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Abstra
t. This paper gives a survey of some ways to improve the ef-

�
ien
y of dis
rete log-based 
ryptography by using the restri
tion of

s
alars and the geometry and arithmeti
 of algebrai
 tori and abelian

varieties.

1 Introdu
tion

This paper is a survey, intended to be readable by both mathemati
ians and


ryptographers, of some of the results in [24{26℄, along with a new result in x3.6.

It 
an be viewed as a sequel to the Brouwer-Pellikaan-Verheul paper \Doing

more with fewer bits" [8℄.

The overall obje
tive is to provide greater eÆ
ien
y for the same se
urity.

The idea is to shorten transmissions by a fa
tor of

n

'(n)

, by going from a �nite

�eld F

q

up to the larger �eld F

q

n

, and using \primitive subgroups". Here, '(n)

is the Euler '-fun
tion. Note that n='(n) goes to in�nity (very slowly), as n

goes to in�nity.

The �rst goal is to obtain the same se
urity as the 
lassi
al DiÆe-Hellman

and ElGamal 
ryptosystems, while sending shorter transmissions. More pre
isely,

the goal is to do dis
rete log-based 
ryptography, relying on the se
urity of F

�

q

n

,

while transmitting only '(n) elements of F

q

, instead of n elements of F

q

(i.e.,

one element of F

q

n

). We use algebrai
 tori. The next goal is to improve pairing-

based 
ryptosystems. Here, we use ellipti
 
urves E and primitive subgroups of

E(F

q

n

).

As pointed out by Dan Bernstein, the te
hniques dis
ussed here 
an be viewed

as \
ompression" te
hniques, adding more 
exibility for the user, who might

?
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hoose to send 
ompressed information when the network is the bottlene
k and

un
ompressed information when 
omputational power is the bottlene
k.

In x2 we dis
uss some ba
kground and past results on 
ompressing the trans-

missions in dis
rete log-based 
ryptography for the multipli
ative group. In x3

we give an exposition of torus-based 
ryptography; we give a new implementa-

tion of CEILIDH in x3.6. In x4 we show how to 
ompress the transmissions in

pairing-based 
ryptosystems. In x5 we dis
uss some of the underlying mathe-

mati
s, in
luding an elementary introdu
tion to the Weil restri
tion of s
alars;

we de�ne \primitive subgroup" in x5.5. In x6 we dis
uss the mathemati
s un-

derlying torus-based 
ryptography, and interpret some earlier systems in terms

of quotients of algebrai
 tori.

For te
hni
al details, see the original papers. See also [11℄ (espe
ially x3.2)

for the use of primitive subgroups in 
ryptography.

A
knowledgments: The authors thank Dan Bernstein, Steven Galbraith, and

Paul Leyland for helpful 
omments on a draft of the paper.

2 Some ba
kground

We �rst re
all the 
lassi
al DiÆe-Hellman key agreement s
heme [10, 21℄.

2.1 Classi
al DiÆe-Hellman

In 
lassi
al DiÆe-Hellman key agreement, a large �nite �eld F

q

is publi
 (q �

2

1024

), as is an element g 2 F

�

q

of large (publi
) multipli
ative order ` (> 2

160

).

Ali
e 
hooses a private integer a, random in the interval between 1 and ` � 1,

and Bob similarly 
hooses a private integer b.

{ Ali
e sends g

a

to Bob.

{ Bob sends g

b

to Ali
e.

{ They share g

ab

= (g

a

)

b

= (g

b

)

a

.

Tautologi
ally, the se
urity is based on the diÆ
ulty of the DiÆe-Hellman

Problem in F

�

q

.

Note that when this is performed using F

q

n

in pla
e of F

q

, then the transmis-

sions are elements of F

q

n

(i.e., n elements of F

q

). If one 
an do DiÆe-Hellman

transmitting only '(n) elements of F

q

while relying on se
urity 
oming from

F

�

q

n

, then one would like to have n log(q) large for high se
urity, and '(n) log(q)

small for high bandwidth eÆ
ien
y. In parti
ular, for maximal eÆ
ien
y per

unit of se
urity (i.e., to a
hieve a system that is

n

'(n)

times as eÆ
ient as DiÆe-

Hellman), one would like

n

'(n)

to be as large as possible. Thus, the most useful

n's to 
onsider are those in the sequen
e

1; 2; 2 � 3 = 6; 2 � 3 � 5 = 30; 2 � 3 � 5 � 7 = 210; : : :

(whose i-th entry is the produ
t of the �rst i� 1 primes). We will dis
uss some

ways to do this, below.
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2.2 A brief tour of some history

As noted in [17, 8℄, one 
an a
hieve greater eÆ
ien
y per unit of se
urity by


hoosing g in the subgroup of F

�

q

n

of order �

n

(q), where �

n

(x) is the n-th


y
lotomi
 polynomial. (The polynomial �

n

(x) has integer 
oeÆ
ients, and its

(
omplex) roots are the primitive n-th roots of unity.)

