
IACR ePrint Ar
hive 2004/078.

Analysis of the WinZip en
ryption method

Tadayoshi Kohno

�

May 8, 2004

Abstra
t

WinZip is a popular 
ompression utility for Mi
rosoft Windows 
omputers, the latest ver-

sion of whi
h is advertised as having \easy-to-use AES en
ryption to prote
t your sensitive

data." We exhibit several atta
ks against WinZip's new en
ryption method, dubbed \AE-2"

or \Advan
ed En
ryption, version two." We then dis
uss se
ure alternatives. Sin
e at a high

level the underlying WinZip en
ryption method appears se
ure (the 
ore is exa
tly En
rypt-

then-Authenti
ate using AES-CTR and HMAC-SHA1), and sin
e one of our atta
ks was made

possible be
ause of the way that WinZip Computing, In
. de
ided to �x a di�erent se
urity

problem with its previous en
ryption method AE-1, our atta
ks further unders
ore the subtlety

of designing 
ryptographi
ally se
ure software.

Keywords: WinZip, Zip, 
ompression, en
ryption, applied 
ryptography, atta
ks, se
urity �xes.

�

Dept. of Computer S
ien
e and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,

California 92093, USA. E-mail: tkohno�
s.u
sd.edu. URL: http://www-
se.u
sd.edu/users/tkohno. Supported

by a National Defense S
ien
e and Engineering Graduate Fellowship.



1 Introdu
tion

WinZip [25℄ is a popular 
ompression utility for Mi
rosoft Windows 
omputers, the latest version

of whi
h is advertised as having \easy-to-use AES en
ryption to prote
t your sensitive data" [25℄.

Be
ause of WinZip's already established large user base, and be
ause of its advertised en
ryption

feature, we anti
ipate that many 
urrent and future users will 
hoose to exer
ise this en
ryption

option in an attempt to 
ryptographi
ally prote
t their personal data. Additionally, be
ause of

WinZip's Mi
rosoft Outlook email plugin [24℄ and given other 
omments on WinZip's websites [25,

26℄, we fully anti
ipate that many users will also 
hoose to use WinZip's en
ryption feature in

an attempt to 
ryptographi
ally prote
t the 
ontents of their email atta
hments and other shared

data.

Unfortunately, WinZip's latest en
ryption s
heme, dubbed \Advan
ed En
ryption-2" or AE-2

[23℄ and shipped with WinZip 9.0, is inse
ure in a number of natural s
enarios. We exhibit several

atta
ks in this paper and then propose ways of �xing the proto
ol. We believe that our proposed

�xes to the Zip �le format are relatively non-intrusive and that they will require only a moderate

amount of reimplementation on the part of WinZip Computing, In
. and the vendors of other

WinZip-
ompatible appli
ations.

WinZip. We shall write \WinZip" when we mean \WinZip 9.0" or any other re
ent version of

WinZip or a WinZip-
ompatible tool that uses the AE-2 en
ryption s
heme [23℄.

1

A WinZip

ar
hive 
an 
ontain multiple �les, and when that is the 
ase, ea
h �le is 
ompressed and en
rypted

independently. For ea
h �le to ar
hive, if the length of the �le is above some threshold, WinZip

�rst 
ompresses the �le using some standard 
ompression method su
h as DEFLATE [8℄. WinZip

then invokes the AE-2 en
ryption method on the output of the previous stage. Spe
i�
ally, it

derives AES [7℄ and HMAC-SHA1 [17℄ keys from the user's passphrase and then en
rypts the

output of the 
ompression stage with AES in 
ounter (CTR) mode (AES-CTR) and authenti
ates

the resulting 
iphertext with HMAC-SHA1. The underlying AES-CTR-then-HMAC-SHA1 
ore is

a provably se
ure authenti
ated en
ryption s
heme per results by Bellare and Namprempre [1℄ and

Kraw
zyk [17℄ and standard assumptions on AES-CTR and HMAC-SHA1. In other words, at a

high-level, the new WinZip en
ryption ar
hite
ture appears quite solid.

A 
olle
tion of issues. All our atta
ks exer
ise di�erent problems with the way that WinZip

attempts to prote
t users' �les. Furthermore, our atta
k works in a variety of di�erent settings,

require a variety of di�erent resour
es, and a

omplish a variety of di�erent goals, whi
h means

that di�erent adversaries may prefer di�erent atta
ks. Sin
e no single \best" atta
k exists, sin
e

in order to eventually �x the proto
ol we must �rst understand the (orthogonal) se
urity issues

with the 
urrent design, and sin
e we believe that ea
h of the issues we un
over is informative,

we dis
uss ea
h of the main problems we found, and their 
orresponding atta
ks, in turn. We

believe that our observations also serve to highlight the subtlety of 
ryptographi
 design sin
e (1)

the WinZip AE-2 en
ryption method uses a provably-se
ure En
rypt-then-Authenti
ate 
ore in a

natural and seemingly se
ure way and (2) one of the atta
ks we dis
over was made possible be
ause

of the way that WinZip 
hose to �x a di�erent problem with its earlier en
ryption method, AE-1.

Furthermore, (1), as well as some of the other atta
ks that we dis
uss, unders
ore the fa
t that

se
urity produ
ts must be evaluated as a whole, and that the se
urity of a whole produ
t may not

follow as a simple 
orollary of the se
urity of some underlying 
omponent.

The main issues we un
over in
lude the following:

1

A

ording to the do
umentation pa
kaged with WinZip 9.0, \Be
ause the te
hni
al spe
i�
ation for WinZip's

AES format extension is available on the WinZip web site, we anti
ipate that other Zip �le utilities will add support

for this format extension."

2



Information leakage from en
rypted files' metadata. A

ording to the WinZip do
u-

mentation, there is a known problem with the WinZip en
ryption ar
hite
ture in that the metadata

of an en
rypted �le appears in the WinZip ar
hive in 
leartext. Contained in this metadata is the

en
rypted �le's original �lename, the �le's last modi�
ation date and time, the length of the original

plaintext �le, and the length of the resulting 
iphertext data, the latter also being the length of

the 
ompressed plaintext data plus some known 
onstant. Although we understand that WinZip

Computing, In
. may have had reasons for leaving these �elds unen
rypted, the risks asso
iated

to leaving these �elds unen
rypted should not be dis
ounted. For example, if the name of a 
om-

pressed and en
rypted �le in the PinkSlips.zip ar
hive is PinkSlip-Bob.do
, en
rypting the �les

in the ar
hive will not prevent Bob from learning that he may soon be laid o�. Additionally, a

re
ent result from Kelsey [15℄ shows that an adversary knowing only the length of an un
ompressed

data stream and the length of the 
ompression output will be able to learn some information about

the un
ompressed data. For example, from the 
ompression ratio an adversary might learn the

language in whi
h the original �le was written [3℄. Of 
ourse, the mere name, date, and size of

the entire .zip ar
hive may reveal information to an adversary, so the goal here should not be to

prevent all information leakage, but to redu
e the amount of information leakage whenever possible.

Intera
tions between 
ompression and the AE-2 en
ryption method. One of our


hosen-
iphertext atta
ks exploits a novel intera
tion between WinZip's 
ompression algorithm and

the AE-2 en
ryption method. In parti
ular, although the underlying AES-CTR-then-HMAC-SHA1


ore of AE-2 provably prote
ts both the priva
y and the integrity of en
apsulated data, 
f. Bellare

and Namprempre [1℄ and Kraw
zyk [17℄, an atta
ker 
an exploit the fa
t that the metadata �elds

indi
ating the 
hosen 
ompression method and the length of the original �le are not authenti
ated

by HMAC-SHA1 as part of AE-2.

An example situation in whi
h an adversary 
ould exploit this 
aw is the following: Two parties,

Ali
e and Bob, wish to use WinZip to prote
t the priva
y and integrity of some 
orporate data. To

do this, they �rst agree upon a shared se
ret passphrase. Suppose Ali
e uses WinZip to 
ompress

and en
rypt some �le named F.dat, using their agreed upon passphrase to key the en
ryption,

and let F.zip denote the resulting ar
hive. Now suppose Ali
e sends F.zip to Bob, perhaps using

WinZip's Outlook email plugin or by putting it on some 
orporate �le server or an anonymous

ftp server. We argue that the type of se
urity that Ali
e and Bob would expe
t in this situation

is very similar to the authenti
ated en
ryption [14, 2, 1℄. and se
ure 
hannel [6, 17℄ notions; i.e.,

the 
onstru
tion should preserve the priva
y and the authenti
ity of Ali
e's �les. Unfortunately,

an adversary, Mallory, 
ould break the se
urity of WinZip under this model. For example, assume

that Mallory has the ability to 
hange the 
ontents of F.zip, repla
ing it with a modi�ed version,

F-prime.zip, that has a di�erent value in the metadata �eld indi
ating the 
hosen 
ompression

method and an appropriately revised value for the plaintext �le length. When Bob tries to de
rypt

and un
ompress F-prime.zip, he will use the in
orre
t de
ompression method, and the 
ontents

of F.dat upon extra
tion will not be the original 
ontents of F.dat, but will will now look like


ompletely unintelligible garbage G. Now suppose that Mallory 
an obtain G in some way. For

example, suppose Bob sends the frustrated note \The �le you sent was garbage!" to Ali
e. If

Mallory inter
epts that note, he might reply to Bob, while pretending to be Ali
e, \I think I've

had this problem before; 
ould you send the garbage that 
ame out so that I 
an �gure out what

happened; it's just garbage, there's no reason not to in
lude it in an email." Mallory, after obtaining

G, 
an re
onstru
t the true 
ontents of Ali
e's original F.dat �le.

