
Scan Based Side Channel Attack on Data Encryption Standard
Bo Yang Kaijie Wu Ramesh Karri

Electrical and Computer Engineering Department
Polytechnic University, Brooklyn, NY, 11201

yangbo, kaijie@photon.poly.edu, ramesh@india.poly.edu
Abstract

Scan based test is a double edged sword. On one hand,
it is a powerful test technique. On the other hand, it is an
equally powerful attack tool. In this paper we show that
scan chains can be used as a side channel to recover secret
keys from a hardware implementation of the Data
Encryption Standard (DES).

By loading pairs of known plaintexts with one-bit
difference in the normal mode and then scanning out the
internal state in the test mode, we first determine the
position of all scan elements in the scan chain. Then, based
on a systematic analysis of the structure of the non-linear
substitution boxes, and using three additional plaintexts we
discover the DES secret key. Finally, some assumptions in
the attack are discussed.
1. Introduction

Cryptographic algorithms are implemented as
application-specific integrated circuits (ASICs) [1] [2] or as
cryptographic coprocessors [3] [4] to meet high throughput
requirements. Scan-based tests are used to validate the
function of a hardware system at fabrication time and in
field. Compared to built-in self test (BIST), scan-based tests
provide high fault coverage and do not need hardware for
test pattern generation and signature analysis [5].

A scan-based test constructs one or more scan chains
in a chip by tying together some internal registers and flip
flops and connecting them to the five-pin serial JTAG
boundary scan interface [6]. TCK is the test clock signal
while TMS selects normal mode or test mode. TRST is the
reset signal for test controller. During testing, test vectors
can be scanned in via the TDI pin and internal registers can
be scanned out via TDO pin.

During test synthesis, a D flip-flop is replaced with its
equivalent scan D flip-flop when it is included in a scan
chain. As shown in Figure 1, a scan D flip-flop is a D
flip-flop with a MUX at the D input. In normal mode (the
mode signal is set to 0) it works like a D flip-flop. In test
mode (the mode signal is set to 1) its contents can be
scanned in and out. All scanned flip-flops are disconnected
from the combinational circuit and connected to each other
in a scan chain. During test synthesis, scan chains are
automatically inserted into the design by the synthesis tool.
A scan chain is organized according to the physical
positions of the flip flops.

During chip packaging, the scan chains are connected
to external JTAG interface pins to provide on-chip debug
capability and maintenance in field [7], or left unbound to

prevent further access. However, unbound scan chains can
still be accessed by breaking the package open.

MUX
D Q

Q

Combinational
Circuit

mode

scan_in

clk

MUX
D Q

Qmode
scan_out

clk

data

data

......

Figure 1 Scan chain structure

In this paper we show that scan chains can be used to
discover the secret keys stored in a cryptographic device.
Although we focus on DES, the approach is simple yet
general and powerful and can be adapted to any
cryptographic implementation on ASICs or FPGAs or
general microprocessors. We organize the paper as follows.
The DES algorithm is presented in section 2. We show
how to discover the structure of internal scan chains and
how to break the round key of DES using three selected
plaintexts in section 3. In section 4, we discuss the
complexity of the attack. We extend this attack to the
Advanced Encryption Standard (AES) in section 5 and
report conclusions in section 6.
2. Data Encryption Standard
2.1. Algorithm

The Data Encryption Standard (DES) is a symmetric
encryption algorithm developed in the 1970s by IBM. DES
encrypts 64-bit data blocks under the control of a 56-bit
user key. DES decryption is the inverse of DES encryption
and uses the same user key [8]. The DES encryption is
performed in three phases as shown in Figure 2.
Phase 1: The 64-bit plaintext block is bit permuted and
stored in two 32-bit registers L (Left) and R (Right).
Phase 2: A round operation composed of function f and
exclusive-ored is performed 16 times. In the ith round, the
32-bit R and the 48-bit round key Ki are inputs to the f
function. The output of the f function is exclusive-ored
with L to form R for the round i+1. The R used in round i
becomes the L for round i+1. Function f shaded in Figure 2
performs following operations to generate a 32-bit output.
1. 32-bit value l is expanded into 48-bit value a by E.
2. Value a is exclusive-ored with the 48-bit round key

and output value b.

3. Value b is partitioned into 8 groups with 6-bit for each
group. Each group is input to an s-box, which
substitutes a 6-bit input with a 4-bit output. All the
eight 4-bit outputs are combined to form value c.

4. Value c is permuted to generate the 32-bit output of f
function, value d by P.

Phase 3: In this phase the two 32-bit outputs of round 16
are concatenated and permuted using the inverse
permutation and loaded into the output register.