DiÆe-Hellman key agreement is based on the full multipli
ative group F

�

q

,

whi
h is a group of order q � 1 = �

1

(q).

In [22, 31, 32, 28, 29, 25℄, analogues of the 
lassi
al DiÆe-Hellman key agree-

ment s
heme are introdu
ed that rely on the se
urity of F

�

p

2

while transmitting

only one element of F

p

. One now takes the element g to lie in the subgroup of

F

�

p

2

of order p + 1 (= �

2

(p)). Sin
e n = 2, we have n='(n) = 2, and a
hieve

twi
e the eÆ
ien
y of DiÆe-Hellman for 
omparable se
urity. The papers [22,

31, 32, 28, 29℄ use Lu
as sequen
es [20℄, to give what are known as Lu
as-based


ryptosystems. See [4℄ for a 
ritique of [28, 29℄. In [25℄ (see x3.4 below) we in-

trodu
ed the T

2

-
ryptosystem, whi
h is a torus-based system. It is related to

the Lu
as-based 
ryptosystems (see x6.5 below), and has some advantages over

them.

The Gong-Harn system [13℄ uses linear feedba
k shift register sequen
es. In

this 
ase n = 3, so n='(n) = 1:5. This 
ryptosystem relies on the se
urity of F

�

p

3

while transmitting only two elements of F

p

, using the subgroup of F

�

p

3

of order

p

2

+ p+ 1 (= �

3

(p)).

The 
ase where n = 6 (so n='(n) = 3) is 
onsidered in [8℄, [19℄ (the XTR

system), and [25℄ (the CEILIDH system). These systems give three times the

eÆ
ien
y of DiÆe-Hellman, for the same se
urity. They rely on the se
urity of

F

�

p

6

while transmitting only two elements of F

p

, using the subgroup of F

�

p

6

of

order p

2

� p+ 1 (= �

6

(p)).

Arjen Lenstra [18℄ has asked whether one 
an use n = 30 to do better than

XTR. Note that '(30) = 8 and

�

30

(x) = x

8

+ x

7

� x

5

� x

4

� x

3

+ x+ 1:

Building on a 
onje
ture in [8℄, 
onje
tures for arbitrary n were given in [6℄.

Those 
onje
tures were disproved in [6, 25, 26℄, and it was proposed in [25, 26℄

that a 
onje
ture of Voskresenskii should repla
e those 
onje
tures.

2.3 Classi
al ElGamal en
ryption

As before, the publi
 information is a large �nite �eld F

q

and an element g 2 F

�

q

of order `, along with q and `.

Ali
e's private key: an integer a, random in the interval [1; `� 1℄

Ali
e's publi
 key: P

A

= g

a

2 F

q

{ Bob represents the messageM in hgi and 
hooses a random integer r between

1 and `�1. Bob send Ali
e the 
iphertext (
; d) where 
 = g

r

and d =M �P

r

A

.

{ To de
rypt a 
iphertext (
; d), Ali
e 
omputes

d � 


�a

=M � (g

a

)

r

� (g

r

)

�a

=M:
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2.4 Classi
al ElGamal signatures

With publi
 information as before, also �x a publi
 
ryptographi
 hash fun
tion

H : f0; 1g

�

! Z=`Z (i.e., H takes bit strings to integers modulo `, is easy to


ompute and hard to invert, and its images look \random").

Ali
e's private key: an integer a, random in the interval [1; `� 1℄

Ali
e's publi
 key: P

A

= g

a

2 F

q

{ To sign a message M 2 f0; 1g

�

, Ali
e 
hooses a random integer r between 1

and ` � 1 with g
d(r; `) = 1. Ali
e's signature on M is (
; d) where 
 = g

r

and d = r

�1

(H(M)� aH(g

r

)) (mod `).