We believe that the above atta
k s
enario is quite realisti
. In fa
t, it is the same s
enario that

Katz and S
hneier [13℄ and Jallad, Katz, and S
hneier [10℄ used when atta
king email en
ryption

programs and PGP, so any atta
k against WinZip's Outlook email plugin under the same s
enario

3



is at least as damaging (one di�eren
e is that our atta
k is appli
able to WinZip in its default

setting, whereas the previous atta
ks against PGP require the user to 
hoose a non-default setting

or to en
rypt already 
ompressed data). Even when users do not use WinZip's Outlook plugin to

send en
rypted atta
hments, we believe that there are other natural s
enarios in whi
h an adversary


ould mount our atta
k. For example, employees of at least one large 
orporation, Diebold Ele
tion

Systems, transported important ele
tion-related �les, 
ompressed and en
rypted into Zip ar
hives,

via an anonymous ftp site [11℄.

2

Given Jones' [11℄ dis
ussion of Diebold's pro
edures, we would be

surprised if an adversary able to modify F.zip 
ould not also get a

ess to the de
rypted, garbage-

looking output G. Lastly, even if se
urity-
ons
ious users might try to prevent an adversary from

learning G, we believe that se
urity produ
ts should remain se
ure even in the fa
e of potential

misuses by non-se
urity 
ons
ious users, whi
h further suggests that the atta
k we des
ribe is

signi�
ant and should be prote
ted against.

On the names of files and their interpretations. There are a number of systems that

asso
iate software appli
ations with �lenames; for example, a Mi
rosoft Windows ma
hine will

by default open .do
 �les with Mi
rosoft Word and .ppt �les with Mi
rosoft Power Point. Un-

fortunately, WinZip's AE-2 en
ryption method does not authenti
ate an en
rypted �le's �lename

metadata �eld, meaning that Mallory 
ould modify the names of the en
rypted �les in an ar
hive

without triggering any dete
tion me
hanism within the extra
tion utility. This is problemati
 sin
e,

on a system like Mi
rosoft Windows, it is important for an extra
ted �le to have the same extension

as the original �le. Otherwise, when Bob tries to open that �le, he will a

identally use the wrong

appli
ation, get an error message, and thereby possibly allow Mallory to mount an atta
k similar

to the one des
ribed in the previous heading. Note that the issue des
ribed here is orthogonal to

the issue of leaving an en
rypted �le's �lename unen
rypted; spe
i�
ally, the issue is not that the

�lename is stored in 
leartext, but that the �lename is not authenti
ated, though also en
rypting

the �lename would not hurt.

We dis
uss other issues that 
an arise from allowing an adversary to modify the names of

en
rypted �les. The main lesson with all of these issues is that a �le en
ryption utility must not

only prote
t the integrity of the 
ontents of an en
rypted �le, but must also prote
t the integrity of

all of the metadata, like the �lename or �lename extension, ne
essary for the surrounding system

to 
orre
tly interpret that data.

Intera
tions with AE-1 and a 
hosen-proto
ol atta
k. A

ording to the WinZip AE-

2 spe
i�
ation [23℄, the AE-2 en
ryption method �xes a se
urity problem with an earlier AE-1

en
ryption method. Further, a

ording to [23℄, software implementing the AE-2 en
ryption method

must be able to de
rypt �les en
rypted with AE-1. While AE-2 does prote
t against a spe
i�
 atta
k

against AE-1, there is unfortunately a 
hosen-proto
ol atta
k against WinZip that exploits the fa
t

that an adversary 
an for
e WinZip to use the AE-1 de
ryption method on an AE-2-en
rypted �le.

The atta
k also exploits the fa
t that in addition to using HMAC-SHA1, AE-1 also uses a 32-bit

CRC of the unen
rypted plaintext �le.

The atta
k works in the same setting as the previous atta
ks. In this atta
k, Mallory inter
epts

F.zip, makes a guess of the 
ontents of F.dat, and 
reates a repla
ement F-prime.zip based o�

his guess. If Bob 
an su

essfully de
rypt F-prime.zip, i.e., if Bob doesn't 
omplain to Ali
e that

the �le failed to de
rypt be
ause of a failed CRC 
he
k, then Mallory learns with high probability

whether his guess was 
orre
t. To 
ompare this atta
k with the previous atta
k, note that Mallory

only needs to learn whether F-prime.zip de
rypted su

essfully. On the other hand, Mallory only

learns whether his guess was 
orre
t. Still, this may 
onstitute a serious atta
k if Mallory knows

2

These events pre
eded WinZip's invention of AE-2 and Diebold used the traditional Zip en
ryption method.

4



that the 
ontents of F.dat is from a small set of possible values, perhaps be
ause of pre-existing

knowledge of the message spa
e or additional information gleaned from the 
ompression ratio, and

wants to know whi
h value it is. (A
tually, in some situations Mallory may learn more than just

whether his guess was 
orre
t; details in the body of this paper.)

Ar
hives with both en
rypted and unen
rypted files. A

ording to the WinZip AE-2

spe
i�
ation, ar
hives 
an 
ontain both en
rypted and unen
rypted �les. While this may have

some fun
tionality and usability advantages, there is also a rather serious se
urity disadvantage.

In parti
ular, when a user invokes WinZip 9.0's extra
tion utility on an ar
hive 
ontaining both

en
rypted and unen
rypted �les, WinZip 9.0 will ask for a passphrase. It will then pro
eed to

extra
t all of the �les in the ar
hive, without telling the user whi
h �les were en
rypted and

whi
h were not. The user will thus think that all the �les in the ar
hive were en
rypted (and

authenti
ated), but, in fa
t, an adversary 
ould have 
omplete 
ontrol over the 
ontents of all but

one of the �les in the ar
hive (one �le must remain en
rypted under the user's passphrase in order

to for
e WinZip 9.0 to prompt the user for the passphrase). (In Se
tion 7 we provide eviden
e that

suggests that although WinZip Computing, In
. was unaware of the atta
k we found when they

designed AE-2, other Zip manufa
turers may have been aware of it, or at least knew that there

were risks asso
iated with allowing both en
rypted and unen
rypted �les in Zip ar
hives.)

Key 
ollisions and repeated keystream. To en
rypt a �le, WinZip �rst takes the user's

passphrase and derives 
ryptographi
 keys for AES and for HMAC-SHA1. The key derivation pro-


ess is randomized; one of the reasons for this randomization is so that two di�erent �les en
rypted

with the same passphrase will use di�erent AES and HMAC-SHA1 keys. Unfortunately, be
ause

not enough randomness is used in the key derivation pro
ess, we expe
t AES key 
ollisions after

en
rypting only 2

32

�les when using AES with 128-bit keys. Furthermore, the AE-2 spe
i�
ation

says that the initial CTR mode 
ounter is always zero.

3

Combining these two observations, we


an expe
t CTR mode keystream reuse after en
rypting only around 2

32

�les, whi
h is mu
h less

than the 2

64

�les we would expe
t if we 
hose a di�erent random key for ea
h �le. Additionally,

assuming that the en
rypted �les are all of realisti
 size, then this is also less than the number of

�les we would expe
t if we used AES in CTR mode with just a single key but a randomly sele
ted

initial 
ounter for ea
h �le.

Be
ause WinZip en
rypts ea
h �le in an ar
hive independently, all 2

32

�les need not be put into

separate ar
hives; we expe
t keystream reuse even if all 2

32

�les are distributed amongst only a

small set of WinZip ar
hives. The problems with keystream reuse are well known: On
e Ali
e reuses

keystream, Mallory will be able to learn information about the 
ompressed and en
rypted plaintext.

In a worst-
ase s
enario, if Mallory knew the entire 
ontent of the larger, after 
ompression, of two

�les en
rypted with the same keystream, then Mallory would immediately know the entire 
ontents

of the other �le.

Other ways of atta
king WinZip. There are other ways in whi
h an adversary might atta
k

WinZip or any other 
ompression utility. For example, as noted in the WinZip do
umentation, an

adversary might try to 
apture a user's passphrase by installing a keyboard logger on the user's


omputer or might try to resurre
t a plaintext �le from memory. We also observe what we believe

to be a new integrity atta
k against self-extra
ting password-prote
ted exe
utables: An adversary

wanting to repla
e the data en
apsulated by a password-prote
ted self-extra
ting exe
utable 
ould

write a new exe
utable, with a similar user interfa
e to the real self-extra
ting exe
utable, that

3

Previously we said that the underlying En
rypt-then-Authenti
ate 
ore of AE-2 is a provably se
ure authenti
ated

en
ryption s
heme per Bellare and Namprempre [1℄ and Kraw
zyk [17℄. Be
ause the initial CTR mode 
ounter is

always zero, we were assuming that ea
h key is used to en
rypt at most one message, whi
h is typi
ally the 
ase

assuming that less than 2

32

�les are en
rypted per passphrase.

