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Abstract. In [1] it was proved that 20 out of 64 PGV-hash functions [2]
based on block cipher are collision resistant and one-way-secure in black-
box model of the underlying block cipher. Here, we generalize the defi-
nition of PGV-hash function into a hash family and we will prove that
besides the previous 20 hash functions we have 22 more collision resistant
and one-way secure hash families. As all these 42 families are keyed hash
family, these become target collision resistant also. All these 42 hash
families have tight upper and lower bounds on (target) collision resistant
and one-way-ness.

1 Introduction

Brief History. Preneel, Govaerts, and Vandewalle [2] considered the 64 basic
ways to construct a (collision-resistant) hash function H : ({0,1}")* — {0,1}"
from a block cipher E : {0,1}™ x {0,1}™ — {0,1}"™. They regarded 12 of these
64 schemes as secure, though no proofs or formal claims were given. After that
Black, Rogaway, and Shrimpton [1] presented a more proof-centric look at the
schemes from PGV, providing both upper and lower bounds for each. They
proved that, in the black box model of block cipher, 12 of 64 compression func-
tions are CRHFs (Collision Resistant Hash Function) and 20 of 64 extended
hash functions are CRHF's.

Motivation of Our paper. The examples of most popular collision resistant
hash functions are MD5 and SHA-1. For those hash function one can not exactly
analyze the security. But the security of collision resistant or one-way for PGV
hash functions can be analyzed under the assumption that the underlying block
cipher is black-box i.e. random permutation. But the security of other notions
like target collision resistant can not be analyzed as it needs a family of hash



functions instead of single hash function. Beside that it seemed that more PGV
hash function would become secure if we change the original definition of PGV
hash function. So, we generalize the definition of PGV hash function into a PGV
hash family and will prove some security notions like target collision resistant,
collision resistant and one-way.

General Definition of PGV-hash family. Let 0 <! <n and E : {0,1}" x
{0,1}™ — {0,1}" be a block cipher. If I = 0 let {0,1}° = {e}, where € is the
empty string. Using the block cipher F, we want to construct a compression
function family F = {f*};c(0,130, /% : {0,1}™ x {0,137 — {0, 1}".

Let hg,v € {0,1}" be fixed values. We define the 64 ways to construct a
(block-cipher-based) compression function family F = {fk}ke{o,l}l in the
following manner: for each k € {0,1},

fk(ham) = Ea(b) @ c,

where a,b,c € {h,(m]||k),h ® (m]||k),v}. Note that |h| = n and |m| = n — L.
Then we can define the extended hash family H = {Hk}ke{o,l}l from the
compression function family F = {f*},c(013: as follows: for each k € {0,1}/,
H*: ({0,1}")* — {0,1}" is defined by

function H*(my - - - my)
for i < 1tot do h; + f’“(hi_l,mi)
return h;

Note that the key & of extended hash family is equal to the key of compression
function family.

Note that if I = 0 then F = {f*}cq0,130 = {f} is a singleton set and this
is corresponding to the original definition of PGV [2]. In this case, we denote
this F as just f without superscript e. And we call this f a (block-cipher-based)
compression function. Similarly, we denote ‘H as H without superscript . And
we call this H an extended hash function.

Our Results. For 0 < I < n, the security of the 64 schemes is summarized in
Figures 1 and 2, which also serve to define the different extended hash functions
H, and their compression functions f,. In this paper, we fix E1 = {1, ...,20}, E2
= {21,22,26,28}, E3= {23,24,25,31, 34,35}, E4= {27,29, 30, 32, 33,36}, and
E5 = {37,...,42}. Here, the numbers are corresponding to the numbers in the
first column of Figures 1 and 2 in Appendix. And E6 is the set of remaining
extended hash families which are not represented in the first column of Figures
1 and 2 in Appendix. So |E6| = 22. This classification is based on some property
of hash family which is used to prove the security. A high-level summary of our
findings is given by Table 1 and 2 . The adversarial model (and the meaning of
q) will be described momentarily.



Table 1. [ = 0. This is analyzed in [1].

|Extended Hash Families|(Target) Collision Bound| Inversion Bound |

E1 (20 schemes) 6(¢>/2™) 6(q/2™) or O(q*/2™)
E2 (4 schemes) o(1) -
E3/E4/E5 (18 schemes) o(1) -
E6 (22 schemes) o(1) -

Table 2. 0 <[ < n. This is analyzed in this paper.

|Extended Hash Families|(Target) Collision Bound| Inversion Bound |
E1 (20 schemes) o(¢*/2™) O(q/2") or O(q/2™) or O(¢*/2")
E2 (4 schemes) 0(q/2") 0(q/2Y

E3/E4/E5 (18 schemes) o(4*/2) 0(q/2") or O(¢*/2") or O(q/2™)
E6 (22 schemes) o(1) -

Black Box Model. Our security model is the one dating to Shannon [6] and
used for works like [3-5]. An adversary A is given access to oracles E and E~!
where E is a random block cipher E : {0,1}" x {0,1}" — {0,1}" and E~! is its
inverse. That is, each key a € {0,1}" names a randomly-selected permutation
E, = E(a,-) on {0,1}", and the adversary is given oracles E and E~!. The
latter, on input (a,y), returns the point  such that E,(z) = y. See [1] for more
details and discussions about black-box model.

In these PGV hash function families, we do not use any mask key unlike [7,
10,12,13]. We prove the target collision resistance of these hash families under
black box model and it will be more efficient in key size compare to the results
in [7,10,12,13] wherein the mask keys are used.

2 Preliminary

Notation. We use the following standard notations in this paper.

1. [a,b] = {a,- - ,b} where a < b are some integers.

