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Abstract. Since Joux published the first pairing-based one-round tripartite key agreement pro-
tocol [13], many authenticated protocols have been proposed. However most of them were soon
broken or demonstrated not to achieve some desirable security attributes. In this paper we present
a protocol variant based on Shim’s work [20]. As the formalized model of this type of AK protocols
is not mature, the security properties of the protocol are heuristically investigated by attempting
a list of attacks. The attack list presented in the paper has both the importance in theory and
the meaning in practice and can be used to evaluate other tripartite and group key agreement
protocols.

1 Introduction

Key Agreement Protocols (KAP) are the mechanisms by which two or more parties can establish an
agreed secret key over a network controlled by adversaries. Normally the established key varies on each
execution (session) of the protocol. If in a protocol one party is assured that no other party aside from
the specifically identified party (or parties) may gain access to the particular established secret key,
then the key agreement protocol is said to provide key authentication. A key agreement protocol which
provides mutual key authentication between (or among) parties is called an Authenticated Key agreement
(AK). Although an AK provides key authentication, one party is not sure whether the other party (or
parties) actually has possession of the established secret; otherwise, the protocol is said to provide key
confirmation. If a key agreement protocol holds both key authentication and key confirmation, it is called
an Authenticated Key agreement with key Confirmation (AKC) [15].

A number of security properties are generally believed to be necessary (or good) for an AK or AKC [8].

1. Known session key security. Each execution of the protocol should result in a unique secret session
key. The compromise of one session key should not compromise the keys of other sessions (e.g., the
parallel sessions, previous sessions and future sessions).

2. Forward secrecy. If the long-term private keys of one or more entities are compromised, the secrecy of
previously established session keys should not be affected. We say that a protocol has partial forward
secrecy if one or more but not all the entities’ long-term keys can be corrupted without compromising
previously established session keys, and we say that a protocol has perfect forward secrecy (PFS) if
the long-term keys of all the entities involved may be corrupted without compromising any session
key previously established by these entities.

3. Key-compromise impersonation resilience. The compromise of entity A’s long-term private key (keys)
will allow an adversary to impersonate A, but it should not enable the adversary to impersonate
other entities to A.

4. Unknown key-share resilience. Entity A should not be able to be coerced into sharing a key with
entity C when in fact A thinks that he is sharing the key with some entity B.

There are a great number of two-party or two-party with online trusted center protocols (refer
to [15] [5] for surveys) available in the literature. Many group key agreements have been developed as well
(a list can be found in [18] [5]). To formally evaluate a protocol’s security, formalized models of AK’s and



AKC’s have been developed, e.g., the indistinguishability-based models [6][8] and the simulation-based
models [11][19]. Some formalizing work has also been attempted for group key agreement protocols,
e.g., [3][18].

Apart from the security requirements, the communication and computation cost are also the critical
considerations when designing key agreement protocols. In 2000, Joux presented a new efficient one-
round tripartite key agreement protocol [13] by using an old mathematical tool, i.e., pairings on elliptic
curves.

Definition 1 A (symmetric) pairing is a bilinear map ê : G1 ×G1 → G2 with two cyclic group G1 and
G2 of prime order q, which has the following properties [4]:

1. Bilinear: For all P, Q, R, S ∈ G1, ê(P + Q, R + S) = ê(P,R) · ê(P, S) · ê(Q,R) · ê(Q,S)1.
2. Non-degenerate: For a given point Q ∈ G1, ê(Q,R) = 1G2 for all R ∈ G1 if and only if Q = 1G1 .
3. Computable: There is an efficient algorithm to compute ê(P, Q) for any P,Q ∈ G1.

By using the pairing computation and a Diffie-Hellman type scheme, the protocol2 requires each party
to transmit only a single broadcast message to establish an agreed session key among three parties. After

1. A → B, C : aP
2. B → A, C : bP
3. C → A, B : cP

Fig. 1. Joux’s One-round Tripartite Key Agreement

the session, A computes KA = (bP, cP )a; B computes KB = (aP, cP )b and C computes KC = (aP, bP )c.
The established session key is K = KA = KB = KC = (P, P )abc. The protocol is secure against passive
adversaries based on the Bilinear Diffie-Hellman (BDH) assumption [4].