5



asks for but ignores the user-entered passphrase and simply 
reates a data �le of the adversary's


hoi
e. However, atta
ks su
h as these are unrelated to the AE-2 en
ryption method, and sin
e

our fo
us is on the AE-2 en
ryption method and WinZip's use of 
ryptography, we do not 
onsider

these atta
ks further.

Se
ure alternatives. In response to the 
ryptographi
 issues and atta
ks we found, we dis
uss

a number of approa
hes for �xing the WinZip en
ryption method while simultaneously minimizing

the 
hanges to the AE-2 spe
i�
ation. Sin
e WinZip Computing, In
. has a business interest

in 
ompeting with other 
ompanies o�ering ar
hival and email programs with similar or better

advertised se
urity 
laims, like PKWARE, and sin
e we believe that WinZip Computing, In
. truly


ares about prote
ting the priva
y and integrity of users' data, we hope that WinZip Computing,

In
. will 
hoose to in
orporate many of our suggestions into their appli
ation.

Other Zip en
ryption methods. There are a number of other passphrase-based Zip en
ryption

methods besides WinZip's new AE-2. The traditional Zip en
ryption me
hanism [9℄ has similar

fun
tionality to AE-2, but it has signi�
antly worse se
urity: The traditional Zip stream 
ipher has

been broken [5, 22℄ and the 
ontents of traditionally-en
rypted ar
hives 
an be eÆ
iently re
overed

from the ar
hives dire
tly; i.e., there is no need to mount a 
hosen-
iphertext atta
k like the ones we

des
ribe above. PKWARE also re
ently announ
ed a new passphrase-based en
ryption me
hanism


alled EFS [19℄. The January 2004 version of the PKWARE's EFS spe
i�
ation [20℄, as well as

the traditional Zip en
ryption me
hanism, are all vulnerable to our atta
ks that exploit generi


properties of the Zip �le format, namely the atta
ks exploiting (1) the information leakage of an

en
rypted �le's metadata, (2) the fa
t that an en
rypted �le's �lename is not authenti
ated, and

(3) the fa
t that an ar
hive 
an 
ontain both en
rypted and unen
rypted �les. Although the global

appli
ability of issue (1) is by now folklore knowledge, and we have eviden
e to believe that some

people, although unfortunately not WinZip Computing, In
., may have known about some aspe
ts

of issue (3), we have seen no previous dis
ussions of issue (2). The la
k of previous dis
ussions and

awareness of these latter issues is likely be
ause, until the 
reation of appli
ations like Zip Outlook

plugins, and until the publi
ation of works like Katz and S
hneier [13℄, the risks of 
hosen-
iphertext

atta
ks were under-estimated.

The latest EFS spe
i�
ation [19℄, dated April 26, 2004 and appearing after the original IACR

ePrint appearan
e of this paper, adds a new \�lename en
ryption" feature that will en
rypt the

�lename and other metadata �elds of en
rypted �les. Although EFS's approa
h for addressing

issue (1) is di�erent than ours, and is an option that users or administrators may fail to turn on

(it was not the default in the version we tested), we are pleased to �nd that our suggestions for

�xing (1) are less intrusive to the Zip �le format than PKWARE's (when \�lename en
ryption" is

turned on under PKWARE's new spe
i�
ation [19℄, PKWARE-en
rypted ar
hives are not parsable

under the traditional Zip spe
i�
ation [9℄). With respe
t to PKWARE's spe
i�
ation's new \�le-

name en
ryption" feature, we note that \�lename en
ryption" alone 
annot always fully prote
t

against our problems with issues (2) and (3), largely be
ause en
ryption alone does not ne
essarily

imply authenti
ation (we do remark, however, that the use of 
ertain en
ryption modes and the


ompression of the 
entral dire
tory, whi
h is how PKWARE a
hieves �lename en
ryption, may

prevent the atta
ks from immediately going through, but this is largely for fortuitous reasons).

PKWARE's spe
i�
ation [19℄ also in
ludes the ability to en
rypt and sign �les using publi
 key


ryptography, assuming the presen
e of the requisite additional infrastru
ture, though it is worth

noting that the \
erti�
ate pro
essing method for ZIP �le en
ryption remains under development

. . . and is subje
t to 
hange without noti
e [19℄." Although a full treatment of PKWARE's new

EFS passphrase-based en
ryption me
hanism, as well as PKWARE's use of publi
 key 
ryptogra-

phy, is outside the s
ope of this paper, we do make a few observations here. The passphrase-based

6



en
ryption me
hanism does not in
lude a message authenti
ation 
ode at all, and thus does not

appear to have been designed to prote
t the priva
y or integrity of �les under 
hosen-
iphertext

atta
ks. This is problemati
 sin
e, although digital signatures 
an be used to prote
t the authenti
-

ity of the en
apsulated data, it is still important to prote
t the authenti
ity of �les en
rypted with

passphrases when the ne
essary infrastru
ture for digital signatures is not available, or when a user

does not want to be bound to the 
ontents of a �le with a digital signature. The spe
i�
ation is also

in
omplete, making it not only diÆ
ult to implement the system from the spe
i�
ation alone, but

to fully analyze the system for potential se
urity problems without making 
onje
tures about how

the system is a
tually supposed to work; e.g., if the user or developer 
hooses RC4 for en
ryption,

how exa
tly is RC4 supposed to be used? Are results like Mironov's [18℄ taken into 
onsideration?

Where the spe
i�
ation is unambiguous, the spe
i�
ation still leaves de
isions, su
h as the 
hoi
e of

the underlying 
ipher (e.g., 40-bit RC2, 64-bit RC4, 3DES, AES) and the length of the randomness

RD when deriving en
ryption keys, up to the 
hoi
e of implementors. This is a 
on
ern sin
e even

if PKWARE makes safe 
hoi
es with respe
t to these de
isions, there is nothing in the spe
i�
ation

to prevent third-party developers from making unsafe 
hoi
es.

Additional related works. In addition to the already-
ited related works, Biham [4℄ introdu
ed

the notion of key-
ollision atta
ks in the 
ontext of DES, noting that we expe
t one key 
ollision

after en
rypting about 2

28

messages using randomly sele
ted 56-bit DES keys; our keystream reuse

atta
k in Se
tion 8 is related to Biham's key-
ollision atta
k ex
ept that it is more eÆ
ient than

a normal key 
ollision atta
k be
ause of the way that WinZip derives AES keys from passphrases.

Kelsey, S
hneier, and Wagner [16℄ introdu
ed the 
on
ept of a 
hosen-proto
ol atta
k.

2 The WinZip 
ompression and en
ryption method

WinZip's 
ompression ar
hite
ture follows the Info-ZIP spe
i�
ation [9℄. The AES-based AE-2

extension is des
ribed on WinZip's website [23℄. The di�eren
e between the AE-2 en
ryption

method and the AE-1 en
ryption method is slight and will be mentioned at the end of this se
tion.

Basi
 stru
ture. We present here the basi
 Zip �le format and the AE-2 extensions, omitting

details that are not relevant to our atta
ks and to our se
urity improvements. Figure 1 shows the


ontents of an example AE-2-en
rypted WinZip ar
hive.

A Zip ar
hive 
an 
ontain multiple �les. When ar
hiving a set of �les, WinZip 
reates two

re
ords for ea
h �le, a main �le re
ord and a 
entral dire
tory re
ord. The resulting Zip ar
hive


ontains all of the main �le re
ords 
on
atenated together followed by all of the 
entral dire
tory

re
ords (following the 
entral dire
tory re
ords is an end of ar
hive re
ord, whi
h is not relevant

to our atta
ks and suggested improvements). The main �le re
ord 
ontains metadata about the

�le, like the �lename, as well as the �le's 
ontents, the latter typi
ally being 
ompressed and, in

the 
ase of AE-2, en
rypted. The 
ontents of ea
h �le is 
ompressed and en
rypted independently.

The 
entral dire
tory re
ord mirrors the metadata stored in the main �le re
ord and also 
ontains

information about the lo
ation of the �le's 
orresponding main �le re
ord in the Zip ar
hive. One

of the reasons for the existen
e of the 
entral dire
tory re
ord is for usability when working with

multi-volume 
oppy or CD ar
hives. For example, when extra
ting a �le from a multi-volume CD

ar
hive, the user 
an insert the last CD, WinZip 
an read the 
entral dire
tory information, and

then WinZip 
an prompt the user to insert the CD 
ontaining the main �le re
ord.

When referring to �elds of Zip ar
hive, byte strings will be written like 504b0304

bs

, meaning

that the �rst byte is 50

bs

= 80, the se
ond byte is 4b

bs

= 75, and so on. Integers, su
h as lengths,

that are stored in multi-byte �elds are en
oded in little endian format.

7



Fig. 1. This �gure shows the 
ontents of a Zip ar
hive 
ontaining two �les, FirstFile.txt and

Se
ondFile.txt, both 
ompressed and en
rypted using the WinZip AE-2 en
ryption method. The

highlighted portion 
orresponds to the main �le re
ord for Se
ondFile.txt.

