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Abstract

We define reactive simulatability for general asynchronous systems. Roughly, simulata-
bility means that a real system implements an ideal system (specification) in a way that
preserves security in a general cryptographic sense. Reactive means that the system can
interact with its users multiple times, e.g., in many concurrent protocol runs or a multi-
round game. In terms of distributed systems, reactive simulatability is a type of refinement
that preserves particularly strong properties, in particular confidentiality. A core feature of
reactive simulatability is composability, i.e., the real system can be plugged in instead of the
ideal system within arbitrary larger systems; this is shown in follow-up papers, and so is
the preservation of many classes of individual security properties from the ideal to the real
systems.

A large part of this paper defines a suitable system model. It is based on probabilistic
IO automata (PIOA) with two main new features: One is generic distributed scheduling.
Important special cases are realistic adversarial scheduling, procedure-call-type scheduling
among colocated system parts, and special schedulers such as for fairness, also in combi-
nations. The other is the definition of the reactive runtime via a realization by Turing
machines such that notions like polynomial-time are composable. The simple complexity of
the transition functions of the automata is not composable.

As specializations of this model we define security-specific concepts, in particular a sep-
aration between honest users and adversaries and several trust models.

The benefit of IO automata as the main model, instead of only interactive Turing ma-
chines as usual in cryptographic multi-party computation, is that many cryptographic sys-
tems can be specified with an ideal system consisting of only one simple, deterministic IO
automaton without any cryptographic objects, as many follow-up papers show. This enables
the use of classic formal methods and automatic proof tools for proving larger distributed
protocols and systems that use these cryptographic systems.

Keywords: security, cryptography, simulatability, formal methods, reactive systems, compos-
ability, probabilistic IO automata, distributed polynomial time

1 Introduction

In this paper we present the reactive simulatability (RSIM) framework for general asynchronous
systems. More precisely, we present the definition of reactive simulatability and a general
reactive asynchronous system model as a basis for this definition and many other general security
definitions and theorems.
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1.1 The Idea of Reactive Simulatability

The basic idea of reactive simulatability, sometimes abbreviated as RSIM, is to define under
what conditions one system, typically a real cryptographic system, securely implements another
system, typically a much simpler specification called ideal system. Roughly, we define that this
is true if everything that can happen to the honest users of the real system, with strong real
adversaries, can also happen to the same honest users if they use the ideal system, where
adversaries do not occur or at least have far less power. What happens to the users includes
the aspect of the adversary’s knowledge about the users’ behavior and secrets.

Definitions of a real system implementing a specification are well-known in the field of
distributed systems and often called refinement; however, normal refinement does not retain
confidentiality properties and is therefore not suitable for most security systems, in particular
for most cryptographic systems and protocols. For instance, if one defines an ideal secure
channel essentially as a black box where messages are put in on one side and come out on
the other side, normal notions of correct implementation by a distributed system allow that
intermediate parties learn the messages. For security and cryptography, however, this should
not happen if the ideal secure channel gives no information to such parties.

In cryptography, a suitable notion of secure implementation, typically called simulatability,
was already defined for ideal systems (specifications) that are just functions: each party makes
one input at the beginning and obtains one output at the end. Essentially, we extend this notion
to reactive systems, i.e., systems where parties may make inputs and obtain outputs at many
different times. Examples of reactive cryptographic systems are multi-round auctions, protocols
with many concurrent sessions, and untraceable electronic cash systems because whether a
payment succeeds depends on prior cash withdrawal actions. For all these systems one requires
confidentiality properties, so that the relation between a real system and a specification cannot
only be the classical refinement of distributed systems. Reactive simulatability makes the real-
and-ideal system specification technique available for such types of systems.

An important property of reactive simulatability is composability. Roughly this means that
a larger system can be defined based on the specification of a subsystem, in other words with
an ideal subsystem, and then the real subsystem can be plugged in instead without causing any
significant difference. The notion of “no significant difference” is again reactive simulatability.
Composability is generally required of refinement relations in distributed systems. The idea
of reactive simulatability has also become known as universal composability (UC) for such
properties. (We describe the history of these terms and theorems in Section 1.7.) Reactive
simulatability also offers property preservation, i.e., if one proves certain important properties
of an ideal system, then they also hold for the real system. An example of such a property is
that the participants in a payment system cannot spend more money than they put in initially
or received. Such properties are not always trivial to show for an ideal system, but usually
very much easier than if one had to do it directly for the real system. However, for length
reasons of this first journal version with detailed definitions, we do not prove any composition
and property preservation theorems here although the first ones were in the corresponding
conference publication.

1.2 Link to Formal Methods and Tool-Supported Proofs

As just explained, reactive simulatability with its notion of ideal systems is an important new
way of specifying reactive cryptographic systems and protocols, besides the classical way of
defining many individual properties, where each property immediately contains details about
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adversaries, polynomial-time considerations, and error probabilities.
Besides this general motivation, a specific motivation for defining reactive simulatability

was that it offers an important link between cryptography and formal methods, in particular
automated proof tools such as model checkers and theorem provers. Interest in such a link
can be justified from both prior cryptographic protocol proofs and from prior tool-supported
proofs of security protocols: The cryptographic motivation is essentially the limit of human
stamina when dealing with the many different sequences of actions occurring in executions
of even relatively small protocols. The tool-supported proof motivation is the prior lack of
demonstrated soundness with respect to real cryptography. We now discuss this in more detail.

Typical cryptographic proofs are reductions between the security of an overall system under
consideration and the security of the cryptographic primitives used: One shows that if one
could break the overall system, one could also break one of the primitives with respect to
its cryptographic definition, e.g., adaptive chosen-message security for signature schemes. In
principle, these proofs are as rigorous as typical proofs in mathematics. In practice, however,
human beings are extremely fallible with such proofs when protocols are concerned. This
is mainly due to the distributed-systems aspects of the protocols. It is well-known from non-
cryptographic distributed systems that many wrong protocols have been published even for very
small problems. Hand-made proofs are highly error-prone because following all the different
orders of interleaving of the actions of different participants is extremely tedious. Humans tend
to take wrong shortcuts and do not want to proof-read such details in proofs by others. If the
protocol contains cryptography, the situation is even worse: Already a rigorous definition of
the goals and of the protocol itself gets more complicated, and there was previously no general
framework for this. Compared with protocol proofs outside security, which are mostly for
trace properties, i.e., properties of individual runs, confidentiality properties are more complex
because they are properties of entire probability spaces of runs. Moreover, in principle the
complexity-theoretic reduction has to be carried out across all the different interleavings, and it
is not at all trivial to do this rigorously. In consequence, there are very few real cryptographic
proofs of larger protocols, and several times supposedly proven, relatively small systems were
later broken. Hence tool support should be very welcome, at least for the tedious distributed-
system aspects.

In fact, work on tool-supported proofs of cryptographic protocols started as early as work on
computational cryptographic definitions and proofs. Tools mean model checkers and automatic
theorem provers; initially mostly special-purpose for security protocols, nowadays mostly spe-
cializations of more general tools. However, for a very long time all these proofs were based on
idealized abstractions of cryptographic primitives, almost always by representing cryptographic
operations as operators of a term algebra with cancellation rules, so-called Dolev-Yao models.
For instance, public-key encryption is represented by operators E for encryption and D for de-
cryption with one cancellation rule, D(E(m)) = m for all m. Encrypting a message m twice in
a Dolev-Yao model does not yield another message from the basic message space but the term
E(E(m)). The models assume that two terms whose equality cannot be derived with the can-
cellation rules are not equal, and every term that cannot be derived is completely secret. This
simplifies proofs of larger protocols considerably. However, originally there was no foundation
at all for such idealizations of cryptographic primitives, and thus no guarantee that protocols
proved with these tools are secure when implemented with real cryptography. Although no
previously proved protocol has been broken when implemented with standard provably secure
cryptosystems (if one excludes proofs in formal models that have more semantic problems than
the cryptographic ones, in particular those based on logics of belief because of the typically
unjustified monotonicity of belief, and only regards the properties that were proved), this was
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clearly an unsatisfactory situation, and artificial counterexamples can be constructed.
The main use of reactive simulatability in the context of linking cryptography and formal

methods in a sound way is that it can be the gauge for deciding whether an idealization is
securely realized by a specific cryptographic implementation, or even realizable by any such
implementation. One specific goal, achieved later, was to apply this gauge to Dolev-Yao models.
However, the approach is not at all limited to Dolev-Yao models – many possible ideal systems
used as specifications for cryptographic systems are quite simple and can thus be encoded into
existing proof tools, so that those proof tools can be used when larger systems are proved that
use these cryptographic systems.

1.3 Requirements on the System Model

The first obstacle to defining reactive simulatability was that there was no system model, i.e., a
model of protocol participants and how they interact, that combined all the features we desire:

• Allowing reactive systems.

• Enabling system definitions that are not encumbered by Turing machine details, in par-
ticular for ideal systems and with the aim of encodings into some current proof tools.

• Allowing run-time considerations, because most cryptographic systems are only secure
against computationally bounded adversaries. We also desire composability of runtimes;
in particular the combination of polynomial-time entities should be polynomial again.
This is particularly important in compositions, where the protocol machines of higher
layers become the users of the lower-layer systems. Users also have to be polynomially
bounded so that an adversary cannot offload computations to them in active attacks.

• Asynchronous systems with a sufficiently flexible scheduling model that all typical cases
can be represented. A scheduling model defines how it is determined in which order
different actions, in particular of different distributed entities, occur. In particular, we
want to allow:

– scheduling by the adversary with realistic information;

– procedure-call-style scheduling for colocated components; this occurs in particular
in compositions, when a higher-layer entity uses a lower-layer entity in the same
location; and

– restricted scheduling, e.g., fair schedulers for liveness-style considerations (i.e., re-
quirements that something should happen, possibly within restricted time), or for
encoding synchronous systems.

• Independence of trust models. This means that the core system model should not fix
issues like what computational power an adversary has, how it can corrupt participants,
and how it can manipulate messages on channels. There are many variants of this, and
we want to be able to express them all.

We address the last requirement by first defining a core system model without any security con-
siderations, i.e., an extension of existing distributed-system models by more generic scheduling
and by runtime considerations. Then we specialize this with a small number of general security
concepts such as the notion of an adversary and an honest user. Finally, we define some specific
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Figure 1: Overview of our layers of definitions

examples of trust models, mainly for real systems, in particular for static and dynamic adver-
saries and for channels with different types of security. These layers and the main definitions
we make on each layer are surveyed in Figure 1. The first four requirement above all refer to
the lowest layer. Some details of these requirements may become clearer when we explain how
we address them.

1.4 Asynchronous System Model with General Distributed Scheduling and

Runtimes

We use an IO automata model as our core model, in other words state-transitions systems that
specify the next output and state for every given input and state. Given the importance of
probabilism in cryptography we need probabilistic IO automata (PIOAs). We did not choose
interactive Turing machines as the core model, although this was normal at that time in cryp-
tography, because of our requirement that ideal systems, if they are simple in principle, should
be easy to encode into existing proof tools from our concrete specification. IO automata are the
typical basis for encoding distributed systems into the specification languages of standard the-
orem provers. Furthermore, most formal languages (i.e., with fully fixed syntax) for distributed
systems have some state-transition system as their semantics. Informally also cryptography has
often used IO automata, because nobody actually specifies cryptographic protocols as Turing
machines; the specifications in articles are much closer to IO automata as soon as they go
beyond simple arrow pictures.

One novelty is that we allow essentially arbitrary scheduling schemes. The basis of schedul-
ing is message delivery: In an asynchronous system, a message does not arrive immediately at
its recipient, but may be held up in the network. In our generic distributed scheduling, one
can designate for each connection which party decides about the arrival of the messages on this
connection; we call this party the scheduler of this connection. Thus in particular we can model
the special cases required above:

• We can let the adversary schedule everything by making it the scheduler of all connections.

• For procedure-call style interactions between a colocated caller and a service, we let the
caller schedule the connection to the service, and let the service schedule the reverse
connection. Each of them immediately schedules each of its messages on these connections.
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• Or a separate scheduler can schedule everything, or only certain connections (e.g., secure
ones) while the adversary schedules others.

While the generic distributed scheduling allows many more variants, these three (in particular
combinations of the first and the second) are mostly used in subsequent work.

For computational complexity, the easiest option would be to consider the complexity of
the state-transition function of the IO automata. The complexity of functions is well-defined
and we would never need to mention the underlying bit-level model like Turing machines, in
particular if we concentrate on notions like polynomial-time that are robust against small model
variations. However, polynomial-time transitions do not even lead to overall polynomial runtime
when such a machine runs essentially alone: For instance, such a machine might double the
size of its current state in each transition; thus it can use time exponential in its initial state
size after a linear number of transitions with one-bit inputs. In a medium notion, which we call
weakly polynomial-time, the runtime of the machine is polynomial in the overall length of its
inputs and its initial state. A weakly polynomial-time machine is a permissible adversary when
interacting with a cryptographic system which is in itself polynomially bounded; i.e., this seems
to be the weakest useful definition. However, this notion does not compose: Several weakly
polynomial-time machines together can become too powerful. E.g., each new output may be
twice as long as the inputs so far. Then with a linear number of interactions, these machines
can use time exponential in the size of their initial states.