32

K1E + 4848

48

S1

6

4

S2

6

4

S7

6

4

S8

6

4

32

P

32

a
b

c

d

r

Initial Permutation

Input

L0 R0

+

32 32

64

64

L1 R1

…

+ f
Kn

L16 R16

Reverse Permutation

Output

e

i

l
O

ne
 R

ou
nd

Figure 2 DES encryption algorithm

Round key generation: Since each of the sixteen
rounds uses a 48-bit round key, a round key generation
algorithm is used to generate the sixteen round keys K1,
K2 …K16 from the 56-bit user key. The round key
generation uses simple bit-permutation and shift operations.
Each round key contains 48 bits of the 56-bit user key.
3. Mounting A Scan Based Attack
3.1. What does the attacker know?
1. We assume that the attacker knows the DES algorithm

(it is public).
2. We assume that an attacker has access to high level

timing diagrams provided by DES ASIC vendor.

Based on the number of clock cycles for an
encryption provided by the vendor, the attacker can
infer the general structure as either iterative or
pipelined implementation [1] [9]. In this paper we
focus on the iterative DES encryption data path
shown in Figure 3 where a DES round is performed
every clock cycle. In the first clock cycle, the inputs
are loaded to R and L registers with the permuted
plain text. In the remaining 15 clock cycles, the
intermediate cipher text is the input to the R and L
registers. The output register has the valid cipher text
at the end of the 16th clock cycle. Initial and reverse
permutations and the E and P functions are all fixed
one-to-one mappings. The s-boxes are implemented
as either ROMs or combinational gates. The DES
controller is a 4-bit counter. The controller generates
4-bit addresses which index into the round key
RAM/ROM.

Initial Permutation

Input_Reg

+ f

Reverse Permutation

Output_Reg

MUXMUX

R_Reg
Key Reg

Control

Round key
ROM

4

L_Reg

en

en

sel

addr

Figure 3 Iterative implementation of DES
3. Although the general implementation structure is

known, the attacker does not know the exact number
of registers used in the design.

4. It is reasonable that round keys are stored in a secure
RAM/ROM.

5. Although it is reasonable that an attacker has direct
access to scan chains via the JTAG port or he can
break open the package and directly probe the buried
JTAG ports, round key registers are not included in
the scan chain; otherwise it will be easy to scan out
the round key.

6. The attacker does not know the structure of the scan
chain. To confirm this we designed the iterative DES
encryption data path using Synopsys Design
Compiler and inserted a scan chain using Synopsys
Test Compiler. The 197 flip-flops (64 from input
register, 64 from output register, 64 from L and R
register and 4 from controller) in the scan chain
shown in Figure 4 are not connected according to

their position in their respective registers. Rather, the
Test compiler optimizes the scan chain according to
the physical locations of the individual flip flops. For
example, in this scan chain flip flop #12 of register L
is connected to TDI and flip flop #3 of Input plaintext
register is connected to TDO.

Figure 4 Scan chain structure of the DES data path.

Based on the above reasonable assumptions we mount
a two-phase attack. In the first phase, we determine the
structure of the scan chain and in the second phase we
retrieve DES round keys and the DES user key.
3.2. Attack step 1: Determine scan chain

structure
In this step, we will locate the flip-flops in input, L and

R registers in the scan chain. The scan out pin TDO yields a
serial bit stream that does not immediately reveal the
correspondence between the bits in the registers and the bits
in the scanned-out bit stream. By switching the DES circuit
between normal mode and test mode, we can determine the
structure of scan chain as follows.
1. Reset the DES chip and run it in normal mode for one

clock cycle to load a known plaintext word into input
register.

2. Switch to test mode and scan out the bit stream pattern
1.

3. Switch back to normal mode and run one clock cycle to
load the plaintext into L or R registers.

4. Switch to test mode and scan out the bit stream pattern
2.

5. Repeat steps 1 to 3 using a plaintext that is different
from the first plaintext in only one-bit position. Save
the pattern 3 and pattern 4.
Pattern 1 and pattern 3 must have a one bit difference

and that determines the location of an input register
flip-flop in the scan chain. Pattern 2 and 4 must have
two-bit difference, one of which is from input register and

the other is from L or R registers. The location of this
flip-flop in the scan chain is determined. By repeating step
5 63 times, we can determine the structure of the scan
chain (Locations of all flip flops of input, L and R
registers).
3.3. Attack step 2: Recover Round Key 1

Since we know the location of L and R registers in the
scan chain, we can break DES algorithm by applying three
known plaintexts by analyzing the DES algorithm.
Referring to Figure 2, a DES round can be described as
follows:
L1=R0 (1)
R1=L0⊕d; (2)
d=permutation(c); (3)
a=Expand(r); (4)
b=a⊕K1; (5)
c= S_box(b); (6)

Load a plaintext word (L0 and R0) and run 3 clock
cycles. Switch to test mode and scan out the bit stream.
Now L1 and R1 are known. Is this information enough to
discover round key K1? From equation (2), d is known
(=L0⊕R1). From equation (3), c is known (c = inverse
permutation(d)). From equation (4), a is known (expand
(R0)). From equation 5, if we know b, we can find round
key K1 (K1 = a⊕b). Since we know a, we need to find b
the input to the s-boxes, from their output c.

