

8

22;1

h

4

23;23

h

4

46;1

h

4

47

h

2

47;47

h

2

94

h

2

94;1

h

95;95

h

190;1

h

191

Algorithm 4.2 f = f

1

191

h

64

1;1

h

32

4;1

h

32

2;2

h

16

5;5

h

16

10

h

16

10;1

h

16

5;5

h

8

22;1

h

8

11;11

h

4

46;1

h

4

23;23

h

2

94;1

h

2

47;47

h

190;1

h

95;95

Compute f

257

:

Number 257 = (100000001)

2

= (10001)

4

Algorithm 2.1 f = f

1

257

h

128

1;1

h

128

2

h

64

2;2

h

64

4

h

32

4;4

h

32

8

h

16

8;8

h

16

16

h

8

16;16

h

8

32

h

4

32;32

h

4

64

h

2

64;64

h

2

128

h

128;128

h

256

h

256;1

h

257

Algorithm 4.1 f = f

1

257

h

128

1;1

h

64

2;2

h

32

4;4

h

16

8;8

h

8

16;16

h

4

32;32

h

2

64;64

h

128;128

h

256;1

h

257

Algorithm 4.2 f = f

1

257

h

128

1;1

h

64

4

h

64

2;2

h

32

8

h

32

4;4

h

16

16

h

16

8;8

h

8

32

h

8

16;16

h

4

64

h

4

32;32

h

2

128

h

2

64;64

h

256;1

h

128;128

6 Comments

Three re�nements for the omputation of the Tate/Weil pairing have been given

and the orresponding performane analyzed. The savings in the number of mul-
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tipliations noted ould prove important for the performane of algorithms in the

implementations of many of the new and interesting protools that have been, and

will ontinue to be, developed using these pairings.

Referenes

[1℄ P. S. L. M. Barreto, H. Y. Kim, B. Lynn and M. Sott,EÆient algorithms

for pairing-based ryptosystems, Advanes in Cryptology-CRYPTO '02,(Santa

Barbara, CA, 02) (M. Yung Ed.), Leture Notes in Comput. Si., vol. 2442,

Springer-Verlag Heidelberg, 2002, pp. 354{368.

[2℄ I. F. Blake, G. Seroussi and N. P. Smart, Ellipti Curves in Cryptography, Cam-

bridge University Press, Cambridge, (1999).

[3℄ D. Boneh and M. Franklin, Identity-based enryption from the Weil pairing,

Advanes in Cryptology, Crypt'01 (J. Kilian ED.), Leture Notes in Comput.

Si., vol. 2139, Springer-Verlag Heidelberg, 2001, pp. 213{239.

[4℄ D. Boneh, B. Lynn and H. Shaham, Short signatures from the Weil pairing,

Advanes in Cryptology, Asiarypt'01 (C. Boyd ED.), Leture Notes in Comput.

Si., vol. 2248, Springer-Verlag Heidelberg, 2001, pp. 514{532.

[5℄ G. Frey and H. G. R�uk, A remark onerning m-divisibilty and the disrete

logarithm in divisor lass group of urves, Mathematis of Computation, 62

(1994), 865{874.

[6℄ S. Galbraith, K. Harrison and D. Soldera, Implementing the Tate Pairing, Algo-

rithm Number Theory Symposium, ANTS-V (C. Fieker and D. Kohel EDS.),

Leture Notes in Comput. Si., vol. 2369, Springer-Verlag Heidelberg, 2002,

pp. 324{337.

[7℄ A. Joux, A one round protool for tripartite DiÆe-Helman, Algorithm Number

Theory Symposium, ANTS-IV (W. Bosma ED.), Leture Notes in Comput. Si.,

vol. 1838, Springer-Verlag Heidelberg, 2000, pp. 385{393.

[8℄ K. Eisentr�ager, K. Lauter and P. L. Montgomery, Fast Ellipti urve arithmeti

and improved Weil pairing Evaluation, Topis in Cryptology, CT-RSA'03, Le-

ture Notes in Comput. Si., vol. 2612, Springer-Verlag Heidelberg, 2003, pp. 343{

354.

[9℄ N. Koblitz, Ellipti urve ryptosystems, Mathematis of Computation, 48

(1987), 203-209.

[10℄ A. J. Menezes, T. Okamoto and S. A. Vanstone, Reduing ellipti urve loga-

rithms to logarithms in a �nite �eld, IEEE Transations on Information Theory,

39 (1993), 1639-1646.

[11℄ V. Miller, Short Programs for funtions on urves, unpublished manusript,

1986.

14



[12℄ V. Miller, Uses of ellipti urves in ryptography, Advanes in Cryptology,

CRYPTO'85, Leture Notes in Comput. Si., vol. 218, Springer-Verlag Heidel-

berg, 1986, pp. 417{462.

[13℄ R. Sakai, K. Ohgishi and M. Kasahara, Cryptosystems based on pairing, SCIS-

2000, OKinawa, Japan, 2000.

[14℄ A. Shamir, Identity-based ryptosystems and signature shemes, Advanes in

Cryptology{Crypto'84, Leture Notes in Comput. Si., vol. 196, Springer-Verlag

Heidelberg, 1984, pp. 47-53.

[15℄ J. H. Silverman, The Arithmeti of Ellipti Curves, Graduate Texts in Mathe-

matis, 106, Springer-Verlag, 1986.

[16℄ E. R. Verheul, Self-blindable redential erti�ates from the Weil pairing, Ad-

vanes in Cryptology, Asiarypt'01 (C. Boyd ED.), Leture Notes in Comput.

Si., vol. 2248, Springer-Verlag Heidelberg, 2001, pp. 533{551.

15