{ Bob a

epts Ali
e's signature if and only if

g

H(M)

= P

H(
)

A

� 


d

in the �eld F

q

.

Remark 1 Note that DiÆe-Hellman key agreement only requires exponentia-

tions (i.e., 
omputing powers of elements in the group generated by g), while the

ElGamal en
ryption and signature s
hemes require multipli
ations in the �nite

�eld (i.e., M � P

r

A

, 


�a

� d, and P

H(
)

A

� 


d

).

2.5 Using XTR to illustrate the idea

We give an illustration, in the 
ase n = 6, of the idea behind [8, 13, 19℄ and the

Lu
as-based 
ryptosystems.

XTR is short for ECSTR, whi
h stands for EÆ
ient Compa
t Subgroup Tra
e

Representation.

The tra
e is the tra
e map from F

p

6

to F

p

2

, whi
h is de�ned by

Tr(h) = h+ h

p

2

+ h

p

4

= h+ �(h) + �

2

(h);

where � generates the Galois group Gal(F

p

6

=F

p

2

). (Note that h

p

6

= h.)

The subgroup is the subgroup of F

�

p

6

of order p

2

� p + 1 = �

6

(p). Choose a

generator g of this subgroup.

{ Ali
e sends Tr(g

a

) to Bob.

{ Bob sends Tr(g

b

) to Ali
e.

{ They share Tr(g

ab

).

Sin
e the transmissions are elements of F

p

2

, Ali
e and Bob are sending 2

(= '(6)) elements of F

p

, rather than 6 elements of F

p

(i.e., one element of F

p

6

,

as would be the 
ase in 
lassi
al DiÆe-Hellman over the �eld F

p

6

). The point

is that the tra
e gives an eÆ
ient 
ompa
t representation of elements in the

subgroup hgi.

We 
laim that Ali
e and Bob now share Tr(g

ab

) 2 F

p

2

. This is proved in [19℄,

where an eÆ
ient way to 
ompute Tr(g

ab

) is given. Let's 
onvin
e ourselves that



Using primitive subgroups to do more with fewer bits 5

Ali
e and Bob really do have enough information to 
ompute Tr(g

ab

). Suppose

that h is an element of the subgroup of F

�

p

6

of order p

2

� p+ 1. Let

C

h

= fh; �(h); �

2

(h)g:

The three elementary symmetri
 polynomials of the set C

h

are:

�

1

(C

h

) = h+ �(h) + �

2

(h) = Tr(h);

�

2

(C

h

) = h � �(h) + h � �

2

(h) + �(h) � �

2

(h) = Tr(h � �(h));

�

3

(C

h

) = h � �(h) � �

2

(h) = N(h);

where N : F

p

6

! F

p

2

is the norm map. It turns out that if h is in the subgroup

of order p

2

� p+ 1, then �

2

(C

h

) = Tr(h)

p

and �

3

(C

h

) = 1.

Thus, knowing Tr(h) is equivalent to knowing the values of all the elemen-

tary symmetri
 polynomials of C

h

, whi
h is equivalent to knowing the set C

h

.

However, if you know C

h

and you know a, then you know C

h

a

, just by taking

every element of C

h

to the power a. But we have already noted that knowing

C

h

a

is equivalent to knowing Tr(h

a

).

To sum up, if h is in the subgroup of F

�

p

6

of order p

2

� p + 1, then a and

Tr(h) together determine Tr(h

a

). Sin
e Ali
e knows Tr(g

b

) and a, she has enough

information to 
ompute Tr((g

b

)

a

), and similarly Bob 
an 
ompute Tr((g

a

)

b

).

Note that knowing C

h

is equivalent to knowing the 
hara
teristi
 polynomial

of h over F

p

2
, sin
e that 
hara
teristi
 polynomial is

Y


2C

h

(X � 
) = X

3

��

1

(C

h

)X

2

+�

2

(C

h

)X ��

3

(C

h

):

Remark 2 In XTR [19℄, the Gong-Harn system [13℄, and the Lu
as-based 
ryp-

tosystems, Ali
e 
an 
ompute f(g

ab

) from f(g

b

) and a, for a suitable fun
tion

f (usually a tra
e). In other words, these 
ryptosystems 
an exponentiate, as

is needed for doing (analogues of) DiÆe-Hellman. However, they 
annot multi-

ply in a straightforward way. If you know Tr(g) and Tr(h), that does not give

you enough information to 
ompute Tr(gh), sin
e C

g

and C

h

do not determine

the set C

gh

(knowing only C

g

and C

h

, you do not have enough information to

distinguish C

gh

from C

g��(h)

, for example). These are examples of \lossy" 
om-

pression. If one orders the 
onjugates of h and transmits a 
ouple of extra bits

to spe
ify whi
h 
onjugate h is, then one 
an re
onstru
t h from Tr(h), and

perform multipli
ations in F

p

6

.

