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Abstract 

Scan based test is a double edged sword. On one hand, 
it is a powerful test technique. On the other hand, it is an 
equally powerful attack tool. In this paper we show that 
scan chains can be used as a side channel to recover secret 
keys from a hardware implementation of the Data 
Encryption Standard (DES). 

By loading pairs of known plaintexts with one-bit 
difference in the normal mode and then scanning out the 
internal state in the test mode, we first determine the 
position of all scan elements in the scan chain. Then, based 
on a systematic analysis of the structure of the non-linear 
substitution boxes, and using three additional plaintexts we 
discover the DES secret key. Finally, some assumptions in 
the attack are discussed. 
1. Introduction 

Cryptographic algorithms are implemented as 
application-specific integrated circuits (ASICs) [1] [2] or as 
cryptographic coprocessors [3] [4] to meet high throughput 
requirements. Scan-based tests are used to validate the 
function of a hardware system at fabrication time and in 
field. Compared to built-in self test (BIST), scan-based tests 
provide high fault coverage and do not need hardware for 
test pattern generation and signature analysis [5]. 

A scan-based test constructs one or more scan chains 
in a chip by tying together some internal registers and flip 
flops and connecting them to the five-pin serial JTAG 
boundary scan interface [6]. TCK is the test clock signal 
while TMS selects normal mode or test mode. TRST is the 
reset signal for test controller. During testing, test vectors 
can be scanned in via the TDI pin and internal registers can 
be scanned out via TDO pin.  

During test synthesis, a D flip-flop is replaced with its 
equivalent scan D flip-flop when it is included in a scan 
chain. As shown in Figure 1, a scan D flip-flop is a D 
flip-flop with a MUX at the D input. In normal mode (the 
mode signal is set to 0) it works like a D flip-flop. In test 
mode (the mode signal is set to 1) its contents can be 
scanned in and out. All scanned flip-flops are disconnected 
from the combinational circuit and connected to each other 
in a scan chain. During test synthesis, scan chains are 
automatically inserted into the design by the synthesis tool. 
A scan chain is organized according to the physical 
positions of the flip flops. 

During chip packaging, the scan chains are connected 
to external JTAG interface pins to provide on-chip debug 
capability and maintenance in field [7], or left unbound to 

prevent further access. However, unbound scan chains can 
still be accessed by breaking the package open. 
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Figure 1 Scan chain structure 

In this paper we show that scan chains can be used to 
discover the secret keys stored in a cryptographic device.  
Although we focus on DES, the approach is simple yet 
general and powerful and can be adapted to any 
cryptographic implementation on ASICs or FPGAs or 
general microprocessors. We organize the paper as follows. 
The DES algorithm is presented in section 2. We show 
how to discover the structure of internal scan chains and 
how to break the round key of DES using three selected 
plaintexts in section 3. In section 4, we discuss the 
complexity of the attack. We extend this attack to the 
Advanced Encryption Standard (AES) in section 5 and 
report conclusions in section 6. 
2. Data Encryption Standard 
2.1. Algorithm 

The Data Encryption Standard (DES) is a symmetric 
encryption algorithm developed in the 1970s by IBM. DES 
encrypts 64-bit data blocks under the control of a 56-bit 
user key. DES decryption is the inverse of DES encryption 
and uses the same user key [8]. The DES encryption is 
performed in three phases as shown in Figure 2. 
Phase 1: The 64-bit plaintext block is bit permuted and 
stored in two 32-bit registers L (Left) and R (Right). 
Phase 2: A round operation composed of function f and 
exclusive-ored is performed 16 times. In the ith round, the 
32-bit R and the 48-bit round key Ki are inputs to the f 
function. The output of the f function is exclusive-ored 
with L to form R for the round i+1. The R used in round i 
becomes the L for round i+1. Function f shaded in Figure 2 
performs following operations to generate a 32-bit output. 
1. 32-bit value l is expanded into 48-bit value a by E. 
2. Value a is exclusive-ored with the 48-bit round key 

and output value b. 



3. Value b is partitioned into 8 groups with 6-bit for each 
group. Each group is input to an s-box, which 
substitutes a 6-bit input with a 4-bit output. All the 
eight 4-bit outputs are combined to form value c.  

