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Abstra
t. In [1℄ it was proved that 20 out of 64 PGV-hash fun
tions [2℄

based on blo
k 
ipher are 
ollision resistant and one-way-se
ure in bla
k-

box model of the underlying blo
k 
ipher. Here, we generalize the de�-

nition of PGV-hash fun
tion into a hash family and we will prove that

besides the previous 20 hash fun
tions we have 22 more 
ollision resistant

and one-way se
ure hash families. As all these 42 families are keyed hash

family, these be
ome target 
ollision resistant also. All these 42 hash

families have tight upper and lower bounds on (target) 
ollision resistant

and one-way-ness.

1 Introdu
tion

Brief History. Preneel, Govaerts, and Vandewalle [2℄ 
onsidered the 64 basi


ways to 
onstru
t a (
ollision-resistant) hash fun
tion H : (f0; 1g

n

)

�

! f0; 1g

n

from a blo
k 
ipher E : f0; 1g

n

� f0; 1g

n

! f0; 1g

n

. They regarded 12 of these

64 s
hemes as se
ure, though no proofs or formal 
laims were given. After that

Bla
k, Rogaway, and Shrimpton [1℄ presented a more proof-
entri
 look at the

s
hemes from PGV, providing both upper and lower bounds for ea
h. They

proved that, in the bla
k box model of blo
k 
ipher, 12 of 64 
ompression fun
-

tions are CRHFs (Collision Resistant Hash Fun
tion) and 20 of 64 extended

hash fun
tions are CRHFs.

Motivation of Our paper. The examples of most popular 
ollision resistant

hash fun
tions are MD5 and SHA-1. For those hash fun
tion one 
an not exa
tly

analyze the se
urity. But the se
urity of 
ollision resistant or one-way for PGV

hash fun
tions 
an be analyzed under the assumption that the underlying blo
k


ipher is bla
k-box i.e. random permutation. But the se
urity of other notions

like target 
ollision resistant 
an not be analyzed as it needs a family of hash



fun
tions instead of single hash fun
tion. Beside that it seemed that more PGV

hash fun
tion would be
ome se
ure if we 
hange the original de�nition of PGV

hash fun
tion. So, we generalize the de�nition of PGV hash fun
tion into a PGV

hash family and will prove some se
urity notions like target 
ollision resistant,


ollision resistant and one-way.

General De�nition of PGV-hash family. Let 0 � l < n and E : f0; 1g

n

�

f0; 1g

n

! f0; 1g

n

be a blo
k 
ipher. If l = 0 let f0; 1g

0

= f�g, where � is the

empty string. Using the blo
k 
ipher E, we want to 
onstru
t a 
ompression

fun
tion family F = ff

k

g

k2f0;1g

l
, f

k

: f0; 1g

n

� f0; 1g

n�l

! f0; 1g

n

.

Let h

0

; v 2 f0; 1g

n

be �xed values. We de�ne the 64 ways to 
onstru
t a

(blo
k-
ipher-based) 
ompression fun
tion family F = ff

k

g

k2f0;1g

l in the

following manner: for ea
h k 2 f0; 1g

l

,

f

k

(h;m) = E

a

(b)� 
;

where a; b; 
 2 fh; (mjjk); h � (mjjk); vg. Note that jhj = n and jmj = n � l.

Then we 
an de�ne the extended hash family H = fH

k

g

k2f0;1g

l from the


ompression fun
tion family F = ff

k

g

k2f0;1g

l as follows: for ea
h k 2 f0; 1g

l

,

H

k

: (f0; 1g

n�l

)

�

! f0; 1g

n

is de�ned by

fun
tion H

k

(m

1

� � �m

t

)

for i 1 to t do h

i

 f

k

(h

i�1

;m

i

)

return h

t

Note that the key k of extended hash family is equal to the key of 
ompression

fun
tion family.

Note that if l = 0 then F = ff

k

g

k2f0;1g

0
= ff

�

g is a singleton set and this

is 
orresponding to the original de�nition of PGV [2℄. In this 
ase, we denote

this F as just f without supers
ript �. And we 
all this f a (blo
k-
ipher-based)


ompression fun
tion. Similarly, we denote H as H without supers
ript �. And

we 
all this H an extended hash fun
tion.

Our Results. For 0 < l < n, the se
urity of the 64 s
hemes is summarized in

Figures 1 and 2, whi
h also serve to de�ne the di�erent extended hash fun
tions

H

{

and their 
ompression fun
tions f

{

. In this paper, we �x E1 = f1; :::; 20g, E2

= f21; 22; 26; 28g, E3= f23; 24; 25; 31; 34; 35g, E4= f27; 29; 30; 32; 33; 36g, and

E5 = f37; :::; 42g. Here, the numbers are 
orresponding to the numbers in the

�rst 
olumn of Figures 1 and 2 in Appendix. And E6 is the set of remaining

extended hash families whi
h are not represented in the �rst 
olumn of Figures

1 and 2 in Appendix. So jE6j = 22. This 
lassi�
ation is based on some property

of hash family whi
h is used to prove the se
urity. A high-level summary of our

�ndings is given by Table 1 and 2 . The adversarial model (and the meaning of

q) will be des
ribed momentarily.



Table 1. l = 0. This is analyzed in [1℄.

Extended Hash Families (Target) Collision Bound Inversion Bound

E1 (20 s
hemes) �(q

2

=2

n

) �(q=2

n

) or �(q

2

=2

n

)

E2 (4 s
hemes) �(1) {

E3/E4/E5 (18 s
hemes) �(1) {

E6 (22 s
hemes) �(1) {

Table 2. 0 < l < n. This is analyzed in this paper.

Extended Hash Families (Target) Collision Bound Inversion Bound

E1 (20 s
hemes) �(q

2

=2

n

) �(q=2

l

) or �(q=2

n

) or �(q

2

=2

n

)

E2 (4 s
hemes) �(q=2

l

) �(q=2

l

)

E3/E4/E5 (18 s
hemes) �(q

2

=2

l

) �(q=2

l

) or �(q

2

=2

l

) or �(q=2

n

)

E6 (22 s
hemes) �(1) {

Bla
k Box Model. Our se
urity model is the one dating to Shannon [6℄ and

used for works like [3{5℄. An adversary A is given a

ess to ora
les E and E

�1

where E is a random blo
k 
ipher E : f0; 1g

n

�f0; 1g

n

! f0; 1g

n

and E

�1

is its

inverse. That is, ea
h key a 2 f0; 1g

n

names a randomly-sele
ted permutation

E

a

= E(a; �) on f0; 1g

n

, and the adversary is given ora
les E and E

�1

. The

latter, on input (a; y), returns the point x su
h that E

a

(x) = y. See [1℄ for more

details and dis
ussions about bla
k-box model.