2. If z € {0,1}" and 0 < I < n, z = z[L]||z[R], where |z[L]| = n — [ and
2[R = 1.

3. If S C{0,1}" and a € {0,1}", S®a=a® S = {a ® s|s € S}. Note that
[S@al=lad S| =|5].

4. A block cipher is amap E : {0,1}™ x {0,1}™ — {0,1}" where, for each key
a € {0,1}", the function E,(-) = E(a,-) is a permutation on {0,1}". If E
is a block cipher then E~! is its inverse, where E (y) is the string = such
that E,(z) = v.

5. A hash function family is a H = {Hk}ke{0,1}l, where H* : D — {0,1}",
D C{0,1}*.



6. Hash function family F = {fk}ke{o,l}z, f¥:D — {0,1}" is a compression
function family if D = {0,1}" x {0,1}"~! for some fixed .

7. Fix hy € {0,1}". The extended hash family of compression function family
F = A{}eronys 520,13 x {0,1}"" — {0,1}", is the hash function
family H = {H"}c 0,1y such that H* : ({0,1}""")* — {0,1}" defined by
H*(my - --my) = hy where h; = f¥(h;_1,m;).

8. For a function H, (M, M') is called a collision pair of H if M # M' and
H(M)=H(M").

9. We write z & S for the experiment of choosing a random element from the
finite set S and calling it z.

Assumption. From now on, we always assume E : {0,1}" x {0,1}" — {0,1}"
is a random block cipher, i.e., for each a € {0,1}", E,(-) is a random permuta-
tion. We fix some hg,v € {0,1}".

Collision Resistance and Inversion Resistance of Hash function (I = 0).
To quantify the collision resistance of a (block-cipher-based) hash function H,
we consider random block cipher E. An adversary A is given oracles for E(-,-)
and E~1(-,-) and wants to find a collision for H, i.e., M, M' where M # M’ but
H(M) = H(M'"). And we also define the difficulty of inverting hash functions.
We use the following measure for the difficulty of A in inverting a hash function
at a random point.

Definition 1. (Collision resistance and inversion resistance of a compression
function ‘f’) Let f be a block-cipher-based compression function, f : {0,1}" x
{0,1}* — {0,1}". Then the advantages of A in finding collisions and inverse
elements in f are

Adv§(A) = Pri((h,m), (I, m")) « APF
((hym) # (W' ,m") & f(h,m) = f(h',m")) or f(h,m) = ho]
AdvE(A) = Prip* & 0,1} (h,m) « APFT: f(h,m) = BY]
Definition 2. (Collision resistance and inversion resistance of an extended hash
function ‘H’) Let H be a block-cipher-based extended hash function, H : ({0,1}™)*
— {0,1}™. Then the advantages of A in finding collisions and inverse elements
in H are
AdvSo(A) = Pr{(M, M) « APF .M £ M' & H(M) = H(M")]
Advi(A) = Print & {0,135 M « APFT H(M) = hY]

Collision Resistance, Target Collision Resistance and Inversion Re-
sistance of Hash function family (0 < I < n). To quantify the collision
resistance and target collision resistance of a (block-cipher-based) hash function
family {H ’“}ke{o,l}z, we consider random block cipher E. An adversary A is

given oracles for E(-,-) and E~!(-,-). Then, the adversary APET for collision
resistance plays the following game called C'oll.



1. AP-E™" g given a key k which is chosen uniformly at random from {0, 1}'.
2. AP-F™" has to find M, M’ such that M # M’ but Hy,(M) = Hy(M").

The adversary AFE " = (Aguess, Agina(-,+)) for target collision resistance
plays the following game called T'Coll.

1. Agyess commits to an M.
2. A key k is chosen uniformly at random from {0, 1}!.
3. Afina(M, k) has to find M’ such that M # M' but H,(M) = Hi(M").

The adversary AP " for inversion resistance plays the following game called
Inv.

1. A key k is chosen uniformly at random from {0, 1}*.
2. h* is chosen uniformly at random from the range {0, 1}".

3. AP-E™" has to find M such that H*(M) = h*.

Definition 3. (Collision resistance, target collision resistance, and inversion
resistance of a compression function family F’) Let F = {fk}ke{o,l}’ be a
block-cipher-based compression function family, where f* : {0,1}" x {0,1}*~! —
{0,1}™. Then the advantages of A with respect to (target) collision resistance
and inversion resistance are the following real numbers.

AdvGh(A) = Pifk & {0,135 (hym), (', m))) « ABET"
((h,m) 7£ (hlvml) & fk(hvm) = fk(hlaml)) or fk(ham) = hO]
AdvICM(A) = Pr{(h,m) « AZE ke & 10,1},

guess
(W'om") < ABET (hllm), k) : (hym) # (W',m") & f*(h,m) = f*(1',m")]
Advi?(A) = Pk & {0,135 0% & {0,137 (h,m) « APET" ¢ f5(h,m) = h?]

Definition 4. (Collision resistance, target collision resistance, and inversion
resistance of an extended hash family H’) Let H = {Hk}ke{o,l}l be a block-
cipher-based extended hash family, where H* : ({0,1}""))* — {0,1}". Then
the advantage of A with respect to (target) collision resistance and inversion
resistance are the the following real numbers.

AdvG (A) = Prl & (0,1} M, M AP
M # M’ & H*(M) = H*(M)]
AdvEC(A) = PHM  ARE sk E {01 M! e AR (M) :
M #M' & HY(M) = H' (M)
Advi(A) = Prik & {0,1)5h" & (0,1} M« APFT g () = 1]

Maximal Advantage. If A is an adversary and Advy "~ (A) is a measure of

adversarial advantage already defined then we write Advy~~(g) to mean the



maximal value of Advy~~(A) over all adversaries A that use queries bounded

by the number gq.