Assumption 1 Bilinear Diffie-Hellman Assumption (BDH) [4] Let G be a parameter generator
which with system parameters 1k as input generates two cyclic groups G1,G2 of prime order q and a
bilinear map ê. We define the advantage of an algorithm A in solving the problem (given 〈P, aP, bP, cP 〉,
to compute ê(P, P )abc) by:

AdvG,A(k) = Pr[ A(q,G1,G2, ê, P, aP, bP, cP ) = ê(P, P )abc|
〈q,G1,G2, ê〉 ← G(1k), a generator P ← G1, a, b, c

R←− Z∗q ].

For any randomized polynomial time (in k) algorithm A, the advantage AdvG,A(k) is negligible.

However, like the basic Diffie-Hellman key agreement protocol, Joux’s protocol also suffers from the
man-in-the-middle attack because it does not authenticate the communicating parties. To address this se-
curity threat, many one-round authenticated key agreement protocols have been proposed. Basically these
protocols can be divided into two broad categories, i.e., certification-based protocols including [1] [20]
and identity-based protocols such as [16] [17] [21] [24]. Unfortunately most of them have been broken or
shown not to achieve some good security attributes by the attacks presented in [9] [23] [21] [22]. In fact
currently there is no one-round tripartite AK protocol achieving all the four security attributes.

In this paper, we are going to strengthen Shim’s certification-based protocol [20] to prevent the
identified attacks in the literature. Then we heuristically evaluate the protocol’ security by attempting
a list of attacks. The attack list has both the importance in theory, i.e., some attacks demonstrate
1 In particular ê(sP, tR) = ê(P, R)st for all P, R ∈ G1 and s, t ∈ Z∗q .
2 Note that the original protocol used the asymmetric pairing.



the incapability of current formulations, and the meaning in practice, i.e., every existing protocol can
be broken or demonstrated not to achieve some security property by one or more attacks in the list.
We hope that the attack list can be used as a reference to design this type of protocol in the future
before the formalized model for this type of protocol becomes mature. Note that tripartite protocols are
the degenerated case of group protocols, hence, sound group protocols also need to counter the listed
attacks, so to achieve related security properties. The paper is organized as follows. First, we explain
Shim’s protocol and the attack on it. Then we present the protocol variant and a list of attacks. In Section
4, we evaluate the the influence of the attacks and propose a counter-measure. We draw a conclusion in
the end.

2 Shim’s Protocol

To provide implicit authentication, one method is to introduce certifications into the system. Party A
with an identifer IA, a long-term private key xA and the public key yA = xAP obtains a certification
CertA = (IA‖yA‖P‖SCA(IA‖yA‖P )) from a certification authority (CA). SCA is the signature of CA
and P is the system parameter. Shim presented a certification-based protocol in [20]. In the protocol each
party randomly chooses an integer from Z∗q and broadcasts a message consisting of its certification and the
scalar result of its public key with the chosen random integer. After exchanging the messages, each party

1. A → B, C : TA = a(xP ), CertA

2. B → A, C : TB = b(yP ), CertB

3. C → A, B : TC = c(zP ), CertC

Fig. 2. Shim’s Certification-Based Protocol

computes the session key using one of the following functions. But it was shown that this protocol does not

KA = ê(TB , TC)axê(YB ,YC)x

= ê(P, P )axbyczê(P,P )xyz

KB = ê(TA, TC)byê(YA,YC)y

= ê(P, P )axbyczê(P,P )xyz

KC = ê(TA, TB)czê(YA,YB)z

= ê(P, P )axbyczê(P,P )xyz

achieve the key-compromise impersonation resilience attribute [23]. If adversary E knows A’s private key
x, then it can randomly choose integer u and broadcast message (2) to impersonate B to A and C. After

1. A → EB , C : TA = a(xP ), CertA

2. EB → A, C : TB = uP, CertB

3. C → A, EB : TC = c(zP ), CertC

Fig. 3. Key-Compromise Impersonation Attack

the session, E can compute the session key KE = ê(TA, TC)uê(YB ,YC)x

=ê(P, P )axuczê(P,P )xyz

=KA = KC .



3 Protocol Variant

In this section, we present a variant protocol based on Shim’s work. We heuristically evaluate the pro-
tocol’s security by attempting a list of attacks.