In these PGV hash fun
tion families, we do not use any mask key unlike [7,

10, 12, 13℄. We prove the target 
ollision resistan
e of these hash families under

bla
k box model and it will be more eÆ
ient in key size 
ompare to the results

in [7, 10, 12, 13℄ wherein the mask keys are used.

2 Preliminary

Notation. We use the following standard notations in this paper.

1. [a; b℄ = fa; � � � ; bg where a � b are some integers.

2. If x 2 f0; 1g

n

and 0 � l < n, x = x[L℄jjx[R℄, where jx[L℄j = n � l and

jx[R℄j = l.

3. If S � f0; 1g

n

and a 2 f0; 1g

n

, S � a = a � S = fa � sjs 2 Sg. Note that

jS � aj = ja� Sj = jSj.

4. A blo
k 
ipher is a map E : f0; 1g

n

� f0; 1g

n

! f0; 1g

n

where, for ea
h key

a 2 f0; 1g

n

, the fun
tion E

a

(�) = E(a; �) is a permutation on f0; 1g

n

. If E

is a blo
k 
ipher then E

�1

is its inverse, where E

�1

a

(y) is the string x su
h

that E

a

(x) = y.

5. A hash fun
tion family is a H = fH

k

g

k2f0;1g

l , where H

k

: D ! f0; 1g

n

,

D � f0; 1g

�

.



6. Hash fun
tion family F = ff

k

g

k2f0;1g

l
, f

k

: D ! f0; 1g

n

is a 
ompression

fun
tion family if D = f0; 1g

n

� f0; 1g

n�l

for some �xed l.

7. Fix h

0

2 f0; 1g

n

. The extended hash family of 
ompression fun
tion family

F = ff

k

g

k2f0;1g

l , f

k

: f0; 1g

n

� f0; 1g

n�l

! f0; 1g

n

, is the hash fun
tion

family H = fH

k

g

k2f0;1g

l
su
h that H

k

: (f0; 1g

n�l

)

�

! f0; 1g

n

de�ned by

H

k

(m

1

� � �m

t

) = h

t

where h

i

= f

k

(h

i�1

;m

i

).

8. For a fun
tion H , (M;M

0

) is 
alled a 
ollision pair of H if M 6= M

0

and

H(M) = H(M

0

).

9. We write x

R

 S for the experiment of 
hoosing a random element from the

�nite set S and 
alling it x.

Assumption. From now on, we always assume E : f0; 1g

n

�f0; 1g

n

! f0; 1g

n

is a random blo
k 
ipher, i.e., for ea
h a 2 f0; 1g

n

, E

a

(�) is a random permuta-

tion. We �x some h

0

; v 2 f0; 1g

n

.

Collision Resistan
e and Inversion Resistan
e of Hash fun
tion (l = 0).

To quantify the 
ollision resistan
e of a (blo
k-
ipher-based) hash fun
tion H ,

we 
onsider random blo
k 
ipher E. An adversary A is given ora
les for E(�; �)

and E

�1

(�; �) and wants to �nd a 
ollision for H , i.e., M;M

0

where M 6=M

0

but

H(M) = H(M

0

). And we also de�ne the diÆ
ulty of inverting hash fun
tions.

We use the following measure for the diÆ
ulty of A in inverting a hash fun
tion

at a random point.

De�nition 1. (Collision resistan
e and inversion resistan
e of a 
ompression

fun
tion `f ') Let f be a blo
k-
ipher-based 
ompression fun
tion, f : f0; 1g

n

�

f0; 1g

n

! f0; 1g

n

. Then the advantages of A in �nding 
ollisions and inverse

elements in f are

Adv

Coll

f

(A) = Pr[((h;m); (h

0

;m

0

)) A

E;E

�1

:

((h;m) 6= (h

0

;m

0

) & f(h;m) = f(h

0

;m

0

)) or f(h;m) = h

0

℄

Adv

Inv

f

(A) = Pr[h

�

R

 f0; 1g

n

; (h;m) A

E;E

�1

: f(h;m) = h

�

℄

De�nition 2. (Collision resistan
e and inversion resistan
e of an extended hash

fun
tion `H') Let H be a blo
k-
ipher-based extended hash fun
tion, H : (f0; 1g

n

)

�

! f0; 1g

n

. Then the advantages of A in �nding 
ollisions and inverse elements

in H are

Adv

Coll

H

(A) = Pr[(M;M

0

) A

E;E

�1

:M 6=M

0

& H(M) = H(M

0

)℄

Adv

Inv

H

(A) = Pr[h

�

R

 f0; 1g

n

;M  A

E;E

�1

: H(M) = h

�

℄

Collision Resistan
e, Target Collision Resistan
e and Inversion Re-

sistan
e of Hash fun
tion family (0 < l < n). To quantify the 
ollision

resistan
e and target 
ollision resistan
e of a (blo
k-
ipher-based) hash fun
tion

family fH

k

g

k2f0;1g

l , we 
onsider random blo
k 
ipher E. An adversary A is

given ora
les for E(�; �) and E

�1

(�; �). Then, the adversary A

E;E

�1

for 
ollision

resistan
e plays the following game 
alled Coll.



1. A

E;E

�1

is given a key k whi
h is 
hosen uniformly at random from f0; 1g

l

.

2. A

E;E

�1

has to �nd M;M

0

su
h that M 6=M

0

but H

k

(M) = H

k

(M

0

).

The adversary A

E;E

�1

= (A

guess

;A

find

(�; �)) for target 
ollision resistan
e

plays the following game 
alled TColl.

1. A

guess


ommits to an M .

2. A key k is 
hosen uniformly at random from f0; 1g

l

.

3. A

find

(M;k) has to �nd M

0

su
h that M 6=M

0

but H

k

(M) = H

k

(M

0

).

The adversaryA

E;E

�1

for inversion resistan
e plays the following game 
alled

Inv.

1. A key k is 
hosen uniformly at random from f0; 1g

l

.

2. h

�

is 
hosen uniformly at random from the range f0; 1g

n

.

3. A

E;E

�1

has to �nd M su
h that H

k

(M) = h

�

.