Conventions. We follow the similar conventions of [1]. Note that this conven-
tion is important to make the discussion easy and prove the following theorems.
For the remainder of this paper we assume the following significant conventions.

1. First, an adversary does not ask any oracle query in which the response is
already known; namely, if A asks a query E,(z) and this returns y, then A
does not ask a subsequent query of E,(z) or E; '(y); and if A asks E;!(y)
and this returns z, then A does not ask a subsequent query of E;!(y) or
E,(z).

2. Second, if M is one of the output(s) produced by an adversary, then the
adversary should make necessary E/E~! queries to compute H*(M) during
the whole query process.

3. Similarly, we will use the same assumption about the oracle query procedure
of an adversary A for the compression function family F.

These assumptions are all without loss of generality in that an adversary A
not obeying these conventions can easily be modified to given an adversary A’
having similar computational complexity that obeys these conventions and has
the same advantage as A.

3 (Target) Collision Resistance of Extended Hash Family

In this section we will analyze the security of #, for each 1 € [1,42] defined in
Section 1 in the notion of (target) collision resistant. We consider any adversary
A with respect to Coll. i.e. after having random key k he will try to find a
collision pair (M, Ms) for H¥ i.e. My # My, HF(M,) = H¥(Ms). For that he
will make some E/E~! queries. Transcript of A is defined by the sequence of
query-response quadruples {(s;, Z;, ¥i, 0;) }1<i<q Where ¢ is the maximum number
of queries made by adversary, s;, z;,y; € {0,1}"™ and o; = +1 (in case of E-query)
or —1 (in case of E~t-query) and V i, Fy, (z;) = y;. (si,xi,y:,0;) will be called
by it" query-response quadruple (or g-r quadruple). In this section we fix some
key k and v. Note that, if 0; = +1 (or -1) then y (or z respectively) is a random
string as we assume that the block-cipher F(-) is a random permutation.

Proposition 1. For fized z,y € {0,1}" and A C {0,1}", Prly; = y] < ﬁ
and Prly; € A] < AL phenever o; = +1. Similarly, if o; = —1 then Prix; =

27 —j+1 N
1
$] S Py and PT‘[$Z € A] S 2"‘7i‘+1

Proof. Before i*" query at most (i — 1) outputs (or inputs) of a block-cipher
with same key are known. So, output (or input) of next E will be uniformly
distributed to at least 2™ — (i — 1) elements. [ |



Here we fix any arbitrary hash family H, for + € [1,42]. In this section V :=
{0,1}" called verter set and L := {0,1}"~" called label set. A triple (hy, he,m) €
V xV x L (or a pair (hi,hs) € V x V) is called a labeled arc (or an arc only).
We also say (hy,ha,m) is an arc (hy, he) with label m or m is a label of the
arc (hi, h2) and we use the notation h; —,, ha. Now given a triple 7 = (s, z,y)
where, s, z,y € V define a set of labeled arcs A(7) by the following set :

A(r) = {(h1,h2,m) € V x V x L: f¥(hy,m) = hy & E,(z) = y}.

For example, in case of Ha1, f5 (h1,m) := Ep, (m||k) & h1. So, (f*(h1,m) =
he & Es(z) = y) <= (Ep,(m|lk) @ hy = ha & Es(z) = y) < (h1 = s,
he =y ®hy =y P s,ml|lk = x). Hence, A(1) = {(s,s ® y,z[L])} if z[R] = k
otherwise it is an empty set.

Given a set of labeled arcs A we define induced arc set A" = {(hy,h2) :
Im € L, (hy,he,m) € A}. For a set of triple(s) 7 = {m = (s1,21,¥1),-++,Ta =
(8aTa,Ya)} we can define labeled arc set A(t) = Ji_, A(r). It can be easily
checked that A'(r) = Uj_, A'(r:). Every member of A(r) (or A'(7)) will be
called an labeled arc (or arc) corresponding to the set of triple(s) 7. Given a
transcript {(s;, s, yi, 0i) hi<i<q of an adversary A let 7[i] denotes the sets of
triples {m1 = (s1,21,¥1),-..,7 = (8i,2i,¥i)). For each i we have a labeled di-
rected graph T; = T'(7[i]) = (V, A(7[i])) and a directed graph T} = (V, A'(7[i])).
Define Ty = (V,0). Given a path P = (hy,hs,...,hy) from hy to h, in Tj,
M = mq]|...||mp=1 is called a label of P if m; is a label of (h;, h;—1) for each i.
So we have a picture like (h1 =, ha =my - .. =m,_; hp) in T;.

Observation 1 : By our conventions adversary can compute f¥(hy,m) = hs

after i'" query iff for some j < i, By (z;) = y; = fF(hi,m) = hy and
hence (h1,ha,m) € A(r[i]). Similarly, adversary can compute HF(mq]|---||mq)
after it query iff hg —m, 1 —ms '+ —m, ha is a path in A(7[i]) and

HY (mal] -+ |lma) = ha.
Definition 5. For each hash function and 0 <i < q

1. When 1 € E1, E2 or E4, h in T; is old if deg(h) > 1 in T; or h = hy.
2. When1 € E2 or E4, h inT; is old if h = hg or 3 hy, deg(h1) > 1 in T; and
h[R] = hi[R].

Remaining all other vertices are known as new vertices. Call the set of all
old wvertices in T; by O;.

The next Proposition will be used to have security analysis. It gives an upper
bound of |O;| and says about the structure of the set of labeled arcs A(7;) and
A'(13).

Proposition 2. If A(r;) is not empty then we have,
1. Fori € El1 or E2, A(T;) is a singleton and |O;] < 2i + 1.