4. Value c is permuted to generate the 32-bit output of f 
function, value d by P. 

Phase 3: In this phase the two 32-bit outputs of round 16 
are concatenated and permuted using the inverse 
permutation and loaded into the output register. 
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Figure 2 DES encryption algorithm 

Round key generation: Since each of the sixteen 
rounds uses a 48-bit round key, a round key generation 
algorithm is used to generate the sixteen round keys K1, 
K2 …K16 from the 56-bit user key. The round key 
generation uses simple bit-permutation and shift operations. 
Each round key contains 48 bits of the 56-bit user key. 
3. Mounting A Scan Based Attack 
3.1. What does the attacker know? 
1. We assume that the attacker knows the DES algorithm 

(it is public).  
2. We assume that an attacker has access to high level 

timing diagrams provided by DES ASIC vendor. 

Based on the number of clock cycles for an 
encryption provided by the vendor, the attacker can 
infer the general structure as either iterative or 
pipelined implementation [1] [9]. In this paper we 
focus on the iterative DES encryption data path 
shown in Figure 3 where a DES round is performed 
every clock cycle. In the first clock cycle, the inputs 
are loaded to R and L registers with the permuted 
plain text. In the remaining 15 clock cycles, the 
intermediate cipher text is the input to the R and L 
registers. The output register has the valid cipher text 
at the end of the 16th clock cycle. Initial and reverse 
permutations and the E and P functions are all fixed 
one-to-one mappings. The s-boxes are implemented 
as either ROMs or combinational gates. The DES 
controller is a 4-bit counter. The controller generates 
4-bit addresses which index into the round key 
RAM/ROM. 
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Figure 3 Iterative implementation of DES 
3. Although the general implementation structure is 

known, the attacker does not know the exact number 
of registers used in the design.  

4. It is reasonable that round keys are stored in a secure 
RAM/ROM.  

5. Although it is reasonable that an attacker has direct 
access to scan chains via the JTAG port or he can 
break open the package and directly probe the buried 
JTAG ports, round key registers are not included in 
the scan chain; otherwise it will be easy to scan out 
the round key.  

6. The attacker does not know the structure of the scan 
chain. To confirm this we designed the iterative DES 
encryption data path using Synopsys Design 
Compiler and inserted a scan chain using Synopsys 
Test Compiler. The 197 flip-flops (64 from input 
register, 64 from output register, 64 from L and R 
register and 4 from controller) in the scan chain 
shown in Figure 4 are not connected according to 



their position in their respective registers. Rather, the 
Test compiler optimizes the scan chain according to 
the physical locations of the individual flip flops. For 
example, in this scan chain flip flop #12 of register L 
is connected to TDI and flip flop #3 of Input plaintext 
register is connected to TDO.  

 
Figure 4 Scan chain structure of the DES data path. 

Based on the above reasonable assumptions we mount 
a two-phase attack. In the first phase, we determine the 
structure of the scan chain and in the second phase we 
retrieve DES round keys and the DES user key.  
3.2. Attack step 1: Determine scan chain 

structure 
In this step, we will locate the flip-flops in input, L and 

R registers in the scan chain. The scan out pin TDO yields a 
serial bit stream that does not immediately reveal the 
correspondence between the bits in the registers and the bits 
in the scanned-out bit stream. By switching the DES circuit 
between normal mode and test mode, we can determine the 
structure of scan chain as follows. 
1. Reset the DES chip and run it in normal mode for one 

clock cycle to load a known plaintext word into input 
register. 

2. Switch to test mode and scan out the bit stream pattern 
1. 

3. Switch back to normal mode and run one clock cycle to 
load the plaintext into L or R registers. 

4. Switch to test mode and scan out the bit stream pattern 
2. 

5. Repeat steps 1 to 3 using a plaintext that is different 
from the first plaintext in only one-bit position. Save 
the pattern 3 and pattern 4. 
Pattern 1 and pattern 3 must have a one bit difference 

and that determines the location of an input register 
flip-flop in the scan chain. Pattern 2 and 4 must have 
two-bit difference, one of which is from input register and 

the other is from L or R registers. The location of this 
flip-flop in the scan chain is determined. By repeating step 
5 63 times, we can determine the structure of the scan 
chain (Locations of all flip flops of input, L and R 
registers). 
3.3. Attack step 2: Recover Round Key 1 

