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Abstrat. In [1℄ it was proved that 20 out of 64 PGV-hash funtions [2℄

based on blok ipher are ollision resistant and one-way-seure in blak-

box model of the underlying blok ipher. Here, we generalize the de�-

nition of PGV-hash funtion into a hash family and we will prove that

besides the previous 20 hash funtions we have 22 more ollision resistant

and one-way seure hash families. As all these 42 families are keyed hash

family, these beome target ollision resistant also. All these 42 hash

families have tight upper and lower bounds on (target) ollision resistant

and one-way-ness.

1 Introdution

Brief History. Preneel, Govaerts, and Vandewalle [2℄ onsidered the 64 basi

ways to onstrut a (ollision-resistant) hash funtion H : (f0; 1g

n

)

�

! f0; 1g

n

from a blok ipher E : f0; 1g

n

� f0; 1g

n

! f0; 1g

n

. They regarded 12 of these

64 shemes as seure, though no proofs or formal laims were given. After that

Blak, Rogaway, and Shrimpton [1℄ presented a more proof-entri look at the

shemes from PGV, providing both upper and lower bounds for eah. They

proved that, in the blak box model of blok ipher, 12 of 64 ompression fun-

tions are CRHFs (Collision Resistant Hash Funtion) and 20 of 64 extended

hash funtions are CRHFs.

Motivation of Our paper. The examples of most popular ollision resistant

hash funtions are MD5 and SHA-1. For those hash funtion one an not exatly

analyze the seurity. But the seurity of ollision resistant or one-way for PGV

hash funtions an be analyzed under the assumption that the underlying blok

ipher is blak-box i.e. random permutation. But the seurity of other notions

like target ollision resistant an not be analyzed as it needs a family of hash



funtions instead of single hash funtion. Beside that it seemed that more PGV

hash funtion would beome seure if we hange the original de�nition of PGV

hash funtion. So, we generalize the de�nition of PGV hash funtion into a PGV

hash family and will prove some seurity notions like target ollision resistant,

ollision resistant and one-way.

General De�nition of PGV-hash family. Let 0 � l < n and E : f0; 1g

n

�

f0; 1g

n

! f0; 1g

n

be a blok ipher. If l = 0 let f0; 1g

0

= f�g, where � is the

empty string. Using the blok ipher E, we want to onstrut a ompression

funtion family F = ff

k

g

k2f0;1g

l
, f

k

: f0; 1g

n

� f0; 1g

n�l

! f0; 1g

n

.

Let h

0

; v 2 f0; 1g

n

be �xed values. We de�ne the 64 ways to onstrut a

(blok-ipher-based) ompression funtion family F = ff

k

g

k2f0;1g

l in the

following manner: for eah k 2 f0; 1g

l

,

f

k

(h;m) = E

a

(b)� ;

where a; b;  2 fh; (mjjk); h � (mjjk); vg. Note that jhj = n and jmj = n � l.

Then we an de�ne the extended hash family H = fH

k

g

k2f0;1g

l from the

ompression funtion family F = ff

k

g

k2f0;1g

l as follows: for eah k 2 f0; 1g

l

,

H

k

: (f0; 1g

n�l

)

�

! f0; 1g

n

is de�ned by

funtion H

k

(m

1

� � �m

t

)

for i 1 to t do h

i

 f

k

(h

i�1

;m

i

)

return h

t

Note that the key k of extended hash family is equal to the key of ompression

funtion family.

Note that if l = 0 then F = ff

k

g

k2f0;1g

0
= ff

�

g is a singleton set and this

is orresponding to the original de�nition of PGV [2℄. In this ase, we denote

this F as just f without supersript �. And we all this f a (blok-ipher-based)

ompression funtion. Similarly, we denote H as H without supersript �. And

we all this H an extended hash funtion.

Our Results. For 0 < l < n, the seurity of the 64 shemes is summarized in

Figures 1 and 2, whih also serve to de�ne the di�erent extended hash funtions

H

{

and their ompression funtions f

{

. In this paper, we �x E1 = f1; :::; 20g, E2

= f21; 22; 26; 28g, E3= f23; 24; 25; 31; 34; 35g, E4= f27; 29; 30; 32; 33; 36g, and

E5 = f37; :::; 42g. Here, the numbers are orresponding to the numbers in the

�rst olumn of Figures 1 and 2 in Appendix. And E6 is the set of remaining

extended hash families whih are not represented in the �rst olumn of Figures

1 and 2 in Appendix. So jE6j = 22. This lassi�ation is based on some property

of hash family whih is used to prove the seurity. A high-level summary of our

�ndings is given by Table 1 and 2 . The adversarial model (and the meaning of

q) will be desribed momentarily.



Table 1. l = 0. This is analyzed in [1℄.

Extended Hash Families (Target) Collision Bound Inversion Bound

E1 (20 shemes) �(q

2

=2

n

) �(q=2

n

) or �(q

2

=2

n

)

E2 (4 shemes) �(1) {

E3/E4/E5 (18 shemes) �(1) {

E6 (22 shemes) �(1) {

Table 2. 0 < l < n. This is analyzed in this paper.

Extended Hash Families (Target) Collision Bound Inversion Bound

E1 (20 shemes) �(q

2

=2

n

) �(q=2

l

) or �(q=2

n

) or �(q

2

=2

n

)

E2 (4 shemes) �(q=2

l

) �(q=2

l

)

E3/E4/E5 (18 shemes) �(q

2

=2

l

) �(q=2

l

) or �(q

2

=2

l

) or �(q=2

n

)

E6 (22 shemes) �(1) {

Blak Box Model. Our seurity model is the one dating to Shannon [6℄ and

used for works like [3{5℄. An adversary A is given aess to orales E and E

�1

where E is a random blok ipher E : f0; 1g

n

�f0; 1g

n

! f0; 1g

n

and E

�1

is its

inverse. That is, eah key a 2 f0; 1g

n

names a randomly-seleted permutation

E

a

= E(a; �) on f0; 1g

n

, and the adversary is given orales E and E

�1

. The

latter, on input (a; y), returns the point x suh that E

a

(x) = y. See [1℄ for more

details and disussions about blak-box model.