2. For v € E3, A'(1;) = {(h1,h2) : ho[R] = u} where, hy and u are fized de-
pending only on j and 7;. So, the graph of the A'(7;) looks like an outward
directed star and |A'(1;)| = 277! = |A(;)| and hence |O;] < (2i +1)2" L.

3. Forv € E4, A'(1;) = {(h,h ® a) : h[R] = u} where, a and u are fived de-
pending only on j and 7;. So, the graph of the A'(t;) consists of 2"~ parallel
arcs and |A'(1;)| = 2" ! = |A(r;)| and hence |0;] < (2i +1)27 L.

4. For v € E5, A'(1;) = {(h1,h2) : hi[R] = u} where, hy and u are fized
depending only on j and 1;. So, the graph of the A'(1;) looks like an inward
directed star and |A'(1;)| = 2"! = |A(r;)| and hence |O;] < (2i +1)2" L.

Moreover, for each (h1,hs) € A'(r;), 3 unique m such that hy —p, ha. For the
hash families E3, E and E5 if hi[R] = ho[R] then hy € O; = hy € O; Y i.

Proof. Bounds for |O;|’s and last part of the proposition are straightforward
from the structure of A’(7;). We will prove that for one hash function from
each class. Other cases will be very similar and one can check analogously. Let

Ti = (Siaxiayi)'

1. In case of Hla flk(hlam) = Eh1(m||k) ©® (m”k) SO, (fk(hlam) = h2 <
By, (2;) = y) <= (Bn, (ml[k) & (ml[k) = hy & By, (;) = y;) <= (hy = s,,
he = y; @ (m||k), z; = m||k). Hence, A(T) = {(ss,y; Dz, z;[L])} if z;[R] = k
otherwise it is an empty set.

In case of Hap, after defining A(7) in this section, we have shown that
A(1) = {(si, 8: ® yi, z;[L])} if 2;[R] = k otherwise it is an empty set.

2. In case of Haz, f(hi,m) := Ep, (k1) ® (m||k). So, (f¥(hi,m) = hy &
By (xi) = yi) <= (Ep, (h1) ® (m[|k) = hy & Ey;(7:) = yi) <= (b1 = si =
x;, ha = y; ® (m||k)). Hence, A(1) = {(s;, ha,m) : ha|R] = y;[R] ® k,m =
ho[R] ® y;[R]} if x; = s; otherwise it is an empty set.

3. In case of Har, f (hi,m) := By, (w1) ® (m||k) where w; = hy @ (m||k). So,
(F¥(h1,m) = hy & Es,(2:) = yi) <= (B, (w1) ® (m[[k) = hs & B, (z;) =
Yi) <= (h1 = s; ® (m|[k), ha = y; ® (m||k) = b1 ® (y; D si), s; = ;). Hence,
A(T) = {(h1, b1 ® (5i Dys), z:[L] ® he[R]) } if 2; = s; otherwise it is an empty
set.

4. In case of Hzg, we can prove similarly that A(r;) = {(h1,y; Dv,m) : hi|R] =
si[R] ® k,m = hy[L] ® s;} if x; = s; otherwise it is an empty set. [

Definition 6. For each 1 < i < q we define some events.

1. G; : adversary gets a collision after ith query.
2. PathColl; : 3 two paths Py and Py (not necessarily distinct) from hqy to some
h* in T; such that P, and P> have two different labels.



3. Succ; : 3 an arc (h,h') € A'(1;) where both h and h' are old vertices in T;_.
Proposition 3. The event PathColl; is equivalent to C;.
Proof. C; & PathColl; can be proved using the last part of the Observation 1.

Proposition 4. For E1, E2, E3, and Ej hash families, the event (C; | =Ci—1)
necessarily implies Succ;. For E5, C; necessarily implies Succy for some i’ < 1.

Proof. Let P; and P» be two paths from hg to h* in T} with different labels for
some h*. As PathColl; 1 is not true 3 at least one arc in P; UP, which corresponds
to 7;. If Succ; is not true then one of the vertices of an arc corresponding to
7; should be new in T;_; which implies 3 two arcs either (hq,hs), (h2, h3) or
(h1,h3), (ha, h3) corresponding to 7;. But this is not possible by the structure of
A'(1;) (see Proposition 2) in case of E1, E2, E3 and E4 hash families. Similarly
we can prove it when P; = Ps.

In case of E5 hash function for P; = P» the proof is similar as (hq, h3), (ha, h3)
case will not arise. So assume that P, and P, are different and 3 (hy, h3), (ha, h3)
corresponding to 7; in the path Py UP,. By Proposition 2, hy[R] = h[R]. If Succ;
is not true but (PathColl;|]=PathColl;_1) is true then we have two paths P; and
P; in T;_4 from hgy to he = hy and hj = hs respectively. Let P{ = (hg = h1 —
... hg)and Py = (ho = A} — ... = h}). So if Succy is not true Vi’ 1 < i’ <4
then at least one new vertex from P U Py is added to O; for each j whenever
it is added. As there are a + b new vertices for Ty in P{ U Py and every time at
most one arc can be added into A;(r;) (because of the structure of A;(7;)) we
have to add exactly one new vertex in each i'. As hi[R] = ha[R]. So, we will add
two new vertices in P/ U Pj to a set of old vertices when we add hy or hy first
time and hence contradiction. [ |

Observation 2: In E5, C; = |J_, Succ; by above Proposition 4. So we have
Pr[A gets a collision] < >°¢_, Pr[Succ;]. In other hash families by above Propo-
sition 4, Pr[A gets a collision] < Y7 | Pr[C;|=C; 1] < Y7, Pr[Succ;]. So it is
enough to have an upper bound of Pr[Succ;] in all hash functions.