3 Torus-Based Cryptography

The goal is to �nd a 
omputable fun
tion f satisfying the following properties:

{ the number of bits needed to represent f(h) is less than the number of bits

needed to represent h (ideally, f(h) is

'(n)

n

as long as h),



6 K. Rubin and A. Silverberg

{ f(h) and a determine f(h

a

) and h

a

,

{ f(g) and f(h) determine f(gh) and gh,

{ f is de�ned on almost all elements of the subgroup of F

�

q

n

of order �

n

(q).

Note that these 
onditions imply that f has a 
omputable inverse fun
tion.

From now on, �x a square-free integer n and a prime power q. (Square-free

means that the only square that divides n is 1.)

De�nition 3 Let T

n

denote the subgroup of F

�

q

n

of order �

n

(q).

Example 4 (i) DiÆe-Hellman is based on the group T

1

= F

�

q

.

(ii) If q is not a power of 2, one 
an write F

q

2

= F

q

(

p

d). Then

T

2

= fa+ b

p

d : a; b 2 F

q

and (a+ b

p

d)

q+1

= 1g

= fa+ b

p

d : a; b 2 F

q

and a

2

� db

2

= 1g � F

�

q

2

;

sin
e (a+ b

p

d)

q

= a� b

p

d.

Choose a prime power q of about 1024=n bits, su
h that �

n

(q) is divisible

by a large prime. Choose g 2 T

n

whose order ` is divisible by that large prime.

Suppose for now that one has eÆ
iently 
omputable maps

F

'(n)

q

j

))

f

b

_

\

X

U

T

n

f

jj i

f

b

_

\

X

(1)

that are inverses of ea
h other. The dotted arrows signify that these maps need

not be de�ned everywhere; they might be unde�ned at a \small" number of

elements. In x3.4, x3.6, x6.3, and [25℄ we dis
uss the maps f and j, and give

expli
it examples. The following proto
ols are generalized DiÆe-Hellman and

ElGamal [21℄, using the subgroup T

n

of F

�

q

n

. In x3.7 below we dis
uss how to

represent the message in hgi. Note that the maps f and j allow one to 
ompress

transmissions not only for DiÆe-Hellman and ElGamal, but also for any dis
rete

log-based system that 
an use a general group.

3.1 Torus-based DiÆe-Hellman key agreement

Ali
e 
hooses an integer a randomly in the interval [1; ` � 1℄. Similarly, Bob


hooses a random integer b from the same range.

{ Ali
e sends P

A

= f(g

a

) 2 F

'(n)

q

to Bob.

{ Bob sends P

B

= f(g

b

) 2 F

'(n)

q

to Ali
e.

{ They share (j(P

B

))

a

= g

ab

= (j(P

A

))

b

, and also f(g

ab

).
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3.2 Torus-based ElGamal en
ryption

Ali
e's private key: an integer a, random in the interval [1; `� 1℄

Ali
e's publi
 key: P

A

= f(g

a

) 2 F

'(n)

q

{ Bob represents the message M in hgi and pi
ks a random r between 1 and

`� 1. The 
iphertext is (
; d) where 
 = f(g

r

) and d = f(M � j(P

A

)

r

).

{ To de
rypt a 
iphertext (
; d), Ali
e 
omputes M = j(d) � j(
)

�a

.

3.3 Torus-based ElGamal signatures

Fix a 
ryptographi
 hash fun
tion H : f0; 1g

�

! Z=`Z.

Ali
e's private key: an integer a, random in the interval [1; `� 1℄

Ali
e's publi
 key: P

A

= f(g

a

) 2 F

'(n)

q

{ To sign a message M 2 f0; 1g

�

, Ali
e 
hooses a random integer r between

1 and ` � 1 with g
d(r; `) = 1. Ali
e's signature on M is (
; d) where 
 =

f(g

r

) 2 F

'(n)

q

and d = r

�1

(H(M)� aH(
)) (mod `).