In these PGV hash funtion families, we do not use any mask key unlike [7,

10, 12, 13℄. We prove the target ollision resistane of these hash families under

blak box model and it will be more eÆient in key size ompare to the results

in [7, 10, 12, 13℄ wherein the mask keys are used.

2 Preliminary

Notation. We use the following standard notations in this paper.

1. [a; b℄ = fa; � � � ; bg where a � b are some integers.

2. If x 2 f0; 1g

n

and 0 � l < n, x = x[L℄jjx[R℄, where jx[L℄j = n � l and

jx[R℄j = l.

3. If S � f0; 1g

n

and a 2 f0; 1g

n

, S � a = a � S = fa � sjs 2 Sg. Note that

jS � aj = ja� Sj = jSj.

4. A blok ipher is a map E : f0; 1g

n

� f0; 1g

n

! f0; 1g

n

where, for eah key

a 2 f0; 1g

n

, the funtion E

a

(�) = E(a; �) is a permutation on f0; 1g

n

. If E

is a blok ipher then E

�1

is its inverse, where E

�1

a

(y) is the string x suh

that E

a

(x) = y.

5. A hash funtion family is a H = fH

k

g

k2f0;1g

l , where H

k

: D ! f0; 1g

n

,

D � f0; 1g

�

.



6. Hash funtion family F = ff

k

g

k2f0;1g

l
, f

k

: D ! f0; 1g

n

is a ompression

funtion family if D = f0; 1g

n

� f0; 1g

n�l

for some �xed l.

7. Fix h

0

2 f0; 1g

n

. The extended hash family of ompression funtion family

F = ff

k

g

k2f0;1g

l , f

k

: f0; 1g

n

� f0; 1g

n�l

! f0; 1g

n

, is the hash funtion

family H = fH

k

g

k2f0;1g

l
suh that H

k

: (f0; 1g

n�l

)

�

! f0; 1g

n

de�ned by

H

k

(m

1

� � �m

t

) = h

t

where h

i

= f

k

(h

i�1

;m

i

).

8. For a funtion H , (M;M

0

) is alled a ollision pair of H if M 6= M

0

and

H(M) = H(M

0

).

9. We write x

R

 S for the experiment of hoosing a random element from the

�nite set S and alling it x.

Assumption. From now on, we always assume E : f0; 1g

n

�f0; 1g

n

! f0; 1g

n

is a random blok ipher, i.e., for eah a 2 f0; 1g

n

, E

a

(�) is a random permuta-

tion. We �x some h

0

; v 2 f0; 1g

n

.

Collision Resistane and Inversion Resistane of Hash funtion (l = 0).

To quantify the ollision resistane of a (blok-ipher-based) hash funtion H ,

we onsider random blok ipher E. An adversary A is given orales for E(�; �)

and E

�1

(�; �) and wants to �nd a ollision for H , i.e., M;M

0

where M 6=M

0

but

H(M) = H(M

0

). And we also de�ne the diÆulty of inverting hash funtions.

We use the following measure for the diÆulty of A in inverting a hash funtion

at a random point.

De�nition 1. (Collision resistane and inversion resistane of a ompression

funtion `f ') Let f be a blok-ipher-based ompression funtion, f : f0; 1g

n

�

f0; 1g

n

! f0; 1g

n

. Then the advantages of A in �nding ollisions and inverse

elements in f are

Adv

Coll

f

(A) = Pr[((h;m); (h

0

;m

0

)) A

E;E

�1

:

((h;m) 6= (h

0

;m

0

) & f(h;m) = f(h

0

;m

0

)) or f(h;m) = h

0

℄

Adv

Inv

f

(A) = Pr[h

�

R

 f0; 1g

n

; (h;m) A

E;E

�1

: f(h;m) = h

�

℄

De�nition 2. (Collision resistane and inversion resistane of an extended hash

funtion `H') Let H be a blok-ipher-based extended hash funtion, H : (f0; 1g

n

)

�

! f0; 1g

n

. Then the advantages of A in �nding ollisions and inverse elements

in H are

Adv

Coll

H

(A) = Pr[(M;M

0

) A

E;E

�1

:M 6=M

0

& H(M) = H(M

0

)℄

Adv

Inv

H

(A) = Pr[h

�

R

 f0; 1g

n

;M  A

E;E

�1

: H(M) = h

�

℄

Collision Resistane, Target Collision Resistane and Inversion Re-

sistane of Hash funtion family (0 < l < n). To quantify the ollision

resistane and target ollision resistane of a (blok-ipher-based) hash funtion

family fH

k

g

k2f0;1g

l , we onsider random blok ipher E. An adversary A is

given orales for E(�; �) and E

�1

(�; �). Then, the adversary A

E;E

�1

for ollision

resistane plays the following game alled Coll.



1. A

E;E

�1

is given a key k whih is hosen uniformly at random from f0; 1g

l

.

2. A

E;E

�1

has to �nd M;M

0

suh that M 6=M

0

but H

k

(M) = H

k

(M

0

).

The adversary A

E;E

�1

= (A

guess

;A

find

(�; �)) for target ollision resistane

plays the following game alled TColl.

1. A

guess

ommits to an M .

2. A key k is hosen uniformly at random from f0; 1g

l

.

3. A

find

(M;k) has to �nd M

0

suh that M 6=M

0

but H

k

(M) = H

k

(M

0

).

The adversaryA

E;E

�1

for inversion resistane plays the following game alled

Inv.

1. A key k is hosen uniformly at random from f0; 1g

l

.

2. h

�

is hosen uniformly at random from the range f0; 1g

n

.

3. A

E;E

�1

has to �nd M suh that H

k

(M) = h

�

.

De�nition 3. (Collision resistane, target ollision resistane, and inversion

resistane of a ompression funtion family `F ') Let F = ff

k

g

k2f0;1g

l
be a

blok-ipher-based ompression funtion family, where f

k

: f0; 1g

n

�f0; 1g

n�l

!

f0; 1g

n

. Then the advantages of A with respet to (target) ollision resistane

and inversion resistane are the following real numbers.