De�nition 3. (Collision resistan
e, target 
ollision resistan
e, and inversion

resistan
e of a 
ompression fun
tion family `F ') Let F = ff

k

g

k2f0;1g

l
be a

blo
k-
ipher-based 
ompression fun
tion family, where f

k

: f0; 1g

n

�f0; 1g

n�l

!

f0; 1g

n

. Then the advantages of A with respe
t to (target) 
ollision resistan
e

and inversion resistan
e are the following real numbers.

Adv

Coll

F

(A) = Pr[k

R

 f0; 1g

l

; ((h;m); (h

0

;m

0

)) A

E;E

�1

:

((h;m) 6= (h

0

;m

0

) & f

k

(h;m) = f

k

(h

0

;m

0

)) or f

k

(h;m) = h

0

℄

Adv

TColl

F

(A) = Pr[(h;m) A

E;E

�1

guess

; k

R

 f0; 1g

l

;

(h

0

;m

0

)  A

E;E

�1

find

((hjjm); k) : (h;m) 6= (h

0

;m

0

) & f

k

(h;m) = f

k

(h

0

;m

0

)℄

Adv

Inv

F

(A) = Pr[k

R

 f0; 1g

l

;h

�

R

 f0; 1g

n

; (h;m) A

E;E

�1

: f

k

(h;m) = h

�

℄

De�nition 4. (Collision resistan
e, target 
ollision resistan
e, and inversion

resistan
e of an extended hash family `H') Let H = fH

k

g

k2f0;1g

l be a blo
k-


ipher-based extended hash family, where H

k

: (f0; 1g

n�l

)

�

! f0; 1g

n

. Then

the advantage of A with respe
t to (target) 
ollision resistan
e and inversion

resistan
e are the the following real numbers.

Adv

Coll

H

(A) = Pr[k

R

 f0; 1g

l

;M;M

0

 A

E;E

�1

:

M 6=M

0

& H

k

(M) = H

k

(M

0

)℄

Adv

TColl

H

(A) = Pr[M  A

E;E

�1

guess

; k

R

 f0; 1g

l

;M

0

 A

E;E

�1

find

(M;k) :

M 6=M

0

& H

k

(M) = H

k

(M

0

)℄

Adv

Inv

H

(A) = Pr[k

R

 f0; 1g

l

;h

�

R

 f0; 1g

n

;M  A

E;E

�1

: H

k

(M) = h

�

℄

Maximal Advantage. If A is an adversary and Adv

XXX

Y

(A) is a measure of

adversarial advantage already de�ned then we write Adv

XXX

Y

(q) to mean the



maximal value of Adv

XXX

Y

(A) over all adversaries A that use queries bounded

by the number q.

Conventions. We follow the similar 
onventions of [1℄. Note that this 
onven-

tion is important to make the dis
ussion easy and prove the following theorems.

For the remainder of this paper we assume the following signi�
ant 
onventions.

1. First, an adversary does not ask any ora
le query in whi
h the response is

already known; namely, if A asks a query E

a

(x) and this returns y, then A

does not ask a subsequent query of E

a

(x) or E

�1

a

(y); and if A asks E

�1

a

(y)

and this returns x, then A does not ask a subsequent query of E

�1

a

(y) or

E

a

(x).

2. Se
ond, if M is one of the output(s) produ
ed by an adversary, then the

adversary should make ne
essary E=E

�1

queries to 
ompute H

k

(M) during

the whole query pro
ess.

3. Similarly, we will use the same assumption about the ora
le query pro
edure

of an adversary A for the 
ompression fun
tion family F .

These assumptions are all without loss of generality in that an adversary A

not obeying these 
onventions 
an easily be modi�ed to given an adversary A

0

having similar 
omputational 
omplexity that obeys these 
onventions and has

the same advantage as A.

3 (Target) Collision Resistan
e of Extended Hash Family

In this se
tion we will analyze the se
urity of H

{

for ea
h { 2 [1; 42℄ de�ned in

Se
tion 1 in the notion of (target) 
ollision resistant. We 
onsider any adversary

A with respe
t to Coll. i.e. after having random key k he will try to �nd a


ollision pair (M

1

;M

2

) for H

k

{

i.e. M

1

6= M

2

, H

k

{

(M

1

) = H

k

{

(M

2

). For that he

will make some E=E

�1

queries. Trans
ript of A is de�ned by the sequen
e of

query-response quadruples f(s

i

; x

i

; y

i

; �

i

)g

1�i�q

where q is the maximum number

of queries made by adversary, s

i

; x

i

; y

i

2 f0; 1g

n

and �

i

= +1 (in 
ase of E-query)

or �1 (in 
ase of E

�1

-query) and 8 i, E

s

i

(x

i

) = y

i

. (s

i

; x

i

; y

i

; �

i

) will be 
alled

by i

th

query-response quadruple (or q-r quadruple). In this se
tion we �x some

key k and v. Note that, if �

i

= +1 (or -1) then y (or x respe
tively) is a random

string as we assume that the blo
k-
ipher E

s

(�) is a random permutation.

Proposition 1. For �xed x; y 2 f0; 1g

n

and A � f0; 1g

n

, Pr[y

i

= y℄ �

1

2

n

�i+1

and Pr[y

i

2 A℄ �

jAj

2

n

�i+1

whenever �

i

= +1. Similarly, if �

i

= �1 then Pr[x

i

=

x℄ �

1

2

n

�i+1

and Pr[x

i

2 A℄ �

jAj

2

n

�i+1

Proof. Before i

th

query at most (i � 1) outputs (or inputs) of a blo
k-
ipher

with same key are known. So, output (or input) of next E will be uniformly

distributed to at least 2

n

� (i� 1) elements.



Here we �x any arbitrary hash family H

{

for { 2 [1; 42℄. In this se
tion V :=

f0; 1g

n


alled vertex set and L := f0; 1g

n�l


alled label set. A triple (h

1

; h

2

;m) 2

V � V � L (or a pair (h

1

; h

2

) 2 V � V ) is 
alled a labeled ar
 (or an ar
 only).

We also say (h

1

; h

2

;m) is an ar
 (h

1

; h

2

) with label m or m is a label of the

ar
 (h

1

; h

2

) and we use the notation h

1

!

m

h

2

. Now given a triple � = (s; x; y)

where, s; x; y 2 V de�ne a set of labeled ar
s A(�) by the following set :

A(�) = f(h

1

; h

2

;m) 2 V � V � L : f

k

(h

1

;m) = h

2

, E

s

(x) = yg.