As shown in the last section, Shim’s certification-based protocol is vulnerable to the key-compromise
impersonation attack. By introducing one more element in each message we can resolve this problem. In

1.A → B, C : T 1
A = aP, T 2

A = a(xP ), CertA

2.B → A, C : T 1
B = bP, T 2

B = b(yP ), CertB

3.C → A, B : T 1
C = cP, T 2

C = c(zP ), CertC

Fig. 4. Proposal 1

the new protocol, each party randomly chooses an integer from Z∗q and broadcasts a message consisting
of two scalars and its certification. One scalar is the result of the random integer timing the system
parameter P , the other is the result of the random integer timing the party’s public key. After exchanging
the messages, party A verifies ê(T 1

B , yP ) = ê(T 2
B , P ) and ê(T 1

C , zP ) = ê(T 2
C , P ). Party B and C perform

the similar operations. After the check step each party computes the session key K = ê(P, P )axbycz by
using one of the following functions respectively.

KA = ê(T 2
B , T 2

C)ax = ê(P, P )axbycz

KB = ê(T 2
A, T 2

C)by = ê(P, P )axbycz

KC = ê(T 2
A, T 2

B)cz = ê(P, P )axbycz

Security Analysis In the protocol the check step ê(T 1
B , yP ) = ê(T 2

B , P ) guarantees that for message
(2), it is hard to compute integer v and b such that T 2

B = vP = byP without knowing y. For message
(1) and (3), similar guarantees are achieved. This assertion is described by Theorem 1.

Assumption 2 Discrete Logarithm (DL) Assumption. In a cyclic group G1 with prime order q
and a generator P ∈ G1, the problem given P and Y = yP with random integer y ∈R Z∗q to compute y
is hard.

Theorem 1 Based on the DL assumption, the problem, given 〈q,G1,G2, ê, P, yP 〉 where y is a random
integer in Z∗q , to find integer v and b such that ê(P, P )v = ê(P, P )by is hard.

Proof: The proof is straightforward. If there exists a randomized polynomial algorithm A to find the
integer v and b with non-negligible advantage, we can simply use this algorithm to solve the DL problem
by returning y = v/b.

However the above theorem is only useful to evaluate some attacks presented in the following part.
In fact, an adversary does not need to find both b and v such that ê(P, P )v = ê(P, P )by at the same time
to launch an attack. To break the protocol, an adversary simply needs to find v and bP (instead of b)
satisfying equation ê(vP, P ) = ê(bP, yP ). Fortunately it seems to be hard to solve this problem formally
defined as following.

Assumption 3 Given 〈q, ê,G1,G2, P, yP 〉 with y
R←− Z∗q , it is hard to find v ∈ Z∗q and Q = bP ∈ G∗1

such that ê(P, P )v = ê(Q, yP ) = ê(P, P )by.

This assumption is used in a few papers, e.g., [2]. Note that the problem in the assumption seems easier
than the DL or the DH problem. If there exists an polynomial-time algorithm which solves the problem



and at the same time finds the complete bits of b, then we can construct a polynomial-time algorithm to
solve the DL problem as proved in Theorem 1. If there exists an polynomial-time algorithm which solves
the problem without making use of any bit of b (e.g., hard-core bits of b) which cannot be computed by
effective means (probabilistic polynomial-time algorithm) based on the DL assumption (note that the
least significant bit of b can be easily computed), then the algorithm can be used to solve the related
DH problem. However, we cannot rule out the possibility that the algorithm can get some bits of b in
some way, so to compute v and bP because we cannot restrict the adversary’s behavior to generate bP
(because an adversary can possibly get some valuable information by interacting with the outside). On
the other hand, if we assume that (1) an adversary can only choose b to generate bP ; or (2) randomly
chooses bP directly from G∗1; or (3) that for a Q = bP , (3.i) either the adversary knows b; or (3.ii) Q is a
random element for the adversary, then Assumption 3 is true based on the DL and the DH assumption.
Apart from Assumption 3, the security of the protocol is based on the following theorem. The proof of
the theorem is straightforward.

Theorem 2 Based on the BDH assumption, the problem, given 〈q, ê,G1,G2, P, a, b, c, xP, yP, zP, 〉 such
that a, b, c, x, y, z ∈ Z∗q and x, y, z are random integers, to compute ê(P, P )axbycz is hard.