Adv

Coll

F

(A) = Pr[k

R

 f0; 1g

l

; ((h;m); (h

0

;m

0

)) A

E;E

�1

:

((h;m) 6= (h

0

;m

0

) & f

k

(h;m) = f

k

(h

0

;m

0

)) or f

k

(h;m) = h

0

℄

Adv

TColl

F

(A) = Pr[(h;m) A

E;E

�1

guess

; k

R

 f0; 1g

l

;

(h

0

;m

0

)  A

E;E

�1

find

((hjjm); k) : (h;m) 6= (h

0

;m

0

) & f

k

(h;m) = f

k

(h

0

;m

0

)℄

Adv

Inv

F

(A) = Pr[k

R

 f0; 1g

l

;h

�

R

 f0; 1g

n

; (h;m) A

E;E

�1

: f

k

(h;m) = h

�

℄

De�nition 4. (Collision resistane, target ollision resistane, and inversion

resistane of an extended hash family `H') Let H = fH

k

g

k2f0;1g

l be a blok-

ipher-based extended hash family, where H

k

: (f0; 1g

n�l

)

�

! f0; 1g

n

. Then

the advantage of A with respet to (target) ollision resistane and inversion

resistane are the the following real numbers.

Adv

Coll

H

(A) = Pr[k

R

 f0; 1g

l

;M;M

0

 A

E;E

�1

:

M 6=M

0

& H

k

(M) = H

k

(M

0

)℄

Adv

TColl

H

(A) = Pr[M  A

E;E

�1

guess

; k

R

 f0; 1g

l

;M

0

 A

E;E

�1

find

(M;k) :

M 6=M

0

& H

k

(M) = H

k

(M

0

)℄

Adv

Inv

H

(A) = Pr[k

R

 f0; 1g

l

;h

�

R

 f0; 1g

n

;M  A

E;E

�1

: H

k

(M) = h

�

℄

Maximal Advantage. If A is an adversary and Adv

XXX

Y

(A) is a measure of

adversarial advantage already de�ned then we write Adv

XXX

Y

(q) to mean the



maximal value of Adv

XXX

Y

(A) over all adversaries A that use queries bounded

by the number q.

Conventions. We follow the similar onventions of [1℄. Note that this onven-

tion is important to make the disussion easy and prove the following theorems.

For the remainder of this paper we assume the following signi�ant onventions.

1. First, an adversary does not ask any orale query in whih the response is

already known; namely, if A asks a query E

a

(x) and this returns y, then A

does not ask a subsequent query of E

a

(x) or E

�1

a

(y); and if A asks E

�1

a

(y)

and this returns x, then A does not ask a subsequent query of E

�1

a

(y) or

E

a

(x).

2. Seond, if M is one of the output(s) produed by an adversary, then the

adversary should make neessary E=E

�1

queries to ompute H

k

(M) during

the whole query proess.

3. Similarly, we will use the same assumption about the orale query proedure

of an adversary A for the ompression funtion family F .

These assumptions are all without loss of generality in that an adversary A

not obeying these onventions an easily be modi�ed to given an adversary A

0

having similar omputational omplexity that obeys these onventions and has

the same advantage as A.

3 (Target) Collision Resistane of Extended Hash Family

In this setion we will analyze the seurity of H

{

for eah { 2 [1; 42℄ de�ned in

Setion 1 in the notion of (target) ollision resistant. We onsider any adversary

A with respet to Coll. i.e. after having random key k he will try to �nd a

ollision pair (M

1

;M

2

) for H

k

{

i.e. M

1

6= M

2

, H

k

{

(M

1

) = H

k

{

(M

2

). For that he

will make some E=E

�1

queries. Transript of A is de�ned by the sequene of

query-response quadruples f(s

i

; x

i

; y

i

; �

i

)g

1�i�q

where q is the maximum number

of queries made by adversary, s

i

; x

i

; y

i

2 f0; 1g

n

and �

i

= +1 (in ase of E-query)

or �1 (in ase of E

�1

-query) and 8 i, E

s

i

(x

i

) = y

i

. (s

i

; x

i

; y

i

; �

i

) will be alled

by i

th

query-response quadruple (or q-r quadruple). In this setion we �x some

key k and v. Note that, if �

i

= +1 (or -1) then y (or x respetively) is a random

string as we assume that the blok-ipher E

s

(�) is a random permutation.

Proposition 1. For �xed x; y 2 f0; 1g

n

and A � f0; 1g

n

, Pr[y

i

= y℄ �

1

2

n

�i+1

and Pr[y

i

2 A℄ �

jAj

2

n

�i+1

whenever �

i

= +1. Similarly, if �

i

= �1 then Pr[x

i

=

x℄ �

1

2

n

�i+1

and Pr[x

i

2 A℄ �

jAj

2

n

�i+1

Proof. Before i

th

query at most (i � 1) outputs (or inputs) of a blok-ipher

with same key are known. So, output (or input) of next E will be uniformly

distributed to at least 2

n

� (i� 1) elements.



Here we �x any arbitrary hash family H

{

for { 2 [1; 42℄. In this setion V :=

f0; 1g

n

alled vertex set and L := f0; 1g

n�l

alled label set. A triple (h

1

; h

2

;m) 2

V � V � L (or a pair (h

1

; h

2

) 2 V � V ) is alled a labeled ar (or an ar only).

We also say (h

1

; h

2

;m) is an ar (h

1

; h

2

) with label m or m is a label of the

ar (h

1

; h

2

) and we use the notation h

1

!

m

h

2

. Now given a triple � = (s; x; y)

where, s; x; y 2 V de�ne a set of labeled ars A(�) by the following set :

A(�) = f(h

1

; h

2

;m) 2 V � V � L : f

k

(h

1

;m) = h

2

, E

s

(x) = yg.

For example, in ase of H

21

, f

k

21

(h

1

;m) := E

h

1

(mjjk) � h

1

. So, (f

k

(h

1

;m) =

h

2

, E

s

(x) = y) () (E

h

1

(mjjk) � h

1

= h

2

, E

s

(x) = y) () (h

1

= s,

h

2

= y � h

1

= y � s;mjjk = x). Hene, A(�) = f(s; s � y; x[L℄)g if x[R℄ = k

otherwise it is an empty set.