For example, in 
ase of H

21

, f

k

21

(h

1

;m) := E

h

1

(mjjk) � h

1

. So, (f

k

(h

1

;m) =

h

2

, E

s

(x) = y) () (E

h

1

(mjjk) � h

1

= h

2

, E

s

(x) = y) () (h

1

= s,

h

2

= y � h

1

= y � s;mjjk = x). Hen
e, A(�) = f(s; s � y; x[L℄)g if x[R℄ = k

otherwise it is an empty set.

Given a set of labeled ar
s A we de�ne indu
ed ar
 set A

0

= f(h

1

; h

2

) :

9m 2 L, (h

1

; h

2

;m) 2 Ag. For a set of triple(s) � = f�

1

= (s

1

; x

1

; y

1

); : : : ; �

a

=

(s

a

; x

a

; y

a

)g we 
an de�ne labeled ar
 set A(�) =

S

a

i=1

A(�

i

). It 
an be easily


he
ked that A

0

(�) =

S

a

i=1

A

0

(�

i

). Every member of A(�) (or A

0

(�)) will be


alled an labeled ar
 (or ar
) 
orresponding to the set of triple(s) � . Given a

trans
ript f(s

i

; x

i

; y

i

; �

i

)g

1�i�q

of an adversary A let � [i℄ denotes the sets of

triples f�

1

= (s

1

; x

1

; y

1

); : : : ; �

i

= (s

i

; x

i

; y

i

)). For ea
h i we have a labeled di-

re
ted graph T

i

= T (� [i℄) = (V;A(� [i℄)) and a dire
ted graph T

0

i

= (V;A

0

(� [i℄)).

De�ne T

0

= (V; ;). Given a path P = (h

1

; h

2

; : : : ; h

p

) from h

1

to h

p

in T

i

,

M = m

1

jj : : : jjm

p�1

is 
alled a label of P if m

i

is a label of (h

i

; h

i�1

) for ea
h i.

So we have a pi
ture like (h

1

!

m

1

h

2

!

m

2

: : :!

m

p�1

h

p

) in T

i

.

Observation 1 : By our 
onventions adversary 
an 
ompute f

k

{

(h

1

;m) = h

2

after i

th

query i� for some j � i, E

s

j

(x

j

) = y

j

) f

k

{

(h

1

;m) = h

2

and

hen
e (h

1

; h

2

;m) 2 A(� [i℄). Similarly, adversary 
an 
ompute H

k

{

(m

1

jj � � � jjm

a

)

after i

th

query i� h

0

!

m

1

h

1

!

m

2

� � � !

m

a

h

a

is a path in A(� [i℄) and

H

k

{

(m

1

jj � � � jjm

a

) = h

a

.

De�nition 5. For ea
h hash fun
tion and 0 � i � q

1. When { 2 E1, E2 or E4, h in T

i

is old if deg(h) � 1 in T

i

or h = h

0

.

2. When { 2 E2 or E4, h in T

i

is old if h = h

0

or 9 h

1

, deg(h

1

) � 1 in T

i

and

h[R℄ = h

1

[R℄.

Remaining all other verti
es are known as new verti
es. Call the set of all

old verti
es in T

i

by O

i

.

The next Proposition will be used to have se
urity analysis. It gives an upper

bound of jO

i

j and says about the stru
ture of the set of labeled ar
s A(�

i

) and

A

0

(�

i

).

Proposition 2. If A(�

i

) is not empty then we have,

1. For { 2 E1 or E2, A(�

i

) is a singleton and jO

i

j � 2i+ 1.



2. For { 2 E3, A

0

(�

i

) = f(h

1

; h

2

) : h

2

[R℄ = ug where, h

1

and u are �xed de-

pending only on j and �

i

. So, the graph of the A

0

(�

i

) looks like an outward

dire
ted star and jA

0

(�

i

)j = 2

n�l

= jA(�

i

)j and hen
e jO

i

j � (2i+ 1)2

n�l

.

3. For { 2 E4, A

0

(�

i

) = f(h; h � a) : h[R℄ = ug where, a and u are �xed de-

pending only on j and �

i

. So, the graph of the A

0

(�

i

) 
onsists of 2

n�l

parallel

ar
s and jA

0

(�

i

)j = 2

n�l

= jA(�

i

)j and hen
e jO

i

j � (2i+ 1)2

n�l

.

4. For { 2 E5, A

0

(�

i

) = f(h

1

; h

2

) : h

1

[R℄ = ug where, h

2

and u are �xed

depending only on j and �

i

. So, the graph of the A

0

(�

i

) looks like an inward

dire
ted star and jA

0

(�

i

)j = 2

n�l

= jA(�

i

)j and hen
e jO

i

j � (2i+ 1)2

n�l

.

Moreover, for ea
h (h

1

; h

2

) 2 A

0

(�

i

), 9 unique m su
h that h

1

!

m

h

2

. For the

hash families E3, E4 and E5 if h

1

[R℄ = h

2

[R℄ then h

1

2 O

i

) h

2

2 O

i

8 i.

Proof. Bounds for jO

i

j's and last part of the proposition are straightforward

from the stru
ture of A

0

(�

i

). We will prove that for one hash fun
tion from

ea
h 
lass. Other 
ases will be very similar and one 
an 
he
k analogously. Let

�

i

= (s

i

; x

i

; y

i

).

1. In 
ase of H

1

, f

k

1

(h

1

;m) := E

h

1

(mjjk) � (mjjk). So, (f

k

(h

1

;m) = h

2

,

E

s

i

(x

i

) = y

i

) () (E

h

1

(mjjk) � (mjjk) = h

2

, E

s

i

(x

i

) = y

i

) () (h

1

= s

i

,

h

2

= y

i

� (mjjk); x

i

= mjjk). Hen
e, A(�) = f(s

i

; y

i

�x

i

; x

i

[L℄)g if x

i

[R℄ = k

otherwise it is an empty set.

In 
ase of H

21

, after de�ning A(�) in this se
tion, we have shown that

A(�) = f(s

i

; s

i

� y

i

; x

i

[L℄)g if x

i

[R℄ = k otherwise it is an empty set.

2. In 
ase of H

23

, f

k

23

(h

1

;m) := E

h

1

(h

1

) � (mjjk). So, (f

k

(h

1

;m) = h

2

,

E

s

i

(x

i

) = y

i

) () (E

h

1

(h

1

) � (mjjk) = h

2

, E

s

i

(x

i

) = y

i

) () (h

1

= s

i

=

x

i

, h

2

= y

i

� (mjjk)). Hen
e, A(�) = f(s

i

; h

2

;m) : h

2

[R℄ = y

i

[R℄ � k;m =

h

2

[R℄� y

i

[R℄g if x

i

= s

i

otherwise it is an empty set.