{ Bob a

epts Ali
e's signature if and only if

g

H(M)

= j(P

A

)

H(
)

� j(
)

d

:

The signature length is '(n) log

2

(q) + log

2

(`) bits, as opposed to n log

2

(q) +

log

2

(`) bits in the 
lassi
al ElGamal signature s
heme over F

q

n

.

3.4 The T

2

-
ryptosystem

Here, n = 2. Choose a prime power q that has about 512 bits, and su
h that

q+1

2

is a prime. One 
an write F

q

2

= F

q

(

p

d) for some non-square d 2 F

�

q

. De�ne

j : F

q

! T

2

by j(a) =

a+

p

d

a�

p

d

.

De�ne an inverse map (de�ned on T

2

� f1;�1g):

f : T

2

//___

F

q

by f(a+ b

p

d) =

1 + a

b

.

It is easy to 
he
k that if a; b 2 F

q

and a 6= �b, then

j(a)j(b) = j

�

ab+ d

a+ b

�

:

In the T

2

-
ryptosystem, one does DiÆe-Hellman key agreement and ElGamal en-


ryption and signatures, using the group law on the group T

2

, while representing

the elements in F

q

. Here, it is not ne
essary to go ba
k and forth between F

q

and T

2

, sin
e the previous equation translates T

2

's multipli
ation to F

q

, i.e.,

multipli
ation in T

2

translates into the following operation on F

q

:

(a; b) 7!

ab+ d

a+ b

;

giving a way to 
ompose elements of F

q

without having to pass to T

2

ea
h time.



8 K. Rubin and A. Silverberg

3.5 The CEILIDH publi
 key system

The a
ronym CEILIDH (pronoun
ed \
ayley") stands for Compa
t, EÆ
ient,

Improves on LUC, Improves on DiÆe-Hellman. The CEILIDH key agreement

(resp., en
ryption, resp., signature) s
heme is torus-based DiÆe-Hellman (resp.,

ElGamal en
ryption, resp., ElGamal signatures) in the 
ase n = 6.

Examples 11 and 12 of [25℄ give expli
it examples of maps f and j (
alled �

and  there) when n = 6. We give a new example in x3.6 (and use it in x3.7).

3.6 An expli
it example of maps f and j

Take an odd prime power q 
ongruent to 2, 6, 7, or 11 (mod 13) and su
h that

�

6

(q) is prime. Then F

q

(�

13

)

�

=

F

q

12

, where �

13

is a primitive 13-th root of unity,

and F

q

(z)

�

=

F

q

6

, where z = �

13

+ �

�1

13

. Let

y = �

13

+ �

�1

13

+ �

5

13

+ �

�5

13

2 F

q

3

:

For u; v 2 F

q

, de�ne

j(u; v) =

r � s

p

13

r + s

p

13

2 T

6

where

r = (3(u

2

+ v

2

) + 7uv + 34u+ 18v + 40)y

2

+ 26uy

� (21u(3 + v) + 9(u

2

+ v

2

) + 28v + 42);

s = 3(u

2

+ v

2

) + 7uv + 21u+ 18v + 14:

For t 2 T

6

, de�ne

f(t) =

�

u

w + 1

;

v � 3

w + 1

�

2 F

2

q

;

with

t = a+ b

p

13 and

1 + a

b

= wy

2

+ u(y +

y

2

2

) + v

where t is written with respe
t to the basis f1;

p

13g for F

q

6

=F

q

3

, with a, b 2

F

q

3
= F

q

(y), and

1+a

b

is written with respe
t to the basis fy

2

; y +

y

2

2

; 1g for

F

q

3

=F

q

, with u, v, w 2 F

q

.

Then f and j are inverses. The map j : F

2

q

! T

6

is de�ned on all of F

2

q

. The

map f : T

6

//___

F

2

q

is de�ned ex
ept at 1 and �2z

5

+ 6z

3

� 4z � 1 2 T

6

.

3.7 Representing elements of F

'(n)

q

in hgi

For torus-based ElGamal en
ryption, how does one represent a message as an

element of hgi? First, represent the message as an element M in F

'(n)

q

.
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If g is taken to be a generator of T

n

, then taking j(M) represents the message

in hgi (where j is as in (1)). Note that g is a generator of T

n

whenever �

n

(q) is

prime.

