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Abstract

Recently, a first step toward establishing foundations for group signatures was taken [5], with
a treatment of the case where the group is static. However the bulk of existing practical schemes
and applications are for dynamic groups, and these involve important new elements and security
issues. This paper treats this case, providing foundations for dynamic group signatures, in the
form of a model, strong formal definitions of security, and a construction proven secure under
general assumptions. We believe this is an important and useful step because it helps bridge the
gap between [5] and the previous practical work, and delivers a basis on which existing practical
schemes may in future be evaluated or proven secure.
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1 Introduction

The purpose of foundational work is to provide strong, formal definitions of security for cryptographic
primitives, thereby enabling one to unambiguously assess and prove the security of constructs and
their use in applications, and then prove the existence of schemes meeting the given definitions. As
evidenced by the development of the foundations of encryption [21, 25, 20, 26, 28, 17], however, this
program can require several steps and considerable effort.

This paper takes the next step in the foundational effort in group signatures begun by [5]. Below
we provide some background and then discuss our contributions.

1.1 Background and motivation

Group signatures. The setting, introduced by Chaum and Van Heyst [15], is of a group of entities,
each having its own private signing key, using which it can produce signatures on behalf of the group,
meaning verifiable under a single public verification key associated to the group as a whole. The basic
security requirements are that the identity of the group member producing a particular signature not
be discernible from this signature (anonymity), except to an authority possessing a special “opening”
key (traceability).

With time, more security requirements were added, including unlinkability, unforgeability, collusion
resistance [4], exculpability [4], and framing resistance [16]. Many practical schemes were presented,
some with claims of proven security in the random oracle model [1]. However, it is often unclear
what the schemes or claimed proofs in these works actually deliver in terms of security guarantees,
due largely to the fact that the requirements are informal and sometimes ambiguous, not precisely
specifying adversary capabilities and goals. It would be beneficial in this context to have proper
foundations, meaning strong formal definitions and rigorously proven-secure schemes.

Foundations for static groups. The first step toward this end was taken by [5], who consider
the case where the group is static. In their setting, the number of group members and their identities
are fixed and frozen in the setup phase, where a trusted entity chooses not only the group public key
and an opening key for the opening authority, but also, for each group member, chooses a signing key
and hands it to the member in question. Within this framework, they formalize two (strong) security
requirements that they call full-anonymity and full-traceability, and show that these imply all the
informal existing requirements in the previous literature. They then present a static group signature
scheme shown to meet these requirements, assuming the existence of trapdoor permutations.

Dynamic groups. However, static groups limit applications of group signatures, since they do not
allow one to add members to the group with time. They also require an uncomfortably high degree
of trust in the party performing setup, since the latter knows the signing keys of all members and can
thus frame any group member. These limitations were in fact recognized early in the development
of the area, and the practical literature has from the start focused on the case where the group is
dynamic. In this setting, neither the number nor the identities of group members are fixed or known
in the setup phase, which now consists of the trusted entity choosing only a group public key and a
key for the authority. An entity can join the group, and obtain a private signing key at any time, by
engaging in an appropriate join protocol with the authority.

Closing the gap. We thus have the following gap: foundations have been provided for the static
case [5], but the bulk of applications and existing practical schemes are for the dynamic case [15, 16,
11, 14, 27, 13, 4, 3, 1]. Since the ultimate goal is clearly to have proven secure schemes in settings
suitable for applications, it is important to bridge the above-mentioned gap by providing foundations
for dynamic group signatures.
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However, an extension of the existing treatment of static groups [5] to the dynamic case does
not seem to be immediate. Dynamic groups are more complex, bringing in new elements, security
requirements and issues. A dedicated and detailed treatment is required to resolve the numerous
existing issues and ambiguities. This paper provides such a treatment.

1.2 Model and definitions for the dynamic group setting

The first contribution of this paper is to provide a model and strong, formal definitions of a small
number of key security requirements for dynamic group signatures that, in keeping with [5], are then
shown to imply the large number of existing informal requirements.

Selected features. We highlight a few important features of the model and definitions:

• Two authorities. As suggested in some previous works, we separate the authority into two, an
opener (who can open signatures) and an issuer (who interacts with a user to issue the latter a
signing key). Each has its own secret key. This provides more security (compared to having a
single authority) in the face of the possibility that authorities can be dishonest.

• Trust levels. We consider different levels of trust in each authority, namely that it may be uncorrupt
(trusted), partially corrupt (its secret key is available to the adversary but it does not deviate from
its prescribed program) or fully corrupt (the adversary controls it entirely, so that it may not follow
its program). In order to protect group members against dishonest authorities to the maximum
extent possible, we formulate security requirements to require the lowest possible level of trust in
each authority.

• Three key requirements. We formulate three key requirements, namely anonymity, traceability and
non-frameability. The levels of trust for each authority for each requirement are summarized in
Figure 1, and, as we explain in Section 4, are the minimum possible in each case. (In the static
setting, the single full-traceability requirement covered both traceability and non-frameability [5].
We separate them here because we can ask for and achieve non-frameability with lower levels of
trust in the authorities than traceability.)

• PKI. We assume that each group member or potential group member has a personal public key,
established and certified, for example by a PKI, independently of any group authority, so that it
has a means to sign information, using a matching personal private key that it retains. This is
necessary in order for group members to protect themselves from being framed by a partially or
fully corrupt issuer, and makes explicit what were called “long-term credentials” in [1].

• Publicly verifiable proofs of opening. In order to be protected against a fully corrupt opener, the
opener is required to accompany any claim that a particular identity produced a particular signature
with a publicly verifiable proof to this effect (cf. [13]).

• Concurrent join protocols. In an Internet-based system, we would expect that many entities may
concurrently engage in the join protocol with the issuer. Our model captures this by allowing the
adversary to schedule all message delivery in any number of concurrent join sessions.

Definitional approach. In order to provide clear, succinct yet formal definitions, and also allow for
easy additions of more definitions, we take a modular approach that follows the paradigm of [7]. We
first specify a model that consists of defining various oracles that provide the adversary with various
attack capabilities. Each of the formal definitions then provides the adversary with some appropriate
subset of these oracles, depending on the type of attack capabilities the definition wishes to give the
adversary.

As research in this area has shown, requirements for group signatures tend to grow and evolve
with time (cf. [4, 16, 24]). The benefit of the modular definitional approach we employ here is that it
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Requirement Opener Issuer

Anonymity uncorrupt fully corrupt

Traceability partially corrupt uncorrupt

Non-frameability fully corrupt fully corrupt

Figure 1: Levels of trust in authorities for each of our three security requirements. In each case, these
are the lowest levels of trust achievable.

is easy to add new requirements, first by introducing new oracles to capture new attack capabilities
if necessary, and then by formulating new definitions in terms of adversaries that call on the old and
new oracles.

1.3 A construction of a secure dynamic group signature scheme

Given the stringency of our security requirements, the first and most basic question that should be
considered is whether a secure dynamic group signature scheme even exists, and, if so, under what
assumptions its existence can be proved. Although the setting and requirements for dynamic groups
are more complex and demanding than for static groups, we can prove the existence of a secure dynamic
group signature scheme under the same assumptions as used to prove the existence of a secure static
group signature scheme [5], namely the existence of trapdoor permutations. As is not uncommon with
foundational schemes, ours is polynomial-time but not efficient, and should be taken as a proof of
concept only.

The construction uses as building blocks the following: trapdoor permutation based public-key en-
cryption schemes secure against chosen-ciphertext attack [17], trapdoor permutation based (ordinary)
digital signature schemes secure against chosen-message attack [6], and trapdoor permutation based
simulation-sound adaptive non-interactive zero-knowledge (NIZK) proofs for NP [29]. We provide a
way to define a group public key, keys for the two authorities, and a join protocol so that the private
signing key of any group member, as well as the signature created, have essentially the same format
as in the scheme of [5], thereby enabling us to build on the latter. We then augment the opening al-
gorithm to also produce NIZK proofs of its claims, and define a judge algorithm to check such proofs.
To provide traceability and non-frameability, the join protocol requires, on the one hand, that the
group member provide the issuer with a signature (relative to the personal public key that the group
member has via the PKI) of some information related to the private signing key it is issued. (This
signature is stored by the issuer in the registration table and can later be accessed by the opener.)
However, it also ensures that the issuer does not know the private signing key of the group member.
We note that in our scheme, the length of signatures and the size of keys do not depend on the number
of members in the group. (The registration table has size proportional to the number of users but is
not considered part of the keys.)

We remark that the join protocol is simple and uses no zero-knowledge (ZK) proofs. This is
important because it facilitates showing security under arbitrary concurrent executions. But it may
be surprising because the join protocols in practical schemes such as that of [1] use ZK proofs even
though the security requirements there are milder than in our case.
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1.4 Discussion and related work

We do not consider revocation of group members.1 Different solutions tend to require or depend on
different model elements [10, 2, 30] and we believe it is restrictive to pin down features geared toward
some solution as part of what is supposed to be a general model. However, as noted above, our model
has an extensible format, and can be extended in different ways to accommodate different revocation
approaches and requirements.

In specifying our model and definitions we have built on numerous elements of previous works,
including informal discussions in [5] about extensions to the dynamic setting. We remark however
that we were not always able to follow the suggestions of the latter. For example they suggested that
a proof of opening could consist of the coins underlying a certain ciphertext in the signature. But the
decryption algorithms of existing trapdoor permutation based, chosen-ciphertext secure encryption
schemes [17, 29] do not recover the coins, and, even if one had a scheme that did, one would need to
know whether it was secure against a stronger type of chosen-ciphertext attacks in which the decryption
oracle returns not just the message but also the coins underlying a given ciphertext. Instead, we use
NIZK proofs.

Our model assumes that the issuer and opener are provided their keys by a trusted initialization
process that chooses these keys along with the group public key. Naturally, if so desired, such a
process may be implemented by a secure distributed computation protocol in which the authorities
jointly compute their keys and the group public key. This would enable one to dispense with the
trusted initialization.

There may be schemes or setting in which there is a single authority that plays the roles of both
issuer and opener, rather than there being two separate authorities as in our model. This case is
simpler than the one we consider, and our definitions and scheme can easily be “dropped down” to
handle it. Of course, the security achieved will be weaker.

Our model captures the functionality of current efficient proposals for group signature schemes, in
particular that of [1]. Although we do not know whether their scheme can be proven secure in our
model, providing the model at least enables one to address this question rigorously in the future.

Camenisch and Lysyanskaya [12] present simulation-based definitions for identity-escrow schemes
with appointed verifiers, which are related to group signature schemes. We believe however that
models like that of [5] and ours are easier to use.

In concurrent and independent work, Kiayis, Tsiounis and Yung [24] introduce an extension of
group signatures called traceable signatures. However, in the dynamic group signature setting, their
model is different from ours. In particular, they consider a single authority rather than separate
issuing and opening authorities. This means that they cannot consider authority behavior that is as
adversarial as the ones we consider, namely fully corrupt, and, in some cases, even partially corrupt
authorities. Not only does this mean their requirements are weaker than ours, but also this is where
most of the novel issues, as compared with [5], arise. We also note that their model does not include
a PKI, yet some such structure would appear to be required to realize certain assumptions they
make. (Namely that the authority is not given the power to modify transcripts of the join protocol in
non-frameability).

Finally we note that the traceable signature scheme of [24] is in the random-oracle model, being
derived as the Fiat-Shamir transform [18] of a traceable identification scheme. Note that it may be
impossible to “implement” the random oracle of the Fiat-Shamir transform with a “real” function in a
way that results in a secure real-world scheme (Goldwasser and Tauman [23]). In contrast our scheme
is in the standard model.

1 Our terminology may thus be misleading. In some previous works, what we are considering are called partially

dynamic groups rather than dynamic groups. The term monotonically growing groups has also been suggested.
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2 Notation

We let N = {1, 2, 3, . . .} be the set of positive integers. If x is a string, then |x| denotes its length,
while if S is a set then |S| denotes its size. The empty string is denoted by ε. If k ∈ N then 1k denotes

the string of k ones. If n is an integer then [n] = {1, . . . , n}. If S is a set then s
$

← S denotes the
operation of picking an element s of S uniformly at random.