3. In 
ase of H

27

, f

k

27

(h

1

;m) := E

w

1

(w

1

)� (mjjk) where w

1

= h

1

� (mjjk). So,

(f

k

(h

1

;m) = h

2

, E

s

i

(x

i

) = y

i

)() (E

w

1

(w

1

)� (mjjk) = h

2

, E

s

i

(x

i

) =

y

i

)() (h

1

= s

i

� (mjjk), h

2

= y

i

� (mjjk) = h

1

� (y

i

� s

i

); s

i

= x

i

). Hen
e,

A(�) = f(h

1

; h

1

� (s

i

�y

i

); x

i

[L℄�h

1

[R℄)g if x

i

= s

i

otherwise it is an empty

set.

4. In 
ase of H

36

, we 
an prove similarly that A(�

i

) = f(h

1

; y

i

�v;m) : h

1

[R℄ =

s

i

[R℄� k;m = h

1

[L℄� s

i

g if x

i

= s

i

otherwise it is an empty set.

De�nition 6. For ea
h 1 � i � q we de�ne some events.

1. C

i

: adversary gets a 
ollision after i

th

query.

2. PathColl

i

: 9 two paths P

1

and P

2

(not ne
essarily distin
t) from h

0

to some

h

�

in T

i

su
h that P

1

and P

2

have two di�erent labels.



3. Su



i

: 9 an ar
 (h; h

0

) 2 A

0

(�

i

) where both h and h

0

are old verti
es in T

i�1

.

Proposition 3. The event PathColl

i

is equivalent to C

i

.

Proof. C

i

, PathColl

i


an be proved using the last part of the Observation 1.

Proposition 4. For E1, E2, E3, and E4 hash families, the event (C

i

j :C

i�1

)

ne
essarily implies Su



i

. For E5, C

i

ne
essarily implies Su



i

0

for some i

0

� i.

Proof. Let P

1

and P

2

be two paths from h

0

to h

�

in T

0

i

with di�erent labels for

some h

�

. As PathColl

i�1

is not true 9 at least one ar
 in P

1

[P

2

whi
h 
orresponds

to �

i

. If Su



i

is not true then one of the verti
es of an ar
 
orresponding to

�

i

should be new in T

i�1

whi
h implies 9 two ar
s either (h

1

; h

2

); (h

2

; h

3

) or

(h

1

; h

3

); (h

2

; h

3

) 
orresponding to �

i

. But this is not possible by the stru
ture of

A

0

(�

i

) (see Proposition 2) in 
ase of E1, E2, E3 and E4 hash families. Similarly

we 
an prove it when P

1

= P

2

.

In 
ase of E5 hash fun
tion for P

1

= P

2

the proof is similar as (h

1

; h

3

); (h

2

; h

3

)


ase will not arise. So assume that P

1

and P

2

are di�erent and 9 (h

1

; h

3

); (h

2

; h

3

)


orresponding to �

i

in the path P

1

[P

2

. By Proposition 2, h

1

[R℄ = h

2

[R℄. If Su



i

is not true but (PathColl

i

j:PathColl

i�1

) is true then we have two paths P

0

1

and

P

0

2

in T

i�1

from h

0

to h

a

= h

1

and h

0

b

= h

2

respe
tively. Let P

0

1

= (h

0

! h

1

!

: : :! h

a

) and P

0

2

= (h

0

! h

0

1

! : : :! h

0

b

). So if Su



i

0

is not true 8 i

0

1 � i

0

� i

then at least one new vertex from P

0

1

[ P

0

2

is added to O

j

for ea
h j whenever

it is added. As there are a+ b new verti
es for T

0

in P

0

1

[ P

0

2

and every time at

most one ar
 
an be added into A

j

(�

i

0

) (be
ause of the stru
ture of A

j

(�

i

0

)) we

have to add exa
tly one new vertex in ea
h i

0

. As h

1

[R℄ = h

2

[R℄. So, we will add

two new verti
es in P

0

1

[ P

0

2

to a set of old verti
es when we add h

1

or h

2

�rst

time and hen
e 
ontradi
tion.

Observation 2: In E5, C

q

)

S

q

i=1

Su



i

by above Proposition 4. So we have

Pr[A gets a 
ollision℄ �

P

q

i=1

Pr[Su



i

℄. In other hash families by above Propo-

sition 4, Pr[A gets a 
ollision℄ �

P

q

i=1

Pr[C

i

j:C

i�1

℄ �

P

q

i=1

Pr[Su



i

℄. So it is

enough to have an upper bound of Pr[Su



i

℄ in all hash fun
tions.

Theorem 1. For ea
h 1 � i � q we have

1. For E1 hash family, Pr[Su



i

℄ � (2i� 1)=2

n�1

2. For E2 hash family, Pr[Su



i

℄ � 2=(2

l+1

� 1) if q � 2

n�l�1

.

3. For E3,E4 or E5 hash families, Pr[Su



i

℄ � (2i� 1)=2

l�1

.

Proof. Let A be an adversary atta
king H

{

. Assume that A asks its ora
les at

most q total queries. Assume that the random key k is given. Let (s

i

; x

i

; y

i

; �

i

)

be the i

th

q-r quadruple.

Consider H

k

1

in 
ase of E1 hash family. For the other hash families in E1, the

proof is analogous to the proof of 1.

1. Case 1: �

i

= +1. Su



i

) y

i

� x

i

2 O

i�1

(See Proposition 2). Hen
e,

Pr[Su



i

℄ � Pr[y

i

2 O

i�1

� x

i

℄ � (2i � 1)=(2

n

� i+ 1) (by Proposition 1

and 2).



2. Case 2: �

i

= �1. Su



i

) y

i

� x

i

2 O

i�1

(See Proposition 2). Hen
e,

Pr[Su



i

℄ � Pr[x

i

2 O

i�1

� y

i

℄ � (2i � 1)=(2

n

� i+ 1) (by Proposition 1

and 2).

Therefore, Pr[Su



i

℄ � (2i� 1)=(2

n

� i+ 1) � (2i� 1)=2

n�1

.

Consider H

k

21

in 
ase of E2 hash family. For the other hash families in E2,

the proof is analogous to the proof of 21.

1. Case 1: �

i

= +1. Su



i

) y

i

� s

i

2 O

i�1

(See Proposition 2). Hen
e,

Pr[Su



i

℄ � Pr[y

i

2 O

i�1

� s

i

℄ � (2i � 1)=(2

n

� i+ 1) (by Proposition 1

and 2).