If g is taken to be in an index s subgroup of T

n

for some small integer s, then

by adding a few bits of redundan
y to M , after at most a few tries one obtains

an M su
h that j(M) is in hgi. If g has order `, one 
an test whether j(M) is in

hgi by 
he
king whether j(M)

`

= 1.

How does one represent the message in hgi when n = 6?

Take a prime r and an odd prime power q su
h that the order of q (mod r)

is divisible by 6 but is not 6 itself, and su
h that �

6

(q) is prime. (One expe
ts,

but 
annot prove, that there are in�nitely many su
h q; it is not hard to �nd

some in a suitable range for 
ryptography, e.g., su
h that q has about 170 bits, to

get 1024-bit se
urity.) These 
onditions ensure that F

q

(�

r

) 
ontains F

q

6

, where

�

r

is a primitive r-th root of unity. (Note that if the order of q (mod r) is 6,

then �

6

(q) is divisible by 6, so is not prime. Note also that the 
ondition that

the order of q (mod r) is divisible by 6 implies that r � 1 (mod 6).) In the 
ase

r = 13, one 
an use the example given in x3.6. Here, one represents the message

in F

2

q

, and uses the map j to put it in the prime order group T

6

= hgi.

In Example 11 of [25℄, we have q � 2 or 5 (mod 9). Here, �

6

(q) is divisible

by 3. One 
an 
hoose the prime power q so that �

6

(q)=3 is prime. If one takes g

to have order �

6

(q), then j(M) is in hgi = T

6

.

Similarly for Example 12 of [25℄, we have q � 3 or 5 (mod 7). Now �

6

(q) is

divisible by 7. One 
an 
hoose q so that �

6

(q)=7 is prime. If g is taken to have

order �

6

(q), then j(M) 2 hgi = T

6

.

The following sample parameters are all the primes q between 2

170

�10

5

and

2

170

+ 10

5

su
h that q

2

� q + 1 is prime and q has order 12 modulo 13:

1496577676626844588240573268701473812127674923933621;

1496577676626844588240573268701473812127674923946773;

1496577676626844588240573268701473812127674923949251;

1496577676626844588240573268701473812127674924018047;

1496577676626844588240573268701473812127674924027533:

3.8 Comparison between CEILIDH and XTR

The se
urity of CEILIDH is exa
tly the same as that of XTR, with the same

se
urity proof; they both rely on the se
urity of the \hardest" subgroup of F

�

q

6

(see x3.11). Parameter sele
tion for CEILIDH is exa
tly the same as for XTR.

The advantage of the T

2

-
ryptosystem and CEILIDH over LUC and XTR is

that T

2

and CEILIDH make full use of the multipli
ation in the group T

n

(for

n = 2 and 6). This is espe
ially useful for signature s
hemes. XTR is eÆ
ient for

key agreement and hybrid en
ryption (i.e., using a DiÆe-Hellman-like proto
ol

to ex
hange a se
ret key, and using symmetri
 key en
ryption, not publi
 key

en
ryption). CEILIDH 
an do eÆ
ient key agreement, publi
 key (i.e., non-

hybrid) en
ryption, and signatures.
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XTR has 
omputational eÆ
ien
y advantages over CEILIDH (key agreement


an be performed with fewer operations).

3.9 Conje
tural T

n

-
ryptosystems

Whenever f and j exist as in (1), one has a \T

n

-
ryptosystem", or T

n


om-

pression te
hnique. As in x3.1{x3.3, use f to 
ompa
tly represent transmissions

in F

'(n)

q

, and use j to send elements of F

'(n)

q

to the group T

n

, where group

operations 
an be performed.

3.10 Parameter sele
tion when n = 30

For torus-based ElGamal signatures, �nding good parameters when n = 30

amounts to �nding prime powers q of about 1024=30 � 35 bits su
h that �

30

(q)

has a prime fa
tor ` of about 160 bits. Here is a method for doing this:

{ 
hoose a 20{30 bit prime p � 1 (mod 30),

{ �nd the x

1

; : : : ; x

8

with 1 < x

i

< p whose orders modulo p are 30,

{ �nd 35-bit primes q 
ongruent to some x

i

(mod p),

{ fa
tor out small (< 90{100 bits) prime divisors from the integer �

30

(q)=p,

{ see if what is left is a prime of about 160-bits.

Paul Leyland suggested doing the fa
torization step by using the Ellipti


Curve Method optimized for 90 { 100 bit fa
tors. Using this, he 
an obtain a

few examples per hour on a laptop.