Unless otherwise indicated, algorithms are randomized. We write A(x, y, . . .) to indicate that A is

an algorithm with inputs x, y, . . . ,, and by z
$

← A(x, y, . . .) we denote the operation of running A with
inputs x, y, . . . and letting z be the output. We write A(x, y, . . . : O1,O2, . . .) to indicate that A is an

algorithm with inputs x, y, . . . and access to oracles O1,O2, . . ., and by z
$

← A(x, y, . . . : O1,O2, . . .) we
denote the operation of running A with inputs x, y, . . . and access to oracles O1,O2, . . ., and letting z
be the output.

3 A model for dynamic group signature schemes

Here we provide a model in which definitions can later be formulated. We begin with a discussion of
the syntax, namely the algorithms that constitute a dynamic group signature scheme.

Algorithms and their usage. Involved in a group signature scheme are a trusted party for initial
key generation, an authority called the issuer, an authority called the opener, and a body of users,
each with a unique identity i ∈ N, that may become group members. The scheme is specified as a
tuple GS = (GKg,UKg, Join, Iss,GSig,GVf,Open, Judge) of polynomial-time algorithms whose intended
usage and functionality are as follows. Throughout, k ∈ N denotes the security parameter.

GKg– In a setup phase, the trusted party runs the group-key generation algorithm GKg on input 1k

to obtain a triple (gpk, ik, ok). The issuer key ik is provided to the issuer, and the opening key ok is
provided to the opener. The group public key gpk, whose possession enables signature verification, is
made public.

UKg– A user that wants to be a group member should begin by running the user-key generation

algorithm UKg on input 1k to obtain a personal public and private key pair (upk[i],usk [i]). We
assume that the table upk is public. (Meaning, anyone can obtain an authentic copy of the personal
public key of any user. This might be implemented via a PKI.)

Join, Iss– Once a user has its personal key pair, it can join the group by engaging in a group-joining

protocol with the issuer. The interactive algorithms Join, Iss implement, respectively, the user’s and
issuer’s sides of this interaction. Each takes input an incoming message (this is ε if the party is
initiating the interaction) and a current state, and returns an outgoing message, an updated state,
and a decision which is one of accept, reject, cont. The communication is assumed to take place over
secure (i.e. private and authenticated) channels, and we assume the user sends the first message. If
the issuer accepts, it makes an entry for i, denoted reg [i], in its registration table reg , the contents of
this entry being the final state output by Iss. If i accepts, the final state output by Join is its private
signing key, denoted gsk[i].

GSig– A group member i, in possession of its signing key gsk[i], can apply the group signing algorithm
GSig to gsk[i] and a message m ∈ {0, 1}∗ to obtain a quantity called a signature on m.

GVf– Anyone in possession of the group public key gpk can run the deterministic group signature

verification algorithm GVf on inputs gpk, a message m, and a candidate signature σ for m, to obtain
a bit. We say that σ is a valid signature of m with respect to gpk if this bit is one.
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Open– The opener, who has read-access to the registration table reg being populated by the issuer,
can apply the deterministic opening algorithm Open to its opening key ok, the registration table reg ,
a message m, and a valid signature σ of m under gpk. The algorithm returns a pair (i, τ), where i ≥ 0
is an integer. In case i ≥ 1, the algorithm is claiming that the group member with identity i produced
σ, and in case i = 0, it is claiming that no group member produced σ. In the former case, τ is a proof
of this claim that can be verified via the Judge algorithm.

Judge– The deterministic judge algorithm Judge takes inputs the group public key gpk, an integer
j ≥ 1, the public key upk[j] of the entity with identity j (this is ε if this entity has no public key), a
message m, a valid signature σ of m, and a proof-string τ . It aims to check that τ is a proof that j
produced σ. We note that the judge will base its verification on the public key of j.

The oracles. The correctness and security definitions will be formulated via experiments in which an
adversary’s attack capabilities are modeled by providing it access to certain oracles. We now introduce
the oracles that we will need. (Different experiments will provide the adversary with different subsets
of this set of oracles.)

The oracles are specified in Figure 2 and explained below. It is assumed that the overlying ex-
periment has run GKg on input 1k to obtain keys gpk, ik, ok that are used by the oracles. It is also
assumed that this experiment maintains the following global variables which are manipulated by the
oracles: a set HU of honest users; a set CU of corrupted users; a set GSet of message-signature pairs;
a table upk such that upk[i] contains the public key of i ∈ N; a table reg such that reg [i] contains
the registration information of group member i. The sets HU,CU,GSet are assumed initially empty,
and all entries of the tables upk, reg are assumed initially to be ε. Randomized oracles or algorithms
use fresh coins upon each invocation unless otherwise indicated.

AddU(·)– By calling this add user oracle with argument an identity i ∈ N, the adversary can add
i to the group as an honest user. The oracle adds i to the set HU of honest users, and picks a
personal public and private key pair (upk[i],usk[i]) for i. It then executes the group-joining protocol
by running Join (on behalf of i, initialized with gpk,upk[i],usk[i]) and Iss (on behalf of the issuer,
initialized with gpk, ik, i,upk[i]). When Iss accepts, its final state is recorded as entry reg [i] in the
registration table. When Join accepts, its final state is recorded as the private signing key gsk[i] of i.
The calling adversary is returned upk[i].

CrptU(·, ·)– By calling this corrupt user oracle with arguments an identity i ∈ N and a string upk, the
adversary can corrupt user i and set its personal public key upk[i] to the value upk chosen by the
adversary. The oracle initializes the issuer’s state in anticipation of a group-joining protocol with i.

SndToI(·, ·)– Having corrupted user i, the adversary can use this send to issuer oracle to engage in
a group-joining protocol with the honest, Iss-executing issuer, itself playing the role of i and not
necessarily executing the interactive algorithm Join prescribed for an honest user. The adversary
provides the oracle with i and a message Min to be sent to the issuer. The oracle, which maintains the
issuer’s state (the latter having been initialized by an earlier call to CrptU(i, ·)), computes a response
as per Iss, returns the outgoing message to the adversary, and sets entry reg [i] of the registration
table to Iss’s final state if the latter accepts.

SndToU(·, ·)– In some definitions we will want to consider an adversary that has corrupted the issuer.
The send to user oracle SndToU(·, ·) can be used by such an adversary to engage in a group-joining
protocol with an honest, Join-executing user, itself playing the role of the issuer and not necessarily
executing the interactive algorithm Iss prescribed for the honest issuer. The adversary provides the
oracle with i and a message Min to be sent to i. The oracle maintains the state of user i, initializing
this the first time it is called by choosing a personal public and private key pair for i, computes a
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AddU(i)

If i ∈ CU or i ∈ HU then return ε
HU← HU ∪ {i}
deci ← cont; gsk[i]← ε

(upk[i],usk [i])
$
← UKg(1k)

Stijn ← (gpk,upk[i],usk[i])

Stiiss ← (gpk, ik, i,upk[i]); Mjn ← ε

(Stijn,Miss,deci)← Join(Stijn,Mjn)

While deci = cont do

(Sti
iss,Mjn,deci)← Iss(Stiiss,Miss,deci)

If deci = accept then reg [i]← Stiiss
(Sti

jn,Miss,deci)← Join(Stijn,Mjn)

Endwhile

gsk[i]← Stijn
Return upk[i]

SndToI(i,Min )

If i /∈ CU then return ε

(Stiiss,Mout,deci)← Iss(Stiiss,Min,deci)

If deci = accept then reg [i]← Stiiss
Return Mout

SndToU(i,Min)

If i /∈ HU then
HU← HU ∪ {i}

(upk[i],usk[i])
$
← UKg(1k)

gsk[i]← ε ; Min ← ε
Stijn ← (gpk,upk[i],usk[i])

(Stijn,Mout,dec)← Join(Stijn,Min);

If dec = accept then gsk[i]← Stijn
Return (Mout,dec)

CrptU(i,upk)

If i ∈ HU ∪CU then return ε
CU← CU ∪ {i}
upk[i]← upk

deci ← cont

Stiiss ← (gpk, ik, i,upk[i])
Return 1

USK(i)

Return (gsk[i],usk [i])

RReg(i)

Return reg [i]

WReg(i, ρ)

reg [i]← ρ

Open(m,σ)

If (m,σ) ∈ GSet then return ⊥
Return Open(gpk, ok, reg ,m, σ)

GSig(i,m)

If i 6∈ HU then return ⊥
If gsk[i] = ε then return ⊥
Else return GSig(gpk,gsk[i],m)

Chb(i0, i1,m)

If i0 6∈ HU or i1 6∈ HU then
return ⊥

If gsk[i0] = ε or gsk[i1] = ε then
return ⊥

σ ← GSig(gpk,gsk[ib],m)
GSet← GSet ∪ {(m,σ)}
Return σ

Figure 2: Oracles provided to adversaries in the experiments of Figure 3.

response as per Join, returns the outgoing message to the adversary, and sets the private signing of i
to Join’s final state if the latter accepts.

USK(·)– The adversary can call this user secret keys oracle with argument the identity i ∈ N of a user
to expose both the private signing key gsk[i] and the personal private key usk[i] of this user.

RReg(·)– The adversary can read the contents of entry i of the registration table reg by calling this
read registration table oracle with argument i ∈ N.

WReg(·, ·)– In some definitions we will allow the adversary to write/modify the contents of entry i of
the registration table reg by calling this write registration table oracle with argument i ∈ N.
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GSig(·, ·)– A signing oracle, enabling the adversary to specify the identity i of a user and a message
m, and obtain the signature of m under the private signing key gsk[i] of i, as long as i is an honest
user whose private signing key is defined.

Ch(b, ·, ·, ·)– A challenge oracle provided to an adversary attacking anonymity, and depending on a
challenge bit b set by the overlying experiment. The adversary provides a pair i0, i1 of identities and
a message m, and obtains the signature of m under the private signing key of ib, as long as both i0, i1
are honest users with defined private signing keys. The oracle records the message-signature pair in
GSet to ensure that the adversary does not later call the opening oracle on it.

Open(·, ·)– The adversary can call this opening oracle with arguments a message m and signature σ
to obtain the output of the opening algorithm on m,σ, computed under the opener’s key ok, as long
as σ was not previously returned in response to a query to Ch(b, ·, ·, ·).

Remarks. We are assuming the existence of a secure (private and authentic) channel between any
prospective group member and the issuer, as in [1]. The privacy assumption is reflected in the fact
that the adversary is not provided the transcript of an interaction generated by the AddU(·) oracle.
The authenticity assumption is reflected in the fact that a party is initialized with the correct identity
and personal public key of its partner if relevant. (When the issuer is fully corrupted, reflected by the
adversary having a SndToU(·, ·) oracle, the adversary does get the transcript of the communication,
via its oracle queries and answers.) We note however that the secure channels assumption is made
more for simplicity than anything else, and protocols are easily modified to avoid it.

4 Notions of correctness and security

Here we provide the definitions of correctness and security of a dynamic group signature scheme,
based on the model of an adversary with oracles introduced above. We begin with correctness and
then define three security requirements: anonymity, traceability and non-frameability.

4.1 Correctness

The correctness condition pertains to signatures generated by honest group members, and asks the
following: the signature should be valid; the opening algorithm, given the message and signature,
should correctly identify the signer; the proof returned by the opening algorithm should be accepted by
the judge. Formalizing these conditions in the dynamic group setting is more involved than formalizing
them in a static setting in that these conditions must hold for all honest users under any “schedule”
under which these users join the group. Accordingly, we formalize correctness via an experiment
involving an adversary. To dynamic group signature scheme GS, any adversary A and any k ∈ N we
associate the experiment Expcorr

GS,A(k) depicted in Figure 3. We let

Advcorr
GS,A(k) = Pr

[
Expcorr

GS,A(k) = 1
]

.