Main file re
ord. A

ording to the Info-ZIP spe
i�
ation [9℄, and barring 
ertain extensions that

do not a�e
t our atta
ks, all main �le re
ords have the following stru
ture (the �elds important

to our work are highlighted): main �le re
ord indi
ator (4 bytes, always 504b0304

bs

), version

needed to extra
t (2 bytes), general purpose bit 
ag (2 bytes), 
ompression method (2 bytes), last

modi�
ation time (2 bytes), last modi�
ation date (2 bytes), 32-bit CRC (4 bytes), 
ompressed

size (4 bytes), un
ompressed size (4 bytes), �lename length (2 bytes), extra �eld length (2 bytes),

�lename (variable size), and extra �eld (variable size). Following the above �elds, but still part of

the main �le re
ord, is the �le data �eld.

Central dire
tory re
ord. The 
entral dire
tory re
ord for a �le 
onsists of the following �elds

(important �elds highlighted): 
entral dire
tory re
ord indi
ator (4 bytes, always 504b0102

bs

),

version made by (2 bytes), version needed to extra
t (2 bytes), general purpose bit 
ag (2 bytes),


ompression method (2 bytes), last modi�
ation time (2 bytes), last modi�
ation date (2 bytes),

32-bit CRC (4 bytes), 
ompressed size (4 bytes), un
ompressed size (4 bytes), �lename length (2

bytes), extra �eld length (2 bytes), �le 
omment length (2 bytes), disk number start (2 bytes),

internal �le attributes (2 bytes), external �le attributes (4 bytes), relative o�set of lo
al header (4

bytes), �lename (variable size), extra �eld (variable size), and �le 
omment (variable size).

AE-2 settings and the AE-2 extra data field. The following is appli
able to both the main

�le re
ord and the 
entral dire
tory re
ord. When the AE-2 WinZip en
ryption algorithm is turned

on, the four bytes reserved for the 32-bit CRC are set to zero, bit 0 of the general purpose 
ag is set

to 1, and the two bytes reserved for the 
ompression method are set to 6300

bs

. The extra data �eld

will 
onsist of the following 11 bytes (again, important �elds highlighted): extra �eld header id (2

bytes, always 0199

bs

), data size (2 bytes, 0700

bs

for AE-2 sin
e there are seven remaining bytes in

the 11-byte extra data �eld), version number (2 bytes, always 0200

bs

for AE-2), 2-
hara
ter vendor

8



ID (2 bytes, always 4145

bs

for AE-2), value indi
ating AES en
ryption strength (1 byte), and the

a
tual 
ompression method used to 
ompress the �le (2 bytes). The en
ryption strength �eld will be

01

bs

(resp., 02

bs

or 03

bs

) if the �le is en
rypted with AES using a 128-bit (resp., 192-bit or 256-bit)

key. Example values for the a
tual 
ompression method are 0800

bs

if the �le is DEFLATEd [8℄ and

0000

bs

if no 
ompression is used.

File data field. When a �le is AE-2-en
rypted, the �le data �eld of the main �le re
ord 
ontains

the following information: salt (variable length), password veri�
ation value (2 bytes), en
rypted

�le data (variable length), and the authenti
ation 
ode (10 bytes). The salt is 8 bytes (resp., 12

bytes or 16 bytes) long if the AES key is 128 bits (resp., 192 bits or 256 bits) long.

The en
rypted file data and the authenti
ation 
ode. Before applying the AE-2 en
ryp-

tion method, the 
ontents of the plaintext �le is 
ompressed a

ording to the \a
tual 
ompression

method used to 
ompress the �le" �eld of the AE-2 extra data �eld des
ribed above. Then an

AES en
ryption key, an HMAC-SHA1 key, and a password veri�
ation value are derived from the

user's passphrase and a salt using the PBKDF2-HMAC-SHA1 algorithm [12℄. The length of the

salt depends on the 
hosen length of the AES key and is des
ribed above. The spe
i�
ation [23℄

states that the salt should not repeat, and sin
e this must be true a
ross di�erent invo
ations of

the 
ompression tool, suggests making the salt a random value.

The derived AES key is used to en
rypt the 
ompressed data using AES in CTR mode with

zero as the initial 
ounter. The 
ompressed plaintext data is not padded before en
ryption. After

en
ryption, the en
rypted data is MACed using HMAC-SHA1 and the derived MAC key, and 80

bits of the HMAC-SHA1 output are used as the authenti
ation 
ode.

Differen
es between AE-1 and AE-2. The only di�eren
es between the AE-2 method and

the earlier AE-1 method is that in AE-1 the version number in the main �le re
ord's and 
entral

dire
tory re
ord's extra data �elds are 0100

bs

and the 32-bit CRC �elds are not all zero but a
tually


ontains the CRC of the original unen
rypted data, whi
h the WinZip spe
i�
ation [23℄ states must

be 
he
ked upon extra
tion. The motivation for zeroing out the CRC �eld in AE-2 is be
ause the

CRC of the plaintext will leak information about the plaintext.

3 Information leakage

The metadata �elds of en
rypted �les leak important and potentially se
urity-
riti
al information

in several ways. The names of the en
rypted �les are stored in 
leartext, whi
h 
an obviously be

a 
on
ern. The �les' last modi�
ation dates and times are also stored unen
rypted, whi
h 
an be

used to infer some relationship between the 
ontents of di�erent en
rypted �les or some event in the

past. Additionally, the length of plaintext �les are stored in the �les' metadata �elds unen
rypted.

This is a 
on
ern sin
e, based on Kelsey's re
ent results about 
ompression as a side-
hannel [15℄,

an adversary 
an learn information about the plaintext simply given the lengths of both the original

and the 
ompressed data. As Kelsey notes, information leakage via the 
ompression ratio of �les

be
omes parti
ularly e�e
tive if Mallory has pre-existing partial knowledge of the plaintext or if

Mallory 
an see the 
ompression ratio of multiple related �les, e.g., di�erent versions of the same

�le over time. The WinZip do
umentation notes that these pie
es of information are in
luded

unen
rypted in the �le's metadata, but the risks asso
iated with leaving these �elds unen
rypted is

not 
onsidered. Furthermore, many users may fail to read the do
umentation, and thus not realize

that these information leakage side-
hannels exist in the �rst pla
e.

It is a well known fa
t that the 
lassi
 Zip en
ryption method [9℄ also leaks the information that

we mention above, plus the 32-bit CRC of an en
rypted �le's original plaintext. It is interesting to

9



ask why WinZip Computing, In
. did not �x this problem in their new AE-2 spe
i�
ation. The most

likely 
onje
ture is that WinZip Computing, In
. 
hose not to do so either be
ause of engineering

or design 
omplexities, or be
ause of fun
tionality issues (e.g., they a
tually wanted to allow users

to be get a dire
tory listing of the 
ontents in their en
rypted ar
hives without having to enter

a passphrase). To address the former reason, we dis
uss te
hni
al approa
hes for addressing the

information leakage 
on
erns in Se
tion 10.

4 Exploiting the intera
tion between 
ompression and en
ryption

Re
all the setup des
ribed in Se
tion 1, where Ali
e en
rypts F.dat and sends the resulting Zip

ar
hive, F.zip, to Bob, but where Mallory prevents the delivery of F.zip and instead gives Bob a

�le, F-prime.zip, that is related to F.zip but that is slightly di�erent. The 
riti
al observation

for our atta
k is that despite the fa
t that the underlying en
ryption 
ore is a provably se
ure

En
rypt-then-Authenti
ate authenti
ated en
ryption s
heme, 
f. [1, 17℄, the 
ompression method

and original �le length �elds in an en
rypted �le's main �le and 
entral dire
tory re
ords are not

authenti
ated, whi
h means that an adversary 
an 
hange these �elds without voiding the HMAC-

SHA1 authenti
ation tag atta
hed to the �le. Consequently, assuming that the new un
ompressed

�le length �eld is 
orre
t or that the extra
tion tool does not 
he
k that �eld, when Bob attempts

to de
rypt and de
ompress the modi�ed �le F-prime.zip, the MAC veri�
ation will su

eed and

the user will not see any error. But be
ause the adversary 
hanged the 
ompression method, the

�le will be de
ompressed using the wrong algorithm and the resulting 
ontents G of the extra
ted

�le will look like garbage. If Mallory 
an learn G, whi
h we argue in Se
tion 1 is reasonable in

some 
ases, Mallory 
an re
over the original 
ontents of Ali
e's �le F.dat.

Implementing the atta
k. When a
tually mounting the atta
k, Mallory would probably 
hange

the 
ompression method indi
ators in the main �le and 
entral dire
tory re
ords from 0800

bs

, whi
h

appears to be WinZip's default and whi
h 
orresponds the DEFLATE algorithm [8℄, to 0000

bs

,

whi
h 
orresponds to no 
ompression. This is very easy to do and very eÆ
ient and 
an be done

in a linear pass through the �le, as 
an updating the original �le length �eld. We implemented

this atta
k against WinZip 9.0. To 
reate F-prime.zip from F.zip, rather than parse F.zip and

swit
h the 
ompression type from 0800

bs

to 0000

bs

, we found that the Unix t
sh 
ommand line


at F.zip | sed 's/\(\x02\x00\x41\x45\x01\)\x08\x00/\1\x00\x00/g' \

> F-prime.zip

was suÆ
ient in all of the 
ases that we tried, showing that the atta
k is indeed very easy to

mount.