Each DES round uses eight different s-boxes S1,
S2, …,S8. Let us look into the structure of S1 shown in
Table 1 as an example. b is 48-bit wide. The 6 most
significant bits b47b46b45b44b43b42 are inputs to s-box S1.
While bits b48 and b43 select one-of-four rows of s-box S1,
bits b47b46b45b44 select one-of-sixteen columns of s-box S1.
For example, b48b47b46b45b44b43=(100110)2 uniquely
identifies the s-box S1 cell with row address 2 and column
address 3 yielding 8 shown in Table 1 as the output.

Each s-box compresses the 6-bit input into a 4-bit
output. A close look at the eight s-boxes reveals that every
output value appears exactly four times. For example, in
s-box S1 1 appears in locations (0,3), (1,7), (2,1) and (3,6)
as shown shaded in Table 1. If the output of s-box S1 is 1,
b48b47b46b45b44b43 can be either (000110)2, (001111)2,
(100010)2 or (101101)2. Since each output value appears
four times, we can not determine the input to an s-box by
observing just one output. When we apply a value at point
a in Figure 2, some bits in the round key K1 are masked.
Based on our analysis of the row and column addresses
and values stored in s-boxes we need to apply three values
at point a to uniquely determine the round key from the
outputs observed at c. Let us analyze S1 to show which
values should be applied at point a to recover the six most
significant bits of round key K1 from the outputs of S1 at
point c.

Table 1: Substitution box S1

Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

First apply (000000)2 at point a, we have:

1
32 29 48 47 46 45 44 431(1 1 1 1 1 1)c S K K K K K K− =

We notice that every output appears only once in each
row, so we switch one-bit in the column address. Apply
(001000)2 at point a and we have:

2
32 29 48 47 46 45 44 431(1 1 1 1 1 1)c S K K K K K K− =

Then we switch two-bit in the input of S1, one in
column address and the other in row address. Apply
(010001)2 at point a and we have:

3
32 29 48 47 46 45 44 431(1 1 1 1 1 1)c S K K K K K K− =

From the three outputs C1
32-29, C1

32-29 and C1
32-29 we

can uniquely determine the value of K148…43.
For example, if c1

32-29 is 1, according to Table 1 [8],
K148…43 could be (000110)2, (001111)2, (100010)2 or
(101101)2. Then we apply (001000)2 at point a and get
c2

32-29. If K148…43 is (000110)2 or (101101)2, c2
32-29 is 8; if

K148…43 is (001111)2, c2
32-29 is 4; if K148…43 is (100010)2,

c2
32-29 is 6. When c2

32-29 is 6 or 4, we can decide what
K148…43 is. However, if we get 8 as c2

32-29, we still can not
determine is K148…43 is (000110)2 or (101101)2. We then
apply (010001)2 at point a to distinguish between them. If
c3

32-29 is 11, K148…43 is (000110). If c3
32-29 is 5, K148…43 is

(101101).
If c1

32-29 is a value other than 1 in the example, we still
can disciver K148…43 using this method. S-boxes S2,…, S8
have this feature. We can use the following method to
discover round key K1.
Step1: Apply (00)2 =
(000000000000)16 to point a. Round key K1 is applied to all
s-boxes. Save the output of s-box (c1).
Step2: Apply (001000001000001000001000001000001000001000001000)2 =
(208208208208)16 to point a. Save the output of s-box (c2).
Step3: Apply (010001010001010001010001010001010001010001010001)2 =
(451451451451)16 to point a. Save the output of s-box (c3).
Step4: Analyze c1, c2 and c3 to discover K1.

In practice, we can not directly apply these values at
point a shown in Figure 2. We will determine plaintext
inputs at point i so as to apply the above values at point a
by considering the relation between a, r and i in Figure 2.