We say that dynamic group signature scheme GS is correct if Advcorr
GS,A(k) = 0 for any adversary A

and any k ∈ N. Note that the adversary is not computationally restricted.

4.2 Anonymity

Formal definition. To dynamic group signature scheme GS , any adversary A, a bit b ∈ {0, 1} and
any k ∈ N we associate the experiment Expanon-b

GS,A (k) depicted in Figure 3. We let

Advanon
GS,A(k) = Pr

[
Expanon-1

GS,A (k) = 1
]
− Pr

[
Expanon-0

GS,A (k) = 1
]

.
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Experiment Expcorr
GS,A(k)

(gpk, ik, ok)
$

← GKg(1k) ; CU← ∅ ; HU← ∅ ; (i,m)
$

← A(gpk : AddU(·),RReg(·))

If i 6∈ HU then return 0 ; If gsk[i] = ε then return 0

σ ← GSig(gpk,gsk[i],m) ; If GVf(gpk,m, σ) = 0 then return 1

(j, τ)← Open(gpk, ok, reg ,m, σ) ; If i 6= j then return 1

If Judge(gpk, i,upk[i],m, σ, τ) = 0 then return 1 else return 0

Experiment Expanon-b
GS,A (k) // b ∈ {0, 1}

(gpk, ik, ok)
$

← GKg(1k) ; CU← ∅ ; HU← ∅ ; GSet← ∅

d
$

← A(gpk, ik : Ch(b, ·, ·, ·),Open(·, ·),SndToU(·, ·),WReg(·, ·),USK(·),CrptU(·, ·))

Return d

Experiment Exptrace
GS,A(k)

(gpk, ik, ok)
$

← GKg(1k) ; CU← ∅ ; HU← ∅

(m,σ)
$

← A(gpk, ok : SndToI(·, ·),AddU(·),RReg(·),USK(·),CrptU(·, ·))

If GVf(gpk,m, σ) = 0 then return 0 ; (i, τ)← Open(gpk, ok, reg ,m, σ)

If i = 0 or Judge(gpk, i,upk[i],m, σ, τ) = 0 then return 1 else return 0

Experiment Expnf
GS,A(k)

(gpk, ik, ok)
$

← GKg(1k) ; CU← ∅ ; HU← ∅

(m,σ, i, τ)
$

← A(gpk, ok, ik : SndToU(·, ·),WReg(·, ·),GSig(·, ·),USK(·),CrptU(·, ·))

If GVf(gpk,m, σ) = 0 then return 0

If the following are all true then return 1 else return 0:

– i ∈ HU and gsk[i] 6= ε and Judge(gpk, i,upk[i],m, σ, τ) = 1
– A did not query USK(i) or GSig(i,m)

Figure 3: Experiments used to define correctness, anonymity, traceability and non-frameability of a
dynamic group signature scheme GS = (GKg,UKg, Join, Iss,GSig,GVf,Open, Judge).

We say that dynamic group signature scheme GS is anonymous if the function Advanon
GS,A(·) is negligible

for any polynomial-time adversary A.

Discussion. The definition is liberal with regard to what it means for the adversary to win. It need
not recover the identity of a signer from a signature, but, following [5], need only distinguish which of
two signers of its choice signed a target message of its choice. Formally, this means it wins if it guesses
the value of the bit b in the Ch(b, ·, ·, ·) oracle. In the process, the adversary is provided with extremely
strong attack capabilities, including the ability to fully corrupt the issuer. (The adversary is not only
given the issuer key ik, but is provided access to the SndToI(·, ·) oracle, which enables it to play the
role of issuer in interacting with users in the join protocol.) The adversary is additionally allowed to
obtain both the personal private key and the private signing key of any user (via the USK oracle);
read, write or modify the content of the registration table (via the RReg,WReg oracles); corrupt users
and interact with the issuer on their behalf (via the CrptU,SndToU oracles); and obtain the identity
of the signer of any signature except the challenge one (via the Open oracle).

We do not provide the adversary access to the GSig and AddU oracles because they are redundant
given the capabilities already provided to the adversary. Naturally, the adversary is also denied the

10



opener’s key ok, since the latter would enable it to run the Open algorithm. (Meaning the opener
must be assumed uncorrupt.)

4.3 Traceability

Formal definition. To dynamic group signature scheme GS , any adversary A and any k ∈ N we
associate the experiment Exptrace

GS,A(k) depicted in Figure 3. We let

Advtrace
GS,A(k) = Pr

[
Exptrace

GS,A(k) = 1
]

.

We say that dynamic group signature scheme GS is traceable if the function Advtrace
GS,A(·) is negligible

for any polynomial-time adversary A.

Discussion. Traceability asks that the adversary be unable to produce a signature such that either
the honest opener declares itself unable to identify the origin of the signature (meaning the Open

algorithm returns (i, τ) with i = 0), or, the honest opener believes it has identified the origin but is
unable to produce a correct proof of its claim (meaning the Open algorithm returns (i, τ) with i > 0
but the proof τ is rejected by the judge). In the process, the adversary is allowed to create honest
group members (via the AddU oracle); obtain both the personal private key and the private signing
key of any user (via the USK oracle); read the content of the registration table (via the RReg oracles);
and corrupt users and interact with the issuer on their behalf (via the CrptU,SndToU oracles).

Note that traceability cannot be achieved in the presence of even a partially corrupt issuer, for
such an issuer can create dummy users with valid signing keys and thus create untraceable signatures.
(That is, the assumption that the issuer is uncorrupt is minimal). Accordingly, in the definition, the
adversary is not given ik as input and not given a SndToU oracle. Also it is not allowed to write to
the registration table (meaning it is not given a WReg oracle) since it could otherwise remove the
information enabling a group member to be traced. Also, the assumption that the opener is partially
but not fully corrupt is minimal, for a fully corrupt opener could simply refuse to trace.

4.4 Non-frameability

Formal definition. To dynamic group signature scheme GS , any adversary A and any k ∈ N we
associate the experiment Expnf

GS,A(k) depicted in Figure 3. We let

Advnf
GS,A(k) = Pr

[
Expnf

GS,A(k) = 1
]

.

We say that dynamic group signature scheme GS is non-frameable if the function Advnf
GS,A(·) is

negligible for any polynomial-time adversary A.

Discussion. Non-frameability asks that the adversary be unable to create a judge-accepted proof that
an honest user produced a certain valid signature unless this user really did produce this signature.
(This implies the more usual formulation, namely that it cannot produce a signature that an honest
opener would attribute to a user unless the latter really did produce it, because, if it could produce
such a signature, it could also produce the judge-accepted proof. The latter is true because we give it
the secret key of the opener). The adversary outputs a message m, a signature σ, an identity i and
a proof τ . It wins if σ is a valid signature of m, i is an honest user, and the judge accepts τ as a
proof that i produced σ, yet the adversary did not query the signing oracle GSig with i,m and did not
obtain i’s signing key gsk[i] via the USK oracle. Barring these restrictions, the adversary is extremely
powerful, and in particular much stronger than for traceability (which is why, unlike [5], we separate
the two). In particular it may fully corrupt both the opener and the issuer. (Reflected in its getting
input ok, ik and having access to the SndToU oracle.) Additionally, it may create a colluding subset
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of users by using its USK oracle to obtain signing keys of all users except the target one it outputs,
and also corrupt users via CrptU.

4.5 Remarks

Recall that in [5] the issuing process was static and trusted, and their single authority played the role
of opener. Their full-traceability requirement, which covered both traceability and non-frameability,
allowed the opener to be partially but not fully corrupt. We are asking for traceabiltiy under the
same conditions, which, as we have argued above, are minimal in the dynamic setting. But we ask
for non-frameability under much more adverse conditions, namely when both authorities may be fully
corrupt. (In achieving this, the PKI is crucial). This is the motivation for separating their single
requirement into two.

We note that a reader might find that what is intuitively regarded as traceability is covered by the
combination of traceability and non-frameability rather than by the formal traceability alone.

In Appendix A we point out that, as in the static case [5], the key requirements that we define
(anonymity, traceability and non-frameability) are strong enough to capture and imply all existing
informal security requirements in the literature.

5 Our Construction

We begin by describing the primitives we use. We then describe our construction, and state the
security results. Their proofs are in Appendix C.

5.1 Primitives

Digital signature schemes. We use a digital signature scheme DS = (Ks,Sig,Vf) specified, as
usual, by algorithms for key generation, signing and verifying. It should satisfy the standard notion
of unforgeability under chosen message attack [22].

We now recall the definition. Consider the experiment Exp
unforg-cma
DS,A (k) in Figure 4, involving a

forger A. A pair (pk, sk) of public/secret keys for the signature scheme is generated by running the

key generation algorithm on the security parameter (pk, sk)
$

← Ks(1
k). Next, A is given as input

pk, and is also provided access to a signing oracle Sig(sk, ·). The forger can submit (any number
of) messages to the oracle, and obtain in return signatures, under secret key sk, on these messages.
Finally, A outputs an attempted forgery (m,σ). The experiment returns 1 if σ is a valid signature on
m, and m was never queried to the signing oracle, and returns 0 otherwise. We define the advantage
of forger A as:

Adv
unforg-cma
DS,A (k) = Pr

[
Exp

unforg-cma
DS,A (k) = 1

]

where the probability is taken on the coins of the key generation algorithm, the coins of the signature
algorithm and the coins of the adversary. We say that a digital scheme DS is secure against forgeries
under chosen message attack if the function Adv

unforg-cma
DS,A (·) is negligible for any polynomial-time

adversary A.

Encryption schemes. We use a public-key encryption scheme AE = (Ke,Enc,Dec) specified, as
usual, by algorithms for key generation, encryption and decryption. It should satisfy the standard
notion of indistinguishability under adaptive chosen-ciphertext attack (IND-CCA) [28]. We now recall
the definition. Consider the experiment Expind-cca b

AE,A (k) in Figure 4, involving an adversary A. A
pair (pk, sk) of public/secret keys for the encryption scheme is generated by running the randomized
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Exp
unforg-cma
DS,A (k)

(pk, sk)
$

← Ks(1
k)

(m,σ)← A(pk : Sig(sk, ·))
If the following are true then return 1
Else return 0:

- Vf(pk,m, σ) = 1
- A did not make oracle query m

Expind-cca b
AE ,A (k)

re
$

← {0, 1}r(k)

(pk, sk)← Ke(1
k; re)

d← A(pk : LR(·, ·, b)),Dec(sk, ·))
Return d

Figure 4: Exp
unforg-cma
DS,A (k) and Expind-cca b

AE ,A (k)

key generation algorithm on the security parameter (pk, sk) ← Ke(1
k; re) where the length of the

randomness string |re| is bounded by some fixed polynomial r(k). Assume A never queries Dec(sk, ·)
on a ciphertext previously returned by Enc(pk,LR(·, ·, b)), and all queries to LR(·, ·, b) consists of a
pair of equal-length messages. For a bit b and message M0, M1, define LR(M0,M1, b) = Mb. The
advantage function of A is defined as:

Advind-cca
AE ,A (k) = Pr

[
Expind-cca 1

AE ,A (k) = 1
]
− Pr

[
Expind-cca 0

AE ,A (k) = 1
]

An encryption scheme AE is said to be IND-CCA secure if the function Advind-cca
AE,A (·) is negligible for

any polynomial-time adversary A.

Simulation-sound non-interactive zero knowledge proof systems. The last building block
we need are simulation-sound NIZK proofs of membership in NP languages. We use the following
terminology. An NP-relation over domain Dom ⊆ {0, 1}∗ is a subset ρ of {0, 1}∗ × {0, 1}∗ such that
membership of (x,w) ∈ ρ is decidable in time polynomial in the length of the first argument for all
x in domain Dom. The language associated to ρ is the set of all x ∈ {0, 1}∗ such that there exists a
w for which (x,w) ∈ ρ. Often we will just use the term NP-relation, the domain being implicit. If
(x,w) ∈ ρ we will say that x is a theorem and w is a proof of x.