4

We would only expe
t the above 
ommand line to not work as desired if the 7-byte string

02004145010800

bs

appears in F.tar in a pla
e not 
orresponding to the extra data �eld of a �le's

main �le or 
entral dire
tory re
ords. Sin
e the WinZip 9.0 extra
tion tool did not seem to verify

the length of the extra
ted �le, we did not need to modify the original �le length �elds of the �le's

main �le and 
entral dire
tory re
ords.

Subtlety of 
ryptographi
 design. Re
all that in AE-1 the CRC �eld of an en
rypted �le's

header 
ontains the CRC of the original plaintext �le but that the �eld is all zero in AE-2. When

trying to mount the above atta
k against AE-1, sin
e the extra
tion utility will also verify the

CRC of the plaintext, whi
h will typi
ally fail be
ause the plaintext is now di�erent, the resulting

garbage-looking data G will not be saved and the atta
k will not immediately go through. While

4

Di�erent versions of sed appear to handle binary streams di�erently. The atta
k worked on default RedHat 9.0

systems with sed version 4.0.3.

10



it is true that if Bob is 
rafty he may be able to view F.dat (the �le with 
ontents G) among

the temporary �les 
reated by WinZip during the extra
tion pro
ess and before the CRC failure is

noted, send G to Ali
e, and thereby leak G to Mallory, it would probably be unrealisti
 for Mallory

to assume that Bob will �nd F.dat among WinZip's temporary �les. This dis
ussion highlights the

subtlety of 
ryptographi
 design sin
e the vulnerability presented in this se
tion was a

identally

introdu
ed when the authors of the spe
i�
ation tried to �x a di�erent problem with AE-1.

5 Exploiting the asso
iation of appli
ations to �lenames

To 
omplement the atta
k in Se
tion 4, we note that on many systems, in
ludingMi
rosoft Windows

ma
hines, software appli
ations are automati
ally atta
hed to �les based o� the �les' �lename

extensions; e.g., Mi
rosoft Windows will by default open .do
 �les with Mi
rosoft Word. Sin
e the

�lename �elds of an en
rypted �le's main �le and 
entral dire
tory re
ords are unauthenti
ated, an

adversary 
ould modify those �eld without voiding the MAC in
luded at the end of the en
rypted

�le's main �le re
ord. On
e Mallory does this, he 
an mount a variant of the atta
k in Se
tion 4

sin
e appli
ations will usually report an error when trying to open a �le of the wrong extension.

Fortunately, some appli
ations give des
riptive error messages and, and Bob may realize that the

�le has the wrong �lename extension (e.g., Mi
rosoft Ex
el gives the error \File.xls: �le format is

not valid" when opening a do
ument 
reated with Mi
rosoft Word), but this is largely serendipitous

and should not be relied upon for se
urity. This dis
ussion 
on�rms the fa
t that a �le en
ryption

utility must not only prote
t the integrity of the en
apsulated data itself, but also the metadata,

like the �lename extension, ne
essary for the surrounding system to 
orre
tly interpret that data.

We also observe that an adversary 
ould bene�t from 
hanging the names of the en
rypted

�les in an ar
hive while still maintaining the �les' original extensions. E.g., if Ali
e's salary is


urrently higher than Mallory's, Mallory 
ould swap the names of the �les Ali
e-Salary.dat

and Mallory-Salary.dat in an en
rypted ar
hive Salaries.zip without triggering any dete
tion

me
hanism within the WinZip extra
tion utility.

6 Exploiting the intera
tion between AE-2 and AE-1

The motivation for the 
hange from AE-1 to AE-2 is that in AE-1 the CRC of the plaintext �le is

in
luded unen
rypted in an AE-1-en
rypted WinZip ar
hive, and that will leak information about

the en
rypted �les' 
ontents. While the CRC is no longer in
luded in the output of the AE-2

en
ryption method, one 
an exploit an intera
tion between AE-1 and AE-2 in the following 
hosen-


iphertext atta
k that reveals information about an AE-2-en
rypted �le's CRC to an adversary.

Our atta
k makes use of the fa
t that, a

ording to the AE-2 spe
i�
ation [23℄, Zip tools that

understand AE-2 must be able to de
rypt �les en
rypted with AE-1 and must verify the CRC upon

extra
tion.

Details. Re
all the setting used in Se
tion 4 and Se
tion 5. Assume Ali
e sends the en
rypted �le

F.zip to Bob, but assume that Mallory 
an modify the �le in transit and 
an learn whether Bob


an su

essfully extra
t the �le he re
eives using the passphrase he shares with Ali
e. Now suppose

that Mallory has a guess for what the original 
ontents of F are, but is not 
ompletely sure and

wants to verify his guess H. He 
an do this as follows: Compute the 32-bit CRC of H and then

modify F.zip su
h that the version number in the main �le and 
entral dire
tory re
ords' extra

data �elds are 0100

bs

and the CRC �elds in the �le's main �le and 
entral dire
tory re
ords has the

CRC of H. Let F-prime.zip denote the Mallory-do
tored �le. If Mallory's guess is 
orre
t, then

Bob will be able to extra
t F from F-prime.zip without any error. Otherwise, Bob will with high

11



probability see an error dialog box like the following, whi
h is the error we re
eived when mounting

this atta
k with an in
orre
t guess and then trying to extra
t F-prime.zip using WinZip 9.0:

Data error en
ountered in file

C:\F

Possibly re
overable, 
onta
t help�winzip.
om and mention error 
ode 56.

By observing Bob's rea
tion, Mallory will learn whether his guess was 
orre
t.

If we look more 
losely at how WinZip behaves when it attempts to extra
t a modi�ed �le with

an in
orre
t CRC guess, it appears that the �le is �rst extra
ted, the CRC is 
he
ked, the user

is told that the CRC 
he
k failed, and then the extra
ted �le is deleted. This means that if Bob

is 
rafty he will be able to a

ess the unen
rypted �le between when it is extra
ted and when it

is automati
ally deleted after the CRC 
he
k fails. Even if Bob does this, whi
h we expe
t to be

unlikely, he may not be 
on�dent in the 
orre
t extra
tion of the �le and, if so, will likely 
onvey

this la
k of 
on�den
e to Ali
e. Other implementations of the AE-2 spe
i�
ation may delete the

extra
ted �le before informing the user that the CRC 
he
k failed.

Extensions. Although not ne
essarily the 
ase with all Zip tools but in the 
ase of WinZip, after

dismissing the initial error dialog box Bob will have the option of viewing a more detailed error

log. If Bob 
hooses to see this error log, he will see a line like the following:

bad CRC 1845405d (should be 1945405d)

If Bob de
ides to 
opy and paste this detailed error message in an email to Ali
e or help�winzip.


om, and if Mallory sees this email, then Mallory will learn the CRC of the plaintext �le, and

thereby learn additional information about the plaintext.

7 Atta
king Zip en
ryption at the �le level

When a Zip ar
hive 
ontains multiple �les, ea
h of the �les in the ar
hive is en
apsulated indepen-

dently, whi
h means that some �les in an ar
hive may only be 
ompressed and some may be both


ompressed and en
rypted. Unfortunately, this fun
tionality also opens the WinZip en
ryption

method to atta
k.

This fa
t makes the WinZip AE-2 en
ryption method vulnerable to a number of atta
ks. For

example, 
onsider the following: Mallory knows that the en
rypted ar
hive Salaries.zip 
ontains

the �les Ali
e-Salary.dat, Bob-Salary.dat and Mallory-Salary.dat, all en
rypted using AE-2

under the CFO's se
ret passphrase. Now, be
ause of the properties des
ribed above, an adversary


ould remove the en
rypted Mallory-Salary.dat �le from the Salaries.zip ar
hive and repla
e it

with a new, unen
rypted �le, also named Mallory-Salary.dat, but with the 
ontents of Mallory's


hoi
e. When the CFO tries to extra
t the �les in the ar
hive using the WinZip 9.0 appli
ation,

he will be prompted for his passphrase sin
e the Ali
e-Salary.dat and Bob-Salary.dat �les

are still en
rypted. WinZip will then extra
t the �les Ali
e-Salary.dat, Bob-Salary.dat, and

Mallory-Salary.dat. Sin
e the CFO had to enter his passphrase, he will likely believe that

the extra
ted Mallory-Salary.dat �le is the same one that he en
rypted, and thus 
ontains

Mallory's real salary, when in fa
t the 
ontents of Mallory-Salary.dat are 
ompletely under

Mallory's 
ontrol. Similarly, if Ali
e 
reates an ar
hive 
ontaining both en
rypted and unen
rypted

�les and sends that ar
hive F.zip to Bob, Mallory will be able to easily modify the 
ontents of

the unen
rypted �les in the ar
hive. But, like in the previous atta
k, sin
e Bob has to enter a

passphrase to extra
t the 
ontents of the ar
hive, and be
ause no warning is given about some �les

12



being unen
rypted, Bob will believe that all the �les were en
rypted by Ali
e and that they 
ontain

Ali
e's original 
ontent.