Note that the above theorems only indicate that the used primitives in the protocol have foundations,
but this does not guarantee that the protocol is secure and achieves the good security attributes. There
are some formalized security models of tripartite and group key agreement protocols used to prove the
security, e.g., [1][3]. Basically these models are the extensions of Bellare-Rogaway’s work [6]. As analyzed
in [10], these models do not fully address the formalization problem of AK’s, specially for those which
use only (general) commutative3 computation on random flips in the agreed key generation functions
(we will show some cases later). Hence we do not try to prove the security of our proposal in one security
model, but heuristically evaluate the security by attempting a list of attacks. In fact we can find that all
the existing pairing-based one-round tripartite protocols are demonstrated not be able to achieve some
security property by one of the attacks. We list these attacks, some are known in the literature, even
though some of them are not feasible in our protocol and we hope that this list as a reference would help
to design more secure protocols.

1. The Man-In-The-Middle Attack. E replaces the broadcast messages with new ones by choosing
its own integers a′, b′, c′ ∈ Z∗q . After verification, each party computes the session key respectively. E

1. A → B, C : T 1
A = aP, T 2

A = a(xP ), CertA

1′. EA → B, C : T 1′
A = a′P, T 2′

A = a′(xP ), CertA

2. B → A, C : T 1
B = bP, T 2

B = b(yP ), CertB

2′. EB → A, C : T 1′
B = b′P, T 2′

B = b′(yP ), CertB

3. C → A, B : T 1
C = cP, T 2

C = c(zP ), CertC

3′. EC → A, B : T 1′
C = c′P, T 2′

C = c′(zP ), CertC

Fig. 5. Attack 1: Man-In-The-Middle Attack

cannot compute any of them although it knows a′, b′ and c′.
Notation: In the above attack, an adversary E impersonating A (denoted by EA) intercepts and
replaces message (1) sent from party A with a new message (1′), hence party B and C will only
receive message 1′ and regard it as the one generated by A. E also impersonates B and C in this
attack. The following attack presentations use the similar notation.

3 A general-commutative computation is such an operation that dos not distinguish which entity involved is
initiator, and which is the protocol’s responder [10].



KA = ê(T 2′
B , T 2′

C )ax = ê(P, P )axb′yc′z

KB = ê(T 2′
A , T 2′

C )by = ê(P, P )a′xbyc′z

KC = ê(T 2′
A , T 2′

B )cz = ê(P, P )a′xb′ycz

2. The Key-Compromise Impersonation Attack.
• Case 1. E knows A’s long-term private key x and it impersonates B to A and C by generating

message (2). E cannot compute the session key K = ê(P, P )axbycz, although it knows x and b.

1. A → EB , C : T 1
A = aP, T 2

A = a(xP ), CertA

2. EB → A, C : T 1
B = bP, T 2

B = b(yP ), CertB

3. C → A, B : T 1
C = cP, T 2

C = c(zP ), CertC

Fig. 6. Attack 2: Key-Compromise Impersonation Attack 1

• Case 2. E knows A’s long-term private key x and it impersonates B and C to A by generating
message (2) and (3). E cannot compute the session key: K = ê(P, P )axbycz although it knows
x, b and c.

1. A → EB , EC : T 1
A = aP, T 2

A = a(xP ), CertA

2. EB → A, EC : T 1
B = bP, T 2

B = b(yP ), CertB

3. EC → A, EB : T 1
C = cP, T 2

C = c(zP ), CertC

Fig. 7. Attack 3: Key-Compromise Impersonation Attack 2

• Case 3. E knows A’s long-term private key x and it impersonates B by randomly choosing u
to generate a valid message (2), so to compute the session key K = ê(T 2

A, T 2
C)u = ê(P, P )axucz.

This attack presented in [23] is feasible to Shim’s protocol [20], but infeasible to our protocol,
because given an integer u, it is hard to find bP satisfying ê(bP, yP ) = ê(uP, P ) if Assumption 3
is true.

1. A → EB , C : T 1
A = aP, T 2

A = a(xP ), CertA

2. EB → A, C : T 1
B = vP, T 2

B = uP, CertB

3. C → A, EB : T 1
C = cP, T 2

C = c(zP ), CertC

Fig. 8. Attack 4: Key-Compromise Impersonation Attack 3

3. The Known Session Key Attack.
• Case 1. E tries to use the knowledge of the session key of a previous session to attack a following

session. E knows A’s long-term private key x and it impersonates B and C to A by generating
message (2) and (3). E recovers the agreed key K = ê(P, P )axbycz of this session by some means,
but this does not help E to get any meaningful information, even it knows x, b and c, to launch
further attacks. For example in the following attack, the session key K ′ = ê(P, P )a′xbycz cannot
be recovered by E even with knowing K = ê(P, P )axbycz, b, c and x.