Fix an NP relation ρ over domain Dom. Consider a pair of polynomial time algorithms (P, V ),
where P is randomized and V is deterministic. They have access to a common reference string, R.
We say that (P, V ) is a non-interactive proof system for ρ over Dom if there exist polynomials p and
ℓ such that the following two conditions are satisfied:

1. Completeness: ∀k ∈ N, ∀(x,w) ∈ ρ with |x| ≤ ℓ(k) and x ∈ Dom–

Pr
[

R
$

← {0, 1}p(k) ; π
$

← P (1k, x, w,R) : V (1k, x, π,R) = 1
]

= 1 .

2. Soundness: ∀k ∈ N, ∀P̂ , ∀x ∈ Dom such that x 6∈ Lρ–

Pr
[

R
$

← {0, 1}p(k) ; π ← P̂ (1k, x,R) : V (1k, x, π,R) = 1
]
≤ 2−k .

We now detail the zero-knowledge requirement. Given a non-interactive proof-system (P, V ) for re-
lation ρ, consider a simulator Sim, i.e. a polynomial-time algorithm running in two stages. In the
randomized gen stage it produces a simulated common reference string R. We stress that it does so
before seeing any theorem, based only on a bound on the theorem length. In the (w.l.o.g. determinis-
tic) prove stage it takes as input a theorem x and state information passed on by the first stage, and
then produces a simulated proof for the validity of x with respect to R.

This two phase behavior is not required explicitly in the definitions of [19, 9] but the construction
of [19] does have this property, and it is noted and and used in other places too.

Zero-knowledge is defined by means of a distinguisher D which tries to distinguish between proofs
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Expzk 0
P,Sim,D(k)

(R,StS)
$

← Sim(gen, 1k)
d← D(R : Prove0(·, ·))
Return d

Prove0(x,w)
π ← Sim(prove,StS , x)
Return π

Expzk 1
P,Sim,D(k)

R
$

← {0, 1}p(k)

d← D(R : Prove1(·, ·))
Return d

Prove1(x,w)
π ← P (1k, x, w,R)
Return π

Expss
Π,A(k)

(R,StS)← Sim(gen, 1k) ; (x, π)
$

← A(R : Sim(prove,StS , ·))
If all of the following are true then return 1 else return 0:

(1) x /∈ Lρ

(2) π was not returned by A’s oracle in response to a query x
(3) V (1k, x, π,R) = 1.

Figure 5: Expzk b
P,Sim,D(k) and Expss

Π,A(k)

produced by a prover (with respect to a real common random string), or a simulator (with respect
to a simulated common random string). More precisely, we consider two experiments in Figure 5
involving distinguisher D, Expzk 0

P,Sim,D(k) and Expzk 1
P,Sim,D(k). In the first experiment, a reference

string is produced via the simulator’s gen stage, while in the second it is a random string. In either
case, the distinguisher chooses a theorem x based on R. It is mandated that x ∈ Dom. D is required to
supply a correct witness for x relative to ρ, else it loses, meaning the experiment returns 0. (Note this
further weakens the distinguisher and thus makes the computational zk requirement less stringent.)
By querying its Proveb oracle with (x,w) ∈ ρ where x ∈ Dom, the distinguisher is given as challenge
a proof π, produced according to the simulator’s prove stage in the first experiment, and according to
the prover P in the second experiment. Here we assume that D makes exactly one query to Proveb.
The zk-advantage of D is

Advzk
P,Sim,D(k) = Pr

[
Expzk 1

P,Sim,D(k) = 1
]
− Pr

[
Expzk 0

P,Sim,D(k) = 1
]

.

We say that a non-interactive proof system (P, V ) is (computational) zero-knowledge if there exists a
polynomial time simulator Sim s.t. for any polynomial time distinguisher D the function Advzk

P,Sim,D(·)
is negligible. To show the dependency of Sim on (P, V ) we will say that (P, V,Sim) is a zero-knowledge
proof system.

We point out that we only require single-theorem NIZK as opposed to multiple-theorem NIZK,
in that the distinguisher has a challenge real-or-simulated proof for only a single theorem. However,
this weaker condition is made stronger by requiring that the simulator produce the reference string
without seeing the theorem. Based on [19] and [8] (the latter corrects a bug in the former) there exists
such zero-knowledge non-interactive proof system (P, V ) for any NP-relation ρ assuming the existence
of trapdoor permutations.

The last property we require is simulation-soundness [29]. Let Π = (P, V,Sim) be a zero knowledge
interactive proof system for NP-relation ρ over domain Dom. Simulation-soundness is defined using
the experiment Expss

Π,A(k) in Figure 5 involving a simulation-soundness adversary A.
First, a “fake common” random string R, together with the associated trap-door information StS

is generated by running the simulator: (R,StS)
$

← Sim(gen, k). The string is passed to the simulation-
soundness adversary, which has access to oracle Sim(prove,StS , ·). Here we assume the adversary
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Useri Issueri

(pki, ski)
$
← Ks(1

k) ; sig i ← Sig(usk[i],pki)
pki, sig i

✲

If Vf(upk[i],pki, sig i) = 1 then
certi ← Sig(sks, 〈i,pki〉)
reg [i]← (pki, sig i)

Else certi ← εcerti
✛

gsk[i]← (i,pki, ski, certi)

Figure 6: The group-joining protocol.

makes exactly one query to Sim(prove,StS, ·). At the end of the experiment the adversary is required
to output a pair (x, π). The advantage of A is defined by

Advss
Π,A(k) = Pr

[
Expss

Π,A(k) = 1
]

and we say that (P, V,Sim) is a simulation-sound if for all polynomial time adversaries A, there exists
a negligible function νA(·), such that Advss

Π,A(k) ≤ νA(k) for all k.
Sahai [29], building on [19, 8], shows that if trapdoor permutations exist, then any NP-relation

has a simulation-sound, non-interactive zero knowledge proof system.

5.2 Overview of our construction

We fix a digital signature scheme DS = (Ks,Sig,Vf) and a public-key encryption scheme AE =
(Ke,Enc,Dec) as above. We now show that the building blocks above can be used to construct a group
signature scheme GS = (GKg,UKg,GSig,GVf, Join, Iss,Open, Judge) that is anonymous, traceable and
non-frameable. We now present an overview of our construction.

The group public key gpk consists of the security parameter k, a public encryption key pke,
a verification key pks for digital signatures which we call the certificate verification key, and two
reference strings R1 and R2 for NIZK proofs. We denote by sks the signing key corresponding to pks,
and call it the certificate creation key. The issuer secret key ik is the certificate creation key sks. The
opener secret key ok is the decryption key ske corresponding to pke, together with the random coins
re used to generate (ske,pke). The certificate creation key sks is however denied to the group opener.
(This prevents the latter from issuing certificates for keys it generates itself, and is important to attain
traceability.)

In the group-joining protocol, user i generates a verification key pki and the corresponding signing
key ski. It uses its personal private key usk[i] to produce a signature sig i on pki. The signature
sig i prevents the user from being framed by a corrupt issuer. (The personal public and private key
pair (upk[i],usk[i]) were obtained by running the user-key generation algorithm prior to the group-
joining protocol. This is handled by the oracles.) The users sends pki, sig i to the issuer, who issues
membership to i by signing pki using the certificate creation key sks. The issuer then stores (pki, sig i)
in the registration table. Later, sig i can be used by the opener to produce proofs for its claims. See
Figure 6.

A group member i can produce a signature for a message m under pki by using its secret signing
key ski. To make this verifiable without losing anonymity, it encrypts the verification key pki under
pke and then proves in zero-knowledge that verification succeeds with respect to pki. However, to
prevent someone from simply creating their own key pair ski,pki and doing this, it also encrypts i and
its certificate certi, and proves in zero-knowledge that this certificate is a signature of 〈i,pki〉 under
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Algorithm GKg(1k)

R1
$

← {0, 1}p1(k) ; R2
$

← {0, 1}p2(k)

re
$

← {0, 1}r(k) ; (pke, ske)← Ke(1
k; re)

(pks, sks)
$

← Ks(1
k)

gpk ← (1k, R1, R2,pke,pks)
ok ← (ske, re) ; ik ← sks

Return (gpk, ok, ik)

Algorithm UKg(1k)

(upk,usk)
$

← Ks(1
k)

Return (upk,usk)

Algorithm GVf(gpk, (m,σ))
Parse gpk as (1k, R1, R2,pke,pks)
Parse σ as (C, π1)
Return V1(1

k, (pke,pks,m,C), π1, R1)

Algorithm GSig(gpk,gsk[i],m)
Parse gpk as (1k, R1, R2,pke,pks)
Parse gsk[i] as (i,pki, ski, certi)

s← Sig(ski,m) ; r
$

← {0, 1}k

C ← Enc(pke, 〈i,pki, certi, s〉; r)

π1
$

← P1(1
k, (pke,pks,m,C),

(i,pki, certi, s, r), R1)
σ ← (C, π1)
Return σ

Algorithm Open(gpk, ok, reg [],m, σ)
Parse gpk as (1k, R1, R2,pke,pks)
Parse ok as (ske, re); Parse σ as (C, π1)
M ← Dec(ske, C); Parse M as 〈i,pk, cert, s〉
If reg [i] 6= ε then

Parse reg [i] as (pki, sig i)
Else pki ← ε ; sig i ← ε
π2 ← P2(1

k, (pke, C, i,pk, cert, s), (ske, re), R2)
If V1(1

k, (pke,pks,m,C), π1, R1) = 0 then
Return (0, ε)

If pk 6= pki or reg [i] = ε then return (0, ε)
τ ← (pki, sig i, i,pk, cert, s, π2)
Return (i, τ)

Algorithm Judge(gpk, i,upk[i],m, σ, τ)
Parse gpk as (1k, R1, R2,pke,pks)
Parse σ as (C, π1)
If (i, τ) = (0, ε) then

Return V1(1
k, (pke,pks,m,C), π1, R1) = 0

Parse τ as (pk, sig , i′,pk, cert, s, π2)
If V2(1

k, (C, i′,pk, cert, s), π2, R2) = 0 then
Return 0

If all of the following are true then return 1
Else return 0:

- i = i′;

- Vf(upk[i],pk, sig) = 1;

- pk = pk

Figure 7: Algorithms GKg,UKg,GVf,GVf,GSig,Open, Judge of our dynamic group signature scheme.

the certificate verification key pks present in the group public key. Group signature verification comes
down to verification of the NIZK proofs.

Opening is possible because the group opener has the decryption key ske. It obtains the user
identity i by decrypting the ciphertext in the signature. When i is indeed an existing user, the opener
proves its claim by supplying evidence that it decrypts the ciphertext correctly, and the user public key
it obtained from decryption is authentic (i.e. signed by user i using usk[i]). The former is accomplished
by a zero-knowledge proof. The judge algorithm simply checks if these proofs are correct.

5.3 Specification of our construction

We now provide a detailed specification of the scheme. We begin with the witness relations ρ1 and ρ2

underlying the zero-knowledge proofs. Relation ρ1 is defined as follows: ((pke,pks,m,C), (i,pk ′, cert,
s, r)) ∈ ρ1 iff

Vf(pks, 〈i,pk ′〉, cert) = 1, Vf(pk′,m, s) = 1 and Enc(pke, 〈i,pk ′, cert, s〉; r) = C .

Here m is a k-bit message, C a ciphertext and s a signature. We are writing Enc(pke,m; r) for
the encryption of message m under key pke using coins r, and assume that |r| = k. The domain
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Algorithm Join(Stjoin,Min)
If Min = ε then

Parse Stjoin as (gpk, i,upki,uski)

(pki, ski)
$

← Ks(1
k) ; sig i ← Sig(uski,pki)

St′join ← (i,pki, ski) ; Mout ← (pki, sig i)

Return (St′join,Mout, cont)

Else
Parse Stjoin as (i,pki, ski)
Parse Min as certi
St′join ← (i,pki, ski, certi)

Return (St′join, ε, accept)

Algorithm Iss(Stissue,Min,dec)
Mout ← ε ; dec′ ← reject

If dec = cont then
Parse Stissue as (gpk, ik, i,upki)
Parse Min as (pki, sig i)
Parse ik as sks

If Vf(upki,pki, sig i) = 1 then
certi ← Sig(sks, 〈i,pki〉)
Stissue ← (pki, sig i)
Mout ← certi ; dec′ ← accept

Return (Stissue,Mout,dec′)

Figure 8: The Join and Iss algorithms defining the group-joining protocol of our dynamic group
signature scheme.