Given a set of labeled ars A we de�ne indued ar set A

0

= f(h

1

; h

2

) :

9m 2 L, (h

1

; h

2

;m) 2 Ag. For a set of triple(s) � = f�

1

= (s

1

; x

1

; y

1

); : : : ; �

a

=

(s

a

; x

a

; y

a

)g we an de�ne labeled ar set A(�) =

S

a

i=1

A(�

i

). It an be easily

heked that A

0

(�) =

S

a

i=1

A

0

(�

i

). Every member of A(�) (or A

0

(�)) will be

alled an labeled ar (or ar) orresponding to the set of triple(s) � . Given a

transript f(s

i

; x

i

; y

i

; �

i

)g

1�i�q

of an adversary A let � [i℄ denotes the sets of

triples f�

1

= (s

1

; x

1

; y

1

); : : : ; �

i

= (s

i

; x

i

; y

i

)). For eah i we have a labeled di-

reted graph T

i

= T (� [i℄) = (V;A(� [i℄)) and a direted graph T

0

i

= (V;A

0

(� [i℄)).

De�ne T

0

= (V; ;). Given a path P = (h

1

; h

2

; : : : ; h

p

) from h

1

to h

p

in T

i

,

M = m

1

jj : : : jjm

p�1

is alled a label of P if m

i

is a label of (h

i

; h

i�1

) for eah i.

So we have a piture like (h

1

!

m

1

h

2

!

m

2

: : :!

m

p�1

h

p

) in T

i

.

Observation 1 : By our onventions adversary an ompute f

k

{

(h

1

;m) = h

2

after i

th

query i� for some j � i, E

s

j

(x

j

) = y

j

) f

k

{

(h

1

;m) = h

2

and

hene (h

1

; h

2

;m) 2 A(� [i℄). Similarly, adversary an ompute H

k

{

(m

1

jj � � � jjm

a

)

after i

th

query i� h

0

!

m

1

h

1

!

m

2

� � � !

m

a

h

a

is a path in A(� [i℄) and

H

k

{

(m

1

jj � � � jjm

a

) = h

a

.

De�nition 5. For eah hash funtion and 0 � i � q

1. When { 2 E1, E2 or E4, h in T

i

is old if deg(h) � 1 in T

i

or h = h

0

.

2. When { 2 E2 or E4, h in T

i

is old if h = h

0

or 9 h

1

, deg(h

1

) � 1 in T

i

and

h[R℄ = h

1

[R℄.

Remaining all other verties are known as new verties. Call the set of all

old verties in T

i

by O

i

.

The next Proposition will be used to have seurity analysis. It gives an upper

bound of jO

i

j and says about the struture of the set of labeled ars A(�

i

) and

A

0

(�

i

).

Proposition 2. If A(�

i

) is not empty then we have,

1. For { 2 E1 or E2, A(�

i

) is a singleton and jO

i

j � 2i+ 1.



2. For { 2 E3, A

0

(�

i

) = f(h

1

; h

2

) : h

2

[R℄ = ug where, h

1

and u are �xed de-

pending only on j and �

i

. So, the graph of the A

0

(�

i

) looks like an outward

direted star and jA

0

(�

i

)j = 2

n�l

= jA(�

i

)j and hene jO

i

j � (2i+ 1)2

n�l

.

3. For { 2 E4, A

0

(�

i

) = f(h; h � a) : h[R℄ = ug where, a and u are �xed de-

pending only on j and �

i

. So, the graph of the A

0

(�

i

) onsists of 2

n�l

parallel

ars and jA

0

(�

i

)j = 2

n�l

= jA(�

i

)j and hene jO

i

j � (2i+ 1)2

n�l

.

4. For { 2 E5, A

0

(�

i

) = f(h

1

; h

2

) : h

1

[R℄ = ug where, h

2

and u are �xed

depending only on j and �

i

. So, the graph of the A

0

(�

i

) looks like an inward

direted star and jA

0

(�

i

)j = 2

n�l

= jA(�

i

)j and hene jO

i

j � (2i+ 1)2

n�l

.

Moreover, for eah (h

1

; h

2

) 2 A

0

(�

i

), 9 unique m suh that h

1

!

m

h

2

. For the

hash families E3, E4 and E5 if h

1

[R℄ = h

2

[R℄ then h

1

2 O

i

) h

2

2 O

i

8 i.

Proof. Bounds for jO

i

j's and last part of the proposition are straightforward

from the struture of A

0

(�

i

). We will prove that for one hash funtion from

eah lass. Other ases will be very similar and one an hek analogously. Let

�

i

= (s

i

; x

i

; y

i

).

1. In ase of H

1

, f

k

1

(h

1

;m) := E

h

1

(mjjk) � (mjjk). So, (f

k

(h

1

;m) = h

2

,

E

s

i

(x

i

) = y

i

) () (E

h

1

(mjjk) � (mjjk) = h

2

, E

s

i

(x

i

) = y

i

) () (h

1

= s

i

,

h

2

= y

i

� (mjjk); x

i

= mjjk). Hene, A(�) = f(s

i

; y

i

�x

i

; x

i

[L℄)g if x

i

[R℄ = k

otherwise it is an empty set.

In ase of H

21

, after de�ning A(�) in this setion, we have shown that

A(�) = f(s

i

; s

i

� y

i

; x

i

[L℄)g if x

i

[R℄ = k otherwise it is an empty set.

2. In ase of H

23

, f

k

23

(h

1

;m) := E

h

1

(h

1

) � (mjjk). So, (f

k

(h

1

;m) = h

2

,

E

s

i

(x

i

) = y

i

) () (E

h

1

(h

1

) � (mjjk) = h

2

, E

s

i

(x

i

) = y

i

) () (h

1

= s

i

=

x

i

, h

2

= y

i

� (mjjk)). Hene, A(�) = f(s

i

; h

2

;m) : h

2

[R℄ = y

i

[R℄ � k;m =

h

2

[R℄� y

i

[R℄g if x

i

= s

i

otherwise it is an empty set.