From the DES expand function specification [8]:
a48...1=r32r1r2r3r4r5r4r5r6r7r8r9r8r9r10r11r12r13r12r13r14r15r16r17r16r17

r18r19r20r21r20r21r22r23r24r25r24r25r26r27r28r29r28r29r30r31r32r1 (7)
From DES initial permutation specification [8]:

l32...1=i58i50i42i34i26i18i10i2i60i52i44i36i28i20i12i4i62i54i46i38i30i22i14i6
i64i56i48i40i32i24i16i8 (8)
r32...1=i57i59i41i33i25i17i9i1i59i51i43i35i27i19i11i3i61i53i45i37i29i21i13i5i
63i55i47i39i31i23i15i7 (9)

Replacing r in (7) using i in (9), the value at point i
can be derived from the value at point a:
a48...1= i57i7i15i23i31i39i31i39i47i55i63i5i63i5i13i21i29i37i29i37i45i53i61i3
i61i3i11i19i27i35i27i35i43i51i59i1i59i1i9i17i25i33i25i23i41i59i57i7 (10)

In practice, we can not directly observe the values at
point c in Figure 2. They can be calculated from the values
at point e. Since e= l⊕d, we set l as all zero and then d=e.
From the DES permutation function specification [8]:
c32...1=d12d18d6d28d26d11d21d1d14d22d4d29d30d8d19d25d32d23d13d
7d27d3d17d9d15d31d5d20d2d10d16d24 (11)

Let us summarize the first three steps in this method
as follows:
Step1: Apply (0000000000000000)16 at point i.
(00000000)16 will be propagated to point r;
(000000000000)16 will be propagated to point a and
(000000000000)16 will be propagated to point l after the
first clock cycle. Scan out the value at point e after the
second clock cycle. Calculate c1 using (11).
Step2: Apply (00002A8000005500)16 at point i.
(11111111)16 will be propagated to point r;
(208208208208)16 will be propagated to point a and
(000000000000)16 will be propagated to point l after the
first clock cycle. Scan out the value at point e after the
second clock cycle. Calculate c2 using (11).
Step3: Apply (0000005500000055)16 at point i.
(22222222)16 will be propagated to point r;
(451451451451)16 will be propagated to point a and
(000000000000)16 will be propagated to point l after the
first clock cycle. Scan out the value at point e after the
second clock cycle. Calculate c3 using (11).
3.4. Attack step 3: Recover User Key

As we mentioned in section 2.1, each round key
contains 48 bits of the 56-bit user key. How many round
keys are needed to discover the user key? Analysis of the
DES round key generation algorithm shows that Round
key K1 consists of the following 48 bits in the user key:
(45,24,9,32,22,51,8,29,38,44,53,16,39,10,2,1,43,30,31,37,
36,3,52,15,54,4,14,27,12,42,21,6,11,26,55,5,33,25,13,35,4
8,56,19,47,18,34,28,7).

However, it does not contain bits 17, 20, 23, 40, 41, 46,
49 and 50. Bits 17, 20, 23, 40, 41, 49 and 50 can be
obtained from round key K2 and bit 46 can be obtained
from round key K3. To discover the user key, round keys
K2 and K3 have to be recovered as well.

In an iterative architecture, all sixteen rounds are
calculated using the same register L and R. Scan
(00000000)16 into L and (00000000)16 into R after the first
round as L1 and R1; run one cycle and scan out L2 and R2.
Do the same work using L=0 and R= (11111111)16 and then
L=0 and R= (22222222)16. From these (L2, R2) pairs, we
can retrieve K2. Similarly, we can get K3.
4. Complexity of the attack

We simulated the attack steps on the iterative DES
design discussed in section 2 using modelsim. It took 198
clock cycles (1 clock cycle for normal operation + 197
clock cycles for scan operations) to scan-out the first bit
stream. 198 more clock cycles are necessary to locate a flip
flop in the input register. This translates into 38214 clock
cycles (192×198+198) to determine the structure of the
entire scan chain (i.e. to locate all 192 flip flops in input
plaintext register and the L and R registers). It takes 397
clock cycles (2 clock cycles for normal operation + 197
clock cycles for scan operation + 1 clock cycle for normal
operation + 197 clock cycles for scan operation) for every
input plaintext to reach R0, L0, R1 and L1. This translates
into 1191 clock cycles (397×3) to discover round key K1.
Similarly, 1185 clock cycles each are required to discover
round keys K2 and K3. Overall, 41775 clock cycles
(38214+1191+1185×2) are required to discover the user
key.