Since we know the location of L and R registers in the 
scan chain, we can break DES algorithm by applying three 
known plaintexts by analyzing the DES algorithm. 
Referring to Figure 2, a DES round can be described as 
follows: 
L1=R0                                 (1) 
R1=L0⊕d;                              (2) 
d=permutation(c);                        (3) 
a=Expand(r);                          (4) 
b=a⊕K1;                             (5) 
c= S_box(b);                            (6) 

Load a plaintext word (L0 and R0) and run 3 clock 
cycles. Switch to test mode and scan out the bit stream. 
Now L1 and R1 are known. Is this information enough to 
discover round key K1? From equation (2), d is known 
(=L0⊕R1). From equation (3), c is known (c = inverse 
permutation(d)). From equation (4), a is known (expand 
(R0)). From equation 5, if we know b, we can find round 
key K1 (K1 = a⊕b). Since we know a, we need to find b 
the input to the s-boxes, from their output c. 

Each DES round uses eight different s-boxes S1, 
S2, …,S8. Let us look into the structure of S1 shown in 
Table 1 as an example. b is 48-bit wide. The 6 most 
significant bits b47b46b45b44b43b42 are inputs to s-box S1. 
While bits b48 and b43 select one-of-four rows of s-box S1, 
bits b47b46b45b44 select one-of-sixteen columns of s-box S1. 
For example, b48b47b46b45b44b43=(100110)2 uniquely 
identifies the s-box S1 cell with row address 2 and column 
address 3 yielding 8 shown in Table 1 as the output. 

Each s-box compresses the 6-bit input into a 4-bit 
output. A close look at the eight s-boxes reveals that every 
output value appears exactly four times. For example, in 
s-box S1 1 appears in locations (0,3), (1,7), (2,1) and (3,6) 
as shown shaded in Table 1. If the output of s-box S1 is 1, 
b48b47b46b45b44b43 can be either (000110)2, (001111)2, 
(100010)2 or (101101)2. Since each output value appears 
four times, we can not determine the input to an s-box by 
observing just one output. When we apply a value at point 
a in Figure 2, some bits in the round key K1 are masked. 
Based on our analysis of the row and column addresses 
and values stored in s-boxes we need to apply three values 
at point a to uniquely determine the round key from the 
outputs observed at c. Let us analyze S1 to show which 
values should be applied at point a to recover the six most 
significant bits of round key K1 from the outputs of S1 at 
point c. 



Table 1: Substitution box S1 

Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

First apply (000000)2 at point a, we have: 

1
32 29 48 47 46 45 44 431( 1 1 1 1 1 1 )c S K K K K K K− =  

We notice that every output appears only once in each 
row, so we switch one-bit in the column address. Apply 
(001000)2 at point a and we have:  

2
32 29 48 47 46 45 44 431( 1 1 1 1 1 1 )c S K K K K K K− =  

Then we switch two-bit in the input of S1, one in 
column address and the other in row address. Apply 
(010001)2 at point a and we have: 

3
32 29 48 47 46 45 44 431( 1 1 1 1 1 1 )c S K K K K K K− =  

From the three outputs C1
32-29, C1

32-29 and C1
32-29 we 

can uniquely determine the value of K148…43. 
For example, if c1

32-29 is 1, according to Table 1 [8], 
K148…43 could be (000110)2, (001111)2, (100010)2 or 
(101101)2. Then we apply (001000)2 at point a and get 
c2

32-29. If K148…43 is (000110)2 or (101101)2, c2
32-29 is 8; if 

K148…43 is (001111)2, c2
32-29 is 4; if K148…43 is (100010)2, 

c2
32-29 is 6. When c2

32-29 is 6 or 4, we can decide what 
K148…43 is. However, if we get 8 as c2

32-29, we still can not 
determine is K148…43 is (000110)2 or (101101)2. We then 
apply (010001)2 at point a to distinguish between them. If 
c3

32-29 is 11, K148…43 is (000110). If c3
32-29 is 5, K148…43 is 

(101101). 
If c1

32-29 is a value other than 1 in the example, we still 
can disciver K148…43 using this method. S-boxes S2,…, S8 
have this feature. We can use the following method to 
discover round key K1. 
Step1: Apply (000000000000000000000000000000000000000000000000)2 = 
(000000000000)16 to point a. Round key K1 is applied to all 
s-boxes. Save the output of s-box (c1). 
Step2: Apply (001000001000001000001000001000001000001000001000)2 = 
(208208208208)16 to point a. Save the output of s-box (c2). 
Step3: Apply (010001010001010001010001010001010001010001010001)2 = 
(451451451451)16 to point a. Save the output of s-box (c3). 
Step4: Analyze c1, c2 and c3 to discover K1. 