2. Case 2: �

i

= �1. Su



i

) x

i

[R℄ = k. Let Q = fxjx[R℄ = kg then jQj =

j2

n�l

j. Hen
e, Pr[Su



i

℄ � Pr[x

i

2 Q℄ � 2

n�l

=(2

n

� i+1) (by Proposition 1).

Therefore, Pr[Su



i

℄ � maxf(2i� 1)=(2

n

� i+ 1); 2

n�l

=(2

n

� i+ 1)g. Sin
e q �

2

n�l�1

, Pr[Su



i

℄ � 2

n�l

=(2

n

� i+ 1) � 2=(2

l+1

� 1).

Consider H

k

23

in 
ase of E3 hash family. For the other hash families in E3,

the proof is analogous to the proof of 21. For E4/E5 hash fun
tions the proof

will be analogous to the proof of 23.

1. If �

i

= +1, then Su



i

implies that 9 an ar
 (h; h

0

) 2 A(�

i

) su
h that h

0

2

O

i�1

. This implies that 9 m su
h that (y

i

� (mjjk)) 2 O

i�1

. By the Propo-

sition 2 (y

i

� (mjjk)) 2 O

i�1

, (y

i

� (0jjk)) 2 O

i�1

, y

i

2 O

i�1

� (0jjk).

Therefore, by the Proposition 1 and 2, Pr[Su



i

℄ � 2

n�l

(2i�1)=(2

n

� i+ 1).

2. If �

i

= �1, then Su



i

implies that x

i

= s

i

. Hen
e, Pr[Su



i

℄ � Pr[x

i

= s

i

℄.

Hen
e, by the Proposition 1, Pr[Su



i

℄ � Pr[x

i

= s

i

℄ � 1=(2

n

� i+ 1).

Therefore, Pr[Su



i

℄ � maxf2

n�l

(2i�1)=(2

n

� i+ 1); 1=(2

n

�i+1)g = 2

n�l

(2i�

1)=(2

n

� i+ 1) � (2i� 1)=2

l�1

.

So we have the following theorem using Observation 2.

Theorem 2. 1. Adv

Coll

H

{

(q) � q

2

=2

n�1

for { 2 E1

2. Adv

Coll

H

{

(q) � 2q=(2

l+1

� 1) for all q � 2

n�l�1

and { 2 E2.

3. Adv

Coll

H

{

(q) � q

2

=2

l�1

for { 2 E3, E4 or E5.

By the following theorem the upper bound of advantage for E1 hash family


an also be obtained from that of 
orresponding hash fun
tion presented in [1℄.

Theorem 3. 8{ 2 [1; 42℄, Adv

Coll

H

{

(q) � Adv

Coll

H

{

(q)

Proof. Suppose A is an adversary with respe
t to Coll for the hash family H

{

.

We 
an 
onstru
t an adversary B with respe
t to Coll for H

{

very easily. Choose

k at random from f0; 1g

l

. Run A to get M

1

and M

2

where, M

1

= m

1

1

jj � � � jjm

1

a

,

M

1

= m

2

1

jj � � � jjm

2

b

, jm

j

i

j = n � l and j = 1 or 2. B outputs (M

0

1

;M

0

2

) where

M

0

1

= (m

1

1

jjk)jj � � � jj(m

1

a

jjk), and M

0

2

= (m

2

1

jjk)jj � � � jj(m

2

b

jjk). It is very easy to


he
k that if (M

1

;M

2

) is a 
ollision pair for H

k

{

then (M

0

1

;M

0

2

) is a 
ollision pair

for H

{

. Note, whenever A asks for E-query/E

�1

-query, B asks same query and

output of the query is given to A as a response of the query made by B.

In [1℄ we know the followings :



1. For { 2 [1; 12℄, Adv

Coll

H

{

(q) � q(q + 1)=2

n

2. For { 2 [13; 20℄, Adv

Coll

H

{

(q) � 3q(q + 1)=2

n

So, we 
an 
on
lude from Theorem 2 and 3 that,

Corollary 1. For { 2 [1; 12℄, Adv

TColl

H

{

(q) � Adv

Coll

H

{

(q) � q(q + 1)=2

n

.

For { = [13; 20℄, Adv

TColl

H

{

(q) � Adv

Coll

H

{

(q) � q

2

=2

n�1

.

4 Some Atta
ks in Target Collision Resistant Game

The idea of atta
k : Here we will give a generi
 atta
k for all H

j

for the

game TColl (See Se
tion 2). Commit M

1

= (m

1

jj : : : jjm

q

). we will des
ribe

later how these m

i

's will be 
hosen. Then given random key k 
ompute H

k

j

(M

1

)

by using q many queries. We will obtain h

1

; : : : h

q

and H

k

j

(M

1

) = h

q

where,

h

0

!

m

1

h

1

!

m

2

: : : h

q�1

!

m

q

h

q

. If we get one su
h i < i

0

su
h that h

i

= h

i

0

then de�ne M

2

= m

1

jj : : : jjm

i

jjm

i

0

+1

jj : : :m

q

. So, M

1

and M

2

will be a 
ollision

pair. Roughly h

i

's are random string and Probability of su

ess will be proba-

bility for birthday 
ollision of h

i

's whi
h is o(q

2

=2

n

). We will 
hoose m

i

's so that

the key for ea
h query (i.e. s

i

) is di�erent. We assume that all h

i

's are di�erent

otherwise we get a 
ollision.

Choi
e of m

i

's :

1. If key of blo
k 
ipher E is w in the de�nition of 
ompression fun
tion then


hoose m

i

= 0. So ea
h w

i

will be di�erent as h

i

's are di�erent.

2. If key is h or m then 
hoose m

i

= i and hen
e keys are di�erent.

3. If key is v then 
hoose m

i

's so that inputs of 
ompression fun
tions are

di�erent. In this 
ase we will study the lower bound separately.

Theorem 4. Adv

Coll

H

{

(q) � Adv

TColl

H

{

(q) �

0:3q(q�1)

2

n

for ea
h { 2 [1; 42℄ when-

ever key of E is not v in the de�nition of 
ompression fun
tion.

Proof. De�ne D

i

by the event that no 
ollision o

urs after i

th

query and D is

the event that the above atta
k fails after all queries i.e. it is same as D

q

. De�ne

D

0

by a sure event. Now Pr[D℄ =

Q

q

i=1

Pr[D

i

jD

i�1

℄. If D

i�1

is true then all h

i

0

's

are di�erent for i

0

< i. Now h

i

= y

i

� �

j

(here �

j

depends on h

i�1

;m

i

and v).