3. In ase of H

27

, f

k

27

(h

1

;m) := E

w

1

(w

1

)� (mjjk) where w

1

= h

1

� (mjjk). So,

(f

k

(h

1

;m) = h

2

, E

s

i

(x

i

) = y

i

)() (E

w

1

(w

1

)� (mjjk) = h

2

, E

s

i

(x

i

) =

y

i

)() (h

1

= s

i

� (mjjk), h

2

= y

i

� (mjjk) = h

1

� (y

i

� s

i

); s

i

= x

i

). Hene,

A(�) = f(h

1

; h

1

� (s

i

�y

i

); x

i

[L℄�h

1

[R℄)g if x

i

= s

i

otherwise it is an empty

set.

4. In ase of H

36

, we an prove similarly that A(�

i

) = f(h

1

; y

i

�v;m) : h

1

[R℄ =

s

i

[R℄� k;m = h

1

[L℄� s

i

g if x

i

= s

i

otherwise it is an empty set.

De�nition 6. For eah 1 � i � q we de�ne some events.

1. C

i

: adversary gets a ollision after i

th

query.

2. PathColl

i

: 9 two paths P

1

and P

2

(not neessarily distint) from h

0

to some

h

�

in T

i

suh that P

1

and P

2

have two di�erent labels.



3. Su

i

: 9 an ar (h; h

0

) 2 A

0

(�

i

) where both h and h

0

are old verties in T

i�1

.

Proposition 3. The event PathColl

i

is equivalent to C

i

.

Proof. C

i

, PathColl

i

an be proved using the last part of the Observation 1.

Proposition 4. For E1, E2, E3, and E4 hash families, the event (C

i

j :C

i�1

)

neessarily implies Su

i

. For E5, C

i

neessarily implies Su

i

0

for some i

0

� i.

Proof. Let P

1

and P

2

be two paths from h

0

to h

�

in T

0

i

with di�erent labels for

some h

�

. As PathColl

i�1

is not true 9 at least one ar in P

1

[P

2

whih orresponds

to �

i

. If Su

i

is not true then one of the verties of an ar orresponding to

�

i

should be new in T

i�1

whih implies 9 two ars either (h

1

; h

2

); (h

2

; h

3

) or

(h

1

; h

3

); (h

2

; h

3

) orresponding to �

i

. But this is not possible by the struture of

A

0

(�

i

) (see Proposition 2) in ase of E1, E2, E3 and E4 hash families. Similarly

we an prove it when P

1

= P

2

.

In ase of E5 hash funtion for P

1

= P

2

the proof is similar as (h

1

; h

3

); (h

2

; h

3

)

ase will not arise. So assume that P

1

and P

2

are di�erent and 9 (h

1

; h

3

); (h

2

; h

3

)

orresponding to �

i

in the path P

1

[P

2

. By Proposition 2, h

1

[R℄ = h

2

[R℄. If Su

i

is not true but (PathColl

i

j:PathColl

i�1

) is true then we have two paths P

0

1

and

P

0

2

in T

i�1

from h

0

to h

a

= h

1

and h

0

b

= h

2

respetively. Let P

0

1

= (h

0

! h

1

!

: : :! h

a

) and P

0

2

= (h

0

! h

0

1

! : : :! h

0

b

). So if Su

i

0

is not true 8 i

0

1 � i

0

� i

then at least one new vertex from P

0

1

[ P

0

2

is added to O

j

for eah j whenever

it is added. As there are a+ b new verties for T

0

in P

0

1

[ P

0

2

and every time at

most one ar an be added into A

j

(�

i

0

) (beause of the struture of A

j

(�

i

0

)) we

have to add exatly one new vertex in eah i

0

. As h

1

[R℄ = h

2

[R℄. So, we will add

two new verties in P

0

1

[ P

0

2

to a set of old verties when we add h

1

or h

2

�rst

time and hene ontradition.

Observation 2: In E5, C

q

)

S

q

i=1

Su

i

by above Proposition 4. So we have

Pr[A gets a ollision℄ �

P

q

i=1

Pr[Su

i

℄. In other hash families by above Propo-

sition 4, Pr[A gets a ollision℄ �

P

q

i=1

Pr[C

i

j:C

i�1

℄ �

P

q

i=1

Pr[Su

i

℄. So it is

enough to have an upper bound of Pr[Su

i

℄ in all hash funtions.

Theorem 1. For eah 1 � i � q we have

1. For E1 hash family, Pr[Su

i

℄ � (2i� 1)=2

n�1

2. For E2 hash family, Pr[Su

i

℄ � 2=(2

l+1

� 1) if q � 2

n�l�1

.

3. For E3,E4 or E5 hash families, Pr[Su

i

℄ � (2i� 1)=2

l�1

.

Proof. Let A be an adversary attaking H

{

. Assume that A asks its orales at

most q total queries. Assume that the random key k is given. Let (s

i

; x

i

; y

i

; �

i

)

be the i

th

q-r quadruple.

Consider H

k

1

in ase of E1 hash family. For the other hash families in E1, the

proof is analogous to the proof of 1.

1. Case 1: �

i

= +1. Su

i

) y

i

� x

i

2 O

i�1

(See Proposition 2). Hene,

Pr[Su

i

℄ � Pr[y

i

2 O

i�1

� x

i

℄ � (2i � 1)=(2

n

� i+ 1) (by Proposition 1

and 2).



2. Case 2: �

i

= �1. Su

i

) y

i

� x

i

2 O

i�1

(See Proposition 2). Hene,

Pr[Su

i

℄ � Pr[x

i

2 O

i�1

� y

i

℄ � (2i � 1)=(2

n

� i+ 1) (by Proposition 1

and 2).

Therefore, Pr[Su

i

℄ � (2i� 1)=(2

n

� i+ 1) � (2i� 1)=2

n�1

.

Consider H

k

21

in ase of E2 hash family. For the other hash families in E2,

the proof is analogous to the proof of 21.

1. Case 1: �

i

= +1. Su

i

) y

i

� s

i

2 O

i�1

(See Proposition 2). Hene,

Pr[Su

i

℄ � Pr[y

i

2 O

i�1

� s

i

℄ � (2i � 1)=(2

n

� i+ 1) (by Proposition 1

and 2).

2. Case 2: �

i

= �1. Su

i

) x

i

[R℄ = k. Let Q = fxjx[R℄ = kg then jQj =

j2

n�l

j. Hene, Pr[Su

i

℄ � Pr[x

i

2 Q℄ � 2

n�l

=(2

n

� i+1) (by Proposition 1).