Dom1 corresponding to ρ1 is the set of all (pke,pks,m,C) such that pke (resp. pks) is a public
key having non-zero probability of being produced by Ke (resp. Ks) on input k, and m is a k-bit
string. It is immediate that ρ1 is an NP relation over Dom1. Relation ρ2 is defined as follows:
((pke, C, i,pk, cert, s), (ske, re)) ∈ ρ2 iff

Ke(1
k; re) = (pke, ske) and Dec(ske, C) = 〈i,pk, cert, s〉

Here C is a ciphertext, i an identity and s a signature. The domain Dom2 corresponding to ρ2 is
the set of all (pke, C, i,pk, cert, s) such that pke is a public key having non-zero probability of being
produced by Ke on input k. It is immediate that ρ2 is an NP relation over Dom2.

We fix a proof system (P1, V1) for ρ1 and (P2, V2) for ρ2. Figure 7 shows the details of the algorithms
GKg,UKg,GVf,GVf,GSig,Open, Judge of our dynamic group signature scheme GS , based on the above.
The details of the algorithms Join, Iss that embody the join protocol of Figure 6 are shown in Figure 8.

Security Results. Fix digital signature scheme DS = (Ks,Sig,Vf), public-key encryption scheme
AE = (Ke,Enc,Dec), NP-relations ρ1 over domain Dom1, ρ2 over domain Dom2, and their non-
interactive proof systems (P1, V1) and (P2, V2) as above, and let GS = (GKg,UKg,GSig,GVf, Join, Iss,
Open, Judge) denote the dynamic group signature scheme associated to them as per our construction.
We derive our main result (Theorem 5.4) via the following three lemmas, proved in Appendix C.

Lemma 5.1 If AE is an IND-CCA secure encryption scheme, (P1, V1) is a simulation sound, compu-

tational zero-knowledge proof system for ρ1 over Dom1 and (P2, V2) is a computational zero-knowledge

proof system for ρ2 over Dom2, then group signature scheme GS is anonymous.

Lemma 5.2 If digital signature scheme DS is secure against forgery under chosen-message attack

, (P1, V1) is a sound non-interactive proof system for ρ1 over Dom1 and (P2, V2) is a sound non-

interactive proof system for ρ2 over Dom2, then group signature scheme GS is traceable.

Lemma 5.3 If digital signature scheme DS is secure against forgery under chosen-message attack

, (P1, V1) is a sound non-interactive proof system for ρ1 over Dom1 and (P2, V2) is a sound non-

interactive proof system for ρ2 over Dom2, then group signature scheme GS is non-frameable.

We know that if trapdoor permutations exist then so do secure digital signature schemes [6], IND-CCA
secure encryption schemes [17, 29] and simulation sound NIZK proofs for NP [29]. As a consequence
we have:
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Theorem 5.4 If there exists a family of trapdoor permutations, then there exists a dynamic group

signature scheme that is anonymous, traceable and non-frameable.
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[3] G. Ateniese and G. Tsudik. Group signatures à la carte. Proceedings of the 10th Annual Symposium on

Discrete Algorithms, ACM-SIAM, 1999.

[4] G. Ateniese and G. Tsudik. Some open issues and directions in group signature. Financial Cryptography

’99, Lecture Notes in Computer Science Vol. 1648, M. Franklin ed., Springer-Verlag, 1999.

[5] M. Bellare, D. Micciancio and B. Warinschi. Foundations of group signatures: Formal definitions, simplified
requirements, and a construction based on general assumptions. Advances in Cryptology – EUROCRYPT

’03, Lecture Notes in Computer Science Vol. 2656, E. Biham ed., Springer-Verlag, 2003.

[6] M. Bellare and S. Micali. How to sign given any trapdoor permutation. JACM, 39(1):214–233, 1992.

[7] M. Bellare and P. Rogaway. Entity authentication and key distribution. Advances in Cryptology – CRYPTO

’93, Lecture Notes in Computer Science Vol. 773, D. Stinson ed., Springer-Verlag, 1993.

[8] M. Bellare and M. Yung. Certifying permutations: Non-interactive zero-knowledge based on any trapdoor
permutation. J. of Cryptology 9(1):149–166, 1996.

[9] M. Blum, A. DeSantis, S. Micali, and G. Persiano. Non-interactive zero-knowledge proof systems. SIAM

J. on Computing, 20(6):1084–1118, 1991.

[10] E. Bresson and J. Stern. Efficient revocation in group signatures. Public-Key Cryptography ’01, Lecture
Notes in Computer Science Vol. 1992, K. Kim ed., Springer-Verlag, 2001.

[11] J. Camenisch. Efficient and generalized group signature. Advances in Cryptology – EUROCRYPT ’97,
Lecture Notes in Computer Science Vol. 1233, W. Fumy ed., Springer-Verlag, 1997.

[12] J. Camenisch and A. Lysyanskaya. An identity-escrow scheme with appointed verifiers. Advances in Cryp-

tology – CRYPTO ’01, Lecture Notes in Computer Science Vol. 2139, J. Kilian ed., Springer-Verlag, 2001.

[13] J. Camenisch and M. Michels. A group signature scheme with improved efficiency. Advances in Cryptology

– ASIACRYPT ’98, Lecture Notes in Computer Science Vol. 1514, D. Pei ed., Springer-Verlag, 1998.

[14] J. Camenisch and M. Stadler. Efficient group signatures schemes for large groups. Advances in Cryptology

– CRYPTO ’97, Lecture Notes in Computer Science Vol. 1294, B. Kaliski ed., Springer-Verlag, 1997.

[15] D. Chaum and E. van Heyst. Group signatures. Advances in Cryptology – EUROCRYPT ’91, Lecture
Notes in Computer Science Vol. 547, D. Davies ed., Springer-Verlag, 1991.

[16] L. Chen and T. P. Pedersen. New group signature schemes. Advances in Cryptology – EUROCRYPT ’94,
Lecture Notes in Computer Science Vol. 950, A. De Santis ed., Springer-Verlag, 1994.

[17] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. on Computing, 30(2):391–437,
2000.

[18] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems.
Advances in Cryptology – CRYPTO ’86, Lecture Notes in Computer Science Vol. 263, A. Odlyzko ed.,
Springer-Verlag, 1986.

18



[19] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero-knowledge proofs under general as-
sumptions. SIAM J. on Computing, 29(1):1–28, 1999.

[20] O. Goldreich. A uniform-complexity treatment of encryption and zero-knowledge. J. of Cryptology, 6(1):21–
53, 1993.

[21] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Science, 28:270–
299, 1984.

[22] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM J. on Computing, 17(2):281–308, 1988.

[23] S. Goldwasser and Y. Tauman. On the (In)security of the Fiat-Shamir paradigm. Proceedings of the 44th

Symposium on Foundations of Computer Science, IEEE, 2003.

[24] A. Kiayias, Y. Tsiounis and M. Yung. Traceable signatures. Advances in Cryptology – EUROCRYPT ’04,
Lecture Notes in Computer Science Vol. 3027, C. Cachin and J. Camenisch ed., Springer-Verlag, 2004.

[25] S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic cryptosystems. SIAM J. on

Computing, 17(2):412–426, 1988.

[26] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. Pro-

ceedings of the 22nd Annual Symposium on the Theory of Computing, ACM, 1990.

[27] H. Petersen. How to convert any digital signature scheme into a group signature scheme. Proceedings of

Security Protocols Workshop ’97.

[28] C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack.
Advances in Cryptology – CRYPTO ’91, Lecture Notes in Computer Science Vol. 576, J. Feigenbaum ed.,
Springer-Verlag, 1991.

[29] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. Pro-

ceedings of the 40th Symposium on Foundations of Computer Science, IEEE, 1999.

[30] D. Song. Practical forward-secure group signature schemes. Proceedings of the 8th Annual Conference on

Computer and Communications Security , ACM, 2001.

A Relations to Existing Security Notions

As in the static case [5], the key requirements that we define (anonymity, traceability and non-
frameability) are strong enough to capture and imply all existing informal security requirements in
the literature. We briefly argue this here.

Unforgeability. Unforgeability means that it is computationally infeasible for an adversary A
to produce message signature pairs (m,σ) that are accepted by the verification algorithm, without
knowledge of the secret key(s). This follows immediately from traceability plus non-frameability. Let

(i, τ)
$

← Open(gpk, ok, reg ,m, σ). If i = 0 then traceability is violated. If i > 0 then we can construct
an adversary that violates non-frameability by itself running Open. We omit the details.

Exculpability. Exculpability means that no member of the group and not even the opener or issuer
can produce signatures on behalf of other users. This is implied by our formulation of non-frameability.

Traceability. The informal notion of traceability means that it is not possible to produce signatures
which can not be traced to one of the group that has produced the signature. Our formulation of the
traceability requirement is stronger since the adversary has access to all user’s secret key as well as
the group manager’s keys, and thus it captures the informal traceability requirement.

Coalition resistance. Coalition resistance means a group of signers colluding together should not
be able to generate signatures that cannot be traced to any of them. As with unforgeability, this is
implied by traceability plus non-frameability.
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Experiment Expi
GS(B)

(gpk, ik, ok)
$

← GKg(1k)
CU← ∅ ; HU← ∅ ; GSet← ∅ ; cnt ← 0

d
$

← B(gpk : HGuessi(·, ·, ·),Open(·, ·),SndToU(·, ·),
WReg(·, ·),USK(·),CrptU(·, ·))

Return d

Oracle HGuessi(i0, i1,m)
cnt ← cnt + 1
If cnt ≤ i then

σ ← GSig(gpk, gsk0,m)
Else σ ← GSig(gpk, gsk1,m)
Return σ

Adversary A(gpk : Chb(·, ·, ·),Open(·, ·),
SndToU(·, ·),WReg(·, ·),USK(·),CrptU(·, ·))

cnt ← 0

I
$

← {1, . . . , n(k)}
d← B(gpk : Ch(·, ·, ·),Open(·, ·),

SndToU(·, ·),WReg(·, ·),USK(·),CrptU(·, ·))
If cnt < I then

σ ← Chb(0, 0, ε) [oracle query]
Return d

Oracle Ch(i0, i1,m)
gsk0 ← USK(i0) [oracle query]
gsk1 ← USK(i1) [oracle query]
cnt ← cnt + 1
If cnt < I then σ ← GSig(gpk, gsk0,m)
If cnt > I then σ ← GSig(gpk, gsk1,m)
If cnt = I then

σ ← Chb(i0, i1,m) [oracle query]
Return σ

Figure 9: Construction of adversary A

Framing. Framing means a set of group members should not be able to combine their keys to produce
a valid signature such that the opening algorithm will attribute it to a different group member. It is
clear that framing is a version of coalition resistance, and is therefore captured by our formulation of
non-frameability.

Anonymity. The informal notion of anonymity is a weaker form of the anonymity requirement in this
paper, where the adversary does not have capabilities as powerful as we give it, and is thus implied
by our definition.

Unlinkability. Unlinkability means a party who sees a list of signatures cannot relate two signatures
together as being produced by the same user. By similar reasoning to that in [5] we can show that a
group signature scheme secure against anonymity is also secure against unlinkability.

B From many queries to one

The following says that in considering anonymity, we may without loss of generality restrict our
attention to adversaries that make exactly one query to their Ch(b, ·, ·) oracle. This will be useful in
later proofs.