1. A → EB , EC : T 1
A = aP, T 2

A = a(xP ), CertA

2. EB → A, EC : T 1
B = bP, T 2

B = b(yP ), CertB

3. EC → A, EB : T 1
C = cP, T 2

C = c(zP ), CertC

Fig. 9. Attack 5: Known Session Key Attack 1-Step 1

1. A → EB , EC : T 1′
A = a′P, T 2′

A = a′(xP ), CertA

2. EB → A, EC : T 1
B = bP, T 2

B = b(yP ), CertB

3. EC → A, EB : T 1
C = cP, T 2

C = c(zP ), CertC

Fig. 10. Attack 5: Known Session Key Attack 1-Step 2

• Case 2. E tries to use the knowledge of the session key(s) of a (or some) session(s) to attack a
precedent session. For example a known-key conspiracy attack to TAK-2 [1] is presented in [22].
We show the attack here, because it vividly demonstrates the weakness of the formalized model
in [1]. In a session of TAK-2, after exchanging the messages, each party uses one of the functions

1. A → B, C : TA = aP, CertA

2. B → A, C : TB = bP, CertB

3. C → A, C : TC = cP, CertC

Fig. 11. TAK-2

KA = ê(bP, zP )a · ê(yP, cP )a · ê(bP, cP )x

KB = ê(aP, zP )b · ê(xP, cP )b · ê(aP, cP )y

KC = ê(aP, yP )c · ê(xP, bP )c · ê(aP, bP )z

Session Key Generation Functions of ATK-2

to compute the session key KABC = KA = KB = KC = ê(P, P )abz+acy+bcx. However, ATK-2 is
vulnerable to the known session key attack. Adversaries D and E, which has private key v and
w and public key vP and wP respectively, can collude to attack a session among A, B and C. D
and E launch the attack by engaging the following three sessions with A, B and C separately.
If D and E compromise KADE , KBDE and KCDE (note that D and E cannot compute these

1′. A → D, E : TA = a′P, CertA

2′. D → A, E : TD = bP, CertD

3′. E → A, D : TE = cP, CertE

1′′. D → B, E : TD = aP, CertD

2′′. B → D, E : TB = b′P, CertB

3′′. E → B, D : TE = cP, CertE

1′′′. D → C, E : TD = aP, CertD

2′′′. E → C, D : TE = bP, CertE

3′′′. C → D, E : TC = c′P, CertC

Fig. 12. Attack 6: Known Session Key Attack 2 on ATK-2



keys), D and E can recover the session key KABC as follows:

KABC = KADE ·KBDE ·KCDE · (ê(a′P, bP ) · ê(aP, b′P ) · ê(aP, c′P ))−w

·(ê(a′P, cP ) · ê(b′P, cP ) · ê(bP, c′P ))−v

The authors proved a tweaked version of ATK-2 in [2] in a model without the Reveal query which
addresses the known session key attack. However this attack shows that such model does not
define a strong enough security notion of this type of protocol. On the other hand this type of
attack is not feasible in our protocol.

• Case 3. As analyzed in [10], for those AK’s which use only (general) commutative computations
on random flips in the agreed key generation functions, two attacks, the concatenation attack and
the general concatenation attack, are possible. For example the concatenation attack is feasible
to TAK-1 [1], but this attack is not applicable in our protocol. However the general concatenation
attack can be launched by E as follows. Assume there are two concurrent sessions among A,B
and C. E replaces B’s broadcast in session 1 with B’s message in session 2 and replaces A and
C’s broadcast in session 2 with the one in session 1 respectively. After exchanging messages, A’s