Hence we define polynomial-time machines as those that only need time polynomial in their
initial state size, independent of all inputs. This notion is composable.

We nevertheless use weakly polynomial-time machines sometimes, because many function-
alities are naturally weakly polynomial-time and not naturally polynomial-time.

We made one further addition to individual machines compared with other I/O automata
models, in order to enable machines to have polynomial runtime independent of their environ-
ment without being automatically vulnerable to denial-of-service attacks by long messages: We
allow state-dependent length bounds on the inputs that a machine will read from each channel.

1.5 Security-Related System Model

Reactive simulatability is about systems, users, and adversaries: If the same honest users use
either the real or the ideal system, they shouldn’t notice a difference, even though the real
system typically gives an adversary much more power than the ideal system. Hence we have to
define users and adversaries. The general system model sketched in Section 1.4 simply allows
“open” systems that can interact with some environment. The user-adversary distinction is
essential but quite simple: We split the interaction opportunities (later called ports; also think
of them as unattached connections) into some for the honest users and others for the adversary.
We call the former service ports. We call such an open system with a split into service ports and
others a structure, and if we augment it by an honest user and an adversary in the designated
way, we call it a configuration.

We also define systems as sets of structures; this is the general provision for trust models
which allow that instead of one structure intended by a designer (e.g., with n machines for n

users, connected by point-to-point channels), one of many different semi-corrupted structures
is actually present (e.g., with fewer machines because some were taken over by the adversary,
and with wiretaps on the channels).
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Figure 2: Overview of reactive simulatability

1.6 Reactive Simulatability Variants

We have already introduced reactive simulatability, the main goal of our definitions, in Sec-
tion 1.1. Figure 2 illustrates it, including typical identifiers that we use for various parts. The
left half illustrates a real system. Here it consists of a structure with only two machines (PIOAs)
M1 and M2. An entirety of honest users H uses it via the service ports, and an adversary A

interacts both with the two “normal” machines and the honest users. This is compared with the
ideal system on the right side. In this example, the structure in the ideal system consists of just
one machine, which we often call TH for “trusted host” (corresponding to the intuition that a
trusted host would simply do for the participants what in reality they have to do via a complex
cryptographic protocol). Formally there is no difference between ideal and real systems in our
model; this is useful in compositions and other multi-part security proofs. The same honest
users use the ideal structure via the same service ports, and there may again be an adversary
A′.

We define reactive simulatability in several variants: In one dimension, we vary the order
of quantifiers in the statement that for all honest users H and all adversaries A on the real
system, there should be an adversary A′ on the ideal system that achieves the same effects.
What we just wrote is general reactive simulatability (GRSIM). If the ideal adversary does not
depend on the honest users (only on the real adversary and of course the system), we speak of
universal reactive simulatability (URSIM), i.e., then the quantifier order is ∀A∃A′∀H. If the ideal
adversary consists of a fixed part that uses the real adversary as a blackbox, we speak of blackbox
reactive simulatability (BRSIM) and call the fixed part simulator. In another dimension, we have
a perfect, a statistical, and a computational variant, depending on computational restrictions
and the degree of similarity we require between the real and the ideal system.

1.7 Prior Work

Simulatability, i.e., the notion of using a simple ideal system as a specification for a cryp-
tographic system, was first sketched for secure multi-party function evaluation, i.e., for the
computation of one output tuple from one tuple of secret inputs from each participant, in [99].
It was defined (with different degrees of generality and rigorosity) in [58, 30, 81, 38]. Among
these, [30] and an unpublished longer version of [81] contain the earliest detailed execution
models for cryptographic systems that we are aware of. Both are synchronous models. Prob-
lems such as the separation of users and adversaries, or defining runtime restrictions in the
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face of continuous external inputs, do not occur in the function-evaluation case, since function
evaluation is non-reactive. A composition theorem for non-reactive simulatability was proven
in [38].

The idea of simulatability was subsequently also used for specific reactive problems, e.g.,
[55, 32, 44], without a detailed or general definition. In a similar way it was used for the
construction of generic solutions for large classes of reactive problems [57, 56, 61] (usually
yielding inefficient solutions and assuming that all parties take part in all subprotocols). A
reactive simulatability definition was first proposed (after some earlier sketches, in particular
in [57, 90, 38]) in [61]. It is synchronous, covers a restricted class of protocols (straightline
programs with restricted operators, in view of the constructive result of this paper), and for the
information-theoretic case only, where quantification over input sequences can be used instead
of active honest users.

We first presented a synchronous version of a general reactive system model and reactive
simulatability in [91]. The report version also contains further variants of the reactive simu-
latability definitions with proofs of equivalence or non-equivalence that are likely to carry over
to the asynchronous case.

After that, and later but independently to the conference version [92] of the current paper,
an asynchronous version of a general reactive model and reactive simulatability was also given
in [39]. The model parts that were relatively well-defined seem to us a strict subset of our
model: The system correspond to our “cryptographic systems with adaptive adversaries” in
Section 6.3, always with polynomial-time users and adversaries. The entities are defined as
Turing machines only, i.e., there is no explicit abstraction layer like our IO automata. The
simulatability definition corresponds to the universal case of ours. Besides the model, the
paper contains a composition theorem which was more general than ours at that time, while
we had a property preservation theorem. Here the term UC (universal composability) was
coined which is nowadays also widely used for the general idea of reactive simulatability or the
definitions. (The paper also contains some sketches, while we had decided to only publish parts
that we had actually defined and proved.)

The first rigorous model for reactive systems that covers cryptography, i.e., probabilistic
and polynomial-time aspects, was presented in [73, 74]. It is based on π-calculus and uses
formal language characterizations of polynomial time. The notion of security is observational
equivalence. This is even stronger than reactive simulatability because the entire environment
(corresponding to our users and adversary together) must not be able to distinguish the im-
plementation and the specification. However, this excludes many abstractions, e.g., because a
typical abstract specification is one machine and the real system is distributed with channel
manipulation possibilities for the adversary, so that an adversary can already distinguish them
by their structure. Correspondingly, the concrete specifications used essentially comprise the
actual protocols including all cryptographic details. There was no tool support for the proofs
at that time, as even the concrete specifications involved ad-hoc notations, e.g., for generating
random primes.

Reductions as cryptographic proofs were introduced for cryptographic primitives in [35,
59, 100]. The best-known application to protocols is the handling of authentication protocols
originating in [33]. Examples of later breaks of supposedly proven cryptographic systems are
given in [89, 52, 63].

The Dolev-Yao models underlying most proof tools for cryptographic protocols were in-
troduced in [53]. Some important examples of their first use in different types of proof tools
are [83, 80, 69, 77, 88, 97, 1]. Soundness of these models with respect to real cryptography
was first considered in [2], but only under passive attacks. This corresponds well to the fact
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that there wasn’t even a definition for such a comparison under active attacks, and only reac-
tive simulatability provided this later. Logics of belief for cryptographic protocol proofs were
introduced in [36]. A semantics for such a model (in the sense of an execution semantics, still
relying on a Dolev-Yao model for the cryptography) was first given in [3]. Careful study of
this semantics shows that one needs hand-proofs of strong protocol properties before the logic
applies; this is never done in practice. This is why we did not count breaks of protocols proven
in such logics as counter-arguments against the Dolev-Yao models or proof tools relying on
normal distributed-systems semantics.

IO automata were already used for security in [79]. There however, cryptographic systems
are restricted to the usual equational specifications following a Dolev-Yao model [53], and the
semantics is not probabilistic. Only passive adversaries are considered and only one class of
users, called environment. The author actually remarks that the model of what the adversary
learns from the environment is not yet general, and that general theorems for the abstraction
from probabilism would be useful. Our model solves these problems.

So far we looked at prior security definitions. We now consider literature on system mod-
els as such. Our IO automata are based on normal finite-state machines; deterministic and
non-deterministic versions, also with infinite state, have been used widely throughout the dis-
tributed protocol literature. Probabilistic IO-automata and execution models for them are
defined in [94, 78, 98]. There the order of events is chosen by a probabilistic scheduler that
has full information about the system. However, this can give the scheduler too much power
in a cryptographic scenario. In cryptology, the typical understanding of asynchronous systems,
closest to a rigorous definition in [37], is that the adversary schedules everything, but only with
realistic information, in terms of both observations and computational capabilities. Recall that
this is still an important special case in our model. We are sometimes asked why we do not
just elaborate this case. However, there are situations where one definitely needs more benign
scheduling or even some synchrony, as in our third special case (e.g., one may want to show
liveness properties, but can only do so if one can model that messages are eventually delivered).
As to local scheduling among system parts modeled as different automata but considered co-
located, adversarial scheduling may often do no harm. However, having to prove it when one
actually is considering a local situation, only defined as a composition, would just introduce
unnecessary complications into the proof. Modeling only adversarial scheduling would remove
the need to represent who schedules what, while the underlying model of asynchronous connec-
tions would remain the same. Problems with purely adversarial scheduling were already noted
in [74]; hence they schedule secure channels with uniform probability before adversary-chosen
events. However, that introduces a certain amount of global synchrony. Furthermore, we do
not require specific scheduling for all secure channels; they may be blindly scheduled by the
adversary (i.e., without even seeing whether there are messages on the channel). For instance,
this models the case where the adversary has a global influence on the relative network speed.

There are also probabilistic versions of other detailed distributed-systems frameworks than
IO automata, but apart from [73, 74] we are not aware of a prior one with polynomial-time
considerations or any specific scheduling considerations for security.

We are also not aware of any prior model with a representation of both honest users and
adversaries.

1.8 Subsequent Work

As mentioned before, it has been shown that reactive simulatability has at least the proper-
ties expected of a refinement notion in distributed systems: First, it is indeed transitive [92].
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Secondly, it has a composition theorem that states that substituting a refined system (an
implementation) for the original system (a specification) within a larger system is permit-
ted [92]; compositionality of reactive simulatability in different settings has been investigated
in [39, 75, 24, 65, 51, 67, 70]. Thirdly, one can define computational versions of various secu-
rity property classes and prove preservation theorems for them under reactive simulatability, in
particular for integrity [91, 11], key and message secrecy [19], transitive and non-transitive non-
interference [16, 15], i.e., absence of information flow, and classes of liveness properties [22, 10].

Various concrete cryptographic systems have been proven secure in the sense of reactive
simulatability with respect to ideal specifications that are not encumbered with cryptographic
details. This comprises secure message transmission [92, 46], key exchange [46], and group
key agreement [96]. Under additional assumptions such as the existence of a common random
reference string, this was extended to commitment schemes [43], oblivious transfer [48, 54], zero-
knowledge proofs [43], and, more generally, any multi-party function evaluation [48]. Reactive
simulatability also proved useful for lower-layer proofs, e.g., of reactive encryption and signature
security from traditional (non-reactive) encryption and signature security within [92, 40] and [41,
25, 26], respectively, and of reactive Diffie-Hellman security within [96].

A particularly important ideal specification that has been proven to have a crypto-
graphic realization secure in the sense of reactive simulatability is a specific Dolev-Yao
model [23, 27, 17, 21], nowadays referred to as the BPW model. The BPW model offers a
comprehensive set of Dolev-Yao-style operations for modeling and analyzing security protocols:
both symmetric and asymmetric encryption, digital signatures, message authentication codes,
as well as nonces, payload data and a list (pairing) operation. Proofs of the Needham-Schroeder-
Lowe protocol [14], the Otway-Rees protocol [5], the Yahalom protocol [20], an electronic pay-
ment protocol [7], and parts of public-key Kerberos [6] using the BPW model show that one can
rigorously prove protocols based on this model in much the same way as with more traditional
Dolev-Yao models. Weaker soundness notions for Dolev-Yao models such as integrity only or
offline mappings between runs of the two systems, and/or allowing less general protocol classes,
e.g., only a specific class of key exchange protocols, have been established in [82, 72, 45]. For
these cases, simpler Dolev-Yao models and/or realizations can be used compared to [23].

Establishing reactive simulatability for concrete systems has proven an error-prone task if
approached rather informally, as it requires to carefully compare various behaviors of an ideal
specification with corresponding behaviors of the concrete system. We emphasize that it is quite
easy to guess almost correct ideal specifications of cryptography systems; the major part of the
work lies in getting the details right and making a rigorous proof. Several abstractions presented
with less detailed proofs have been broken [63, 9] (where the first paper attributes another such
attack to Damg̊ard). In order to establish reactive simulatability in a rigorous manner, the
notion of a cryptographic bisimulation has been introduced in [23] and further extended in a
sightly different framework in [42]. Cryptographic bisimulations are based on the notion of
probabilistic bisimulations [71], which capture that two systems that are in related states and
receive the same input will yield identically distributed states and outputs after they performed
their next transition. Cryptographic bisimulations extend this notion with imperfections and,
in the case of the BPW model, an embedded static information-flow analysis.