Theorem 1. For each 1 < i < q we have

1. For EI1 hash family, Pr{Succ;] < (2i —1)/2"!
2. For E2 hash family, Pr{Succ;] < 2/(24! —1) if ¢ < 2711,
3. For E3,Ej or E5 hash families, Pr{Succ;] < (2i —1)/2!71 .

Proof. Let A be an adversary attacking #,. Assume that 4 asks its oracles at
most g total queries. Assume that the random key k is given. Let (s;, z;,v;, 0;)
be the it g-r quadruple.

Consider HF in case of E1 hash family. For the other hash families in E1, the
proof is analogous to the proof of 1.

1. Case 1: g; = +1. Succ; = y; ® z; € O0;—1 (See Proposition 2). Hence,
Pr[Succ;] < Prly; € O;-1 & 2] < (26 —1)/(2™ —i+ 1) (by Proposition 1
and 2).



2. Case 2: 0; = —1. Succ; = y; ® z; € O;—1 (See Proposition 2). Hence,
Pr[Succ;] < Prlz; € O;—1 ®y;] < (26 —1)/(2™ —i+ 1) (by Proposition 1
and 2).

Therefore, Pr[Succ;] < (2i —1)/(2" —i + 1) < (2i —1)/2" L.
Consider HY, in case of E2 hash family. For the other hash families in E2,
the proof is analogous to the proof of 21.

1. Case 1: o; = +1. Succ; = y; ® s; € O;—1 (See Proposition 2). Hence,
Pr[Succ;] < Prly; € 0,1 & s;] < (20 —1)/(2" —i+ 1) (by Proposition 1
and 2).

2. Case 2: 0; = —1. Suce; = z;[R] = k. Let Q = {z|z[R] = k} then |Q| =
|27~!|. Hence, Pr[Succ;] < Pr[z; € Q] < 2"7!/(2" —i+1) (by Proposition 1).

Therefore, Pr[Succ;] < max{(2i —1)/(2" —i + 1),2"7!/(2" —i + 1)}. Since ¢ <
2n=1=1 Pr[Succ;] < 2n7H/(2n — i + 1) < 2/(2H —1).

Consider HY; in case of E3 hash family. For the other hash families in E3,
the proof is analogous to the proof of 21. For E4/E5 hash functions the proof
will be analogous to the proof of 23.

1. If o; = +1, then Succ; implies that 3 an arc (h,h') € A(7;) such that h' €
O;—1. This implies that 3 m such that (y; ® (m]|k)) € O;_1. By the Propo-
sition 2 (y; ® (ml|k)) € Oi—1 < (y; @ (0]|k)) € O;—1 & y; € O;—1 @ (0]|k).
Therefore, by the Proposition 1 and 2, Pr[Succ;] < 2" !(2i —1)/(2" —i + 1).

2. If o; = —1, then Succ; implies that z; = s;. Hence, Pr[Succ;] < Prlz; = s;].
Hence, by the Proposition 1, Pr[Succ;] < Pr[z; = s;] < 1/(2" —i +1).

Therefore, Pr[Succ;] < max{2"~!(2i—1)/(2" —i +1),1/(2"—i+1)} = 2"7}(2i—
/(2" —i+1) < (20 —1)/2 L [ |

So we have the following theorem using Observation 2.

Theorem 2. 1. Adv§"(q) < ¢*>/2"" ! for1 € E1
2. Adv§!(q) < 2¢/(2F' = 1) for all ¢ <271 and 1 € E2.
3. Advg?”(q) < ¢%/2'7! forv € E3, Ef or E5.
By the following theorem the upper bound of advantage for E1 hash family
can also be obtained from that of corresponding hash function presented in [1].

Theorem 3. Vi € [1,42], Advy"(q) < Advi(q)

Proof. Suppose A is an adversary with respect to Coll for the hash family #,.
We can construct an adversary B with respect to Coll for H, very easily. Choose

k at random from {0,1}". Run A to get M; and M, where, M; = mf{||---||Im},
My = mi||---|lm}, Im}| =n —1 and j = 1 or 2. B outputs (M, M}) where
M = (mi|[k)] - ||(mg||%), and My = (mi||k)]| -+~ [|(mj]|k). It is very easy to

check that if (My, My) is a collision pair for H¥ then (M], M3) is a collision pair
for H,. Note, whenever A asks for E-query/E~!-query, B asks same query and
output of the query is given to A as a response of the query made by B. ]

In [1] we know the followings :



L. For ¢ € [1,12], Adv$™(q) < q(q +1)/2"
2. For 1 € [13,20], Adv " (¢) < 3q(q +1)/2”

So, we can conclude from Theorem 2 and 3 that,

Corollary 1. For: € [1,12], Advzlco”(q) < Advfﬁ”(q) <q(qg+1)/2™.
For1 = [13,20], Adv4“""(q) < Adv§"(q) < ¢*/2"".

4 Some Attacks in Target Collision Resistant Game

The idea of attack : Here we will give a generic attack for all H; for the
game TColl (See Section 2). Commit M; = (ma]|...||mq). we will describe
later how these m;’s will be chosen. Then given random key k& compute Hf(Ml)
by using ¢ many queries. We will obtain hq,...h, and Hf(Ml) = h, where,
ho =m, b1 = my -+ hg1 —m, by If we get one such ¢ < i’ such that h; = hy
then define My = ma||...||m;||mi41]|...mgq. So, My and M, will be a collision
pair. Roughly h;’s are random string and Probability of success will be proba-
bility for birthday collision of h;’s which is o(q?/2"). We will choose m;’s so that
the key for each query (i.e. s;) is different. We assume that all h;’s are different
otherwise we get a collision.