Session1 =





1. A → B, C : T 1
A = aP, T 2

A = a(xP ), CertA

2. B → A, C : T 1
B = bP, T 2

B = b(yP ), CertB

2′. EB → A, C : T 1′
B = b′P, T 2′

B = b′(yP ), CertB

3. C → A, B : T 1
C = cP, T 2

C = c(zP ), CertC

Session2 =





1. B → A, C : T 1′
B = b′P, T 2′

B = b′(yP ), CertB

2. A → B, C : T 1′
A = a′P, T 2′

A = a′(xP ), CertA

2′. EA → B, C : T 1
A = aP, T 2

A = a(xP ), CertA

3. C → A, B : T 1′
C = c′P, T 2′

C = c′(zP ), CertC

3′. EC → A, B : T 1
C = cP, T 2

C = c(zP ), CertC

Fig. 13. Attack 7: Known Session Key Attack 3

session key in session 1 is K1
A = ê(T 1′

B , T 1
C)ax= ê(P, P )axb′ycz which is the same as B’s session

key K2
B = ê(T 1

A, T 1
C)b′y= ê(P, P )axb′ycz in session 2. So if E reveals K2

B , it knows A’s agreed key
in another session. Similar attacks can be performed to B and C.

• Case 4. The following attack is extremely unlikely in practice and has only theoretical meaning.
In a session, after A and C generate and broadcast message (1) and (3) respectively, B generates
and sends its own message (2) upon receiving message (1), (3). E intercepts message (2) and at
the same time successfully discloses B’s long-term private key y by some means. E randomly
chooses integer m ∈ Z∗q and replaces B’s broadcast message with the new one as shown in (2′).
Obviously the transcript of B for the session is different from the ones of A and C. Moreover

1. A → B, C : T 1
A = aP, T 2

A = a(xP ), CertA

2. B → A, C : T 1
B = bP, T 2

B = b(yP ), CertB

2′. EB → A, C : T 1′
B = T 1

B + mP, T 2′
B = T 2

B + m(yP ), CertB

3. C → A, B : T 1
C = cP, T 2

C = c(zP ), CertC

Fig. 14. Attack 8: Known Session Key Attack 4

this session have been accepted by B before its long-term key y is exposed. Hence we can regard



that B is in a different session from the one that A and C have engaged in (B is not partnered
with A or C). At least in the existing indistinguishability-based models of AK’s, this is the
case. Now E reveals A’s session key KA = ê(P, P )axbycz · ê(P, P )axmycz by some means (in
the formulation models [3][6], this can be done by a Reveal query). Then E can compute B’s
session key KB = ê(P, P )axbycz = KA · ê(axP, czP )−my. In this protocol, it is required that
E must know B’s long-term private key to launch the attack. While in many other protocols,
E can launch the attack successfully without knowing this information. For example, in the
tripartite case, the attack is feasible to TAK-2, TAK-3 [1] and for two-party case examples
can be found in [10]. We simply present the attack to TAK-2 as follows. After revealing B’s

1. A → B, C : T 1
A = aP

2. B → A, C : T 1
B = bP

2′. EB → A, C : T 1′
B = T 1

B + mP
3. C → A, B : T 1

C = cP

Fig. 15. Known Session Key Attack 4 on ATK

session key KB = ê(aP, zP )b · ê(xP, cP )b · ê(aP, cP )y, E can compute A and C’s session key by
KA = KC = KB · ê(aP, zP )m · ê(xP, cP )m. Note that the attacks in case 3 and 4 are common in
a large category of protocols.

4. The Unknown Key-Share Attack. In [1] the authors presented a so called the second source
substitution attack to TAK-2 and TAK-3. Assume in some way E successfully obtains its certification
CertE = (IE‖yE‖P‖SCA(IE‖yE‖P )) using yE = δ2xP as its public key. Note that yA = xP is A’s
public key and E does not know its private key δ2x. E launch the following attack. The session key

1. A → EB , EC : T 1
A = aP, T 2

A = a(xP ), CertA

1′. E → B, C : T 1′
A = T 1

A = aP, T 2′
A = δ2T 2

A = aδ2xP, CertE

2′. B → E, C : T 1′
B = bP, T 2′

B = b(yP ), CertB

3′. C → E, B : T 1′
C = cP, T 2′

C = c(zP ), CertC

2. EB → A, EC : T 1
B = δT 1′

B = δbP, T 2
B = δT 2′

B = δb(yP ), CertB

3. EC → A, EB : T 1
C = δT 1′

C = δcP, T 2
C = δT 2′

C = δc(zP ), CertC

Fig. 16. Attack 9: Unknown Key-Share Attack

of B and C shared with E is KBE = KCE = ê(P, P )aδ2xbycz and the session key of A intended to
be shared with B and C is KAEB = KAEC = ê(P, P )axδ2bycz = KBE = KCE . Now E forwards A’s
messages encrypted under key KAEB

= KAEC
to B and C and fools them into believing that A’s

messages come from E. We can add the extra exponent ê(P, P )xyz into the session key generation
function as K = ê(P, P )axbyczê(P,P )xyz

to prevent this attack. But we do not adopt this operation
and we will analyze the reason in the following part.