As far as automation of security proofs in the context of reactive simulatability is concerned,
it was first shown that automated proof tools can handle small examples of reactive simulata-
bility proofs, based on the ideal specification of secure message transmission [12, 11]. Later it
was shown that the BPW model is accessible to theorem proving techniques using the theorem
prover Isabelle/HOL [95]. This constitutes the first tool-supported framework for symbolically
verifying security protocols that enjoys the strong cryptographic soundness guarantees provided
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by reactive simulatability. Fully automated techniques for proving secrecy properties of security
protocols based on the BPW model have been invented in [13] using mechanized flow analysis.
In the wider field of linking formal methods and cryptography, there is also work on formulating
syntactic calculi for dealing with probabilism and polynomial-time considerations directly, in
particular [84, 85, 68, 50, 34]. This is orthogonal to the work of justifying Dolev-Yao models:
In situations where Dolev-Yao models are applicable and sound, they are likely to remain im-
portant because of the strong simplification they offer to the tools, which enables the tools to
treat larger overall systems automatically than with the more detailed models of cryptography.

Finally, the expressiveness of reactive simulatability, i.e., the question which cryptographic
tasks can be assigned a suitable ideal functionality under which assumptions, has been investi-
gated in a series of papers. It has been shown that several cryptographic tasks cannot be proven
secure in the sense of reactive simulatability unless one makes additional set-up assumptions,
e.g., by postulating the existence of a common random reference string. Among these tasks
are bit commitment, zero-knowledge proofs, oblivious transfer [43], (authenticated) Byzantine
agreement [76], classes of secure multi-party computation protocols [47], classes of functional-
ities that fulfill certain game-based definitions [49], and Dolev-Yao style abstractions of XOR
and hash functions [18, 28]. Other set-up assumptions to circumvent such impossibility results
are to augment real and ideal adversaries with oracles that selectively solve certain classes of
hard problems [93], to free the ideal adversary from some of its computational restrictions [29],
or to impose constraints on the permitted honest users [8]. The price is either a narrower
model tailored to a specific problem, sacrificing the transitivity of reactive simulatability and
hence significantly complicating the modular construction of larger protocols, or providing only
a limited form of compositionality.

1.9 Overview of this Paper

Section 2 introduces notation. Section 3 defines the general system model, i.e., machines,
both their abstract version and their computational realization, and executions of collections
of machines. Section 4 defines the security-specific system model, i.e., systems with users and
adversaries. Section 5 defines reactive simulatability, i.e., our notion of secure refinement. Sec-
tion 6 shows how to represent typical trust models, i.e., assumptions about the adversary, such
as static threshold models and adaptive adversaries, with secure, authenticated and insecure
channels. Section 7 concludes the paper.

2 Notation

Let Bool := {true, false}, and let N be the set of natural numbers and N0 := N ∪ {0}. For an
arbitrary set A, let P(A) denote its powerset. Furthermore, let An denote the set of sequences
over A with index set I = {1, . . . , n} for n ∈ N0, A∗ :=

⋃
n∈N0

An, and A∞ the set of sequences
over A with index set I = N. We write a sequence over A with index set I as S = (Si)i∈I ,
where ∀i ∈ I : Si ∈ A. Let ◦ denote sequence concatenation, and () the empty sequence. Let
{()} denote the empty Cartesian product. For a sequence S ∈ A∗ ∪A∞ we define the following
notation:

• For a function f : A→ A′, let f(S) apply f to each element of S, retaining the order.

• Let size(S) denote the length of S, i.e., size(S) := |I| if I is finite, and size(S) := ∞
otherwise.
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• For l ∈ N0, let S⌈l (read “S restricted to l elements”) denote the l-element prefix of S,
and S[l] the l-th element of S with the convention that S[l] = ǫ if size(S) < l (for a fixed
symbol ǫ). We sometimes write Sl instead of S[l] to increase readability.

• For a predicate pred : A → Bool , let (S[i] ∈ S | pred(S[i])) denote the subsequence of S

containing those elements S[i] of S with pred(S[i]) = true, retaining the order.

We lift the restriction notation to finite sequences of sequences: For T = (T1, . . . , Tn) ∈ (A∗ ∪
A∞)∗ and L = (L1, . . . , Ln) ∈ N∗

0 with the same n ∈ N0, let T ⌈L:= (T1⌈L1
, . . . , Tn⌈Ln).

In the following, we assume that a finite alphabet Σ ⊇ {0, 1, c, l, k} is given, where ∼
, !, ?,↔ ,⊳ 6∈ Σ. Then Σ∗ denotes the strings over Σ. Let ǫ be the empty string and Σ+ := Σ∗\{ǫ}.
All notation for sequences can be used for strings, such as ◦ for string concatenation, but ◦ is
often omitted.

For representing natural numbers and sequences of strings as strings, we assume a surjective
function nat : Σ∗ → N with the convention nat(1) = 1, and a bijective function ι : (Σ∗)∗ →
Σ∗. We assume that standard operations are efficiently (polynomial-time) computable in these
encodings; concretely we need this for inverting the function ι, for appending an element to a
sequence of strings, and for retrieving and removing the nat(u)-th element from a sequence of
strings.

For an arbitrary set A let Prob(A) denote the set of all finite probability distributions over
A, i.e., those probability distributions D that are actually defined on a finite subset A′ of
A, augmented by D(A \ A′) = 0. For a probability distribution D over A, the probability
of a predicate pred : A → Bool is written PrD(pred). If x is a random variable over A with
distribution D, we also write PrD(pred (x)). In both cases we omit D if it is clear from the
context.

We write := for deterministic and ← for probabilistic assignment. The latter means that
for a function f : X → Prob(Y ), we write y ← f(x) to denote that y is chosen according
to the distribution f(x). For such a function f we write y := f(x) if there exists y′ ∈ Y

with Prf(x)(y
′) = 1. If the function f is clear from the context, we also write x →p y for

Prf(x)(y) = p, and → for →1. Furthermore, we sometimes treat f(x) as a random variable
instead of a distribution, e.g., by writing Pr(f(x) = y) for Prf(x)(y).

3 Asynchronous Reactive Systems

In this section, we define our model of interacting probabilistic machines with distributed
scheduling and with computational realizations.

3.1 Ports

Machines can exchange messages with each other via ports. Intuitively, a port is a possible
attachment point for a channel when a machine is considered in isolation. As in many other
models, channels in collections of machines are specified implicitly by naming conventions on
the ports; hence we define port names carefully. Figure 3 gives an overview of the naming
scheme.

Definition 3.1 (Ports) Let P := Σ+× {ǫ, ↔, ⊳} × {!, ?}. Then p ∈ P is called a port. For
p = (n, l, d) ∈ P, we call name(p) := n its name, label(p) := l its label, and dir(p) := d its
direction. 3
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Figure 3: Ports and buffers.

In the following we usually write (n, l, d) as nld, i.e., as string concatenation. This is possible
without ambiguity, since the mapping ϕ : P → Σ+◦ {ǫ, ↔, ⊳} ◦ {!, ?} with ϕ((n, l, d)) := nld is
bijective because of the precondition !, ?,↔ ,⊳ 6∈ Σ.

The name of a port serves as an identifier and will later be used to define which ports are
connected to each other. The direction of a port determines whether it is a port where inputs
occur or where outputs are made. Inspired by the CSP [62] notation, this is represented by the
symbols ? and !, respectively. The label becomes clear in Definition 3.3.

Definition 3.2 (In-Ports, Out-Ports) A port (n, l, d) is called an in-port or out-port iff d = ?
or d = !, respectively. For a set P of ports let out(P) := {p ∈ P | dir(p) = !} and in(P) :=
{p ∈ P | dir(p) = ?}. For a sequence P of ports let out(P) := (p ∈ P | dir(p) = !) and
in(P) := (p ∈ P | dir(p) = ?). 3

The label of a port determines the port’s role in the upcoming scheduling model. Roughly,
ports p with label(p) ∈ {↔,⊳ } are used for scheduling whereas ports p with label(p) = ǫ are used
for “usual” message transmission.

Definition 3.3 A port p = (n, l, d) is called a simple port, buffer port or clock port iff l = ǫ,
↔, or ⊳, respectively. 3

After introducing ports on their own, we now define the low-level complement of a port. Later
each port and its low-level complement will be regarded as directly connected. Two connected
ports have identical names and different directions. The relationship of their labels l and l′ is
visible in Figure 3, i.e., l = l′ = ⊳ or {l, l′} = {ǫ,↔ }. The remaining notation of Figure 3 is
explained below. In particular, “Buffer ñ” represents the network between the two simple ports
n! and n?. If we are not interested in the network details then we regard the ports n! and n? as
connected; thus we call them high-level complements of each other.

Definition 3.4 (Complement Operators) Let p = (n, l, d) be a port.

a) The low-level complement pc of p is defined as pc := (n, l′, d′) such that {d, d′} = {!, ?},
and l = l′ = ⊳ or {l, l′} = {ǫ,↔ }.

b) If p is simple, the high-level complement pC of p is defined as pC := (n, l, d′) with {d, d′} =
{!, ?}.

3
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3.2 Machines

After introducing ports, we now define machines. Our primary machine model is probabilistic
state-transition machines, similar to probabilistic I/O automata as in [94, 78]. A machine has
a sequence of ports, containing both in-ports and out-ports, and a set of states, comprising
sets of initial and final states. When a machine is switched, it receives an input tuple at its
input ports and performs its transition function yielding a new state and an output tuple in
the deterministic case, or a finite distribution over the set of states and possible outputs in the
probabilistic case. Furthermore, each machine has state-dependent bounds on the length of the
inputs accepted at each port to enable flexible enforcement of runtime bounds, as motivated in
Section 1. The part of each input that is beyond the corresponding length bound is ignored.
The value ∞ denotes that arbitrarily long inputs are accepted.

Definition 3.5 (Machines) A machine is a tuple

M = (name ,Ports ,States , δ, l, Ini ,Fin)

where

• name ∈ Σ+ ◦ {∼, ǫ} is called the name of M,

• Ports is a finite sequence of ports with pairwise distinct elements,

• States ⊆ Σ∗ is called a set of states,

• Ini ,Fin ⊆ States are called the sets of initial and final states.

• l : States → (N0 ∪ {∞})
|in(Ports )| is called a length function; we require l(s) = (0, . . . , 0)

for all s ∈ Fin,

• δ is called a probabilistic state-transition function and defined as follows:

Let I := (Σ∗)|in(Ports )| and O := (Σ∗)|out(Ports )| denote the input set and output set of M,
respectively. Then δ : States × I → Prob(States ×O) with the following restrictions:

– If I = (ǫ, . . . , ǫ), then δ(s, I) := (s, (ǫ, . . . , ǫ)) deterministically.

– δ(s, I) = δ(s, I⌈l(s)) for all I ∈ I. (The parts of each input beyond the length bound
is ignored.)

3

In the following, we write nameM for the name of machine M, PortsM for its sequence of ports,
StatesM, IniM, FinM for its respective sets of states, IM, OM for its input and output set, lM
for its length function and δM for its transition function.

The chosen representation makes the transition function δ independent of the port names;
this enables port renaming in our proofs. The requirement for ǫ-inputs, i.e., the first restriction
on δ, means that it does not matter if we switch a machine without inputs or not, i.e., there are
no spontaneous transitions. The second restriction means that the part of each input beyond
the current length bound for its port is ignored. In particular one can mask an input by a
length bound 0 for a port. The restriction on l means that a machine ignores all inputs if it is
in a final state, and hence it no longer switches.

We will often need the port set of a machine instead of its port sequence as well as the port
set of an entire set of machines.
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Definition 3.6 (Port Set) The port set ports(M) of a machine M is the set of ports in the
sequence PortsM. For a set M̂ of machines, let ports(M̂ ) :=

⋃
M∈M̂

ports(M). 3

In the following, we define three disjoint types (subsets) of machines. Whether a machine is of
one of these types depends only on its name and ports. All machines that occur in the following
will belong to one of these types.

Simple machines only have simple ports and clock out-ports, and their names are contained
in Σ+. We do not make any restrictions on their internal behavior.

Definition 3.7 (Simple Machines) A machine M is simple iff nameM ∈ Σ+ and for all p =
(n, l, d) ∈ ports(M) we have l = ǫ or (l, d) = (⊳, !). 3

Similar to simple machines, default schedulers only have simple ports and clock out-ports, ex-
cept that they have one special clock in-port clk⊳?, called the default-clock in-port. For reasons
of compatibility with existing papers based on the RSIM framework, we also introduce the
terminology master scheduler and master-clock in-port to denote the default scheduler and the
default-clock in-port, respectively. When we define the interaction of several machines, the
default-clock in-port will be used to resolve situations where the interaction cannot proceed
otherwise. A default scheduler makes no outputs (i.e., formally only empty outputs) in a tran-
sition that enters a final state. This will simplify the later definition that the entire interaction
between machines stops if a default scheduler enters a final state.