WinZip Computing, In
. does not appear to have been aware of the above atta
ks when they

spe
i�ed AE-2 [23℄ and when they implemented WinZip 9.0, as supported both by the fa
t that

WinZip 9.0 does not generate a warning when extra
ting an ar
hive 
ontaining both en
rypted and

unen
rypted �les, and by the following quotes taken from the AE-2 spe
i�
ation [23℄, whi
h only

mention usability reasons for en
rypting all the �les in an ar
hive and whi
h does not suggest that

vendors issue warnings when en
ountering unen
rypted �les in an ar
hive with en
rypted �les:

\[Se
tion IV.A.℄ The presen
e of both en
rypted and unen
rypted �les in a Zip [ar
hive℄

may trigger user warnings in some Zip �le utilities, so the user experien
e may be

improved if all �les (in
luding zero-length �les) are en
rypted. Again, however, this is

only a re
ommendation [23℄."

\[Se
tion IV.B.℄ There is no requirement that all �les in a Zip [ar
hive℄ be en
rypted

or that all �les that are en
rypted use the same en
ryption method or the same pass-

word [23℄."

The �rst quote does suggest, however, that other Zip vendors may have known of the atta
k we

des
ribe above, or at least knew to be wary of ar
hives 
ontaining both en
rypted and unen
rypted

�les.

Be
ause �les in a Zip ar
hive are en
rypted on a per-�le basis, an adversary 
ould also delete

�les from an ar
hive. An adversary 
ould also 
reate a 
omposite Zip ar
hive with en
rypted �les

taken from multiple di�erent ar
hives, but we view these properties as less interesting than the �rst

atta
ks in this se
tion. Related to the �rst atta
ks in this se
tion, in Se
tion 5 we observed that

an adversary 
ould swap the �lenames of di�erent en
rypted �les, and that he 
ould also use this

fa
t to modify the 
ontents of Ali
e's en
rypted �les; the atta
ks in Se
tion 5 exploit a di�erent

se
urity problem, that for en
rypted �les the �lenames are not authenti
ated.

8 Keystream reuse

When AE-2 is used with a 128-bit AES key, one 
an expe
t CTR mode keystream reuse after

en
rypting approximately 2

32

�les, whi
h is mu
h less than one would expe
t given that AES

has 128-bit blo
ks. (When using 192-bit AES keys with AE-2, we expe
t keystream reuse after

en
rypting 2

48

�les; when using 256-bit AES keys, we expe
t 
ollisions after en
rypting 2

64

�les).

The se
urity problems with reusing keystream are well-known, and therefore we 
an expe
t the

AE-2 en
ryption algorithm with 128-bit AES keys to start leaking even more information about

the 
ompressed and en
rypted plaintext after 2

32

�les are en
rypted with the same passphrase.

This problem arises for two reasons. First, the salt used when deriving the AES and HMAC-

SHA1 keys from the passphrase is only 64 bits (resp., 96 bits and 128 bits) long when the desired

AES key length is 128 bits (resp., 192 bits and 256 bits). Se
ond, AES-CTR is spe
i�ed to always

use zero as the initial blo
k 
ounter. The former means that, with 128-bit keys, after en
rypting

2

32

�les we expe
t there to be one AES key that we used twi
e. The latter means that when we

use the same AES key twi
e, we will use the same keystream both times.

9 Di
tionary atta
ks

One of the reasons for using PBKDF2 [12℄ and a salt when deriving AES and HMAC-SHA1 keys

from passphrases is to impede di
tionary atta
ks. Spe
i�
ally, an exhaustive sear
h through the

13



most 
ommon passphrases will be very slow be
ause of the 
omputational requirements for PB-

DKF2, and a di
tionary of HMAC-SHA1 keys, 
orresponding to the most 
ommon passphrases and

all possible salt values, will be extremely large be
ause of the number of possible salt values.

But sin
e a di�erent salt is used to en
rypt ea
h �le, an adversary may not need to use all

possible salt values when populating an HMAC-SHA1 key di
tionary. In parti
ular, Mallory would

only need to populate the di
tionary using enough di�erent salt values to ensure, with high prob-

ability, that one of the salt values that a user uses when en
rypting her �les will 
ollide with one

of the salt values that Mallory used when 
reating his di
tionary. For example, if the salt is 8

bytes long and if ea
h user is expe
t to en
rypt on the order of 2

32

�les, then Mallory would only

need to use 2

32

di�erent salt values when 
reating his HMAC-SHA1 di
tionary. The di
tionary 
an

be indexed o� of the salt and the two-byte password veri�
ation value; the password veri�
ation

value thus redu
es further redu
es the amount of HMAC-SHA1 keys the atta
ker has to try in the

birthday atta
k. On
e Mallory �nds an HMAC-SHA1 key su
h that the MAC of the en
rypted

�le veri�es, he will with high probability learn the user's 
orresponding passphrase, and thereafter

be able to de
rypt all of the �les en
rypted under that passphrase. While this is a time-memory

trade-o� in terms of not having to 
ompute PBKDF2 for every passphrase guess, the memory and

pre
omputation requirements are still quite enormous and we expe
t that in pra
ti
e anyone trying

to learn a passphrase will simply try to exhaustively sear
h the passphrase, rather than try to use

an HMAC-SHA1 key di
tionary.

10 Fixes

In this se
tion we 
onsider �xes to the problems we dis
ussed in Se
tion 3 through Se
tion 9,

starting with Se
tions 4{9 and returning to Se
tion 3 at the end. We also dis
uss our preferred

instantiations of our suggestions.

We begin by ignoring 
hosen-proto
ol atta
ks. To address the problems raised in Se
tion 4, one

approa
h might be to MAC the original un
ompressed plaintext instead of the 
iphertext and then

en
rypt the resulting tag in a Authenti
ate-then-En
rypt-style 
onstru
tion. However, we do not

re
ommend this as a general design pro
edure sin
e the resulting 
onstru
tion may not be gener-

i
ally se
ure (
f., the 
ounter examples for Authenti
ate-then-En
rypt in [1, 17℄). Mu
h better

would be to build o� of WinZip's 
urrent En
rypt-then-Authenti
ate 
ore sin
e En
rypt-then-

Authenti
ate is known to be generi
ally se
ure (again due to [1, 17℄). Having de
ided to 
ontinue

to use the existing En
rypt-then-Authenti
ate 
ore, we note the following general design prin
iple

for 
ryptographi
 en
apsulation methods: A 
ryptographi
 en
apsulation algorithm should au-

thenti
ate all of the information that an extra
tor/de
apsulator will use when re
onstru
ting the

original data, ex
luding the authenti
ation tag itself and assuming that the extra
tor already has

a 
opy of the shared authenti
ation key. In the 
ase of WinZip, sin
e the 
ompression type �eld of

an en
rypted �le's header will be a

essed when extra
ting an en
rypted �le, this means that the


ompression type value should be MACed along with the AES-CTR-generated 
iphertext. We 
an

naturally extend this general prin
iple to mandate the authenti
ation of all data ne
essary to ensure

the 
orre
t interpretation of the data on
e the data has been 
orre
tly re
onstru
ted, whi
h means

that the �lename, date, and any other important metadata �elds in an en
rypted �le's header must

also be authenti
ated, whi
h addresses the 
on
erns raised in Se
tion 5. (If WinZip Computing,

In
. does not mind deviating further from their 
urrent AES-CTR-then-HMAC-SHA1 
onstru
tion,

we note that the new en
ryption 
ore 
an a
tually be any provably-se
ure authenti
ated en
ryption

asso
iated data s
heme [21℄ as long as the important metadata �elds are authenti
ated.)

To prevent 
hosen-proto
ol atta
ks like the one des
ribed in Se
tion 6, it might be tempting to

14



apply the above prin
iple and 
reate a new AE version that MACs the en
ryption method version

number �eld in the extra data �eld of an en
rypted �le's header. Unfortunately, this does not

ne
essarily work sin
e here we are 
on
erned about atta
ks that exploit the intera
tion between

di�erent en
apsulation/de
apsulation s
hemes, and, in parti
ular, intera
tions with s
hemes, AE-1

and AE-2, that have already been spe
i�ed and that do not 
urrently authenti
ate that �eld. To

see why this is a problem, note that an adversary 
ould move the extra data MACed using the

new method into the 
iphertext portion of an AE-2-format ar
hive and thereby mount a 
hosen-

proto
ol atta
k. While one might try MACing information not dire
tly available to an adversary,

su
h as the en
ipherment of some non
e, we view su
h an approa
h as inelegant. Rather, we suggest

diversifying the AES and HMAC-SHA1 key derivation pro
ess in su
h a way that the AES and

HMAC-SHA1 keys derived from some passphrase and salt using the new en
ryption method will be

di�erent from the keys derived from the same passphrase and salt when using the AE-1 and AE-2

en
ryption methods. This 
ould involve, for example, prepending the en
ryption method version

number, vendor ID, and en
ryption strength �eld to the salt before running the key derivation

pro
edure. If it were not the 
ase that the length of the salt for AE-1 and AE-2 were �xed, but if

the length of the salt was variable and if the length of the salt is en
oded in a metadata �eld of an

en
rypted �le, then even our solution here would not be a suÆ
ient sin
e an adversary 
ould simply

add the method version number, vendor ID, and en
ryption strength �eld into the (now larger)

salt in an AE-2-formatted ar
hive. For similar reasons, there is still the potential of intera
tion

with other (non-WinZip) appli
ations that uses PBKDF2-HMAC-SHA1, but it seems impossible

for WinZip to 
omplete avoid su
h intera
tions with appli
ations that are not under their 
ontrol.