5. Perfect Forward Secrecy. If the long-term private key x, y and z are disclosed, the session key
K = ê(P, P )abcxyz is still secure if we ignore case 4 in the known-key attacks and if a, b and c are
kept secret or are eradicated immediately after the session.

6. The Impersonation Attack. In some cases party C requires that it would talk to B only when
A engages in the session. No normal one-round protocol can provide such security assurance. B can
simply replay A’s message of a previous session to cheat C. To prevent this attack, three parties



should negotiate a session related unique information, e.g., a session counter, and securely bind the
negotiated unique session information with messages.

4 Security Evaluation

From the evaluation in the last section, we find that the protocol is vulnerable to the attacks of case 3
(i.e., the general concatenation attack (Attack 7)) and case 4 (Attack 8) of the known-key attack and
the second source substitution attack (Attack 9). Through the analysis in [10], the general concatenation
attack is feasible to all two-party AK protocols which use only (general) commutative operations on
random flips in the agreed key generation function, and Attack 7 echoes this point in the tripartite
(so the group) key agreement protocols. In fact Attack 8 is also feasible to this type of protocol in
the tripartite case. Because the existing formal models are sensitive to these attacks (i.e., the known-
key attacks of case 3 and 4), we cannot use these formal models to prove the security of the protocol.
The authors in [1] used a model without the Reveal query, which simulates the threat of compromising
session keys, to prove the security of a tweaked version of ATK-2. They concluded that ATK-2 achieves
the known session key security. However, Attack 6 on ATK-2 demonstrates that the security formulation
without the Reveal query is problematic. Moreover, proposal 1 also shows one example in which the
concatenation attack is not feasible while the general concatenation attack is applicable. Note that both
the concatenation attack and the general concatenation attack are feasible to ATK-1.

As Shim’s ([21]) and Zhang et al.’s ([24]) identity-based protocols use only (general) commutative
computations on random flips as well, the attacks (Attack 7 and 8) are also applicable in these protocols
even the messages are signed by the senders. Hence to design a protocol that is secure against these
attacks, we have to introduce some noncommutative (asymmetric) computation on random flips in the
key generation functions. A simple way to introduce the noncommutative computation is to apply a hash
operation on the agreed secret and messages of a session to generate the session key (so called the session
key derivation mechanism). Note that there is a slight difference in the tripartite case from two-party
protocols to apply a hash operation on messages, because in the tripartite case each party’s received
messages could be in different orders. Fortunately parties can use many ways to unify the message
order, so as to obtain the same transcript. For example, parties can treat the message as multi-precision
numbers and sort the messages according to the numbers’ value, or can sort the messages according
to the lexicographical order of the parties’ identifer. After introducing the hash operation to generate
the session key, e.g., K = H2(ê(P, P )axbycz,message1‖message2‖message3), the attacks feasible to the
original protocol are no longer applicable. Hence we do not need to add an extra component ê(P, P )xyz

in the exponent of the key generation function to prevent the second source substitution attack and this
will save a pairing computation which is very expensive. Note that the extra hash operation does not
improve the protocol’s security to defend the key-compromise impersonation attack and the man-in-the-
middle attack. Hence protocol TAK-1, TAK-2, TAK-3, TAK-4 in [1] and the protocol in [20] are still
insecure even with the new hash operation.

5 Conclusion

To prevent the man-in-the-middle attack on Joux’s one-round tripartite key agreement protocol, many
authenticated protocols are proposed, but only a few of them survive the attacks in the literature. We
present a certification-based protocol by fixing Shim’s work. Noting that the existing formal models
cannot be used to prove the security of these protocols, we heuristically evaluate the protocol’ security
attributes by attempting a list of attacks. Some new attacks highlight the deficiency of the existing
formal models and the list can be used as a reference of attacks for other tripartite and group key
agreement protocols. As have found that in theory, no existing one-round tripartite protocol achieves all



the desirable security attributes directly, we suggest that the session key derivation mechanism should
be used in protocols.
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