Choice of m;’s :

1. If key of block cipher E is w in the definition of compression function then
choose m; = 0. So each w; will be different as h;’s are different.

2. If key is h or m then choose m; = i and hence keys are different.

3. If key is v then choose m;’s so that inputs of compression functions are
different. In this case we will study the lower bound separately.

Theorem 4. Advg?”(q) > Advzf}o”(q) > % for each 1 € [1,42] when-
ever key of E is not v in the definition of compression function.

Proof. Define D; by the event that no collision occurs after it" query and D is
the event that the above attack fails after all queries i.e. it is same as Dy. Define
Dy by a sure event. Now Pr[D] = 3:1 Pr[D;|D;_1]. If D;_; is true then all h;’s
are different for i’ < i. Now h; = y; @ a; (here a; depends on h;—1,m; and v).
Now D; is true < y; ¢ {ho, b1, ..., hi—1} ® ;. So, Pr[D;|D;—1] = (1 — 5£). So
Advzfon(q) >1-T1,(1—-55) > '3'1(2+1) (the last inequality is followed from
Proposition 5). [ |

For hash family E3/E4/E5 we can have better lower bound like o(g—?) if we
just check whether h;[R] = hy[R)] for i < i’ and construct M> depending on type
of the hash function. Choose m;’s as earlier. Construction of M is given below
where h;[R] = hy[R] for i < i':



1. E3 : In E2 family if h —, & then (h ® (al|0)) —=maa (W' @ (a]|0)). So,

define My = mu||...||my||(mix1 @ a)||-..||ms D allms]| ... ||mq. Here,
a = h;[R]® hy[R]. This will give collision because H;(m1|| ... ||mg||(mir1 ®
a)|| . ||(m2/ D a) = h;.

2. E4 : By Proposition 2 we have some mj, such that hy_; —,,/, hi. So define
Ms =mal|...|lms—1]|mb]| .- .||mg. This will give a collision.
3. E5 : This case is very similar to E4 so we skip this.

Theorem 5. Let 1 € E3 or E4 or E5. If v is not the key of E in the definition
for compression function then Advg‘l’”(q) > Adv%lco”(q) > %. In other
cases Adv%f”(q) > Adv%lc"”(q) > 70'32'1,(31_1) .

Proof. We use same notations as above. If D;_; is true then all h;[R]’s are
different for i’ < i. Now h; = y; ® o (here a; depends on h;_1,m; and v). Now
D; is true & (y;[R] ® a =) hi[R] ¢ {holR],[R],...,hi—1[R]}. So, y; ¢ A —
{y1,---,yi—1} where A = {z;2[R]®a = hy[R],0 <i' <i—1} and |A] =i.2"" .
Hence Pr[D;|D;—1] = (1 — ). So Advi " (q) > 1 -], (1 - &) < 2de=l)
(the last inequality is followed from Proposition 5).

When key is same as v then everything is same as above except Pr[D;|D;_1] =
(1-— 2" i1
7 G-1)

Pr[D;|Di—1] > (1 = 5=r) and hence Adv;, " (q) > 24l ]

) as y; can not take previous i — 1 outputs. So if ¢ < 2771,

Attack for E2 Hash Family : We will consider H2; hash family from E2. Other
cases are similar to that. Fix some a > 0 integer such that (a+1)(a+2)/2+a+1 >
q- Let mq,...m, €g {0,1}"7L. Commit M; = my]||...||m, where m;’s are
chosen like above (to make keys are different and note that in E2 there is no hash
function with key v). Then given random key k& compute H21 (M) using a queries
(we have to do it by our convention). We will obtain hg, hy ..., he = Ho1 (My). If
hi; = hy for some i < i’ then My = ma||...m;||mjy1||mq. Output M. Otherwise
run the loop in below for ¢ — a many times.

Fori,j=0toa (j#i+1,i<}y)
Compute E,;l(hi@hj) =z
If z[R] = k then M> = mq]|...m;||m;y1 and output Mo.

Theorem 6. For each 1 € E2, Advg?”(q) > Advg?"”(q) > 3ala+1)/2" +
(q—a)/2

Proof. Here we have two possibility to get collision. In first case success proba-
bility is at least -3a(a 4+ 1)/2™ by similar argument as above. In the second case
Pr[z[R] = k] > 1/2! for each loop. Altogether we have success probability is at

least (¢ —a)/2'. One can write down the proof in more details. [ |
Proposition 5. 1—[]{_ (1— %) > '3’1(2+1) for any integer a.

Proof. It is given in [1] so we skip the proof. |



5 Inversion Resistance of Extended Hash Family

5.1 Upper Bound

In the Inv game a random key k& and a random A* will be given where, h* €
{0,1}™. Then he will try to compute M in case of extended hash function or
h,m in case of compression function such that H*(M) = h* or f¥(h,m) = h*.
If he finds that then we will say that adversary wins. As we study in black-
box model adversary can query E/E~! similar to other games like Coll or
TColl. So, adversary has a transcript or sequence of query-response quadruples
{(si,i,Yi,0i) }1<i<q- In this section we modify the definition of old vertices. In
addition to the previous old vertices we also include h* as an old vertex in each
T; (See Section 3). By the new definition of old vertex, size of O; is one more
than that of previous O;. Definition of Succ; is same as previous definition. Note
that the definition of Succ; involves old vertices. In that sense this definition is
changed a little. Like C; we define Inv; which means that adversary gets inverse
of h* (i.e. adversary wins) after it" query. It is very easy to check that (Inv;|=lnv;)
implies Succ;. So for extended hash family we have one upper bound for proba-
bility of winning in the Inv game which will be same as that in Coll game (See
Section 2 for upper bound). But we can have better bound for extended hash
family using the theorem below.