Therefore, Pr[Su

i

℄ � maxf(2i� 1)=(2

n

� i+ 1); 2

n�l

=(2

n

� i+ 1)g. Sine q �

2

n�l�1

, Pr[Su

i

℄ � 2

n�l

=(2

n

� i+ 1) � 2=(2

l+1

� 1).

Consider H

k

23

in ase of E3 hash family. For the other hash families in E3,

the proof is analogous to the proof of 21. For E4/E5 hash funtions the proof

will be analogous to the proof of 23.

1. If �

i

= +1, then Su

i

implies that 9 an ar (h; h

0

) 2 A(�

i

) suh that h

0

2

O

i�1

. This implies that 9 m suh that (y

i

� (mjjk)) 2 O

i�1

. By the Propo-

sition 2 (y

i

� (mjjk)) 2 O

i�1

, (y

i

� (0jjk)) 2 O

i�1

, y

i

2 O

i�1

� (0jjk).

Therefore, by the Proposition 1 and 2, Pr[Su

i

℄ � 2

n�l

(2i�1)=(2

n

� i+ 1).

2. If �

i

= �1, then Su

i

implies that x

i

= s

i

. Hene, Pr[Su

i

℄ � Pr[x

i

= s

i

℄.

Hene, by the Proposition 1, Pr[Su

i

℄ � Pr[x

i

= s

i

℄ � 1=(2

n

� i+ 1).

Therefore, Pr[Su

i

℄ � maxf2

n�l

(2i�1)=(2

n

� i+ 1); 1=(2

n

�i+1)g = 2

n�l

(2i�

1)=(2

n

� i+ 1) � (2i� 1)=2

l�1

.

So we have the following theorem using Observation 2.

Theorem 2. 1. Adv

Coll

H

{

(q) � q

2

=2

n�1

for { 2 E1

2. Adv

Coll

H

{

(q) � 2q=(2

l+1

� 1) for all q � 2

n�l�1

and { 2 E2.

3. Adv

Coll

H

{

(q) � q

2

=2

l�1

for { 2 E3, E4 or E5.

By the following theorem the upper bound of advantage for E1 hash family

an also be obtained from that of orresponding hash funtion presented in [1℄.

Theorem 3. 8{ 2 [1; 42℄, Adv

Coll

H

{

(q) � Adv

Coll

H

{

(q)

Proof. Suppose A is an adversary with respet to Coll for the hash family H

{

.

We an onstrut an adversary B with respet to Coll for H

{

very easily. Choose

k at random from f0; 1g

l

. Run A to get M

1

and M

2

where, M

1

= m

1

1

jj � � � jjm

1

a

,

M

1

= m

2

1

jj � � � jjm

2

b

, jm

j

i

j = n � l and j = 1 or 2. B outputs (M

0

1

;M

0

2

) where

M

0

1

= (m

1

1

jjk)jj � � � jj(m

1

a

jjk), and M

0

2

= (m

2

1

jjk)jj � � � jj(m

2

b

jjk). It is very easy to

hek that if (M

1

;M

2

) is a ollision pair for H

k

{

then (M

0

1

;M

0

2

) is a ollision pair

for H

{

. Note, whenever A asks for E-query/E

�1

-query, B asks same query and

output of the query is given to A as a response of the query made by B.

In [1℄ we know the followings :



1. For { 2 [1; 12℄, Adv

Coll

H

{

(q) � q(q + 1)=2

n

2. For { 2 [13; 20℄, Adv

Coll

H

{

(q) � 3q(q + 1)=2

n

So, we an onlude from Theorem 2 and 3 that,

Corollary 1. For { 2 [1; 12℄, Adv

TColl

H

{

(q) � Adv

Coll

H

{

(q) � q(q + 1)=2

n

.

For { = [13; 20℄, Adv

TColl

H

{

(q) � Adv

Coll

H

{

(q) � q

2

=2

n�1

.

4 Some Attaks in Target Collision Resistant Game

The idea of attak : Here we will give a generi attak for all H

j

for the

game TColl (See Setion 2). Commit M

1

= (m

1

jj : : : jjm

q

). we will desribe

later how these m

i

's will be hosen. Then given random key k ompute H

k

j

(M

1

)

by using q many queries. We will obtain h

1

; : : : h

q

and H

k

j

(M

1

) = h

q

where,

h

0

!

m

1

h

1

!

m

2

: : : h

q�1

!

m

q

h

q

. If we get one suh i < i

0

suh that h

i

= h

i

0

then de�ne M

2

= m

1

jj : : : jjm

i

jjm

i

0

+1

jj : : :m

q

. So, M

1

and M

2

will be a ollision

pair. Roughly h

i

's are random string and Probability of suess will be proba-

bility for birthday ollision of h

i

's whih is o(q

2

=2

n

). We will hoose m

i

's so that

the key for eah query (i.e. s

i

) is di�erent. We assume that all h

i

's are di�erent

otherwise we get a ollision.

Choie of m

i

's :

1. If key of blok ipher E is w in the de�nition of ompression funtion then

hoose m

i

= 0. So eah w

i

will be di�erent as h

i

's are di�erent.

2. If key is h or m then hoose m

i

= i and hene keys are di�erent.

3. If key is v then hoose m

i

's so that inputs of ompression funtions are

di�erent. In this ase we will study the lower bound separately.

Theorem 4. Adv

Coll

H

{

(q) � Adv

TColl

H

{

(q) �

0:3q(q�1)

2

n

for eah { 2 [1; 42℄ when-

ever key of E is not v in the de�nition of ompression funtion.

Proof. De�ne D

i

by the event that no ollision ours after i

th

query and D is

the event that the above attak fails after all queries i.e. it is same as D

q

. De�ne

D

0

by a sure event. Now Pr[D℄ =

Q

q

i=1

Pr[D

i

jD

i�1

℄. If D

i�1

is true then all h

i

0

's

are di�erent for i

0

< i. Now h

i

= y

i

� �

j

(here �

j

depends on h

i�1

;m

i

and v).