Definition 3.8 (Default Schedulers) A machine M is a default scheduler iff

• nameM ∈ Σ+,

• clk⊳? ∈ ports(M),

• for all p = (n, l, d) ∈ ports(M) \ {clk⊳?}, we have l = ǫ or (l, d) = (⊳, !), and

• if Pr(δM(s, I) = (s′, O)) > 0 with s′ ∈ FinM and arbitrary s ∈ StatesM and I ∈ IM, then
O = (ǫ, . . . , ǫ).

3

If a simple machine or a default scheduler M has an out-port n! or an in-port n? we say that M

is the sending machine or receiving machine for n, as shown in Figure 3.
As the third machine set, we define buffers. All buffers have the same predefined transition

function. They model the asynchronous channels between other machines, and will later be
inserted between two ports n! and n? as shown in Figure 3. More precisely, for each port name
n, we define a buffer denoted as ñ with three ports n⊳?, n↔?, and n↔!. When a value is input
at n↔?, the transition function of the buffer appends this value to an internal queue over Σ∗.
An input u 6= ǫ at n⊳? is interpreted as a natural number, captured by the function nat, and
the nat(u)-th element of the internal queue is removed and output at n↔!. If there are less than
nat(u) elements, the output is ǫ. As the two inputs never occur together in the upcoming run
algorithm, we define that the buffer only evaluates its first non-empty input. Since the states
have to be a subset of Σ∗ by Definition 3.5, we embed the queue into Σ∗ using the embedding
function ι for sequences (see Section 2).

Definition 3.9 (Buffers) For every n ∈ Σ+ we define a machine ñ called a buffer:

ñ := (n∼, (n⊳?, n↔?, n↔!),States ñ, δñ, lñ, Ini ñ, ∅)

with
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• Statesñ := {ι(P ) | P ∈ (Σ∗)∗},

• Ini ñ := {ι( () )},

• lñ(ι(P )) := (∞,∞) for all ι(P ) ∈ States ñ, and

• δñ(ι(P ), (u, v)) := (ι(P ′), (o)) deterministically as follows:

if u 6= ǫ then

if nat(u) ≤ size(P ) then

P ′ := (P [i] ∈ P | i 6= nat(u))
o := P [nat(u)]

else

P ′ := P and o = ǫ

end if

else if v 6= ǫ then

P ′ := P ◦ (v) and o := ǫ

else

P ′ := P and o := ǫ

end if

3

In the following, a machine with a tilde such as ñ always means the unique buffer for n ∈ Σ+

according to Definition 3.9.

3.3 Computational Realization

For computational aspects, a machine M is regarded as implemented by a probabilistic in-
teractive Turing machine as introduced in [60]. We need some extensions of this model of
probabilistic interactive Turing machines. The main feature of interactive Turing machines is
that they have communication tapes where one machine can write and one other machine can
read. Thus we will use one communication tape to model each low-level connection. Probabil-
ism is modeled by giving each Turing machine a read-only random tape containing an infinite
sequence of independent, uniformly random bits. To make each Turing configuration finite, we
can instead newly choose such a bit whenever a cell of the random tape is first accessed. Each
Turing machine has one distinguished work tape; it may or may not have further local tapes,
which are initially empty.

Our first extension concerns how the heads move on communication tapes; our choice guar-
antees that a machine can ignore the ends of long messages as defined by the length functions
in our I/O machine model, and nevertheless read the following message. This helps machines to
guarantee certain runtimes without becoming vulnerable to denial-of-service attacks by an ad-
versary sending a message longer than this runtime. This enables liveness properties, although
those are not considered in this paper. The second extension concerns restarts of machines
in a multi-machine scenario. We guarantee that a switching step with only empty inputs is
equivalent to no step at all, as in the I/O machine model.

By a Turing machine whose heads recognize partner heads we mean a Turing machine whose
transition function has the following inputs: of course the finite state of the machine, and for
each head of the machine, the content of the cell under this head and a bit denoting whether
another head is on the same cell.
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Definition 3.10 (Computational Realization of Machines) A probabilistic interactive Turing
machine T is a probabilistic multi-tape Turing machine whose heads recognize partner heads.
Tapes have a left boundary, and heads start on the left-most cell. T implements a machine M

as defined in Definition 3.5 if the following holds. Let iM := |in(PortsM)|. We write “finite
state” for a state of the finite control of T and “M-state” for an element of StatesM.

a) T has a read-only tape for each in-port of M. Here the head never moves left, nor to the
right of the other head on that tape. For each out-port of M, T has a write-only tape where
the head never moves left of the other head on that tape.

b) T has special finite states restartint (where “int” is similar to an interrupt vector) with
int ∈ P({1, . . . , iM}) for waking up asynchronously with inputs at a certain set of ports,
sleep denoting the end of an M-transition, and end for termination. Here restart∅ = sleep,
i.e., T needs no time for “empty” transitions.

c) T realizes δM(s, I) as follows for all s ∈ StatesM and I ∈ IM: Let T start in finite state
restartint where int := {i | I[i]⌈lM(s)[i] 6= ǫ} 6= ∅, with worktape content s, and with Ii on
the i-th input tape from (including) T’s head to (excluding) the other head on this tape
for all i. Let s′ be the worktape content in the next finite state sleep or end, and O[i] the
content of the i-th output tape from (including) the other head to (excluding) T’s head in
that state. Then the pairs (s′, O) are distributed according to δM(s, I), and the finite state
is end iff s′ ∈ FinM.

3

The main reason to introduce a Turing-machine realization of the machine model is to define
complexity notions. The interesting question is how we handle the inputs on communication
tapes in the complexity definition, in particular for the notion of polynomial time, which is the
maximum complexity allowed to adversaries against typical cryptographic systems.

One can imagine three degrees of an interactive machine being polynomial-time. The weak-
est would be that each M-transition only needs time polynomial in the current inputs and the
current state, i.e., the current content of the local tapes. However, such a machine might double
the size of its current state in each M-transition; then it would be allowed time exponential in
an initial security parameter after a linear number of M-transitions. Hence we do not use this
notion.

In the medium notion, which we call weakly polynomial-time, the runtime of the machine
is polynomial in the overall length of its inputs, including the initial worktape content. Equiv-
alently, the runtime for each M-transition is polynomial in the overall length of the inputs
received so far. This makes the machine a permissible adversary when interacting with a cryp-
tographic system which is in itself polynomially bounded. However, several weakly polynomial-
time machines together (or even one with a self-connection) can become too powerful. E.g.,
each new output may be twice as long as the inputs so far. Then after a linear number of M-
transitions, these weakly polynomial-time machines are allowed time exponential in an initial
security parameter. We nevertheless use weakly polynomial-time machines sometimes, because
many functionalities are naturally weakly polynomial-time and not naturally polynomial-time
in the following strong sense. However, one always has to keep in mind that this notion does
not compose as we just saw.

Finally, polynomial-time machines are those who only need time polynomial in their initial
worktape content, independent of all inputs on communication tapes.

17



A run of a probabilistic, interactive Turing machine is a valid sequence of configurations of
T (defined as for other Turing machines), where the finite state end can only occur in the last
configuration of the run.

Definition 3.11 (Complexity of Machines)

a) A probabilistic interactive Turing machine T is polynomial-time iff there exists a polyno-
mial P such that all possible runs of T are of length at most P (k), i.e, take at most P (k)
Turing steps, where k is the length of the initial worktape content.

b) T is called weakly polynomial-time iff there exists a polynomial P such that for every fixed
initial worktape content and fixed contents of all input tapes with overall length k′, all
possible runs of T are of length at most P (k′).

c) A machine M according to Definition 3.5 is (weakly) polynomial-time iff there exists a
(weakly) polynomial-time probabilistic interactive Turing machine that implements M ac-
cording to Definition 3.10.

More generally, if we say without further qualification that T fulfills some complexity measure,
we mean that all possible runs of the machine fulfill this measure as a function of the length k

of the initial worktape content. 3

Besides the deterministic runtime bounds that we have defined and that we will use in the fol-
lowing, one could define bounds for the expected runtime. Alternative definitions of polynomial-
time specifically for reactive systems have recently been proposed [64, 70], see [70] for a com-
parison. These definitions can be easily incorporated in the Reactive Simulatability framework.

3.4 Collections of Machines

After introducing individual machines, we now focus on collections of finitely many machines,
with the intuition that these machines interact. Each machine in a collection must be uniquely
determined by its name, and their port sets must be pairwise disjoint so that the naming
conventions for low- and high-level complements will lead to well-defined one-to-one connections.

Definition 3.12 (Collections)

a) A collection Ĉ is a finite set of machines with pairwise different machine names, pairwise
disjoint port sets, and where each machine is a simple machine, a default scheduler, or a
buffer.

b) A collection is called (weakly) polynomial-time iff all its non-buffer machines are (weakly)
polynomial-time.

c) If ñ,M ∈ Ĉ and n⊳! ∈ ports(M) then we call M the scheduler for buffer ñ in Ĉ , and we
omit “in Ĉ ” if it is clear from the context.

3

If a port and its low-level complement are both contained in the port set of the collection,
they form a low-level connection; recall Definition 3.4. High-level connections for simple ports
are defined similarly. If a port p is contained in the port set of the collection but its low-level
complement is not, p is called free. Free ports will later be used to connect external machines to
the collection. For instance, a collection may consist of machines that execute a cryptographic
protocol, and their free ports can be connected to users and an adversary.
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Definition 3.13 (Connections) Let Ĉ be a collection.

a) If p, pc ∈ ports(Ĉ ) then {p, pc} is called a low-level connection. The set gr(Ĉ ) :=
{{p, pc} | p, pc ∈ ports(Ĉ )} is called the low-level connection graph of Ĉ .

b) By free(Ĉ ) := ports(Ĉ ) \ ports(Ĉ )c we denote the free ports in Ĉ .

c) If p, pC ∈ ports(Ĉ ) then {p, pC} is called a high-level connection. The set Gr(Ĉ ) :=
{{p, pC} | p, pC ∈ ports(Ĉ )} is called the high-level connection graph of Ĉ .

3

Given a collection of (usually simple) machines, we want to add buffers for all high-level con-
nections to model asynchronous timing. This is modeled by the completion of a collection Ĉ .
The completion is the union of Ĉ and buffers for all existing ports except the default-clock
in-port. Note that completion leaves already existing buffers in Ĉ unchanged. A collection
is called closed if the only free port of its completion is the default-clock in-port clk⊳?. This
implies that a closed collection has precisely one default scheduler, identified by having the
unique default-clock in-port.

Definition 3.14 (Closed Collection, Completion) Let Ĉ be a collection.

a) The completion [Ĉ ] of Ĉ is defined as

[Ĉ ] := Ĉ ∪ {ñ | ∃l, d : (n, l, d) ∈ ports(Ĉ ) \ {clk⊳?}}.

b) Ĉ is closed iff free([Ĉ ]) = {clk⊳?}, and Ĉ is complete iff [Ĉ ] = Ĉ .

3

3.5 Runs and their Probability Spaces

For a closed collection, we now define runs (in other terminologies executions or traces).

Informal Description

We start with an informal description. Machines switch sequentially, i.e., we have exactly one
active machine M at any time. If this machine has clock out-ports, then besides its “normal”
outputs, it can select the next message to be delivered by scheduling a buffer via one of these
clock out-ports. If the selected message (i.e., a message at the selected position) exists in the
buffer’s internal queue, it is delivered by the buffer and the unique receiving machine becomes
the next active machine. If M tries to schedule multiple messages, only one is taken, and if it
schedules none or the message does not exist, the default scheduler X (which exists since we
consider a closed collection) becomes active.

Next we give a more precise, but still only semi-formal definition of runs. Runs and their
probability spaces are defined inductively by the following algorithm for each tuple ini of initial
states of the machines of a closed collection Ĉ . The algorithm maintains variables for the states
of all machines of the collection and treats each port as a variable over Σ∗, initialized with ǫ

except for clk⊳? := 1. The algorithm further maintains a variable MCS (“current scheduler”)
over machine names, initialized with MCS := X, for the name of the currently active simple
machine or default scheduler, and a variable r for the resulting run, an initially empty list. The
algorithm operates in five phases, which are illustrated in Figure 4. Probabilistic choices only
occur in Phase 1.
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Figure 4: Phases of the run algorithm.

1. Switch current scheduler: Switch the current machine MCS, i.e., set (s′, O) ← δMCS
(s, I)

for its current state s and in-port values I. Then assign ǫ to all in-ports of MCS.

2. Termination: If X is in a final state, the run stops. (As X made no outputs in this case,
this only prevents repeated inputs at the default-clock in-port.)