Now D

i

is true , y

i

=2 fh

0

; h

1

; : : : ; h

i�1

g � �

j

. So, Pr[D

i

jD

i�1

℄ = (1 �

i

2

n

). So

Adv

TColl

H

{

(q) � 1�

Q

q

i=1

(1�

i

2

n

) �

�3q(q�1)

2

n

(the last inequality is followed from

Proposition 5).

For hash family E3/E4/E5 we 
an have better lower bound like o(

q

2

2

l

) if we

just 
he
k whether h

i

[R℄ = h

i

0

[R℄ for i < i

0

and 
onstru
tM

2

depending on type

of the hash fun
tion. Choose m

i

's as earlier. Constru
tion of M

2

is given below

where h

i

[R℄ = h

i

0

[R℄ for i < i

0

:



1. E3 : In E2 family if h !

m

h

0

then (h � (ajj0)) !

m�a

(h

0

� (ajj0)). So,

de�ne M

2

= m

1

jj : : : jjm

i

0

jj(m

i+1

� a)jj : : : jjm

i

0

� ajjm

i+1

jj : : : jjm

q

. Here,

a = h

i

[R℄�h

i

0

[R℄. This will give 
ollision be
ause H

j

(m

1

jj : : : jjm

i

0

jj(m

i+1

�

a)jj : : : jj(m

i

0

� a) = h

i

.

2. E4 : By Proposition 2 we have some m

0

i

0

su
h that h

i

0

�1

!

m

0

i

0

h

i

0

. So de�ne

M

2

= m

1

jj : : : jjm

i�1

jjm

0

i

0

jj : : : jjm

q

. This will give a 
ollision.

3. E5 : This 
ase is very similar to E4 so we skip this.

Theorem 5. Let { 2 E3 or E4 or E5. If v is not the key of E in the de�nition

for 
ompression fun
tion then Adv

Coll

H

{

(q) � Adv

TColl

H

{

(q) �

0:3q(q�1)

2

l

. In other


ases Adv

Coll

H

{

(q) � Adv

TColl

H

{

(q) �

0:3q(q�1)

2

l�1

.

Proof. We use same notations as above. If D

i�1

is true then all h

i

0

[R℄'s are

di�erent for i

0

< i. Now h

i

= y

i

� �

j

(here �

j

depends on h

i�1

;m

i

and v). Now

D

i

is true , (y

i

[R℄ � � =) h

i

[R℄ =2 fh

0

[R℄; h

1

[R℄; : : : ; h

i�1

[R℄g. So, y

i

=2 A �

fy

1

; : : : ; y

i�1

g where A = fx;x[R℄� a = h

i

0

[R℄; 0 � i

0

� i� 1g and jAj = i:2

n�l

.

Hen
e Pr[D

i

jD

i�1

℄ = (1 �

i

2

l

). So Adv

TColl

H

{

(q) � 1 �

Q

q

i=1

(1 �

i

2

l

) �

�3q(q�1)

2

l

(the last inequality is followed from Proposition 5).

When key is same as v then everything is same as above ex
ept Pr[D

i

jD

i�1

℄ =

(1 �

i2

n�l

�i+1

2

n

�(i�1)

) as y

i


an not take previous i � 1 outputs. So if q � 2

n�1

,

Pr[D

i

jD

i�1

℄ � (1�

i

2

l�1

) and hen
e Adv

TColl

H

{

(q) �

�3q(q�1)

2

l�1

Atta
k for E2 Hash Family :We will 
onsiderH

21

hash family from E2. Other


ases are similar to that. Fix some a > 0 integer su
h that (a+1)(a+2)=2+a+1�

q. Let m

1

; : : :m

a

2

R

f0; 1g

n�l

. Commit M

1

= m

1

jj : : : jjm

a

where m

i

's are


hosen like above (to make keys are di�erent and note that in E2 there is no hash

fun
tion with key v). Then given random key k 
omputeH

21

(M

1

) using a queries

(we have to do it by our 
onvention). We will obtain h

0

; h

1

: : : ; h

a

= H

21

(M

1

). If

h

i

= h

i

0

for some i < i

0

thenM

2

= m

1

jj : : :m

i

jjm

j+1

jjm

a

. OutputM

2

. Otherwise

run the loop in below for q � a many times.

For i, j = 0 to a (j 6= i+ 1, i � j)

Compute E

�1

h

i

(h

i

� h

j

) = x

If x[R℄ = k then M

2

= m

1

jj : : :m

i

jjm

j+1

and output M

2

.

Theorem 6. For ea
h { 2 E2, Adv

Coll

H

{

(q) � Adv

TColl

H

{

(q) � �3a(a + 1)=2

n

+

(q � a)=2

l

Proof. Here we have two possibility to get 
ollision. In �rst 
ase su

ess proba-

bility is at least �3a(a+1)=2

n

by similar argument as above. In the se
ond 
ase

Pr[x[R℄ = k℄ � 1=2

l

for ea
h loop. Altogether we have su

ess probability is at

least (q � a)=2

l

. One 
an write down the proof in more details.

Proposition 5. 1�

Q

q

i=1

(1�

i

2

a

) �

�3q(q�1)

2

a

for any integer a.

Proof. It is given in [1℄ so we skip the proof.



5 Inversion Resistan
e of Extended Hash Family

5.1 Upper Bound

In the Inv game a random key k and a random h

�

will be given where, h

�

2

f0; 1g

n

. Then he will try to 
ompute M in 
ase of extended hash fun
tion or

h;m in 
ase of 
ompression fun
tion su
h that H

k

{

(M) = h

�

or f

k

{

(h;m) = h

�

.

If he �nds that then we will say that adversary wins. As we study in bla
k-

box model adversary 
an query E=E

�1

similar to other games like Coll or

TColl. So, adversary has a trans
ript or sequen
e of query-response quadruples

f(s

i

; x

i

; y

i

; �

i

)g

1�i�q

. In this se
tion we modify the de�nition of old verti
es. In

addition to the previous old verti
es we also in
lude h

�

as an old vertex in ea
h

T

i

(See Se
tion 3). By the new de�nition of old vertex, size of O

i

is one more

than that of previous O

i

. De�nition of Su



i

is same as previous de�nition. Note

that the de�nition of Su



i

involves old verti
es. In that sense this de�nition is


hanged a little. Like C

i

we de�ne Inv

i

whi
h means that adversary gets inverse

of h

�

(i.e. adversary wins) after i

th

query. It is very easy to 
he
k that (Inv

i

j:Inv

i

)

implies Su



i

. So for extended hash family we have one upper bound for proba-

bility of winning in the Inv game whi
h will be same as that in Coll game (See

Se
tion 2 for upper bound). But we 
an have better bound for extended hash

family using the theorem below.