Once the structure of the scan chain is known, this
attack requires only three known plaintexts to determine the
user key. Compare this with the 264 (plaintext, ciphertext)
required to attack DES.
5. Discussion
5.1. Extension to a pipelined DES architecture

In a fully pipelined architecture, one-round unit is
instantiated sixteen times. This 16-stage pipeline will have
17 pairs of (L, R) starting from (L0, R0) to (L16, R16). L0 and
R0 can be located first. L1 and R1 can be located by
observing that L1= R0 and R1=L0⊕f (R0, K1). If we only
change the lowest bit in L0, L1 remains unchanged, then the
lowest bit in R1 will switch because f (R0, K1) remains
unchanged. Except for the flip-flops in the input plaintext
register and the L0 and R0 registers the bit stream will only
have one-bit difference. This bit locates R1(0). In a similar
manner we can locate all flip-flops of R1. Since L1= R0, we
can switch the bit in R0 to locate the positions of flip-flops
in L1. Now we can recover round key K1 from L0, R0, L1
and R1. Similarly round keys K2 and K3 can be retrieved.
5.2. Revisiting some simplifying assumptions

In determining the structure of a scan chain in section
2.1, we assumed that it takes one cycle to load values on
the input pins into the input register. For some DES
implementations this may take several cycles. Or there is
no input register at all and the permuted input is in L and R
registers after the first cycle. We describe a simple method
to determine the start of encryption based on two important
characteristics of crypto algorithms. First, they are
data-driven; when we load different plaintexts into the data
path the control logic performs the same action
independent of the applied input. The flip-flops in the
control logic do not contribute to the differences in
scanned-out patterns. Second, cryptographic algorithms
display the avalanche effect [11]. Due to the avalanche
effect a one-bit difference in a round will translate into
several bit changes in the next round. This determines start
of encryption. The method is summarized as follows:
1. Load a plaintext, run one cycle in normal mode and

scan out bit stream. Load same plaintext and run 2,
3,…clock cycles and scan out bit streams.

2. Modify one-bit in plaintext and repeat step 1.
3. Compare bit streams from steps 1 and 2. The clock

cycle in which patterns from steps 1 and 2 are widely
different is when encryption starts. This also
determines the clock cycle when the plaintext is
loaded into the input plaintext register and the L, R
registers.
The reset operation does not necessarily imply

resetting the chip thereby clearing the secret key RAM. If
the round keys are stored in ROM, we can physically reset
the chip without clearing the round keys. If the round keys
are stored in RAM and the chip is in system, we do not use
physical reset. Rather, we load the same input and run 16
cycles and the chip will be in a fixed state every time. This
state can be the initial state.
6. Conclusions

Several side channel attacks have been proposed
including timing analysis [10], differential fault analysis
[11] and differential power analysis [12]. In this paper we
show that scan chains and scan based tests are a potent side
channel. We described a known plaintext attack using only
3 plaintexts to break DES.
References
[1] Helion Technology. Datasheet-High Performance
DES and Triple DES core for ASIC, 2003.
http://www.heliontech.com/downloads/des_asic_helioncor
e.pdf
[2] I. Verbauwhede, P. Schaumont and K. Kuo. Design
and performance testing of a 2.29 Gb/s Rijndael processor.
IEEE Journal of Solid-State Circuits, pp. 569-572, March
2003.
[3] J. Goodman and A.P. Chandrakasan, An
Energy-Efficient Reconfigurable Public-Key Cryptography

Processor, IEEE Journal of Solid-State Circuits, pp.
1808-1820, November, 2001.
[4] Corrent. Datasheet-Product Brief of Corrent Packet
Armor CR7110 Security Processor, 2003.
http://www.corrent.com/pdfs/CR7110_%20Pbrief_v3.pdf
[5] D. Chang, K.T. Cheng, M. Sadowska, Functional Scan
Chain Testing, pp278-284, DATE, 1998
[6] M.L. Bushnell and V.D. Agrawal, Essentials of
Electronic Testing, Kluwer Academic Publishers, ISNB
0-7923-7991-8, 2000.
[7] D, Josephson, S. Poehhnan, Debug methodology for
the McKinley processor, pp451-460, ITC, 2001
[8] National Bureau of Standards, Data Encryption
Standard, Federal Information Processing Standards
Publication FIPS PUB 46, 1977
[9] Atmel, 32-bit Embedded Core Peripheral: DES
http://www.atmel.com/dyn/resources/prod_documents/doc1
351.pdf
[10] P. Kocher. Timing attacks on implementations of
diffie-hellman, RSA, DSS, and other systems. pp.104-113,
CRYPTO, 1996
[11] Biham and A. Shamir, Differential Fault Analysis of
Secret Key Cryptosystems, pp. 156-171, CRYPTO, 1991
[12] P. Kocher, J. Jaffe, B. Jun, Differential Power Analysis,
pp.388-397, CRYPTO, 1999