3. Store outputs: For each simple out-port o! of MCS with o! 6= ǫ, in their given order, switch
buffer õ with input o↔? := o!. Then assign ǫ to all these ports o! and o↔?.

4. Clean up scheduling: If at least one clock out-port of MCS has a value 6= ǫ, let n⊳! denote
the first such port according to their given order and assign ǫ to the others. Otherwise
let clk⊳? := 1 and MCS := X and go to Phase 1.

5. Deliver scheduled message: Switch ñ with input n⊳? := n⊳!, set n? := n↔! and then assign
ǫ to all ports of ñ and to n⊳!. If n? = ǫ let clk⊳? := 1 and MCS := X. Else let MCS := M′

for the unique machine M′ with n? ∈ ports(M′). Go to Phase 1.

Whenever a machine (this may be a buffer) with name nameM is switched from (s, I) to (s′, O),
we add a step (nameM, s, I, s′, O) to the run r with the following two restrictions. First, we
cut each input according to the respective length function, i.e., we replace I by I ′ := I⌈lM(s).
Secondly, we do not add the step to the run if I ′ = (ǫ, . . . , ǫ), i.e., if nothing happens in reality.
This gives a family of probability distributions (run

Ĉ ,ini
), one for each tuple ini of initial states

of the machines of the collection. Moreover, for a set M̂ of machines, we define the restriction
of runs to those steps where a machine of M̂ switches. This is called the view of M̂ . Similar
to runs, this gives a family of probability distributions (view

Ĉ ,ini
(M̂ )), one for each tuple ini

of initial states.

Rigorous Definitions

We now define the probability space of runs rigorously. Since the semi-formal description is
sufficient to understand our subsequent results and the rigorous definitions are quite technical,
this subsection can be skipped at first reading.

We first define a global state space and a global transition function on these states. The global
state space has five parts: the states of all machines of the collection, the current scheduler
(currently active machine), a function assigning strings – the current values – to the ports of
the collection, the current phase, and a subset of the out-port sequence of one machine for
modeling the “for”-loop in the third phase of the informal algorithm. Additionally, the global
state space contains a distinguished global final state sfin .
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Definition 3.15 (Global States of a Collection) Let Ĉ be a complete, closed collection with de-
fault scheduler X. Let P

Ĉ
:= {P | ∃M ∈ Ĉ : P ⊆ out(PortsM)} where ⊆ denotes the subsequence

relation.

• The set of global states of Ĉ is defined as

States
Ĉ

:= ×
M∈Ĉ

StatesM × Ĉ × (Σ∗)ports(Ĉ ) × {1, . . . , 5} × P
Ĉ
∪ {sfin}.

• The set of initial global states of Ĉ is defined as

Ini
Ĉ

:= ×
M∈Ĉ

IniM × {X} × {f} × {1} × {()}

with f(clk⊳?) := 1 and f(p) := ǫ for p ∈ ports(Ĉ ) \ {clk⊳?}.

3

On these global states, we define a global transition function. It reflects the informal run
algorithm.

Definition 3.16 (Global Transition Function) Let Ĉ be a complete, closed collection with de-
fault scheduler X. We define the global transition function

δ
Ĉ

: States
Ĉ
→ Prob(States

Ĉ
)

by δ
Ĉ

(sfin) := sfin and otherwise by the following rules:

Phase 1: Switch current scheduler.

((sM)
M∈Ĉ

,MCS, f, 1, P )→p ((s′M)
M∈Ĉ

,MCS, f ′, 2, ()) (1)

where, with I := f(in(PortsMCS
)) and O := f ′(out(PortsMCS

)),

• p = Pr(δMCS
(sMCS

, I) = (s′MCS
, O)),

• sM = s′M for all M ∈ Ĉ \ {MCS}, and

• f ′(in(PortsMCS
)) = (ǫ)|in(PortsMCS

)| and f ≡ f ′ on ports(Ĉ ) \ ports(MCS).

Phase 2: Termination.

((sM)
M∈Ĉ

,MCS, f, 2, P )→ sfin if sX ∈ FinX; (2)

((sM)
M∈Ĉ

,MCS, f, 2, P )→ ((sM)
M∈Ĉ

,MCS, f, 3, P ′) if sX 6∈ FinX (3)

where P ′ = (o! ∈ PortsMCS
| o ∈ Σ+ ∧ f(o!) 6= ǫ).

Phase 3: Store outputs.

((sM)
M∈Ĉ

,MCS, f, 3, ())→ ((sM)
M∈Ĉ

,MCS, f, 4, ()); (4)

((sM)
M∈Ĉ

,MCS, f, 3, P )→ ((s′M)
M∈Ĉ

,MCS, f ′, 3, P ′) if P 6= () (5)

where there exists n ∈ Σ+ with

• P = (n!) ◦ P ′,
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• (s′ñ, (ǫ)) = δñ(sñ, (ǫ, f(n!))),

• sM = s′M for all M ∈ Ĉ \ {ñ}, and

• f ′(n!) = ǫ and f ≡ f ′ on ports(Ĉ ) \ {n!}.

Phase 4: Clean up scheduling. Let Clks := (n⊳! ∈ PortsMCS
| f(n⊳!) 6= ǫ). Then

((sM)
M∈Ĉ

,MCS, f, 4, P )→ ((sM)
M∈Ĉ

,X, f ′, 1, ()) if Clks = () (6)

where f ′(p) = ǫ for all p ∈ ports(Ĉ ) \ {clk⊳?} and f ′(clk⊳?) = 1, and

((sM)
M∈Ĉ

,MCS, f, 4, P )→ ((sM)
M∈Ĉ

,MCS, f
′, 5, P ′) if Clks 6= () (7)

where

• P ′ = (Clks [1]), and

• f ′(Clks [1]c) = f(Clks [1]) and f ′(p) = ǫ for all p ∈ ports(Ĉ ) \ {Clks [1]c}.

Phase 5: Deliver scheduled message.

((sM)
M∈Ĉ

,MCS, f, 5, P )→ sfin if 6 ∃n ∈ Σ+ : P = (n⊳!); (8)

((sM)
M∈Ĉ

,MCS, f, 5, (n⊳!))→ ((s′M)
M∈Ĉ

,M′
CS, f ′, 1, ()) (9)

where there exists o ∈ Σ+ such that

• sM = s′M for all M ∈ Ĉ \ {ñ},

• (s′
ñ
, (o)) = δñ(sñ, (f(n⊳?), ǫ)),

and

• either o = ǫ and M′
CS = X and f ′(clk⊳?) = 1 and f ′(p) = ǫ for all p ∈ ports(Ĉ ) \

{clk⊳?}

• or o 6= ǫ and n? ∈ PortsM′
CS

and f ′(n?) = o and f ′(p) = ǫ for all p ∈ ports(Ĉ ) \ {n?}.

3

Rule (8) has only been included to define the function δ on the entire state space States
Ĉ

as
claimed at the beginning of the definition. It will not matter in the execution since the previous
state has to be in Phase 4, and this ensures that P contains exactly one clock port. Similarly,
the other rules make no assumptions about reachable states. Furthermore, δ(s) is indeed an
element of Prob(States

Ĉ
) for every s ∈ States

Ĉ
: It is deterministic for all states s except those

treated in Rule (1). For those, the claim follows immediately from the fact that δMCS
(sMCS

, I)
is a finite distribution.

Given the global probabilistic transition function δ, we now obtain probability distributions
on sequences of global states by canonical constructions as for Markov chains. This even holds
for infinite sequences by the theorem of Ionescu-Tulcea; see, e.g., Section V.1 of [86]. More
precisely, we obtain one such probability distribution for every global initial state. Applying
the theorem of Ionescu-Tulcea to our situation yields the following lemma.
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Lemma 3.1 (Probabilities of State Sequences) Let Ĉ be a complete, closed collection,
and let an initial global state ini ∈ Ini

Ĉ
be given. For each set of fixed-length sequences States i

Ĉ
with i ∈ N, we can define a finite probability distribution PStates

Ĉ ,ini ,i
by

Pr(S) =

i∏

j=2

Pr(δ
Ĉ

(Sj−1) = Sj)

for every sequence S = (S1, . . . , Si) over States
Ĉ

with S1 = ini, and Pr(S) = 0 otherwise.
Furthermore, for every sequence S ∈ States i

Ĉ
, let Rect(S) denote the corresponding rect-

angle of infinite sequences with this prefix, i.e., Rect(S) := {S′ ∈ States∞
Ĉ
| S′⌈i= S}. Then

there exists a unique probability distribution PStates
Ĉ ,ini,∞ over States∞

Ĉ
whose value for every

rectangle R := Rect(S) with S ∈ States i

Ĉ
equals Pr(S), or more precisely,

PrPStates
Ĉ ,ini,∞

(R) := PrPStates
Ĉ ,ini,i

(S).

We usually omit the indices “∞” and “i” of these distributions; this cannot lead to confusion.
2

Varying ini gives a family of probability distributions over States∞
Ĉ

; we write it

PStates
Ĉ

:= (PStates
Ĉ ,ini

)ini∈Ini
Ĉ
.

So far we have defined probabilities for sequences of entire global states. Each step in
the runs introduced semi-formally above intuitively corresponds to the difference between two
successive states: Moreover, only the switching of machines is considered in a run, i.e., the
intermediate phases for termination checks and cleaning up scheduling are omitted, as well as
the switching of machines with empty input (after application of the length function) because
nothing happens then. We first define the set of possible steps, i.e., five-tuples containing the
name of the currently switched machine M, its old state, its input tuple, its new state, and its
output tuple. Furthermore, we define an encoding of steps as strings for the sole purpose of
defining overall lengths of potential runs.

Definition 3.17 (Steps) The set of steps is defined as

Steps := (Σ+ ◦ {∼, ǫ}) × Σ∗ × (Σ∗)∗ × Σ∗ × (Σ∗)∗.

Let ιSteps : Steps → Σ+ denote an efficient encoding from Steps into the non-empty strings
over Σ. For all r = (ri)i∈I ∈ Steps∗ let len(r) :=

∑
i∈I size(ιSteps(r)), and for r ∈ Steps∞ let

len(r) :=∞. 3

In particular, we assume that the projection to the individual components of a step is efficiently
computable. Now we define a mapping that extracts a run from a step sequence. Our definition
first extracts a sequence of one potential step from each pair of a global state and the next one.
This first part maps intermediate phases to steps with empty input tuples, so that it is then
sufficient to restrict the obtained sequence to the elements with a non-empty input tuple for
getting rid of both the intermediate phases and of actual switching with empty inputs. When
extracting a potential step, we mainly distinguish whether the current scheduler switches or a
buffer; such a buffer is always indicated by the first element in the port sequence of outputs
still to be handled, the fifth element of the global state.
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Definition 3.18 (Run Extraction) Let Ĉ be a complete, closed collection. Then the run ex-
traction of Ĉ is the function

run
Ĉ

: States∞
Ĉ
→ Steps∗ ∪ Steps∞

defined as follows. (It is independent of Ĉ except for its domain.) Let S = (Si)i∈N ∈ States∞
Ĉ

where for each i ∈ N either Si = sfin or Si = ((si
M)

M∈Ĉ
,Mi

CS, f
i, ji, P i). If i∗ := min{i ∈ N | si =

sfin} exists, let I := {1, . . . , i∗ − 2}, otherwise I := N. We define a sequence pot step(S) =
((ni, si, Ii, s

′
i, Oi))i∈I as follows. (Thus we already omit the last termination check.)

• If P i = () then, with M := Mi
CS,

– ni := nameM,

– si := si
M and s′i := si+1

M , and

– if ji = 1 then Ii := f i(in(PortsM))⌈lM(si) and Oi := f i+1(out(PortsM)), else Ii := (ǫ)
and Oi := (ǫ).

• If P i 6= (), let p := P i[1] and p ∈ ports(ñ). Then

– ni := n∼.

– si := si
ñ and s′i := si+1

ñ
,

– Ii := f i((n⊳?, n↔?)) and Oi := f i+1((n↔!)).

Then run
Ĉ

(S ) := ((ni, si, Ii, s
′
i, Oi) ∈ pot step(S) | Ii 6= (ǫ, . . . , ǫ)). For every number l ∈ N, let

run
Ĉ ,l

denote the extraction of l-step prefixes of runs,

run
Ĉ ,l

: States∞
Ĉ
→

⋃

i≤l

Steps i

with run
Ĉ ,l

(S) := run
Ĉ

(S)⌈l. 3

The run extraction is a random variable on every probability space over States∞
Ĉ

. For our
particular probability space, this induces a family run

Ĉ
= (run

Ĉ ,ini
)ini∈Ini

Ĉ
of probability

distributions over Steps∗ ∪ Steps∞ via

Prrun
Ĉ ,ini

(r) := PrPStates
Ĉ ,ini

(run−1

Ĉ
(r))

for all r ∈ Steps∗ ∪ Steps∞, where run−1

Ĉ
(r) is the set of pre-images of r. For a function

l : Ini
Ĉ
→ N, this similarly gives a family of probability distributions

run
Ĉ ,l

= (run
Ĉ ,ini,l(ini))ini∈Ini

Ĉ
,

each over
⋃

i≤l(ini) Steps i.