There are several possible solutions for the problems raised in Se
tion 7. The obvious approa
h of

authenti
ating an entire ar
hive would likely break some of WinZip Computing, In
.'s fun
tionality

design 
riteria, namely the desire to (eÆ
iently) handle updates to large ar
hives, and in parti
ular

ar
hives spanning multiple CD volumes. Another approa
h might be to authenti
ate the entire


entral dire
tory (the 
on
atenation of all the 
entral dire
tory re
ords), sin
e the 
entral dire
tory

will always be stored at the end of the ar
hive, and in parti
ular on the last CD in a multi-

volume ar
hive. Toward this end, we note that the Zip spe
i�
ation already has the ability to

sign the 
entral dire
tory using publi
 key 
ryptography, so adding the ability to authenti
ate the


entral dire
tory using a MAC is 
ertainly reasonable. However, we point out that this solution

has a number of issues that one must be 
areful of. For example, the extra
tor must 
he
k the


onsisten
y between the metadata in a �le's main �le re
ord and a �le's 
entral dire
tory re
ord.

If we are 
on
erned about adversaries deleting �les from an ar
hive, then the absen
e of �les must

also be 
he
ked (this may follow as a 
orollary of 
he
king the 
onsisten
y of the individual �les

if the 
onsisten
y 
he
k in
ludes main �le re
ord o�sets, whi
h are stored in the 
entral dire
tory

re
ord). But of most 
on
ern is the fa
t that authenti
ating the 
entral dire
tory alone will not

prevent an atta
ker from modifying unen
rypted �les in an ar
hive. Rather, those unen
rypted

�les must be 
ryptographi
ally bound to the 
entral dire
tory in some way, perhaps by in
luding a

MAC of an unen
rypted �les in its 
entral dire
tory re
ord. Another potential problem with this

solution is that if authenti
ating the 
entral dire
tory is an option, then one must be 
areful to

ensure that an adversary 
annot simply take a Zip ar
hive, turn that option o�, and remove the

MAC of the 
entral dire
tory. One possible way of handling this might be to use di�erent AES

and HMAC-SHA1 keys for when the option is turned on and when the option is turned o�. But

in reality, a reasonable solution might simply be to require appli
ations implementing the AE-2

de
ryption algorithm to always report a warning when an ar
hive 
ontains both en
rypted and

unen
rypted �les.

To address the issues raised in Se
tion 8, we suggest two possible solutions. First, one 
ould

double the 
urrent salt length. Alternatively, instead of always using zero as the initial AES-CTR

15



mode 
ounter, one 
ould use a random initial 
ounter sele
ted from the set of all possible 128-bit

integers. The initial 
ounter should be in
luded in the resulting ar
hive and should also be in
luded

in the string to be MACed. Furthermore, under this approa
h the same AES and HMAC-SHA1

keys 
an be used with all �les prote
ted by the same passphrase; i.e., the same randomly-sele
ted

salt 
ould be used with all su
h �les in an ar
hive. The latter property is a performan
e win

sin
e in the 
urrent design, where a di�erent salt is used with ea
h �le, the passphrase-based key

derivation step dominates the time when 
reating or extra
ting ar
hives 
ontaining lots of small

�les. Possible solutions to the issues raised in Se
tion 9 in
lude in
reasing the length of the salt or

using the same salt when en
rypting multiple �les. Fortunately, these two re
ommendations align

with our re
ommendations for the issues raised in Se
tion 8. Additionally, we suggest not storing

the password veri�
ation values in a �le's metadata sin
e it 
an be used to qui
kly eliminate keys

in a di
tionary atta
k against a user's passphrase.

There are a number of di�erent approa
hes for addressing the information leakage 
on
erns

raised in Se
tion 3. The latest (April 26, 2004) spe
i�
ation from PKWARE [19℄, whi
h is in
om-

patible with WinZip's new en
ryption method, introdu
es an option for en
rypting the metadata

�elds of an en
rypted �le; when the option is turned on (it is not on by default), PKWARE's

Se
ureZIP produ
t en
rypts the entire 
entral dire
tory and removes most of the metadata infor-

mation from a �le's main �le re
ord, either by zeroing out the appropriate �elds or repla
ing them

with random data. Aside from the fa
t that the 
entral dire
tory is not MACed, our two biggest

issues with PKWARE's solution is that (1) we believe that prote
ting against information leakage

from an en
rypted �le's header should not be an option and (2) ar
hives 
reated with the above

option turned on are no longer parsable under the traditional Zip spe
i�
ation [9℄. In 
ontrast,

our proposed �xes involve modifying the main �le and 
entral dire
tory re
ords su
h that priva
y-


riti
al metadata information is always hidden and the resulting Zip ar
hives are still parsable

under the traditional Zip spe
i�
ation [9℄. We 
an a
hieve this goal in several ways. For example,

using AES in CTR mode, it would be possible to en
rypt spe
i�
 metadata �elds of a �le's main

�le re
ord and 
entral dire
tory re
ord in-pla
e. In the 
ase of the 
entral dire
tory re
ord, this

approa
h would require us to 
opy the salt ne
essary to derive the en
ryption key from the �le

data �eld of the main �le re
ord into the extra data �eld of the 
entral dire
tory re
ord. Unfor-

tunately, this solution must still leak the length of a �le's �lename sin
e, under this approa
h, we


annot en
rypt any information ne
essary for parsing the �le, and the length of a �le's �lename is

ne
essary information. Consequently, the solution that we prefer is to not en
rypt portions a �le's

main �le re
ord and 
entral dire
tory re
ords in-pla
e, but to en
rypt (and also authenti
ate) the

main �le re
ord and the 
entral dire
tory re
ord 
ompletely. Our solution would then store the

resulting 
iphertext in the �le data or extra data �elds of a wrapper main �le re
ord or wrapper


entral dire
tory re
ord, respe
tively. Pre
eding the 
iphertexts must be the information, like the

salt, ne
essary to derive the �le's 
ryptographi
 keys from the user's passphrase. The metadata

�elds of these wrapper re
ords 
an be �xed, or random, as long as the \
ompression method �eld"

in the main �le re
ord indi
ates that the re
ord is just serving as a wrapper for an en
rypted �le.

When extra
ting an ar
hive, the extra
tor should see this spe
i�
 
ompression method type, de-


rypt the wrapped data, and then treat the resulting plaintext as an unen
rypted re
ord to parse

as normal. In order to give an intuitive error message to users who try to de
rypt a �le en
rypted

under this method, we suggest making the �lename �eld of the wrapper re
ords something like

WinZipEn
ryptedFile; one 
ould even add more information, like a URL. Lastly, another attra
-

tive property of this solution is that, by also authenti
ating these re
ords 
ompletely, this solution

immediately implements our previous re
ommendations for addressing the 
on
erns in Se
tion 4

and Se
tion 5.

16



A possible instantiation. Given the re
ommendations made in the above paragraphs, one

possible instantiation might be the following, whi
h is based on AE-2 but whi
h we 
all BE sin
e it

is di�erent enough to warrant a new name. For ea
h �le to ar
hive, 
ompress the �le and 
reate main

�le and 
entral dire
tory re
ords as if en
ryption was not used. Then sele
t a random value the same

length as the salt in AE-2, 
on
atenate information about the en
ryption s
heme (BE algorithm

identi�er, version number, and AES-key-length value) with the random value, and 
all the resulting

value the salt for BE. Derive AES and HMAC-SHA1 keys from the user's passphrase and the salt

using PBKDF2-HMAC-SHA1. Then use that AES key to CTR mode en
rypt all of the main �le

and 
entral dire
tory re
ords, using a randomly sele
ted initial 
ounter (IV) for ea
h re
ord (the

main �le and the 
entral dire
tory re
ords for a single �le should have di�erent random IVs). Then

MAC the IVs 
on
atenated with ea
h of the 
iphertexts using HMAC-SHA1. Then 
on
atenate the

BE algorithm identi�er, version number, AES-key-length, the random value in the salt, the CTR

mode IV, the 
iphertext, and the MAC for ea
h re
ord. No password veri�
ation value is stored in

these resulting strings. For the resulting string 
onsisting of the en
ryption of the main �le re
ord,

load it into the data portion of a wrapper main �le re
ord that has bit 0 of the general purpose 
ag

set to 1 (meaning that the �le is en
rypted) and that has a \
ompression method" �eld indi
ating

that the �le is en
rypted under our new en
ryption method; the other �elds 
an by anything that

does not leak information about the wrapped �le. For the resulting string 
onsisting of the 
entral

dire
tory re
ord, load it into the extra data portion of a wrapper 
entral dire
tory re
ord that has

the same general purpose 
ag and 
ompression method as for the wrapper main �le re
ord. When

extra
ting an ar
hive, the user must be warned whenever en
ountering an unen
rypted �le in an

ar
hive with en
rypted �les. The MAC must also be 
he
ked during de
ryption. (Although all the

data ne
essary to re
onstru
t a �le is stored in the �le's wrapped main �le re
ord, we still maintain

the 
entral dire
tory re
ord sin
e it is part of the 
lassi
 Zip �le format [9℄ and sin
e it will be used

by some parties to qui
kly �nd spe
i�
 �les in an ar
hive. If there are in
onsisten
ies between a

�le's pair of re
ords, an error should o

ur.)