Theorem 7. Adv

Inv

H

{

(q) � Adv

Inv

F

{

(q) for ea
h { 2 [1; 42℄.

Proof. The proof for single hash fun
tion and single 
ompression fun
tion is

given in [1℄. Same proof will 
arry forward for hash family and 
ompression

family also. Intuitively �nding inverse for extended hash family is stronger than

�nding that for 
ompression fun
tion.

Now we will �rst study the se
urity analysis of inversion resistan
e of 
om-

pression fun
tions. It 
an be easily observed that, for { 2 f15; 17; 19; 20; 35; 36; 37g,

the 
ompression fun
tions are not inversion resistan
e-se
ure. All other 
ompres-

sion fun
tions are inversion resistan
e-se
ure.

Theorem 8. Adv

Inv

F

{

(q) � q=2

l�1

for { 2 [21; 34℄ or { 2 f13; 14; 16; 18g.

Proof. Here we 
onsider the hash familyH

23

. Other 
ases will be very similar. A

random key k and h

�

are given to the adversary. The event (Inv

i

j:Inv

i�1

) implies

the ar
 (h; h

�

) 
orresponds to �

i

for some h (See Se
tion 3). So, E

s

i

(x

i

) = y

i

,

h!

m

h

�

for some h and m. So h

�

= y

i

� (mjjk) and s

i

= x

i

.

1. If �

i

= +1 then Pr[Inv

i

j:Inv

i�1

℄ � Pr[y

i

[R℄ = h

�

[R℄�k � 2

n�l

=(2

n

�i+1) �

1=2

l�1

(assume q � 2

n�l

otherwise the bound is trivial).

2. If �

i

= �1 then Pr[Inv

i

j:Inv

i�1

℄ � 1=(2

n

� i+ 1) � 1=2

n�1

.

So, Adv

Inv

F

{

(q) �

P

q

i=1

Pr[Inv

i

j:Inv

i�1

℄ � q=2

l�1

.

Theorem 9. Adv

Inv

F

{

(q) � q=2

n�1

for { 2 [38; 42℄ or [1; 12℄.



Proof. Consider { = 38. Other 
ases will be similar. In fa
t, the idea of proof

is same with the previous one. Inv

i

j:Inv

i�1

implies y

i

= h

�

� v and x

i

= s

i

. So

whenever i � 2

n�1

, Pr[Inv

i

j:Inv

i�1

℄ � 1=2

n�1

(
he
k for �

i

= +1 and �1).

For other 
ases { 2 f35; 36; 37gwe 
an use the same te
hnique used in proving

the upper bound for Coll game. By the dis
ussion made in beginning of the

se
tion we 
an have the following theorem.

Theorem 10. Adv

Inv

H

{

(q) � q

2

=2

l�1

for { 2 [35; 37℄ andAdv

Inv

H

{

(q) � Adv

Inv

H

{

(q)

� 9(q + 3)

2

=2

n

for { 2 f15; 17; 19; 20g.

Proof. The last part of the theorem is similar to Theorem 3 and from [1℄ we

know Adv

Inv

H

{

(q) � 9(q + 3)

2

=2

n

for { 2 f15; 17; 19; 20g.

5.2 Some atta
ks in Inv game for Lower Bound

Atta
k 1 :When { 2 f15; 17; 19; 20; 35; 36; 37g i.e. when the 
orresponding 
om-

pression are not inversion resistan
e-se
ure we 
an perform meet-in-the-middle-

atta
k. Idea of the atta
k is presented in [1℄. Given h

0

and h

�

we 
ompute two

sets F and B su
h that h ! h

1

for every h

1

2 F and h

2

! h

�

for every

h

2

2 B. Note we 
an 
onstru
t B as the 
ompression fun
tions are not inversion

resistan
e-se
ure. If we get an element in F \ B say h then we have an inverse

element of h

�

. More pre
isely, if h

0

!

m

1

h !

m

2

h

�

for some m

1

and m

2

then

m

1

jjm

2

will be an inverse element of h

�

. So we have the following lower bound

whi
h is similar to the bound given in [1℄ and hen
e we skip the proof.

Theorem 11. Adv

Inv

H

{

(q) � (0:15)q

2

=2

n

for { 2 f15; 17; 19; 20g and Adv

Inv

H

{

(q) �

(0:15)q

2

=2

l

for { 2 [35; 37℄.

Atta
k 2 : The atta
king algorithm is same as the generi
 atta
k for target 
ol-

lision resistan
e des
ribed in Se
tion 4. We 
hoosem

1

; � � � ;m

q

and then 
ompute

h

1

; � � � ; h

q

and �nally we will look for some h

i

su
h that h

i

= h

�

(for { 2 [38; 42℄

or [1; 12℄) or h

i

[R℄ = h

�

[R℄ (for { 2 [21; 34℄). One 
an prove it exa
tly but this

will be same as the proof for 
ollision atta
k so we skip the details.

Theorem 12. Adv

Inv

H

{

(q) � q=2

l+1

for { 2 [21; 34℄ and Adv

Inv

H

{

(q) � q=2

n

for

{ 2 [38; 42℄ or [1; 12℄.

6 Con
lusion

In this paper we �rst generalized the de�nition of PGV-hash fun
tions into a

PGV-hash families. In the new de�nitions we have more se
ure hash family (42

hash families) with respe
t to 
ollision resistant and One-way. Unlike previous

de�nitions it is a keyed family so we 
an study other se
urity notion like target


ollision resistant. In fa
t all these 42 hash families be
ome target 
ollision resis-

tant. As AES is treated as a good 
andidate for blo
k 
ipher, we 
an implement

these hash families using AES. Be
ause of our results, only atta
k for these hash



families should explore some internal weakness of AES. In other words, these

hash families 
an be pra
ti
ally 
onstru
ted using AES until we are getting

some weakness of AES. The proof te
hniques used here are natural and dire
t to

the se
urity notions. So one 
an also study these proof te
hniques to have good

ideas about using the bla
k box model.
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Fig. 1. Summary of results about 64 extended hash families. Column 1 is our number
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ollision resistan
e bounds. Columns 6 and 7 give

our inversion resistan
e bounds.
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Fig. 2. Summary of results about 64 extended hash families, 
ontinued.