We finally introduce the view of a set M̂ of machines in a collection. It is the restriction of
a run (a sequence of steps) to those steps whose machine name belongs to M̂ . The extraction
function is independent of the collection, but we index it with Ĉ anyway for similarity with the
run notation.
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Definition 3.19 (Views) Let Ĉ be a complete, closed collection and M̂ ⊆ Ĉ . The view of M̂
in Ĉ is the function view

Ĉ
(M̂ ) : Steps∗ ∪ Steps∞ → Steps∗ ∪ Steps∞ with

view
Ĉ

(M̂ )(r) := (si ∈ r | ∃M ∈ M̂ : si[1] = nameM).

For every number l ∈ N let view
Ĉ ,l

(M̂ ) denote the extraction of l-step prefixes of a view, i.e.,

view
Ĉ ,l

(M̂ ) : Steps∗ ∪ Steps∞ →
⋃

i≤l Steps i with view
Ĉ ,l

(M̂ )(r) := view
Ĉ

(M̂ )(r)⌈l. 3

For a singleton M̂ = {M}, we write view
Ĉ

(M) instead of view
Ĉ

({M̂ }), and similar for l-step
prefixes. Based on the family run

Ĉ
of probability distributions of runs, this induces a family of

probability distributions
view

Ĉ
(M̂ ) = (view

Ĉ ,ini
(M̂ ))ini∈Ini

Ĉ

over Steps∗ ∪ Steps∞. For a function l : Ini
Ĉ
→ N, this similarly gives a family view

Ĉ ,l
=

(view
Ĉ ,ini,l(ini))ini∈Ini

Ĉ
over

⋃
i≤l(ini) Steps i.

Finally, we define sets of state-traces and of traces (or step-traces). Intuitively, they are the
possible sequences of global states and of steps, respectively. More precisely, each finite prefix
of such a sequence happens with positive probability.

Definition 3.20 (State-Trace, Trace) Let Ĉ be a complete, closed collection and ini ∈ Ini
Ĉ

an initial global state.

• The set of state-traces for ini is

StateTrace
Ĉ ,ini

:= {S ∈ States∞
Ĉ
| ∀l ∈ N : PrPStates

Ĉ ,ini,l
(S⌈l) > 0}.

• The set of traces for ini is

StepTrace
Ĉ ,ini

:= {tr ∈ Steps∗ | Prrun
Ĉ ,ini

(tr ) > 0}

∪ {tr ∈ Steps∞ | ∀l ∈ N : Prrun
Ĉ ,ini,l

(tr⌈l) > 0}.

• The set of possible views of a machine set M̂ ⊆ Ĉ for ini is

ViewTrace
Ĉ ,ini

(M̂ ) := {v ∈ Steps∗ | Prview
Ĉ ,ini

(M̂ )(v) > 0}

∪ {v ∈ Steps∞ | ∀l ∈ N : Prview
Ĉ ,ini,l

(M̂ )(v⌈l) > 0}.

Set StateTrace
Ĉ

:=
⋃

ini∈Ini
Ĉ

StateTrace
Ĉ ,ini

and Trace
Ĉ

:=
⋃

ini∈Ini
Ĉ

Trace
Ĉ ,ini

and

ViewTrace
Ĉ

(M̂ ) :=
⋃

ini∈Ini
Ĉ

ViewTrace
Ĉ ,ini

(M̂ ).
3

We conclude this section with two properties of state-traces and views. The first, technical
one states that whenever a non-buffer machine M is switched in a state-trace of Ĉ , which only
happens in Phase 1, there is at most one port p ∈ ports(Ĉ ) with a non-empty value, and it
must fulfill p ∈ ports(M).
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Lemma 3.2 (Unique Inputs in Traces) Let Ĉ be a complete, closed collection. Let S :=
(Si)i∈N ∈ StateTrace

Ĉ
where for each i ∈ N either Si = sfin or Si = ((si

M)
M∈Ĉ

,Mi, f i, ji, P i).
For all i ∈ N with Si 6= sfin :

(ji = 1 ∧ ∃p ∈ ports(Ĉ ) : (f i(p) 6= ǫ))⇒ (p ∈ ports(Mi) ∧ ∀p′ ∈ ports(Ĉ ) \ {p} : (f i(p′) = ǫ)).

2

Proof. For i = 1 this holds since S ∈ StateTrace
Ĉ

implies S1 ∈ Ini
Ĉ

and each element of
Ini

Ĉ
fulfills the claim with p = clk⊳!. Let now i > 1 and Si with ji = 1. Only two cases

are possible for the previous state Si−1. The case ji−1 = 4 and Mi = X fulfills the claim for
p = clk⊳? ∈ ports(X), and the case ji−1 = 5 for p = n?.

The second property shows that the views of polynomial-time machines are polynomially
bounded, and so are runs of polynomial-time collections.

Lemma 3.3 (Polynomial Views and Traces) Let Ĉ be a complete, closed collection and
let M̂ ⊆ Ĉ be polynomial-time. For all ini = ((iniM)

M∈Ĉ
,X, f, 1, ()) ∈ Ini

Ĉ
let size

M̂
(ini) :=∑

M∈M̂
size(iniM). Then there exists a polynomial P such that for all ini ∈ Ini

Ĉ
and all

v ∈ ViewTrace
Ĉ ,ini

(M̂ ) we have len(v) ≤ P (size
M̂

(ini)).

If the entire collection Ĉ is polynomial-time, then there exists a polynomial P such that for
all ini ∈ Ini

Ĉ
and all r ∈ Trace

Ĉ ,ini
we have len(r) ≤ P (size

Ĉ
(ini)). 2

Proof. By Definition 3.11, for a polynomial-time machine M, there exists a probabilistic
interactive Turing machine T that implements M and only makes a polynomial number of
Turing steps, relative to the length size(iniM) of its own input, which is smaller than the overall
input size size

M̂
(ini) of the considered machines. Consequently, T and hence M can only build

up a polynomial-size state and outputs, and read a polynomial-size part of its inputs. Each
step in the view requires at least one Turing step; hence there is also only a polynomial number
of these steps. Moreover, only states, outputs, and read parts of the inputs are part of the steps
(see Definitions 3.16 and 3.18). This proves the first statement.

A run of a polynomial-time collection Ĉ consists of the steps of its polynomial-time machines
and its buffers. Buffers are not polynomial-time, but weakly polynomial-time; this follows im-
mediately from the assumption we made about the encoding ι of the internal queue. Each buffer
obtains all its inputs from polynomial-time machines; hence its overall input is of polynomial
length. Thus each buffer only makes a polynomial number of Turing steps. This yields an
overall polynomial size of its steps as above.

4 Security-Specific System Model

Security-specific structures are defined as collections of machines with distinguished service
ports for the honest users, as explained in the introduction. Such structures are augmented by
arbitrary machines H and A representing the honest users and the adversary, who can interact.
We then speak of a configuration. For configurations, we also introduce specific families of
executions corresponding to different security parameters for cryptographic aspects.

Definition 4.1 (Structures and Service Ports) A structure is a pair struc = (M̂ ,S ) where M̂
is a collection of simple machines with {1}∗ ⊆ IniM for all M ∈ M̂ , and S ⊆ free([M̂ ]). The
set S is called service ports. 3
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Forbidden ports for users of a structure are those that clash with port names of given machines
and those that would link the user to a non-service port.

Definition 4.2 (Forbidden Ports) For a structure (M̂ ,S ) let S̄
M̂

:= free([M̂ ]) \ S. We call

forb(M̂ ,S ) := ports(M̂ ) ∪ S̄ c

M̂
the forbidden ports. 3

A system is a set of structures. The idea behind systems, as motivated in the introduction,
is that there may be different actual structures depending on the set of actually malicious
participants. Typical derivations of systems from one explicitly defined intended structure and
a trust model will be discussed in Section 6.

Definition 4.3 (Systems) A system Sys is a set of structures. It is (weakly) polynomial-time
iff the machine collections M̂ of all its structures are (weakly) polynomial-time. 3

A configuration consists of a structure together with a user machine and an adversary machine
(or user and adversary for short). The user is restricted to connecting to the service ports.
The adversary closes the collection, i.e., it connects to the remaining service ports, to the other
free ports S̄

M̂
of the collection, and to the free ports of the user. Thus, user and adversary can

interact, e.g., for modeling active attacks.

Definition 4.4 (Configurations)

a) A configuration of a structure (M̂ ,S ) is a tuple conf = (M̂ ,S ,H,A) where

– H is a machine called user without forbidden ports, i.e., ports(H) ∩ forb(M̂ ,S ) = ∅,
and with {1}∗ ⊆ IniH,

– A is machine called adversary with {1}∗ ⊆ IniA,

– and the completion Ĉ := [M̂ ∪ {H,A}] is a closed collection.

b) The set of configurations of (M̂ ,S ) is written Conf(M̂ ,S ). The set of configurations of
(M̂ ,S ) with polynomial-time user H and adversary A is written Confpoly(M̂ ,S ).

c) The set of configurations of a system Sys is defined as Conf(Sys) :=⋃
(M̂ ,S)∈Sys

Conf(M̂ ,S ), and similarly Confpoly(Sys) :=
⋃

(M̂ ,S)∈Sys
Confpoly(M̂ ,S ).

We omit the index “poly” from Confpoly(Sys) if it is clear from the context. 3

In cryptographic applications, all machines typically start with the same security parameter.
An informal description of runs and views of configurations based on the informal description
of runs and views of collections from Section 3.5 is thus simply obtained by restricting the tuple
ini of initial states. For reasons of rigor, we define runs and views of configurations based on the
rigorous definitions of global states, runs, and views of collections from Section 3.5 by making
a global constraint on the valid global initial states in the family of runs of a configuration that
the security parameters are equal.

Definition 4.5 (Runs and Views of Configurations) Let conf = (M̂ ,S ,H,A) be a configuration
and Ĉ := [M̂ ∪ {H,A}]. We define Ini conf := {((1k)

M∈M̂∪{H,A} ◦ (ι(ǫ))
ñ∈Ĉ

, (X, f, 1, ())) | k ∈

N} ⊆ Ini
Ĉ

with X and f as in Definition 3.15. Then we define the family of probability
distributions of runs of the configuration as

runconf := (run
Ĉ ,ini

)ini∈Iniconf
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and for all sets M̂ ′ ⊆ Ĉ the family of probability distributions of views similarly

view
Ĉ

(M̂ ′) := (view
Ĉ ,ini

(M̂ ′))ini∈Iniconf
,

and analogously for l-step prefixes. Furthermore, we identify Iniconf with N and thus write
runconf ,k etc. for the individual probability distributions in the families. 3

5 Reactive Simulatability

Reactive simulatability, our notion of secure refinement, is defined for individual structures and
lifted to entire systems. Two structures struc1 and struc2 can be compared if they have the
same service ports, so that the same honest users can connect to them. In other words, they
offer the same interface for the design of a larger system, so that either struc1 or struc2 can
be plugged into that system. Now struc1 is considered at least as secure as struc2, written
struc1 ≥ struc2, if whatever any adversary A1 can do to any honest user H using struc1, some
adversary A2 can do to the same H using struc2 essentially with the same probability. More
precisely, the families of views of H in these two configurations are indistinguishable.

Different variants of indistinguishability are based on different classes of small functions
(occurring as differences). The most important class is that of negligible functions; additionally
we define closure properties that we require of suitable classes of small functions.

Definition 5.1 (Small Functions)

a) The class NEGL of negligible functions contains all functions s : N → R≥0 that decrease
faster than the inverse of every polynomial, i.e., for all positive polynomials Q ∃k0 ∀k >

k0 : s(k) < 1
Q(k) .

b) A set SMALL of functions N → R≥0 is a suitable class of small functions if it is closed
under addition, and with a function g also contains every function g′ : N → R≥0 with
g′ ≤ g.

3

Typical classes of small functions are EXPSMALL, which contains all functions bounded by
Q(k) · 2−k for a polynomial Q, and the larger class NEGL.

Simulatability is based on indistinguishability of views; hence we repeat the definition of
indistinguishability, essentially from [100].

Definition 5.2 (Indistinguishability) Two families (vark)k∈N and (var′k)k∈N of probability dis-
tributions (or random variables) on common domains (Dk)k∈N are

a) perfectly indistinguishable (“=”) iff ∀k ∈ N : vark = var′k.

b) statistically indistinguishable (“≈SMALL”) for a suitable class SMALL of small functions
iff the distributions are discrete and their statistical distances, as a function of k, are
small, i.e.,

(∆stat(vark, var
′
k))k∈N := ( sup

Vk⊆Dk
Vkmeasurable

|Pr(vark ∈ Vk)− Pr(var′k ∈ Vk)|)k∈N ∈ SMALL.
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c) computationally indistinguishable (“≈poly”) iff for every algorithm Dis (the distinguisher)
that is probabilistic polynomial-time in its first input,

(|Pr(Dis(1k, vark) = 1)− Pr(Dis(1k, var′k) = 1)|)k∈N ∈ NEGL.