Theorem 7. Advi’[ﬁ”(q) < Adv%”(q) for each 1 € [1,42].

Proof. The proof for single hash function and single compression function is
given in [1]. Same proof will carry forward for hash family and compression
family also. Intuitively finding inverse for extended hash family is stronger than
finding that for compression function. ]

Now we will first study the security analysis of inversion resistance of com-
pression functions. It can be easily observed that, for: € {15,17, 19, 20, 35, 36, 37},
the compression functions are not inversion resistance-secure. All other compres-
sion functions are inversion resistance-secure.

Theorem 8. Adv%“(q) < q/2'71 for 1 € [21,34] or o € {13,14,16,18}.

Proof. Here we consider the hash family H23. Other cases will be very similar. A
random key k and h* are given to the adversary. The event (Inv;|—=Inv;_;) implies
the arc (h, h*) corresponds to 7; for some h (See Section 3). So, Es, (z;) = y; &
h —m h* for some h and m. So h* = y; & (m||k) and s; = ;.

1. If 0; = +1 then Pr[lnv;|=Inv; 1] < Pr[y;[R] = h*[R]@k < 27 1/(27—i+1) <
1/2!=1 (assume ¢ < 277! otherwise the bound is trivial).

2. If o; = —1 then Prflnv;|=lnv; 1] < 1/(2" —i+ 1) < 1/2n~ L

So, Adv'E(q) < 3oL, Prflnv;|=lnv; ;] < g/2 1. [ ]

Theorem 9. Advé_%”(q) < q/2"7 ! for 1 € [38,42] or [1,12].



Proof. Consider : = 38. Other cases will be similar. In fact, the idea of proof
is same with the previous one. Inv;|=lnv;_; implies y; = h* ® v and x; = s;. So
whenever i < 2771, Pr[Inv;|=Inv;_;] < 1/2"7! (check for 0; = +1 and —1). ™

For other cases 2 € {35, 36,37} we can use the same technique used in proving
the upper bound for Coll game. By the discussion made in beginning of the
section we can have the following theorem.

Theorem 10. Adviﬁ”(q) < ¢*/2!71 for € [35,37] and Adviﬁ”(q) < Advﬁ”(q)
< 9(q+3)2/2" for 1 € {15,17,19,20}.

Proof. The last part of the theorem is similar to Theorem 3 and from [1] we
know Adviy¥(q) < 9(q +3)2/2" for 1 € {15,17,19,20}. [

5.2 Some attacks in Inv game for Lower Bound

Attack 1 : When: € {15,17,19, 20, 35, 36,37} i.e. when the corresponding com-
pression are not inversion resistance-secure we can perform meet-in-the-middle-
attack. Idea of the attack is presented in [1]. Given hy and h* we compute two
sets F' and B such that h — h; for every hy € F and hy — h* for every
hs € B. Note we can construct B as the compression functions are not inversion
resistance-secure. If we get an element in F'N B say h then we have an inverse
element of h*. More precisely, if hg —m, h —m, h* for some m; and mo then
my||m2 will be an inverse element of h*. So we have the following lower bound
which is similar to the bound given in [1] and hence we skip the proof.

Theorem 11. Adviﬁ”(q) > (0.15)¢? /2™ fora € {15,17,19,20} and Adviﬁ”(q) >
(0.15)q2 /2" for 1 € [35,37].

Attack 2 : The attacking algorithm is same as the generic attack for target col-
lision resistance described in Section 4. We choose m, - - - ,m, and then compute
hi,---, hq and finally we will look for some h; such that h; = h* (for » € [38,42]
or [1,12]) or h;[R] = h*[R] (for » € [21,34]). One can prove it exactly but this
will be same as the proof for collision attack so we skip the details.

Theorem 12. Advi/“(q) > ¢/2'*" for 1 € [21,34] and Adv3}"(q) > q/2" for
1 € [38,42] or [1,12].

6 Conclusion

In this paper we first generalized the definition of PGV-hash functions into a
PGV-hash families. In the new definitions we have more secure hash family (42
hash families) with respect to collision resistant and One-way. Unlike previous
definitions it is a keyed family so we can study other security notion like target
collision resistant. In fact all these 42 hash families become target collision resis-
tant. As AES is treated as a good candidate for block cipher, we can implement,
these hash families using AES. Because of our results, only attack for these hash



families should explore some internal weakness of AES. In other words, these
hash families can be practically constructed using AES until we are getting
some weakness of AES. The proof techniques used here are natural and direct to
the security notions. So one can also study these proof techniques to have good
ideas about using the black box model.
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Appendix



ar h; = (T)CR LB [(T)CR UB[IR LB| IR UB

1 E,,(z;) v 1 1 - -
22| 2| Ep,_,(z;)®v q/2' ! 2¢/2'T — 1| g/2'! q/2'7!
1313  Bu(zi)®v | 3qlg—1)/2" | /2" | q/? q/2'7"

4 E,(z;) v 1 1 - -

5 E, (z;)®x; 1 1 - -
116| Ep_,(zi)®z: | .3q(¢—1)/2" |a(g+1)/2" | 4q/2" 2q/2"
97| Euw(z:)®w 3q(g—1)/2" |a(g+1)/2" | .4q/2" 2q/2"

8 E,(x;) ®z; 1 1 — —

9 Ezz (QII) D hi—l 1 1 — -
21|10| En,_, (z:) ® hi—1 q/2'! 2¢/2'F — 1| g/2'! q/2" 7!
11{11| Euw;(zi) ® hi—1 | 3q(g —1)/2" |q(g+1)/2" | 4q/2" 2q/2™

12 E,,(:cl) ® hi—1 1 1 — -

13 E,, () ®w; 1 1 - -
3114| En,_,(zi) ®w;s Bqlg—1)/2" | q(g+1)/2™ | .4q/27" 2q/2™
14(15| By, (z:) ® w; 3q(g—1)/2™ | ¢*/2n ! q/2 q/2" 7!