Now D

i

is true , y

i

=2 fh

0

; h

1

; : : : ; h

i�1

g � �

j

. So, Pr[D

i

jD

i�1

℄ = (1 �

i

2

n

). So

Adv

TColl

H

{

(q) � 1�

Q

q

i=1

(1�

i

2

n

) �

�3q(q�1)

2

n

(the last inequality is followed from

Proposition 5).

For hash family E3/E4/E5 we an have better lower bound like o(

q

2

2

l

) if we

just hek whether h

i

[R℄ = h

i

0

[R℄ for i < i

0

and onstrutM

2

depending on type

of the hash funtion. Choose m

i

's as earlier. Constrution of M

2

is given below

where h

i

[R℄ = h

i

0

[R℄ for i < i

0

:



1. E3 : In E2 family if h !

m

h

0

then (h � (ajj0)) !

m�a

(h

0

� (ajj0)). So,

de�ne M

2

= m

1

jj : : : jjm

i

0

jj(m

i+1

� a)jj : : : jjm

i

0

� ajjm

i+1

jj : : : jjm

q

. Here,

a = h

i

[R℄�h

i

0

[R℄. This will give ollision beause H

j

(m

1

jj : : : jjm

i

0

jj(m

i+1

�

a)jj : : : jj(m

i

0

� a) = h

i

.

2. E4 : By Proposition 2 we have some m

0

i

0

suh that h

i

0

�1

!

m

0

i

0

h

i

0

. So de�ne

M

2

= m

1

jj : : : jjm

i�1

jjm

0

i

0

jj : : : jjm

q

. This will give a ollision.

3. E5 : This ase is very similar to E4 so we skip this.

Theorem 5. Let { 2 E3 or E4 or E5. If v is not the key of E in the de�nition

for ompression funtion then Adv

Coll

H

{

(q) � Adv

TColl

H

{

(q) �

0:3q(q�1)

2

l

. In other

ases Adv

Coll

H

{

(q) � Adv

TColl

H

{

(q) �

0:3q(q�1)

2

l�1

.

Proof. We use same notations as above. If D

i�1

is true then all h

i

0

[R℄'s are

di�erent for i

0

< i. Now h

i

= y

i

� �

j

(here �

j

depends on h

i�1

;m

i

and v). Now

D

i

is true , (y

i

[R℄ � � =) h

i

[R℄ =2 fh

0

[R℄; h

1

[R℄; : : : ; h

i�1

[R℄g. So, y

i

=2 A �

fy

1

; : : : ; y

i�1

g where A = fx;x[R℄� a = h

i

0

[R℄; 0 � i

0

� i� 1g and jAj = i:2

n�l

.

Hene Pr[D

i

jD

i�1

℄ = (1 �

i

2

l

). So Adv

TColl

H

{

(q) � 1 �

Q

q

i=1

(1 �

i

2

l

) �

�3q(q�1)

2

l

(the last inequality is followed from Proposition 5).

When key is same as v then everything is same as above exept Pr[D

i

jD

i�1

℄ =

(1 �

i2

n�l

�i+1

2

n

�(i�1)

) as y

i

an not take previous i � 1 outputs. So if q � 2

n�1

,

Pr[D

i

jD

i�1

℄ � (1�

i

2

l�1

) and hene Adv

TColl

H

{

(q) �

�3q(q�1)

2

l�1

Attak for E2 Hash Family :We will onsiderH

21

hash family from E2. Other

ases are similar to that. Fix some a > 0 integer suh that (a+1)(a+2)=2+a+1�

q. Let m

1

; : : :m

a

2

R

f0; 1g

n�l

. Commit M

1

= m

1

jj : : : jjm

a

where m

i

's are

hosen like above (to make keys are di�erent and note that in E2 there is no hash

funtion with key v). Then given random key k omputeH

21

(M

1

) using a queries

(we have to do it by our onvention). We will obtain h

0

; h

1

: : : ; h

a

= H

21

(M

1

). If

h

i

= h

i

0

for some i < i

0

thenM

2

= m

1

jj : : :m

i

jjm

j+1

jjm

a

. OutputM

2

. Otherwise

run the loop in below for q � a many times.

For i, j = 0 to a (j 6= i+ 1, i � j)

Compute E

�1

h

i

(h

i

� h

j

) = x

If x[R℄ = k then M

2

= m

1

jj : : :m

i

jjm

j+1

and output M

2

.

Theorem 6. For eah { 2 E2, Adv

Coll

H

{

(q) � Adv

TColl

H

{

(q) � �3a(a + 1)=2

n

+

(q � a)=2

l

Proof. Here we have two possibility to get ollision. In �rst ase suess proba-

bility is at least �3a(a+1)=2

n

by similar argument as above. In the seond ase

Pr[x[R℄ = k℄ � 1=2

l

for eah loop. Altogether we have suess probability is at

least (q � a)=2

l

. One an write down the proof in more details.

Proposition 5. 1�

Q

q

i=1

(1�

i

2

a

) �

�3q(q�1)

2

a

for any integer a.

Proof. It is given in [1℄ so we skip the proof.



5 Inversion Resistane of Extended Hash Family

5.1 Upper Bound

In the Inv game a random key k and a random h

�

will be given where, h

�

2

f0; 1g

n

. Then he will try to ompute M in ase of extended hash funtion or

h;m in ase of ompression funtion suh that H

k

{

(M) = h

�

or f

k

{

(h;m) = h

�

.

If he �nds that then we will say that adversary wins. As we study in blak-

box model adversary an query E=E

�1

similar to other games like Coll or

TColl. So, adversary has a transript or sequene of query-response quadruples

f(s

i

; x

i

; y

i

; �

i

)g

1�i�q

. In this setion we modify the de�nition of old verties. In

addition to the previous old verties we also inlude h

�

as an old vertex in eah

T

i

(See Setion 3). By the new de�nition of old vertex, size of O

i

is one more

than that of previous O

i

. De�nition of Su

i

is same as previous de�nition. Note

that the de�nition of Su

i

involves old verties. In that sense this de�nition is

hanged a little. Like C

i

we de�ne Inv

i

whih means that adversary gets inverse

of h

�

(i.e. adversary wins) after i

th

query. It is very easy to hek that (Inv

i

j:Inv

i

)

implies Su

i

. So for extended hash family we have one upper bound for proba-

bility of winning in the Inv game whih will be same as that in Coll game (See

Setion 2 for upper bound). But we an have better bound for extended hash

family using the theorem below.