In practice, we can not directly apply these values at 
point a shown in Figure 2. We will determine plaintext 
inputs at point i so as to apply the above values at point a 
by considering the relation between a, r and i in Figure 2. 

From the DES expand function specification [8]: 
a48...1=r32r1r2r3r4r5r4r5r6r7r8r9r8r9r10r11r12r13r12r13r14r15r16r17r16r17

r18r19r20r21r20r21r22r23r24r25r24r25r26r27r28r29r28r29r30r31r32r1  (7) 
From DES initial permutation specification [8]: 

l32...1=i58i50i42i34i26i18i10i2i60i52i44i36i28i20i12i4i62i54i46i38i30i22i14i6
i64i56i48i40i32i24i16i8                                               (8) 
r32...1=i57i59i41i33i25i17i9i1i59i51i43i35i27i19i11i3i61i53i45i37i29i21i13i5i
63i55i47i39i31i23i15i7                                (9) 

Replacing r in (7) using i in (9), the value at point i 
can be derived from the value at point a: 
a48...1= i57i7i15i23i31i39i31i39i47i55i63i5i63i5i13i21i29i37i29i37i45i53i61i3 
i61i3i11i19i27i35i27i35i43i51i59i1i59i1i9i17i25i33i25i23i41i59i57i7  (10) 

In practice, we can not directly observe the values at 
point c in Figure 2. They can be calculated from the values 
at point e. Since e= l⊕d, we set l as all zero and then d=e. 
From the DES permutation function specification [8]: 
c32...1=d12d18d6d28d26d11d21d1d14d22d4d29d30d8d19d25d32d23d13d
7d27d3d17d9d15d31d5d20d2d10d16d24                       (11) 

Let us summarize the first three steps in this method 
as follows: 
Step1: Apply (0000000000000000)16 at point i. 
(00000000)16 will be propagated to point r; 
(000000000000)16 will be propagated to point a and 
(000000000000)16 will be propagated to point l after the 
first clock cycle. Scan out the value at point e after the 
second clock cycle. Calculate c1 using (11).  
Step2: Apply (00002A8000005500)16 at point i. 
(11111111)16 will be propagated to point r; 
(208208208208)16 will be propagated to point a and 
(000000000000)16 will be propagated to point l after the 
first clock cycle. Scan out the value at point e after the 
second clock cycle. Calculate c2 using (11). 
Step3: Apply (0000005500000055)16 at point i. 
(22222222)16 will be propagated to point r; 
(451451451451)16 will be propagated to point a and 
(000000000000)16 will be propagated to point l after the 
first clock cycle. Scan out the value at point e after the 
second clock cycle. Calculate c3 using (11). 
3.4. Attack step 3: Recover User Key 

As we mentioned in section 2.1, each round key 
contains 48 bits of the 56-bit user key. How many round 
keys are needed to discover the user key? Analysis of the 
DES round key generation algorithm shows that Round 
key K1 consists of the following 48 bits in the user key: 
(45,24,9,32,22,51,8,29,38,44,53,16,39,10,2,1,43,30,31,37,
36,3,52,15,54,4,14,27,12,42,21,6,11,26,55,5,33,25,13,35,4
8,56,19,47,18,34,28,7). 



However, it does not contain bits 17, 20, 23, 40, 41, 46, 
49 and 50. Bits 17, 20, 23, 40, 41, 49 and 50 can be 
obtained from round key K2 and bit 46 can be obtained 
from round key K3. To discover the user key, round keys 
K2 and K3 have to be recovered as well. 