Lemma B.1 Given dynamic group signature scheme GS, for any polynomial-time adversary B at-

tacking the anonymity of GS that makes at most n(k) queries to the Ch(b, ·, ·) oracle, where n(k) is

a polynomial, there exists a polynomial-time adversary A, also attacking the anonymity of GS that

makes exactly one query to its Ch(b, ·, ·) oracle, and

Advanon
GS,B(k) ≤ n(k) ·Advanon

GS,A(k) .

Proof of Lemma B.1: The proof is a standard hybrid argument. For completeness we provide the
details.
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For any i ∈ {0, . . . , n(k)}, we associate to B an oracle HGuessi(·, ·, ·) and an experiment Expi
GS(B),

as indicated in Figure 9. Let

P (i) = Pr
[
Expi

GS(B) = 1
]

Now, observe that oracles HGuess0(·, ·, ·) and Ch1(·, ·, ·) are equivalent, meaning that on any inputs,
their responses are identically distributed. Similarly, oracles HGuessn(k)(·, ·, ·) and Ch0(·, ·, ·) are equiv-
alent. Hence,

P (0) = Pr
[
Expanon-1

GS,B (k) = 1
]

P (n(k)) = Pr
[
Expanon-0

GS,B (k) = 1
]

(1)

The details of A are given in Figure 9. Adversary A is intended to run in the experiment Expanon-b
GS (k).

It begins by initializing a counter to 0, and picking I at random from {1, . . . , n(k)}. Then it runs adver-
sary B against GS. When answering B’s queries to oracles Open(·, ·),CrptU(·, ·),SndToU(·, ·),WReg(·, ·)
and USK(·), A simply queries its own oracles and return the answer to B. When answering B’s queries
to Ch(·, ·, ·), B’s first I−1 queries are answered by signatures of the first identity in B’s query, the I-th
query is answered by calling A’s Chb(·, ·, ·) oracle, and the rest by signatures of the second identity in
B’s query. After B outputs a bit d, A returns it as its own result. (If B makes less than I queries to
Ch(·, ·, ·), A will make a dummy query to its Chb(·, ·, ·) oracle so that A makes exactly one Chb query.)
Regarding I as a random variable taking values in {1, . . . , n(k)}, this means for every i ∈ {1, . . . , n(k)},

Pr
[
Expanon-1

GS,A (k) = 1|I = i
]

= P (i− 1)

Pr
[
Expanon-0

GS,A (k) = 1|I = i
]

= P (i) (2)

Since the random variable I is uniformly distributed in the range {1, . . . , n(k)} we have

Pr
[
Expanon-1

GS,A (k) = 1
]

=

n(k)∑

i=1

Pr
[
Expanon-1

GS,A (k) = 1|I = i
]
· Pr [ I = i ] =

n(k)∑

i=1

P (i− 1) ·
1

n(k)

Pr
[
Expanon-0

GS,A (k) = 1
]

=

n(k)∑

i=1

Pr
[
Expanon-0

GS,A (k) = 1|I = i
]
· Pr [ I = i ] =

n(k)∑

i=1

P (i) ·
1

n(k)
(3)

Using the above equations, we have

Advanon
GS,A(k) = Pr

[
Expanon-1

GS,A (k) = 1
]
− Pr

[
Expanon-0

GS,A (k) = 1
]

=
1

n(k)
· (P (0)− P (n(k)))

=
1

n(k)
·Advanon

GS,B(k) (4)

This completes the proof.

C Proofs of Security Results

These proofs are very similar to those in [5] and we build considerably on the latter.
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Algorithm Ac(pke : Enc(pke,LR(·, ·, b)),Dec(ske, ·))

(stS1
, R1)

$

← Sim1(gen, 1k) ; (stS2
, R2)

$

← Sim2(gen, 1k)

(pks, sks)
$

← Ks(1
k) ; gpk ← (1k, R1, R2,pke,pks) ; ik ← sks

CU← ∅ ; HU← ∅ ; GSet← ∅ ; CLIST← ∅ ; d← ⊥

d′
$
← B(gpk, ik : Chc(·, ·, ·),Open(·, ·),SndToU(·, ·),WReg(·, ·),USK(·),CrptU(·, ·))

If d 6= ⊥ then return d else return d′

Chc(m, i0, i1)
Parse gpk as (1k, R1, R2,pke,pks); Parse gsk[ic] as (ic,pkic , skic , certic)

sc
$

← Sig(skic ,m) ; Mc ← 〈ic,pkic , certic , sc〉 ; Mc̄ ← 0|Mc|

C ← Enc(pke,LR(M0,M1, b)) [oracle query]
CLIST← CLIST ∪ {C}
π1 ← Sim1(prove, stS1

, (pke,pks,m,C))
Return (C, π1)

Open(m,σ)
Parse σ as (C, π1)
If GVf(gpk,m, σ)) = 1 and C ∈ CLIST then d← c
Run Open algorithm (using Dec(ske, ·) oracle to decrypt C, and using Sim2

in place of P2), and return the result to B

Figure 10: Adversary Ac (c = 0, 1) is against the security of the encryption scheme

C.1 Proof of Lemma 5.1

By the assumption that P1 is computational zero-knowledge for ρ1 over Dom1, we can fix a simulator
Sim1 such that Π1 = (P1, V1,Sim1) is a simulation sound zero knowledge non-interactive proof system
for Lρ1

. Similarly we can fix a simulator Sim2 such that Π2 = (P2, V2,Sim2) is a zero knowledge
non-interactive proof system for Lρ2

.
We show that for any polynomial time adversary B mounting an attack against anonymity of

GS, one can construct polynomial time IND-CCA adversaries A0, A1 attacking AE , an adversary As

against the simulation soundness of Π1, a distinguisher D1 that distinguishes simulated proofs from
real proofs for Π1 and a distinguisher D2 for Π2, such that for all k ∈ N

Advanon
GS,B(k) ≤

Advind-cca
AE,A0

(k) + Advind-cca
AE ,A1

(k) + Advss
Π,As

(k) + 2 ·
(
Advzk

P1,Sim1,D1
(k) + Advzk

P2,Sim2,D2
(k)

)
(5)

By the assumption on the security of the building blocks of our group signature scheme, all functions
on the right side are negligible, therefore so is the function on the left, i.e. our construction is an
anonymous group signature scheme.

Following are the details of the constructed adversaries. Unless explicitly specified, these adver-
saries will answer the oracle queries from B according to Figure 2.

Adversaries against the encryption scheme. The details of adversaries A0, A1 against the
encryption scheme AE is given in Figure 10. They are virtually identical, modulo parameter c by
which their construction is parametrized, and so is the following description.

Adversary Ac creates an instance for the group signature scheme by generating all keys. The
difference from a real group signature scheme is that the public encryption key corresponding to ok is
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Algorithm D1(1
k, R1 : Prove(·, ·))

re
$

← {0, 1}r(k)

(pke, ske)← Ke(1
k; re) ; (pks, sks)

$

← Ks(1
k)

(stS2
, R2)

$

← Sim2(gen, 1k)
gpk ← (1k, R1, R2,pke,pks)
ok ← (ske, re) ; ik ← sks

CU← ∅ ; HU← ∅ ; GSet← ∅ ; b
$

← {0, 1}

d
$
← B(gpk, ik : Chb(·, ·, ·),Open(·, ·),

SndToU(·, ·),WReg(·, ·),USK(·),CrptU(·, ·))
If d = b then return 1 else return 0

Chb(m, i0, i1)
Parse gpk as (1k, R1, R2,pke,pks)
Parse gsk[ib] as (ib,pkib

, skib , certib)

r
$

← {0, 1}k ; s
$

← Sig(skib ,m)
C ← Enc(pke, 〈ib,pkib

, certib , s〉; r)
π1 ← Prove((pke,pks,m,C),

(ib,pkib
, certib , s, r)) [oracle query]

Return (C, π1)

Open(m,σ)
Run Open algorithm, using Sim2 in place of
P2, and return the result to B

Algorithm D2(1
k, R2 : Prove(·, ·))

re
$

← {0, 1}r(k)

(pke, ske)← Ke(1
k; re) ; (pks, sks)

$

← Ks(1
k)

R1
$

← {0, 1}p(k)

gpk ← (1k, R1, R2,pke,pks)
ok ← (ske, re) ; ik ← sks

CU← ∅ ; HU← ∅ ; GSet← ∅ ; b
$

← {0, 1}

d
$
← B(gpk, ik : Chb(·, ·, ·),Open(·, ·),

SndToU(·, ·),WReg(·, ·),USK(·),CrptU(·, ·))
If d = b then return 1 else return 0

Chb(m, i0, i1)
Parse gpk as (1k, R1, R2,pke,pks)
Parse gsk[ib] as (ib,pkib

, skib , certib)

r
$

← {0, 1}k ; s
$

← Sig(skib ,m)
C ← Enc(pke, 〈ib,pkib

, certib , s〉; r)
π1 ← P1(1

k, (pke,pks,m,C),
(ib,pkib

, certib , s, r), R1)
Return (C, π1)

Open(m,σ)
Run Open algorithm, using Prove oracle in
place of P2, and return the result to B

Figure 11: Adversaries D1, D2 are distinguishers against the zero knowledge property of the interactive
proof systems Π1, Π2, respectively

obtained from the environment in which Ac is run (the CCA experiment) and that the random strings
R1 and R2 in the public key of the encryption scheme are obtained by using the simulators Sim1 and
Sim2.

Then, Ac runs B against the group signature scheme created this way. In doing so, it needs to
answer all opening queries that B may make. This is possible, using the decryption oracle: when a
query to the opening oracle is made by B, adversary Ac intercepts this query and checks to see if the
signature is valid (this is easy, since Ac possesses gpk.) Then, Ac submits the encrypted part of the
signature to the decryption oracle, and from the plaintext, A extracts the identity of the alleged signer
and uses Sim2 to generate a proof, which it passes to B.

When B queries (m, i0, i1) to Chb oracle, Ac creates two challenge plaintexts M0,M1, which are
computed as follows: Mc is the plaintext of the encrypted part of a group signature on m produced
by ic and Mc̄ is an all-zero string of length equal to that of Mc.

Ac then queries Enc(pke,LR(·, ·, b)), and receives as input a ciphertext C, which is the encryption
of one of the two messages, M0 and M1. Next, Ac runs the simulator to obtain a proof π1 of validity
for (pke,pks,m,C). This is always possible, even in the case when C encrypts Mc̄. The challenge
signature that is returned to B is (C, π1) which Ac now simulates. The final output of Ac is computed
as follows: if during this stage B makes a valid query (C, π′) to the opening oracle (i.e. it manages
to produce a different proof of validity for C), then the guess bit d is set to c, otherwise it is set to
whatever B outputs.

Notice that further opening queries of B can be answered by Ac using the decryption oracle (as
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Algorithm As(R1 : Sim1(prove, stS1
, ·))

re
$

← {0, 1}r(k) ; (pke, ske)← Ke(1
k; re) ; (pks, sks)

$

← Ks(1
k)

(stS2
, R2)

$

← Sim2(gen, 1k) ; gpk ← (1k, R1, R2,pke,pks) ; ok ← (ske, re) ; ik ← sks

CU← ∅ ; HU← ∅ ; GSet← ∅ ; CLIST← ∅ ; y ← ⊥
B(gpk, ik : Ch(·, ·, ·),Open(·, ·),SndToU(·, ·),WReg(·, ·),USK(·),CrptU(·, ·))
Return y

Ch(m, i0, i1)
Parse gpk as (1k, R1, R2,pke,pks); Parse gsk[i1] as (i1,pki1, ski1 , certi1)

s1
$

← Sig(ski1 ,m) ; M1 ← 〈i1,pki1
, certi1 , s1〉 ; M0 ← 0|M1|

C ← Enc(pke,M0)) ; CLIST← CLIST ∪ {C}
π1 ← Sim1(prove,StS1

, (pke,pks,m,C)) [oracle query]
Return (C, π1)

Open(m,σ)
Parse σ as (C, π1)
If GVf(gpk,m, σ)) = 1 and C ∈ CLIST then y ← ((pke,pks,m,C), π1)
Run Open algorithm, using Sim2 in place of P2, and return the result to B

Figure 12: Adversary As is against simulation-soundness of Π1

described above). However, we have to make sure that the challenge ciphertext C is never queried
to the decryption oracle. This is true, since whenever a valid query (C, π′) is issued by B to the
opening oracle, adversary Ac, instead of submitting C to the decryption oracle, simply outputs c and
terminates.