(Intuitively, Dis, given the security parameter and an element chosen according to either
vark or var′k, tries to guess which distribution the element came from.)

We write ≈ if we want to treat all cases together. 3

Note that for countable Dk, statistical indistinguishability can be rewritten in the more common
form of requiring (1

2

∑
d∈Dk

|Pr(vark = d)− Pr(var′k = d)|)k∈N ∈ SMALL.

We now present the reactive simulatability definition. One technical problem is that a user
might legitimately connect to the service ports in a configuration of (M̂1,S ), but in a config-
uration of (M̂2,S ) the same user might have forbidden ports. This is excluded by considering
suitable configurations only.

Definition 5.3 (Suitable Configurations for Structures) Let (M̂1,S ) and (M̂2,S ) be struc-

tures with the same set of service ports. The set of suitable configurations ConfM̂2(M̂1,S ) ⊆

Conf(M̂1,S ) is defined by (M̂1,S ,H,A) ∈ ConfM̂2(M̂1,S ) iff ports(H) ∩ forb(M̂2,S ) = ∅.

The set of polynomial-time suitable configurations is ConfM̂2

poly(M̂1,S ) := ConfM̂2(M̂1,S ) ∩

Confpoly(M̂1,S ). 3

As we have three different notions of indistinguishability, our reactive simulatability definition
also comes in three flavors. Furthermore, we distinguish the general reactive simulatability
(GRSIM) as sketched so far and a stronger universal version (URSIM) where one adversary A2

must be able to work for all users. Note that the term “reactive simulatability” is primarily
meant to capture the overall idea of suitably comparing the views of honest users when inter-
acting with reactive protocols; in follow-up papers, reactive simulatability is sometimes also
used as a synonym for general reactive simulatability.

Definition 5.4 (General/Universal Reactive Simulatability for Structures) Let structures
(M̂1,S ) and (M̂2,S ) with identical sets of service ports be given.

a) (M̂1,S ) ≥perf
sec (M̂2,S ), spoken perfectly at least as secure as, iff for every configuration

conf 1 = (M̂1,S ,H,A1) ∈ ConfM̂2(M̂1,S ), there exists a configuration conf 2 = (M̂2,S ,

H,A2) ∈ Conf(M̂2,S ) (with the same H) such that

viewconf 1
(H) = viewconf 2

(H).

b) (M̂1,S ) ≥SMALL
sec (M̂2,S ) for a suitable class SMALL of small functions, spoken sta-

tistically at least as secure as, iff for every configuration conf 1 = (M̂1,S ,H,A1) ∈

ConfM̂2(M̂1,S ), there exists a configuration conf 2 = (M̂2,S ,H,A2) ∈ Conf(M̂2,S ) (with
the same H) such that

viewconf 1
(H) ≈SMALL viewconf 2

(H).1

1Previous versions of the Reactive Simulatability framework erroneously required statistical indistinguishabil-
ity to hold only for polynomially bounded prefixes of user views. As pointed out in [66], extending this requirement
to user views without additional contraints is necessary to achieve compositionality results in general.
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c) (M̂1,S ) ≥poly
sec (M̂2,S ), spoken computationally at least as secure as, iff for every con-

figuration conf 1 = (M̂1,S ,H,A1) ∈ ConfM̂2

poly(M̂1,S ), there exists a configuration conf 2 =

(M̂2,S ,H,A2) ∈ Confpoly(M̂2,S ) (with the same H) such that

viewconf 1
(H) ≈poly viewconf 2

(H).

In all three cases, we speak of universal reactive simulatability (URSIM) if A2 in conf 2 does

not depend on H (only on M̂1, S , and A1), and we use the notation ≥uni,perf
sec etc. for this. In

all cases, we call conf 2 an indistinguishable configuration for conf 1. 3

There is also a notion of blackbox reactive simulatability (BRSIM), where the adversary A2

consists of a fixed part, called simulator, using A1 as a blackbox submachine. However, its
rigorous definition needs the notion of machine combination, which we postpone to the successor
paper dealing with composition. If one can simply set A2 := A1, we also say that the structures
are observationally equivalent, or simply indistinguishable; this corresponds to the definition in
[73].

Where the difference between the types of security is irrelevant, we simply write ≥sec, and
we omit the index sec if it is clear from the context.

Remark 5.1. Adding a free adversary out-port in the comparison (like the guessing-outputs
used to define semantic security of encryption systems in [59]), thus taking the view of the
adversary into account, does not make the definition stricter since the universal quantification
over the honest user and the adversary could always be exploited to provide information that
the adversary knows to the honest user: Any such out-port can be connected to an in-port
added to the honest user with sufficiently large length bounds. H does not react on inputs at
this new in-port, but nevertheless it is included in the view of H, i.e., in the comparison. A
rigorous proof can be found in [4]. ◦

The definition of general and universal reactive simulatability can be lifted from structures
to systems Sys1 and Sys2 by comparing their respective structures. However, we do not want to
compare a structure of Sys1 with arbitrary structures of Sys2, but only with certain “suitable”
ones. What suitable means in a concrete situation can be defined by a mapping f from Sys1

to the powerset of Sys2. The mapping f is called valid if it maps structures with the same set
of service ports, so that the same user can connect.

Definition 5.5 (Valid Mappings) Let Sys1 and Sys2 be two systems. A valid mapping between
Sys1 and Sys2 is a function f : Sys1 → P(Sys2) \ ∅ with S1 = S2 for all (M̂1,S1) ∈ Sys1 and
(M̂2,S2) ∈ f((M̂1,S1)). The elements of f((M̂1,S1)) are called the corresponding structures for
(M̂1,S1). 3

Remark 5.2. In the synchronous model in [91], we allow more general users and valid mappings.
The stronger requirements here simplify the presentation and are sufficient for all cryptographic
examples we considered. The report version of [91] contains non-cryptographic examples with
S1 6= S2. ◦

Definition 5.6 (General/Universal Reactive Simulatability for Systems) Let systems Sys1 and
Sys2 be given, and let f be a valid mapping between Sys1 and Sys2.
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a) Sys1 ≥
f,perf
sec Sys2, spoken perfectly at least as secure as, iff for every (M̂1,S ) ∈ Sys1 there

exists (M̂2,S ) ∈ f((M̂1,S )) such that

(M̂1,S ) ≥f,perf
sec (M̂2,S ).

b) Sys1 ≥
f,SMALL
sec Sys2 for a suitable class SMALL of small functions, spoken statistically

at least as secure as, iff for every (M̂1,S ) ∈ Sys1 there exists (M̂2,S ) ∈ f((M̂1,S )) such
that

(M̂1,S ) ≥f,SMALL
sec (M̂2,S ).

c) Sys1 ≥
f,poly
sec Sys2, spoken computationally at least as secure as, iff for every (M̂1,S ) ∈

Sys1 there exists (M̂2,S ) ∈ f((M̂1,S )) such that

(M̂1,S ) ≥f,poly
sec (M̂2,S ).

In all three cases, we speak of universal reactive simulatability if the respective relation on
structures fulfills universal simulatability, and we use the notation ≥f,uni,perf

sec etc. for this. 3

Where the difference between the types of security is irrelevant, we simply write ≥sec, and we
again omit the index sec if it is clear from the context.

We conclude this section with two technical lemmas capturing an equivalent definition of
the forbidden ports of a structure and additional results on valid mappings and suitable con-
figurations, which is useful in proofs.

Recall that Definition 4.4 excludes users that would connect to the forbidden ports of a
configuration. The following lemma establishes an equivalent condition.

Lemma 5.1 (Users) Let (M̂ ,S ) be a structure. Then for all machines H, ports(H) ∩
forb(M̂ ,S ) = ∅ is equivalent to ports(H)∩ ports(M̂ ) = ∅ (1) and ports(H)c ∩ ports([M̂ ]) ⊆ S (2).
2

Proof. Let inner(Ĉ ) := ports(Ĉ ) \ free(Ĉ ) for every collection Ĉ . Clearly inner(Ĉ )c = inner(Ĉ ).
The condition on the left-hand side is equivalent to (1) and ports(H)c ∩ (free([M̂ ]) \ S ) = ∅ (3).
Now (3) ⇔ ports(H)c ∩ free([M̂ ]) ⊆ S . It remains to be shown that ports(H)c ∩ inner([M̂ ]) = ∅.
This is equivalent to ports(H) ∩ inner([M̂ ]) = ∅. Now ports([M̂ ]) only contains additional buffer
ports and clock in-ports compared with ports(M̂ ). Hence (1) even implies ports(H)∩ports([M̂ ]) =
∅.

The following lemma shows that the ports of a structure that users are intended to use, i.e., the
complement of the service ports, are not at the same time forbidden. Moreover, it shows that a
non-suitable configuration can be transformed into a suitable one via port renaming such that
this renaming does not affect the view of the user. This means that the restriction to suitable
configurations in the definition of reactive simulatability is without loss of generality.

Lemma 5.2 (Valid Mappings and Suitable Configurations) Let (M̂1,S ) and (M̂2,S ) be
structures.

a) Then S c ∩ forb(M̂1,S ) = ∅.

b) For every conf 1 = (M̂1,S ,H,A1) ∈ Conf(M̂1,S ) \ ConfM̂2(M̂1,S ), there is a configuration

conf f,1 = (M̂1,S ,Hf ,Af,1) ∈ ConfM̂2(M̂1,S ) such that viewconf f,1
(Hf) = viewconf 1

(H).
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2

Proof. For Part a) recall that forb(M̂ ,S ) = ports(M̂1) ∪ (free([M̂1]) \ S )c. The part S c ∩
(free([M̂1]) \ S )c = ∅ is clear, and S c ∩ ports(M̂1) = ∅ follows from S ⊆ free([M̂1]).

For Part b), we want to construct Hf by giving each port p = nld ∈ ports(H) ∩ forb(M̂2,S ) a
new name. Since runs and views do not depend on port names, cf. Definition 3.5, they remain
the same if we consistently rename all other ports q (at most five) with name(q) = n. The
new collection is a configuration (M̂1,S ,Hf ,Af,1) if no renamed port belongs to M̂1. Assume

that q = nl′d′ ∈ ports(M̂1) is such a renamed port, then ñ ∈ [M̂1] and hence pc ∈ ports([M̂1]).
Now Lemma 5.1 implies pc ∈ S , hence Part a) applied to the structure (M̂2,S ) implies p 6∈
forb(M̂2,S ), in contradiction to the original condition on p.

6 Special Cases for Cryptographic Purposes

In the presence of adversaries, the structure of correct machines running may not be the intended
structure that the designer originally planned. For instance, some machines might have been
corrupted; hence they are missing from the actual structure and the adversary took over their
connections. We model this by defining a system as a set of possible actual structures. A
system is typically derived automatically from an intended structure and a trust model. We
define this for static and adaptive adversaries, arbitrary access structures limiting the corruption
capabilities of an adversary, and different channel types. While one typically considers all
basic channels insecure in a security protocol, secure or authentic channels are useful to model
initialization phases, e.g., the assumption that a public-key infrastructure exists. In contrast
to some formal methods which immediately abstract from cryptography, we cannot represent
this by a fixed initial key set because we need probabilities over the key generation for security;
moreover, this would not allow a polynomial number of keys to be chosen reactively.

Cryptographic systems come in two flavors, depending on how the adversary takes control
over certain machines. If malicious machines are malicious from the beginning, we call the
system a static standard cryptographic system. If the adversary may corrupt machines during
the protocol executions, depending on the knowledge that he has already collected, we speak
of an adaptive standard cryptographic system.

6.1 Trust Models and Intended Structures

We start with the definition of trust models for a structure. Trust models consist of two parts:
an access structure and a channel model. Access structures will later be used to denote the
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possible sets of correct machines in an intended structure. Access structures have to be closed
under insertion, i.e., with every such set, every larger set is contained as well.

Definition 6.1 (Access Structure) Let A be an arbitrary set. Then ACC ⊆ P(A) is called an
access structure for A iff (B ∈ ACC ∧ C ∈ P(A) ∧ B ⊆ C ) ⇒ C ∈ ACC for all sets B and C .
3

Typical examples of access structures are threshold structures ACCt,n := {H ⊆ A | |H| ≥ t}
with t ≤ n.

A channel model for a structure classifies each internal high-level connection as secure (pri-
vate and authentic), authenticated (only authentic), or insecure (neither private nor authentic),
represented as elements of the set {s, a, i}. What this means will become clear in Section 6.2.