16 E,(z;) ® w; 1 1 - -
1517 By, (hi—1) ®v 3q(q —1)/2" | ¢*/2" " [.15¢%/2"|9(q + 3)*/2"

18 Eh171 hi,l)@v 1 1 — _
16/19|  Eu;(hi-)©v | 3q(a—1)/2" | ¢*/2"7" | ¢/ q/2"!

20|  Ey(hi—)®v 1 1 - -
17121] E.,(hi—1)@z: | 3q(g—1)/2" | ¢*/2" 1 [15¢%/2"[9(q + 3)*/2"
23122| En,_,(hi—1) @z | 3q(q—1)/2" | ¢*/2"! q/2' q/2' !
12|123|  Ew;(hi—1) @i | 3¢(q—1)/2" |q(g+1)/2" | A4q/2" 2q/2"
35|124| Ey(hii)®a:  |3q(q—1)/2"7Y ¢2/2'70 1547 /2" ¢%/2'!
5125 Em, (hi=1) @ hi—1 | 3q(q —1)/2" |qlg+1)/2™ | .4q/2™ 2q/2"

26|En;_, (hi—1) ® hi—1 1 1 - -
10(27| Ew; (hi—1) ® hi—1 | .3¢(q¢ —1)/2" |q(g+1)/2" | 4q/2" 2q/2™

28| Ey(hi—1) ® hi—1 1 1 - -
7|29 Eoi(hi-1i) ®wi | .3¢(q—1)/2" |q(g+1)/2" | 4q/2" 2q/2"
24(30| En,_, (hi—1) @ w;i | 3q(q —1)/2" | ¢*/2"! q/2' q/2" !
18(31| B, (hi—1) ®wi | 3g(g—1)/2" | ¢*/2"* q/2' q/2'!
2532] Ey(hi-1) ®wi |3¢(g—1)/2'""] ¢*/2"" q/2' q/2"”"

Fig. 1. Summary of results about 64 extended hash families.
1 for the function family (We write F, for the compression function family and H,
for its induced extended hash family). Column 2 is the number from [2]. Column 3
defines fi(hi—1,m;) for some k € {0, 1}’. We write z; for (m;||k) and w; for z; ® h;—1.
Columns 4 and 5 give our (target) collision resistance bounds. Columns 6 and 7 give

our inversion resistance bounds.

Column 1 is our number




ar h; = (TYCRLB [(T)CRUB| IRLB | IR UB
1933 E.,(wi)®v | .3q(q—1)/2" /2"t 15¢% /2™ |9(q + 3)*/2"
26\34| En,_,(w;) @v q/2"+ 2q/2'F —1 | q/2'! q/2'7!
38|35 Euw;(w;i)®wv 3q(qg—1)/2 /2t q/2" g/2" !
37136|  E.(w;)@v  |.3q(q—1)/2"7  ¢2/2 ! 15¢%/2" | %2t
20(37| E.,(w;)®x; | .3¢(¢—1)/2" /2"t 15¢% /2™ |9(q + 3)*/2"
4138 En;_j(wi) @i | 3q(q¢—1)/2" | alq+1)/2" | .4q/2" 2q/2"
27|39 Eu,(wi) @i | 3qg—1)/2" | ¢°/2"! q/?' q/2""
36/140| Fy(w;) ®x; |3q(q—1)/2'7  ¢?/2tt 15¢%/2' | ¢*/2' !
8 41| Eu;(wi) ®hiy | 3q(q—1)/2" | q(q+1)/2" | .4q/2" 2q/2"
28|42|Ep,_, (w;) @ hi_1 q/2'! 2q/2 —1 | gq/2'*! q/2" !
29|43| Eu; (wi) ® hi—1 | .3q(g —1)/2' g2t q/2' q/2'!
30|44 Ey(wi) ® hi—1 |-3q(q —1)/2'7" q* /2! q/2 q/2" 7!
6 (45| E.,(wi)®w; | .3¢(g—1)/2" | q(q+1)/2" 4q/2" 2q/2"
2146 En,_, (wi) ®wi | 3¢(q—1)/2" | q(g+1)/2" | .4q/2" 2q/2"
39|47 Bu,(wi) ®wi | 3q(g—1)/2' | ¢°/2'"! q/2" q/2" "
40/48| Ey(w;) ®w; |.3q(q—1)/2"7" q* /2! q/2" q/2"!
49| E.,(v)®v 1 1 - -
50| En,_,(v)®v 1 1 - -
41|51  Eu,(v) 0w 3q(qg—1)/2 /2t q/2" q/2" 1
52 E,(v)®v 1 1 - -
53|  Er;(v) @z 1 1 - -
3154| En,_,(v)@z; | 3q(q—1)/2 /2t q/2 q/2" !
32155 Eu,(v)®x | 3q(q—1)/2' /2t q/2' q/2" !
56 E,(v) ®z; 1 1 — —
57 Exi (U) Dhi1 1 1 — —
58| En,_, (v) ® hi 1 1 - -
33|59| Eu;(v) ®hi—y | 3q(q—1)/2" | ¢°/2'"7" q/?' q/2"""
60 Ev(v) D hi1 1 1 — —
61| E.(v)Pw 1 1 - -
34/62| En,_,(v)@w; | 3q(qg—1)/2 q* /2! q/2 q/2'7!
42|63| Eu,(v)®w; | 3q(q—1)/2 /2t q/2" q/2" 1
64| E,(v)d w; 1 1 - -

Fig. 2. Summary of results about 64 extended hash families, continued.