The distinguishers for zero-knowledge. The distinguisher D1 (given in Figure 11), also starts
out by creating an instance of the group signature scheme GS . The keys for the encryption schemes,
the individual signing keys and the keys for certifying/verifying individual public keys are obtained
by running the respective key generation algorithms. The string R1 that is part of the public key is
supplied to D1 by the environment in which it is run. D1 uses simulator Sim2 to generate the reference
string R2.

Then, by running B against the group signature scheme, it obtains a message m and two identities
i0, i1 for which B claims it can distinguish group signatures on m. When B makes a query to the
opening oracle, D1 runs the Open algorithm normally, except that it uses simulator Sim2 to generate
the proof π2.

The challenge group signature that D1 passes to to B in response to B’s query to Ch is created
as follows. One of the two signers i0 and i1 is chosen, by flipping uniformly at random a bit b, and
the plaintext corresponding to a signature on m created by ib is encrypted under the public key of the
group manager. D1 queries its oracle (pks,pke,m,C) ∈ Lρ1

together with the corresponding witness,
and receives a proof π1. D1 then creates a group signature (C, π1) on m and feeds it to B. The final
output of D1 is whatever B outputs.

The distinguisher D2 has structure similar to D1 except for three major differences. (1) The string
R2 that is part of the public key is supplied to D2 by the environment in which it is run. However,
the reference string R1 is a true random string. (2) When B makes a query to the opening oracle, D2

uses its Prove oracle instead of Sim2 to generate π2. (3) In Ch oracle, D2 uses P1 to generate π1.

The simulation-soundness adversary. The adversary As against the simulation soundness is
given in Figure 12. It creates an instance for the group signature scheme GS , by generating all keys.
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The only difference from a “real” group signature scheme is that the random string R1 that is part of
the public key is obtained from the environment in which As runs (i.e. it is generated by the simulator),
and R2 is generated by simulator Sim2. Then As runs B against the group signature scheme. When
B queries Ch with message m and the two identities i0 and i1, the challenge signature (C, π1) that As

passes to B is such that C is the encryption of the all-zero string (of appropriate length) and π1 is a
simulated proof of validity. When B queries the opening oracle, As runs the Open algorithm normally
but uses Sim2 in place of P2. Finally, As tracks the queries that B makes to the opening oracle: if B
makes a valid query (C, π′) then As outputs ((pke,pks,m,C), π′), otherwise it fails.

Putting it all together. We now explain how to relate the advantages of the four adversaries
described above with the advantage of B (the adversary against full-anonymity that they all run as a
subroutine.) We start with the distinguisher.

Recall that under experiment Expzk 1
P2,Sim2,D2

(k), the string R2 passed to D2 is an actual random
string; so D2 runs B against a group signature scheme generated according to the key generation
algorithm GKg. If (m, i0, i1) is the query made by B to Ch, the signature returned to B is the real
signature of ib, where b is chosen at random. So, D2 outputs 1 exactly when B guesses correctly which
user produced the signature, i.e. it wins in Expanon-b

GS,B (k) no matter what D2’s choice of b is. We can
formalize the above as follows:

Pr
[
Expzk 1

P2,Sim2,D2
(k) = 1

]

= Pr [ B returns 1 | b = 1 ] · Pr [ b = 1 ] + Pr [ B returns 0 | b = 0 ] · Pr [ b = 0 ]

=
1

2
Pr

[
Expanon-1

GS,B (k) = 1
]
+

1

2
Pr

[
Expanon-0

GS,B (k) = 0
]

=
1

2
Pr

[
Expanon-1

GS,B (k) = 1
]
+

1

2

(
1− Pr

[
Expanon-0

GS,B (k) = 1
])

=
1

2
+

1

2
Advanon

GS,B(k) (6)

Notice that the experiments Expzk 1
P1,Sim1,D1

(k) and Expzk 0
P2,Sim2,D2

(k) are identical. In both exper-
iments, the reference string R1 is a true random string and R2 is generated by simulator Sim2. In
Expzk 1

P1,Sim1,D1
(k), the Prove oracle D1 queries is in fact P1. In Expzk 0

P2,Sim2,D2
(k), the Prove oracle D2

queries is Sim2. Therefore,

Pr
[
Expzk 1

P1,Sim1,D1
(k) = 1

]
= Pr

[
Expzk 0

P2,Sim2,D2
(k) = 1

]
(7)

The success of D1 under experiment Expzk 0
P1,Sim1,D1

(k) is related to the advantages of adversaries A0, A1

and As as follows (readers are referred to [5] for the detailed discussion and derivation):

2 · Pr
[
Expzk 0

P1,Sim1,D1
(k) = 1

]
≤ Advind-cca

AE,A1
(k) + Advind-cca

AE,A0
(k) + Advss

Π1,As
(k)

We can now calculate sum of the advantages of distinguishers D1 and D2, by combining the above
equation with equations (6) and (7):

2 ·
(
Advzk

P1,Sim1,D1
(k) + Advzk

P2,Sim2,D2
(k)

)

= 2 ·
(
Pr

[
Expzk 1

P1,Sim1,D1
(k) = 1

]
− Pr

[
Expzk 0

P1,Sim1,D1
(k) = 1

]

+ Pr
[
Expzk 1

P2,Sim2,D2
(k) = 1

]
− Pr

[
Expzk 0

P2,Sim2,D2
(k) = 1

])

≥ Advanon
GS,B(k)−Advind-cca

AE,A0
(k)−Advind-cca

AE,A1
(k)−Advss

Π1,As
(k)

and by rearranging the terms we obtain Equation (5) as desired.
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F1 : GVf(gpk,m, σ) = 1 ∧ i = 0.

F2 : GVf(gpk,m, σ) = 1 ∧ i > 0 ∧ Judge(gpk, i,upk[i],m, σ, τ) = 0

F : F denotes the event F1 ∨ F2

S : (pke,pks,m,C) ∈ Lρ1

Figure 13: Events considered in the proof of traceability

C.2 Proof of Lemma 5.2

Let B be a traceability adversary against GS . We define an adversary A1 against digital signature
scheme DS, as specified in Figure 14. Then, using the assumption that (P1, V1) is a sound proof
system for ρ1, we claim that

Advtrace
GS,B(k) ≤ 2−k + Adv

unforg-cma
DS,A1

(k) .

Since we assume that the digital signature scheme DS is secure, it follows that the right hand side of
the inequality is a negligible function (of the security parameter) so, the advantage function on the
left is also negligible. Thus, according to the definition, GS is a traceable group signature scheme.

Adversary A1 is intended to run in the experiment Exp
unforg-cma
DS,A1

(k), defining the security of
digital signature DS. As such, it has access to a signing oracle Sig(sk, ·), and is given as input the
corresponding verification key pk. It starts out by construction an instance of the group signature
scheme GS as follows. It generates the opening key ske together with the corresponding key pke. A1

answers most of the oracles according to Figure 2 except for two oracles: SndToI and AddU. When
answering these two oracles for identity i, instead of certifying 〈i,pki〉 using ik, A1 queries its own
oracle Sig(sk, ·), and sends the result back to i as the certificate.

Let (m,σ) denote the output of B where σ = (C, π1). Let (i, τ) be the output of Open(gpk, ok, reg ,m, σ).
Consider the events in Figure 13. Notice that the events F1 and F2 are disjoint. The advantage of the
adversary B can be bounded by

Advtrace
GS,B(k) = Pr [F ] = Pr

[
F ∧ S

]
+ Pr [ F1 ∧ S ] + Pr [F2 ∧ S ] . (8)

We now bound each of these terms.

Claim C.1 Pr
[
F ∧ S

]
≤ 2−k.

Proof: The event F implies GVf(gpk,m, σ) = 1, i.e. V1((m,C), π1) = 1. Since (P1, V1) is a sound
proof system for ρ1, for any security parameter k, and any polynomial time forger B,

Pr
[
F ∧ S

]
≤ Pr [ (pke,pks,m,C) 6∈ Lρ1

and V1((m,C), π1) = 1 ] ≤ 2−k (9)

as desired.

Claim C.2 Pr [ F1 ∧ S ] ≤ Adv
unforg-cma
DS,A1

(k).

Proof: Suppose B outputs a successful forgery (m, (C, π1), τ) such that

- (pke,pks,m,C) ∈ Lρ1
, and

- Open(gpk, ok, reg ,m, σ) returns i = 0.

26



Adversary A
Sig(sk,·)
1 (pk)

R1
$

← {0, 1}p1(k)

R2
$

← {0, 1}p2(k)

re
$

← {0, 1}r(k)

(pke, ske)← Ke(1
k; re)

pks ← pk ; sks ← ⊥
HU← ∅ ; CU← ∅
gpk ← (1k, R1, R2,pke,pks)
ok ← (ske, re)
ik ← ⊥
(m,σ)← B(gpk, ok : SndToI(·, ·),AddU(·),

RReg(·),USK(·),CrptU(·, ·))

Parse σ as (C, π1)
M ← Dec(ske, C)
Parse M as 〈i,pk ′, cert′, s〉
Return (〈i,pk ′〉, cert′)

SndToI(i,Min)
If i /∈ CU then return ε
Mout ← ε ; dec′ ← reject

If deci = cont then

Parse Stiiss as (gpk, ik, i,upki)
Parse Min as (pki, sig i)
If Vf(upki,pki, sig i) = 1 then

certi ← Sig(sk, 〈i,pki〉) [oracle query]
reg [i]← (pki, sig i)
Mout ← certi ; dec′ ← accept

deci ← dec′; return Mout

AddU(i)
If i ∈ CU or i ∈ HU then return ε

HU← HU ∪ {i} ; (upk[i],usk [i])
$

← UKg(1k)

(pki, ski)
$

← Ks(1
k) ; sig i ← Sig(usk[i],pki)

certi ← Sig(sk, 〈i,pki〉) [oracle query]
reg [i]← (pki, sig i)
gsk[i]← (i,pki, ski, certi)
Return upk[i]

Figure 14: Construction of cma-forger A1 against DS from an adversary B against traceability of GS .

Let Dec(ske, C) = 〈i,pk ′, cert′, s〉 be the plaintext of C, and (pki, sig i) be the contents of reg [i]. It
follows that Vf(pk, 〈i,pk ′〉, cert′) = 1, and either pk′ 6= pki or reg [i] = ε. Since A1 has never queried

〈i,pk ′〉 to its oracle Sig(sk, ·), (〈i,pk ′〉, cert′) is a successful forgery of A1 in the Exp
unforg-cma
DS,A1

(k)
experiment, and

Adv
unforg-cma
DS,A1

(k) ≥ Pr [ F1 ∧ S ] (10)

as desired.

Claim C.3 Pr [ F2 ∧ S ] = 0.

Proof: Let (i, τ) be the output of Open(gpk, ok, reg ,m, σ), where σ = (C, π1). The event F2 implies
i > 0. Let M = Dec(ske, C) be the plaintext of C, and M is parsed as 〈i,pk, cert, s〉. Consider the
pseudocode of the Open algorithm. Since Open returns i > 0, we have reg [i] 6= ε, and reg [i] can be
parsed as (pki, sig i). Furthermore, it must be true that pk = pki, otherwise Open will return i = 0.

Now consider the Judge algorithm given parameters gpk, i,upk[i],m, σ, τ . Notice that the specific
parameters m,σ are the same as the input of Open in the previous paragraph, and τ is the proof Open

outputs.