Some 
aveats with the design. Although the same random value in the salt 
an be used for

multiple �les when en
rypting them all at on
e, a new random value should be 
hosen if the user

de
ides to update a �le or add a new �le to an ar
hive. Alternatively, when updating a �le or adding

a new �le to an ar
hive, if one wants to use the same random value in the salt as before, they must


he
k that the user's passphrase 
ombined with the existing salts su

essfully de
rypts 
urrently-

en
rypted �les. If either of these solutions were not in pla
e, then an adversary 
ould repla
e the

random values in the salts in an ar
hive with any value of his 
hoi
e, and 
reate a di
tionary of AES

and HMAC-SHA1 keys 
orresponding to the single 
hosen salt value. Additionally, when 
hanging

the 
ontents of the �le, and to avoid keystream reuse, a new random initial 
ounter for CTR mode

must be sele
ted.

The se
urity of this 
onstru
tion follows from the earlier dis
ussions in this se
tion and the

provable se
urity of AES-CTR-then-HMAC-SHA1 (unlike with AE-2, we 
an a
tually employ Bel-

lare and Namprempre's [1℄ and Kraw
zyk's [17℄ results on the generi
 En
rypt-then-Authenti
ate

paradigm when dis
ussing BE sin
e we are now en
rypting all the data of interest, rather than

just a portion of it). The risks asso
iated to AES key 
ollision atta
ks are minimized by the

use of a random IV in AES-CTR (spe
i�
ally, AES key 
ollisions no longer immediately imply

keystream reuse). BE 
an still leak information from the 
ompression ratio of a �le if the adversary

knows the original length of the �le (the original length is now no longer visible dire
tly from the

ar
hive itself); this is a

eptable be
ause we are unaware of any solution to the information-leakage-

through-
ompression problem without adding additional padding and thereby redu
ing the spa
e

savings generally asso
iated to 
ompression. Our new method is more eÆ
ient than AE-2 when

adding multiple �les to an ar
hive in bat
h, or extra
ting multiple ar
hives from a �le in bat
h; this

17



is be
ause PBKDF2 is intentionally slow by design and, unlike AE-2, BE only invokes PBKDF2

on
e for all �les added to an ar
hive at the same time.

Referen
es

[1℄ M. Bellare and C. Namprempre. Authenti
ated en
ryption: Relations among notions and

analysis of the generi
 
omposition paradigm. In T. Okamoto, editor, Advan
es in Cryptology

{ ASIACRYPT 2000, volume 1976 of Le
ture Notes in Computer S
ien
e, pages 531{545.

Springer-Verlag, Berlin Germany, De
. 2000.

[2℄ M. Bellare and P. Rogaway. En
ode-then-en
ipher en
ryption: How to exploit non
es or redun-

dan
y in plaintexts for eÆ
ient 
ryptography. In T. Okamoto, editor, Advan
es in Cryptology

{ ASIACRYPT 2000, volume 1976 of Le
ture Notes in Computer S
ien
e, pages 317{330.

Springer-Verlag, Berlin Germany, De
. 2000.

[3℄ D. Benedetto, E. Caglioti, and V. Loreto. Language trees and Zipping. Physi
al Review Letters,

88(4), Jan. 2002.

[4℄ E. Biham. How to de
rypt or even substitute DES-en
rypted messages in 2

28

steps. Information

Pro
essing Letters, 84, 2002.

[5℄ E. Biham and P. Ko
her. A known plaintext atta
k on the PKZIP stream 
ipher. In B. Preneel,

editor, Fast Software En
ryption ' 94, volume 1008 of Le
ture Notes in Computer S
ien
e.

Springer-Verlag, Berlin Germany, 1994.

[6℄ R. Canetti and H. Kraw
zyk. Analysis of key-ex
hange proto
ols and their use for building

se
ure 
hannels. In B. P�tzmann, editor, Advan
es in Cryptology { EUROCRYPT 2001,

volume 2045 of Le
ture Notes in Computer S
ien
e, pages 451{472. Springer-Verlag, Berlin

Germany, 2001.

[7℄ J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag, Berlin Germany, 2002.

[8℄ P. Deuts
h. DEFLATE 
ompressed data format spe
i�
ation version 1.3. IETF Request for

Comments 1951, May 1996.

[9℄ Info-ZIP. Info-ZIP note, 20011203, De
. 2001. Available at ftp://ftp.info-zip.org/pub/

infozip/do
/appnote-011203-iz.zip.

[10℄ K. Jallad, J. Katz, and B. S
hneier. Implementation of 
hosen-
iphertext atta
ks against PGP

and GnuPG. In A. H. Chan and V. D. Gligor, editors, Information Se
urity, 5th International

Conferen
e, volume 2433 of Le
ture Notes in Computer S
ien
e, pages 90{101. Springer-Verlag,

Berlin Germany, 2002.

[11℄ D. W. Jones. The Case of the Diebold FTP Site, July 2003. Available at http://www.
s.

uiowa.edu/~jones/voting/dieboldftp.html.

[12℄ B. Kaliski. PKCS #5: Password-based 
ryptography spe
i�
ation version 2.0. IETF Request

for Comments 2898, Sept. 2000.

[13℄ J. Katz and B. S
hneier. A 
hosen 
iphertext atta
k against several e-mail en
ryption proto
ols.

In Ninth USENIX Se
urity Symposium, 2000.

18



[14℄ J. Katz and M. Yung. Unforgeable en
ryption and 
hosen 
iphertext se
ure modes of opera-

tion. In B. S
hneier, editor, Fast Software En
ryption 2000, volume 1978 of Le
ture Notes in

Computer S
ien
e, pages 284{299. Springer-Verlag, Berlin Germany, Apr. 2000.

[15℄ J. Kelsey. Compression and information leakage of plaintext. In J. Daemen and V. Rijmen,

editors, Fast Software En
ryption 2002, volume 2365 of Le
ture Notes in Computer S
ien
e,

pages 263{276. Springer-Verlag, Berlin Germany, 2002.

[16℄ J. Kelsey, B. S
hneier, and D. Wagner. Proto
ol intera
tions and the 
hosen proto
ol at-

ta
k. In B. Christianson, B. Crispo, M. Lomas, and M. Roe, editors, Se
urity Proto
ols: 5th

International Workshop, volume 1361 of Le
ture Notes in Computer S
ien
e, pages 91{104.

Springer-Verlag, Berlin Germany, 1997.

[17℄ H. Kraw
zyk. The order of en
ryption and authenti
ation for prote
ting 
ommuni
ations (or:

How se
ure is SSL?). In J. Kilian, editor, Advan
es in Cryptology { CRYPTO 2001, volume

2139 of Le
ture Notes in Computer S
ien
e, pages 310{331. Springer-Verlag, Berlin Germany,

Aug. 2001.

[18℄ I. Mironov. (Not so) random shu�es of RC4. In M. Yung, editor, Advan
es in Cryptology {

CRYPTO 2002, volume 2442 of Le
ture Notes in Computer S
ien
e, pages 304{319. Springer-

Verlag, Berlin Germany, 2002.

[19℄ PKWARE. APPNOTE.TXT - .ZIP File Format Spe
i�
ation, Apr. 2004. Version 6.2.0,

available at http://www.pkware.
om/produ
ts/enterprise/white_papers/appnote.txt.

[20℄ PKWARE. APPNOTE.TXT - .ZIP File Format Spe
i�
ation, Jan. 2004. Version 6.1.0,

repla
ed by [19℄.

[21℄ P. Rogaway. Authenti
ated en
ryption with asso
iated data. In V. Atluri, editor, Pro
eedings

of the 9th Conferen
e on Computer and Communi
ations Se
urity, Nov. 2002.

[22℄ M. Stay. ZIP atta
ks with redu
ed known plaintext. In M. Matsui, editor, Fast Software

En
ryption 2001, volume 2355 of Le
ture Notes in Computer S
ien
e, pages 124{134. Spring-

er-Verlag, Berlin Germany, 2001.

[23℄ WinZip Computing, In
. AES en
ryption information: En
ryption spe
i�
ation AE-2, Jan.

2004. Version 1.02, available at http://www.winzip.
om/aes_info.htm.

[24℄ WinZip Computing, In
. Download WinZip add-ons, Apr. 2004. Available at http://www.

winzip.
om/daddons.htm.

[25℄ WinZip Computing, In
. Homepage, Mar. 2004. Available at http://www.winzip.
om/.

[26℄ WinZip Computing, In
. What's new in WinZip 9.0, Mar. 2004. Available at http://www.

winzip.
om/whatsnew90.htm.

19