Theorem 7. Adv

Inv

H

{

(q) � Adv

Inv

F

{

(q) for eah { 2 [1; 42℄.

Proof. The proof for single hash funtion and single ompression funtion is

given in [1℄. Same proof will arry forward for hash family and ompression

family also. Intuitively �nding inverse for extended hash family is stronger than

�nding that for ompression funtion.

Now we will �rst study the seurity analysis of inversion resistane of om-

pression funtions. It an be easily observed that, for { 2 f15; 17; 19; 20; 35; 36; 37g,

the ompression funtions are not inversion resistane-seure. All other ompres-

sion funtions are inversion resistane-seure.

Theorem 8. Adv

Inv

F

{

(q) � q=2

l�1

for { 2 [21; 34℄ or { 2 f13; 14; 16; 18g.

Proof. Here we onsider the hash familyH

23

. Other ases will be very similar. A

random key k and h

�

are given to the adversary. The event (Inv

i

j:Inv

i�1

) implies

the ar (h; h

�

) orresponds to �

i

for some h (See Setion 3). So, E

s

i

(x

i

) = y

i

,

h!

m

h

�

for some h and m. So h

�

= y

i

� (mjjk) and s

i

= x

i

.

1. If �

i

= +1 then Pr[Inv

i

j:Inv

i�1

℄ � Pr[y

i

[R℄ = h

�

[R℄�k � 2

n�l

=(2

n

�i+1) �

1=2

l�1

(assume q � 2

n�l

otherwise the bound is trivial).

2. If �

i

= �1 then Pr[Inv

i

j:Inv

i�1

℄ � 1=(2

n

� i+ 1) � 1=2

n�1

.

So, Adv

Inv

F

{

(q) �

P

q

i=1

Pr[Inv

i

j:Inv

i�1

℄ � q=2

l�1

.

Theorem 9. Adv

Inv

F

{

(q) � q=2

n�1

for { 2 [38; 42℄ or [1; 12℄.



Proof. Consider { = 38. Other ases will be similar. In fat, the idea of proof

is same with the previous one. Inv

i

j:Inv

i�1

implies y

i

= h

�

� v and x

i

= s

i

. So

whenever i � 2

n�1

, Pr[Inv

i

j:Inv

i�1

℄ � 1=2

n�1

(hek for �

i

= +1 and �1).

For other ases { 2 f35; 36; 37gwe an use the same tehnique used in proving

the upper bound for Coll game. By the disussion made in beginning of the

setion we an have the following theorem.

Theorem 10. Adv

Inv

H

{

(q) � q

2

=2

l�1

for { 2 [35; 37℄ andAdv

Inv

H

{

(q) � Adv

Inv

H

{

(q)

� 9(q + 3)

2

=2

n

for { 2 f15; 17; 19; 20g.

Proof. The last part of the theorem is similar to Theorem 3 and from [1℄ we

know Adv

Inv

H

{

(q) � 9(q + 3)

2

=2

n

for { 2 f15; 17; 19; 20g.

5.2 Some attaks in Inv game for Lower Bound

Attak 1 :When { 2 f15; 17; 19; 20; 35; 36; 37g i.e. when the orresponding om-

pression are not inversion resistane-seure we an perform meet-in-the-middle-

attak. Idea of the attak is presented in [1℄. Given h

0

and h

�

we ompute two

sets F and B suh that h ! h

1

for every h

1

2 F and h

2

! h

�

for every

h

2

2 B. Note we an onstrut B as the ompression funtions are not inversion

resistane-seure. If we get an element in F \ B say h then we have an inverse

element of h

�

. More preisely, if h

0

!

m

1

h !

m

2

h

�

for some m

1

and m

2

then

m

1

jjm

2

will be an inverse element of h

�

. So we have the following lower bound

whih is similar to the bound given in [1℄ and hene we skip the proof.

Theorem 11. Adv

Inv

H

{

(q) � (0:15)q

2

=2

n

for { 2 f15; 17; 19; 20g and Adv

Inv

H

{

(q) �

(0:15)q

2

=2

l

for { 2 [35; 37℄.

Attak 2 : The attaking algorithm is same as the generi attak for target ol-

lision resistane desribed in Setion 4. We hoosem

1

; � � � ;m

q

and then ompute

h

1

; � � � ; h

q

and �nally we will look for some h

i

suh that h

i

= h

�

(for { 2 [38; 42℄

or [1; 12℄) or h

i

[R℄ = h

�

[R℄ (for { 2 [21; 34℄). One an prove it exatly but this

will be same as the proof for ollision attak so we skip the details.

Theorem 12. Adv

Inv

H

{

(q) � q=2

l+1

for { 2 [21; 34℄ and Adv

Inv

H

{

(q) � q=2

n

for

{ 2 [38; 42℄ or [1; 12℄.

6 Conlusion

In this paper we �rst generalized the de�nition of PGV-hash funtions into a

PGV-hash families. In the new de�nitions we have more seure hash family (42

hash families) with respet to ollision resistant and One-way. Unlike previous

de�nitions it is a keyed family so we an study other seurity notion like target

ollision resistant. In fat all these 42 hash families beome target ollision resis-

tant. As AES is treated as a good andidate for blok ipher, we an implement

these hash families using AES. Beause of our results, only attak for these hash



families should explore some internal weakness of AES. In other words, these

hash families an be pratially onstruted using AES until we are getting

some weakness of AES. The proof tehniques used here are natural and diret to

the seurity notions. So one an also study these proof tehniques to have good

ideas about using the blak box model.
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Fig. 1. Summary of results about 64 extended hash families. Column 1 is our number

{ for the funtion family (We write F

{

for the ompression funtion family and H

{

for its indued extended hash family). Column 2 is the number from [2℄. Column 3

de�nes f

k

(h

i�1

;m

i

) for some k 2 f0; 1g

l

. We write x

i

for (m

i

jjk) and w

i

for x

i

� h

i�1

.

Columns 4 and 5 give our (target) ollision resistane bounds. Columns 6 and 7 give

our inversion resistane bounds.
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Fig. 2. Summary of results about 64 extended hash families, ontinued.