First, Judge checks whether V2(1
k, (C, i,pk, cert, s), π2, R2) = 1. Since (pke, C, i,pk, cert, s) ∈ Lρ2

,
and Open generated π2 by running the prover P2 on (pke, C, i,pk, cert, s), this satisfies. Next, Judge

will check whether the identity i in its own parameter list is identical to the identity i′ in τ . Again,
this is true, since the i′ that Open put in τ is exactly the i that Open returns. Third, Judge will check
whether Vf(upk[i],pki, sig i) = 1. This is true since pki, sig i were written to the reg table by the
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Adversary A
Sig(sk,·)
2 (pk)

R1
$

← {0, 1}p1(k)

R2
$

← {0, 1}p2(k)

re
$

← {0, 1}r(k)

(pks, sks)
$

← Ks(1
k)

(pke, ske)← Ke(1
k; re)

t
$

← {1, 2, . . . , n(k)}
cnt ← 0 ; u← ⊥
HU← ∅ ; CU← ∅
gpk ← (1k, R1, R2,pke,pks)
ok ← (ske, re) ; ik ← sks

(m,σ, i, τ)← B(gpk, ok, ik : SndToU(·, ·),
WReg(·, ·),GSig(·, ·),USK(·),CrptU(·, ·))

Parse τ as (pk, sig , i,pk ′, cert′, s, π2)
Return (m, s)

USK(i)
If i = u then fail
Run the normal USK oracle

SndToU(i,M)
If i /∈ HU then

HU← HU ∪ {i} ; cnt ← cnt + 1

(upk[i],usk[i])
$

← Ks(1
k)

If cnt = t then
u← i ; pki ← pk ; ski ← ⊥

Else (pki, ski)
$

← Ks(1
k)

sig i ← Sig(usk[i],pki) ; Stjn ← (pki, ski)
Return (〈pki, sig i〉, true)

Else run the normal SndToU oracle

GSig(i,m)
Parse gpk as (1k, R1, R2,pke,pks)
If i = u then

Parse gsk[i] as (i,pki, ski, certi)

s
$

← Sig(sk,m) [oracle query]

r
$

← {0, 1}k ; C
$

← Enc(pke, 〈i,pk, certi, s〉; r)

π1
$

← P1(1
k, (pke,pks,m,C),

(i,pk, certi, s, r), R1)
Return (C, π1)

Else run the normal GSig oracle

Figure 15: Construction of cma-forger A2 against DS from an adversary B against non-frameability
of GS. Here n(·), a polynomial in k, is the number of honest users that B creates.

issuer during the Join protocol only if Vf(upk[i],pki, sig i) = 1. Finally, Judge will check if pki = pk,
which we already know is true from our previous discussion about Open. After checking all these
conditions, it is necessary that Judge return 1. This proves the claim.

Using the Claims, we can bound the advantage of B as desired:

Advtrace
GS,B(k) ≤ 2−k + Adv

unforg-cma
DS,A1

(k) .

C.3 Proof of Lemma 5.3

Let B be a non-frameability adversary against GS who creates at most n(k) honest users, where n
is a polynomial. We define adversaries A2, A3 against digital signature scheme DS, as specified in
Figures 15 and 16. Then, using the assumption that (P1, V1), (P2, V2) are sound proof systems for
ρ1, ρ2 respectively, we claim that

Advnf
GS,B(k) ≤ 2−k+1 + n(k) ·

(
Adv

unforg-cma
DS,A2

(k) + Adv
unforg-cma
DS,A3

(k)
)

.

Since we assume that the digital signature scheme DS is secure, it follows that the right hand side of
the inequality is a negligible function (of the security parameter) so, the advantage function on the left
is also negligible. Thus, according to the definition, GS is a non-frameable group signature scheme.

Adversary A2 is intended to run in the experiment Exp
unforg-cma
DS,A2

(k), defining the security of
digital signature DS. As such, it has access to a signing oracle Sig(sk, ·), and is given as input the
corresponding verification key pk. It starts out by construction an instance of the group signature

28



Adversary A
Sig(sk,·)
3 (pk)

R1
$

← {0, 1}p1(k) ; R2
$

← {0, 1}p2(k) ; re
$

← {0, 1}r(k)

(pke, ske)← Ke(1
k; re) ; (pks, sks)

$

← Ks(1
k)

t
$

← {1, 2, . . . , n(k)} ; cnt ← 0 ; u← ⊥
HU← ∅ ; CU← ∅ ; gpk ← (1k, R1, R2,pke,pks)
ok ← (ske, re) ; ik ← sks

(m,σ, i, τ)← B(gpk, ok, ik : SndToU(·, ·),
WReg(·, ·),GSig(·, ·),USK(·),CrptU(·, ·))

Parse τ as (pk, sig , i,pk ′, cert′, s, π2)

Return (pk, sig)

USK(i)
If i = u then fail else run the normal USK oracle

SndToU(i,M)
If i /∈ HU then

HU← HU ∪ {i} ; cnt ← cnt + 1

(pki, ski)
$

← Ks(1
k)

If cnt = t then
u← i ; upk[i]← pk

sig i ← Sig(sk,pki) [oracle query]
Else

(upk[i],usk[i])
$

← Ks(1
k)

sig i ← Sig(usk[i],pki)
Stjn ← (pki, ski)
Return (〈pki, sig i〉, true)

Else run the normal SndToU oracle

Figure 16: Construction of cma-forger A3

scheme GS as follows. It generates the certification key sks together with the corresponding key pks

and also the opening key ske together with the corresponding key pke. Suppose adversary B creates
at most n(k) honest users, then A2 will randomly choose an integer t ∈ {1, 2, . . . , n(k)}. Let u be the
identity of the t-th honest user that B creates. When answering B’s SndToU queries, A2 generates
(upk[j],usk [j]) for all honest users. A2 also generates all signing-verifying keys (pkj , skj) except
those for user u. The individual signing key for u will be the signing key sk of the oracle to which A2

has access.
Next A2 runs B against GS created this way and thus needs to be able to answer all oracle queries

that B may make. Requests for signatures on messages can be easily answered. Requests of the type
(j,m), with j 6= u, are answered by using gsk[j] (which it A2 created by itself). Requests of the type
(j,m) with j = u are handled by first submitting m to the signing oracle, thus obtaining s = Sig(sk,m),
and then by creating the rest of the group signature by itself. Finally, A2 can also answer all requests
for the group signing secret keys of group members (notice that gsk[i] is not requested, since otherwise
opening the signature would lead to a member of the set of corrupted members and the forgery would
not be successful).

Adversary A3 is intended to run in the experiment Exp
unforg-cma
DS,A3

(k), defining the security of digital
signature DS. A3 has structure similar to that of A2 except for three major differences. (1) When
answering B’s SndToU queries, A3 generates (pkj, skj) for all honest users j. A3 also generates all
user signing-verifying keys (upk[j],usk [j]) and user signatures sigj except those for user u. The
user signing key usk[u] will be the signing key sk of the oracle to which A3 has access. The user
signature sigu will be obtained by querying A3’s signing oracle. (2) When answering B’s GSig queries,
A3 will run the normal GSig oracle in Figure 2. (3) After B outputs a successful forgery (m,σ, i, τ),
A3 extracts (pk, sig) from τ and returns it.

Let (m, (C, π1), i, τ) denote the output of B, where τ = (pk, sig, i,pk ′, cert′, s, π2). Consider the
events listed in Figure 17. Then the advantage of the adversary B can be bounded by

Advnf
GS,B(k) = Pr [F ] ≤ Pr

[
F ∧ S1

]
+ Pr

[
F ∧ S2

]
+ Pr [F ∧ P ∧ S1 ∧ S2 ] + Pr

[
F ∧ P ∧ S1 ∧ S2

]
.

We now bound each of these terms.

Claim C.4 Pr
[
F ∧ S1

]
≤ 2−k.
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F :
GVf(gpk,m, σ) = 1 ∧ i ∈ HU ∧ gsk[i] 6= ε ∧
B did not query USK(i) or GSig(i,m) ∧ Judge(gpk, 1, i,upk[i],m, σ, τ) = 1

S1 : (pke,pks,m,C) ∈ Lρ1

S2 : (pke, C, i,pk ′, cert′, s) ∈ Lρ2

P :
Given that gsk[i] 6= ε, it must have the form (i,pki, ski, certi).
Define the event P as pk′ = pki

Figure 17: Events considered in the proof of non-frameability

Proof: The event F implies GVf(gpk,m, σ) = 1, i.e. V1((m,C), π1) = 1. Since (P1, V1) is a sound
proof system for ρ1, for any security parameter k, and any polynomial time forger B,

Pr
[
F ∧ S1

]
≤ Pr [ (pke,pks,m,C) 6∈ Lρ1

and V1((m,C), π1) = 1 ] ≤ 2−k (11)

as desired.

Claim C.5 Pr
[
F ∧ S2

]
≤ 2−k.

Proof: The event F implies Judge(gpk, 1, i,upk[i],m, σ, τ) = 1, i.e. V2((pke, C, i,pk ′, cert′, s), π2) = 1.
Since (P2, V2) is a sound proof system for ρ2, for any security parameter k, and any polynomial time
forger B,

Pr
[
F ∧ S2

]
≤ Pr

[
(pke, C, i,pk ′, cert′, s) 6∈ Lρ2

and V2((pke, C, i,pk ′, cert′, s), π2) = 1
]
≤ 2−k (12)

as desired.

Claim C.6 Pr [ F ∧ P ∧ S1 ∧ S2 ] ≤ n(k) ·Adv
unforg-cma
DS,A2

(k).

Proof: Suppose B outputs a successful forgery (m, (C, π1), i, τ) where τ = (pk, sig , i,pk ′, cert′, s, π2),
such that (pke,pks,m,C) ∈ Lρ1

, (pke, C, i,pk ′, cert′, s) ∈ Lρ2
and pk′ = pki, and at the same time,

A2 correctly guesses the identity i. This implies that s is valid signature on m under pki. Furthermore,
(i,m) is not submitted by B to its signing oracle GSig(·, ·), (otherwise it is not a valid forgery), which in
particular means m was not queried to the signing oracle Sig(sk, ·) to which A2 has access. Altogether,

this amounts to the fact that (m, s) is a successful forgery of A2 in the Exp
unforg-cma
DS,A2

(k) experiment.

By observing that A2 guesses the identity i correctly with probability 1/n(k), which is independent
of the events F , S1, S2 and P , we obtain:

Adv
unforg-cma
DS,A2

(k) ≥
1

n(k)
· Pr [F ∧ P ∧ S1 ∧ S2 ] (13)

as desired.

Claim C.7 Pr
[
F ∧ P ∧ S1 ∧ S2

]
≤ n(k) ·Adv

unforg-cma
DS,A3

(k).

Proof: Suppose B outputs a successful forgery (m, (C, π1), i, τ) where τ = (pk, sig , i,pk ′, cert′, s, π2),
such that (pke,pks,m,C) ∈ Lρ1

, (pke, C, i,pk ′, cert′, s) ∈ Lρ2
and pk′ 6= pki, and at the same time,

A3 correctly guesses the identity i. B wins the non-frameability experiment, therefore

Judge(gpk, 1, i,upk[i],m, σ, τ) = 1
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which implies pk = pk′, and (pk, sig) in τ satisfies Vf(pk,pk, sig) = 1. Furthermore, since pki is
the only query made by A3 to its signing oracle, pk (= pk′, 6= pki) was not queried to the Sig(sk, ·).

Altogether, this amounts to the fact that (pk, sig) is a successful forgery of A3 in the Exp
unforg-cma
DS,A3

(k)
experiment.

By observing that A3 guesses the identity i correctly with probability 1/n(k), which is independent
of the events F , S1, S2 and P , we obtain:

Adv
unforg-cma
DS,A3

(k) ≥
1

n(k)
· Pr

[
F ∧ P ∧ S1 ∧ S2

]
(14)

as desired.

Using the Claims we can bound the advantage of B as desired:

Advnf
GS,B(k) ≤ 2−k+1 + n(k) ·

(
Adv

unforg-cma
DS,A2

(k) + Adv
unforg-cma
DS,A3

(k)
)

.
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