In an iterative architecture, all sixteen rounds are 
calculated using the same register L and R. Scan 
(00000000)16 into L and (00000000)16 into R after the first 
round as L1 and R1; run one cycle and scan out L2 and R2. 
Do the same work using L=0 and R= (11111111)16 and then 
L=0 and R= (22222222)16. From these (L2, R2) pairs, we 
can retrieve K2. Similarly, we can get K3. 
4. Complexity of the attack 

We simulated the attack steps on the iterative DES 
design discussed in section 2 using modelsim. It took 198 
clock cycles (1 clock cycle for normal operation + 197 
clock cycles for scan operations) to scan-out the first bit 
stream. 198 more clock cycles are necessary to locate a flip 
flop in the input register. This translates into 38214 clock 
cycles (192×198+198) to determine the structure of the 
entire scan chain (i.e. to locate all 192 flip flops in input 
plaintext register and the L and R registers). It takes 397 
clock cycles (2 clock cycles for normal operation + 197 
clock cycles for scan operation + 1 clock cycle for normal 
operation + 197 clock cycles for scan operation) for every 
input plaintext to reach R0, L0, R1 and L1. This translates 
into 1191 clock cycles (397×3) to discover round key K1. 
Similarly, 1185 clock cycles each are required to discover 
round keys K2 and K3. Overall, 41775 clock cycles 
(38214+1191+1185×2) are required to discover the user 
key.  

Once the structure of the scan chain is known, this 
attack requires only three known plaintexts to determine the 
user key. Compare this with the 264 (plaintext, ciphertext) 
required to attack DES. 
5. Discussion 
5.1. Extension to a pipelined DES architecture 

In a fully pipelined architecture, one-round unit is 
instantiated sixteen times. This 16-stage pipeline will have 
17 pairs of (L, R) starting from (L0, R0) to (L16, R16). L0 and 
R0 can be located first. L1 and R1 can be located by 
observing that L1= R0 and R1=L0⊕f (R0, K1). If we only 
change the lowest bit in L0, L1 remains unchanged, then the 
lowest bit in R1 will switch because f (R0, K1) remains 
unchanged. Except for the flip-flops in the input plaintext 
register and the L0 and R0 registers the bit stream will only 
have one-bit difference. This bit locates R1(0). In a similar 
manner we can locate all flip-flops of R1. Since L1= R0, we 
can switch the bit in R0 to locate the positions of flip-flops 
in L1. Now we can recover round key K1 from L0, R0, L1 
and R1. Similarly round keys K2 and K3 can be retrieved. 
5.2. Revisiting some simplifying assumptions 

In determining the structure of a scan chain in section 
2.1, we assumed that it takes one cycle to load values on 
the input pins into the input register. For some DES 
implementations this may take several cycles. Or there is 
no input register at all and the permuted input is in L and R 
registers after the first cycle. We describe a simple method 
to determine the start of encryption based on two important 
characteristics of crypto algorithms. First, they are 
data-driven; when we load different plaintexts into the data 
path the control logic performs the same action 
independent of the applied input. The flip-flops in the 
control logic do not contribute to the differences in 
scanned-out patterns. Second, cryptographic algorithms 
display the avalanche effect [11]. Due to the avalanche 
effect a one-bit difference in a round will translate into 
several bit changes in the next round. This determines start 
of encryption. The method is summarized as follows: 
1. Load a plaintext, run one cycle in normal mode and 

scan out bit stream. Load same plaintext and run 2, 
3,…clock cycles and scan out bit streams. 

2. Modify one-bit in plaintext and repeat step 1.  
3. Compare bit streams from steps 1 and 2. The clock 

cycle in which patterns from steps 1 and 2 are widely 
different is when encryption starts. This also 
determines the clock cycle when the plaintext is 
loaded into the input plaintext register and the L, R 
registers. 
The reset operation does not necessarily imply 

resetting the chip thereby clearing the secret key RAM. If 
the round keys are stored in ROM, we can physically reset 
the chip without clearing the round keys. If the round keys 
are stored in RAM and the chip is in system, we do not use 
physical reset. Rather, we load the same input and run 16 
cycles and the chip will be in a fixed state every time. This 
state can be the initial state. 
6. Conclusions 

Several side channel attacks have been proposed 
including timing analysis [10], differential fault analysis 
[11] and differential power analysis [12]. In this paper we 
show that scan chains and scan based tests are a potent side 
channel. We described a known plaintext attack using only 
3 plaintexts to break DES. 
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