Definition 6.2 (Channel Model) A channel model for a structure (M̂ ,S ) is a mapping
χ : Gr(M̂ )→ {s, a, i}. 3

Definition 6.3 (Trust Model) A trust model for a structure (M̂ ,S ) is a pair (ACC, χ) where
ACC is an access structure for M̂ , and χ is a channel model for (M̂ ,S ). 3

We proceed with the definition of intended structures, i.e., structures a designer of a security
protocol would typically design. An intended structure is a structure that is benign in the sense
that it does not offer any free simple ports for the adversary. Moreover, we demand that a
machine of a structure may only schedule those connections for which it owns the corresponding
input or output port, i.e., it does not intend to schedule users and adversaries. We distinguish
three different kinds of intended structures, depending on how the channels between the system
and the user are clocked. We call the structure localized if every output is clocked by the
outputting machine itself. Structures of this kind are typically used as local submachines that
can be clocked by the overall protocol and then immediately deliver a result. If the adversary
clocks the communication between the structure and the user, we call the structure stand-alone.
Finally, if the user and the system have to fetch the outputs of the other, we call the structure
fetching.

Remark 6.1. We could as well distinguish channels from the user to the system and vice versa,
e.g., to define that users schedule their outputs and fetch their inputs. This would give nine
different combinations. Modifying the upcoming definition of intended structures in such a way
is trivial. ◦
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The derivation of the remaining structures based on the intended structure will rely on
modifying the connections in an adequate way, e.g., by duplicating output ports that output
on authentic channels so that one output port is connected as usual and the duplicated port
is connected to the adversary. Hence derived structures need an extended set of possible port
names. Moreover, we will need a distinguished state and distinguished ports to model adaptive
corruptions of machines. Technically, we therefore parameterize intended structures by an
additional alphabet Γ ( Σ with |Γ| = |Σ| − 2 and a state scorr, and we restrict port names in
the intended structure to Γ+ and possible states to Σ∗ \ {scorr}.

Definition 6.4 (Intended Structure) A structure (M̂ ∗,S ∗) is called an intended structure for
scorr ∈ Σ∗ and Γ ⊂ Σ with |Γ| = |Σ| − 2 iff

• all M ∈ M̂ ∗ are simple, name(p) ∈ Γ+ for all p ∈ ports(M̂ ∗), and scorr 6∈ StatesM for all
M ∈ M̂ ∗,

• for all M ∈ M̂ ∗: (n⊳! ∈ ports(M)⇒ (n? ∈ ports(M)) ∨ (n! ∈ ports(M))), and

• it has the following properties. Let S ′ := {p ∈ free([M̂ ∗]) | label(pc) = ǫ}.

– The structure is called localized iff

S ∗ = S ′ ∪ {n⊳? | n! ∈ free([M̂ ∗])c}.

and the following condition on the port set of M̂ ∗ holds:

n? ∈ free([M̂ ∗])c ⇒ n⊳! ∈ ports(M̂ ∗) # M̂ ∗ schedules its outputs to the user

– The structure is called stand-alone iff S ∗ = S ′ and

(n, ǫ, d) ∈ free([M̂ ∗])c ⇒ n⊳! 6∈ ports(M̂ ∗) # M̂ ∗ does not schedule any connection

# between the user and M̂ ∗

– The structure is called fetching iff

S ∗ = S ′ ∪ {n⊳? | n? ∈ free([M̂ ∗])c}

and the following condition on the port set of M̂ ∗ holds:

n! ∈ free([M̂ ∗])c ⇒ n⊳! ∈ ports(M̂ ∗) # M̂ ∗ schedules the inputs from the user

3

6.2 Standard Static Cryptographic Systems

Standard static cryptographic systems are derived from an intended structure and a trust
model as follows. Each system contains one structure for each element of the considered access
structure, i.e., for each set H of potential correct machines.

The channel model is taken into account as follows. Intuitively, we change the connections
such that the adversary receives messages sent on authenticated and insecure channels, and we
enable him to arbitrarily modify messages sent on insecure channels. This is modeled as de-
picted in Figure 6 for authenticated and insecure channels; secure channels remain unchanged.
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Authenticated channels are modeled by additional out-ports pd! where outputs at p! are du-
plicated. The port pd! remains free; hence the adversary can connect to it. Insecure channels
are modeled by renaming the input port. This breaks the existing connection and places the
adversary in between.

Moreover, if p? belongs to a correct machine and p! does not, we also rename p? into pa? so
that all inputs from the adversary have superscript a. By applying these changes to a machine
M, we get a modified machine MH,χ.

Formally, let {a, d} := Σ \Γ. Then we define two mappings ϕa and ϕd that assign each port
p = (n, l, d) with n ∈ Γ+ ports (an, l, d) and (dn, l, d) respectively. We write pa and pd instead
of ϕa(p) and ϕd(p).

We now define the derivation of static cryptographic systems from a given intended structure
and a trust model rigorously. Similar to the definition of runs, the semi-formal description given
above is sufficient to understand our subsequent results, so the following technical definition
can be skipped at first reading.

Definition 6.5 (Derivation of Standard Static Cryptographic Systems) Let (M̂ ∗,S ∗) be an in-
tended structure for a state scorr and a set Γ, and let (ACC, χ) be a trust model for (M̂ ∗,S ∗).
Then the corresponding cryptographic system with static adversary

Sys = StanStat((M̂ ∗,S ∗), (ACC, χ))

is Sys := {(M̂H,SH) | H ∈ ACC} where for all H ∈ ACC:

• SH := S ∗ ∩ free([H]).

• M̂H := {MH,χ|M ∈ H}, where

MH,χ = (nameM,PortsMH,χ
,StatesM, δMH,χ

, lM, IniM,FinM)

is defined as follows:

– The sequence PortsMH,χ
is derived by the following algorithm.

PortsMH,χ
:= ().

for p ∈ PortsM (in the given order) do

if c := {p, pC} ∈ Gr(H) ∧ χ(c) = a ∧ dir(p) = ! then

PortsMH,χ
:= PortsMH,χ

◦ (p, pd)

else if c := {p, pC} ∈ Gr(H) ∧ χ(c) = i ∧ dir(p) = ? then

PortsMH,χ
:= PortsMH,χ

◦ (pa)

else if c := {p, pC} 6∈ Gr(H) ∧ dir(p) = ? then

PortsMH,χ
:= PortsMH,χ

◦ (pa)
else

PortsMH,χ
:= PortsMH,χ

◦ (p)
end if

end for

– Let s, s′ ∈ StatesM, I ∈ (Σ∗)|in(ports(M))|, O1 ∈ (Σ∗)|out(ports(M))| and O2 ∈
(Σ∗)|out(ports(MH,χ))|. Then Pr(δMH,χ

(s, I) = (s′, O2)) := Pr(δM(s, I) = (s′, O1)) if
O2 is derived from O1 by the following algorithm, and zero otherwise.2

2Note that |in(ports(M))| = |in(ports(MH,χ))| by definition; hence I is also a valid input tuple for the machine
MH,χ.
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i := 1
for j := 1, . . . , |out(ports(MH,χ))| do

if (out(PortsMH,χ
))[j] = pd for a port p then

O2[j] := O2[j − 1]
else

O2[j] := O1[i]
i := i + 1

end if

end for

3

6.3 Standard Cryptographic Systems with Adaptive Adversaries

Standard static cryptographic systems as defined in the previous section are based on the intu-
ition that corrupted machines are corrupted right from the start, e.g., they belong to untrusted
owners. In adaptive (or dynamic) adversary models the set of corrupted machines can increase
over time, e.g., because there is a “master adversary” who has to hack into machines in or-
der to corrupt them [31, 38]. Adaptive adversary models are more powerful than static ones,
i.e., there are examples of systems secure against static adversaries that are insecure against
adaptive adversaries who can corrupt the same number of machines [38].

For a given intended structure and a channel model, the corresponding cryptographic system
with adaptive adversary has only one structure. Similar to the derivation of static cryptographic
systems from an intended structure, we define the derivation of a machine Mcorr,χ from each
machine M. This derivation is used to grant the adversary the possibility to corrupt machines
during the global execution. This is modeled by giving Mcorr,χ a corruption port corruptMcorr,χ

?,
which is used for corruption requests, and two new ports cor outMcorr,χ

!, cor inMcorr,χ
? for commu-

nication with the adversary after corruption. We assume that these ports must neither occur
in an intended structure nor after port renaming as defined for the static case; this can be
achieved by encoding the names of these ports into Σ+ \ ({ǫ, a, d} ◦ Γ+) where Σ = Γ ∪ {a, d}.
The corruption port must connect to the service ports. Upon a non-empty input at the cor-
ruption port, Mcorr sends its current state to the adversary via cor outMcorr,χ

!, and from now
on acts transparently, i.e., every input (I1, . . . , Is) is translated into the output ι(I1, . . . , Is) at
cor outMcorr,χ

!, and every input (b) at cor inMcorr,χ
? is first decomposed as (O1, . . . , Ot) := ι−1(b)

and then output at the respective output ports.

Definition 6.7 (Derivation of Standard Adaptive Cryptographic Systems) Let (M̂ ∗,S ∗) be an
intended structure for a state scorr and a set Γ, and let χ be a channel model χ for (M̂ ∗,S ∗).
Then the corresponding cryptographic system with adaptive adversary

Sys = StanAdap((M̂ ∗,S ∗), χ)

is Sys := {(M̂ ,S )} where

• S := S ∗ ∪ {corruptM
↔? | M ∈ M̂ ∗}.

• M̂ := {Mcorr,χ | M ∈ M̂ ∗}, where Mcorr,χ is derived from M with H = M̂ as follows: Let
MH,χ be the machine defined in the static case (Definition 6.5). Then

Mcorr,χ = (nameM,PortsMcorr,χ
,StatesMcorr,χ

, δMcorr,χ
, lMcorr,χ

, IniM,FinM)

is defined as follows:
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– PortsMcorr,χ
:= PortsMH,χ

◦ (corruptMcorr,χ
?, cor outMcorr,χ

!, cor inMcorr,χ
?).

– StatesMcorr,χ
:= StatesM ∪ {scorr}.

– lMcorr,χ
(s) := lM(s) ◦ (1, 0) for s ∈ StatesM, and lMcorr,χ

(scorr) := (∞, . . . ,∞) ◦ (0,∞).

– Let I =: I ′◦(a, b). If (a, b) = (ǫ, ǫ) and s 6= scorr, then δMcorr,χ
(s, I) := δMH,χ

(s, I ′)◦(ǫ).
Otherwise δMcorr,χ

(s, I) := (s′, O) with O := O′ ◦ (o) is defined as follows:

if a 6= ǫ and s 6= scorr then

s′ := scorr, o := s, and O′ := (ǫ, . . . , ǫ)
else if s = scorr then

o := ι(I)
if b = ǫ then

O′ = (ǫ, . . . , ǫ)
else

(o1, . . . , ot) := ι−1(b) and t′ := size(out(PortsMH,χ
))

O′[j] := oj for j = 1, . . . ,min(t, t′) and O′[j] := ǫ for j = t + 1, . . . , t′

end if

end if

3

Note that Mcorr,χ is not polynomial-time. Explicitly bounding the number of bits read in a
corrupted state independent of the adversary does not capture our intuition of a machine that
acts transparently for any adversary, and an explicit bound would severely limit the adversary’s
capabilities. The fundamental problem is that transparent machines are by definition not
polynomial-time but only weakly polynomial-time.

Several extensions are possible: One may extend the corruption responses to two classes of
storage, an erasable and a non-erasable one, e.g., to model the different vulnerability of session
keys and long-term keys. This means to refine the state spaces of each machine as a Cartesian
product. Inputs and outputs would be treated like erasable storage. One can also model
non-binary corruption requests, e.g., stop requests and requests to corrupt different classes of
storage. To model proactive systems [87], one needs repair requests in addition to corruption
requests, and appropriate repair responses, e.g., returning to an initial state with only a certain
class of storage still intact.

7 Summary

We have presented a rigorous model for secure reactive systems with cryptographic parts in
asynchronous networks. Common types of cryptographic systems and their trust models were
expressed as special cases of this model, in particular systems with static or adaptive adversaries
and with different types of underlying channels. We have defined reactive simulatability as a
notion of refinement that retains not only integrity properties but also confidentiality.

As design principles based on this model, we propose to keep specifications of cryptographic
systems abstract, i.e., free of all implementation details and deterministic unless the desired
functionality is probabilistic by nature, e.g., a common coin-flipping protocol. This allows the
cryptographically verified abstractions to be used as building blocks for systems that can be
subjected to formal verification. Suitable abstractions sometimes have to explicitly include tol-
erable imperfections of systems, e.g., leakage of the length of encrypted messages or abilities of
the adversary to disrupt protocol runs. In subsequent work, we already showed multiple desired
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properties of reactive simulatability, in particular composition and property-preservation theo-
rems. We also proved several building blocks like secure message transmission and a Dolev-Yao-
style cryptographic library with nested operations. Moreover, we demonstrated the applicability
of formal methods over our model by small examples.
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