Note that the parameters are like DiÆe-Hellman parameters | they do not

need to be 
hanged often, and the same q and g 
an be used for all users.

The table below gives some pairs of primes q and ` where q has 35 bits, ` has

160 or 161 bits, and ` divides �

30

(q). One expe
ts there to be about

717267168(ln(161)� ln(160)) � 4:47� 10

6

35-bit primes q su
h that �

30

(q) has a 160-bit prime divisor (717267168 is the

number of 35-bit primes).

q `

18849585563 2721829278598645763229135555203875381215025850251

18859507111 1145377552213689334808880803247608425700596690441

18918018433 2191067457957167273280468413326196522745324110911

18937704077 2622917550423816956639040650402145314798081975731

19020912667 2009907944188511109843286107856362388569736938661

19096959863 2670351518767065322212846696686298421468094820481

19123281371 1089731979081189465083403285791765213322453796291

19200181867 1382108007746224782292716444254570494753142184301

19241156549 1292631930593942028414888386684571922308680383411
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3.11 Se
urity

The se
urity of all the systems dis
ussed thus far is the dis
rete log se
urity of

the \hardest" subgroup of F

�

q

n

, in the following sense. The group F

�

q

n

is \almost

the same" as the dire
t produ
t

Q

djn

T

d

= T

n

�

Q

djn

d6=n

T

d

(there are homomorphisms between them for whi
h the prime divisors of the

orders of the kernel and 
okernel all divide n); see pp. 60{61 of [30℄.

We have T

d

� F

�

q

d

for all d, so for d < n the elements of these subgroups

lie in a stri
tly smaller �eld than F

q

n

. Therefore, these groups T

d

are weaker

for 
ryptographi
 purposes | they are vulnerable to atta
ks on the dis
rete

logarithm problem in F

�

q

d

, where now d < n.

Almost none of the elements of T

n

lie in a smaller �eld than F

q

n

(see Lemma 1

of [6℄). Therefore, T

n


an be viewed as the 
ryptographi
ally strongest subgroup

of F

�

q

n

.

4 Improving Pairing-Based Cryptography

Inspired by and building on a paper of Galbraith [12℄, in [24℄ we use the the-

ory of supersingular abelian varieties to improve the eÆ
ien
y of pairing-based


ryptosystems.

Pairing-based 
ryptography was 
on
eived of independently by Joux [14℄

and by Sakai, Ohgishi, and Kasahara [27℄. There are numerous appli
ations of

pairing-based 
ryptography, in
luding tripartite DiÆe-Hellman, identity-based

en
ryption, and short signatures. See [1℄ for numerous referen
es and informa-

tion.

The Boneh-Lynn-Sha
ham (BLS) short signature s
heme [5℄ uses pairings

asso
iated with ellipti
 
urves. The question of whether one 
an use abelian va-

rieties (whi
h are higher dimensional generalizations of ellipti
 
urves) to obtain

shorter signatures was stated as an open problem in [5℄, and answered in the

aÆrmative in [24℄. While we arrived at our method (see x4.2 below) for 
om-

pressing BLS signatures by studying the arithmeti
 of abelian varieties, in fa
t

our �nal algorithm 
an be performed entirely using ellipti
 
urve arithmeti
,

without going to higher dimensional abelian varieties.

The Rubin-Silverberg (RS) modi�
ation of the BLS signature s
heme mul-

tiplies the se
urity of BLS signatures by n while multiplying the signature size

by '(n). Implementations when n = 3 and n = 5 are given in [24℄. We give an

example when n = 5 in x4.2 below.

Our methods 
an be used to improve the bandwidth eÆ
ien
y of any pairing-

based 
ryptosystem, not just the BLS signature s
heme.



12 K. Rubin and A. Silverberg

4.1 BLS short signature s
heme

We give an example of the Boneh-Lynn-Sha
ham signature s
heme, with �xed

parameters.

Let q = 3

97

. Consider the ellipti
 
urve E

+

: y

2

= x

3

� x + 1 over F

q

, and

take P 2 E

+

(F

q

) of (prime) order

` = 2726865189058261010774960798134976187171462721:

Note that #E

+

(F

q

) = 7`.

Use a pairing

e : hP i � hP i ! F

�

q

6

that satis�es

e(aP; bP ) = e(P; P )

ab

for every a; b 2 Z,

e(P; P ) 6= 1:

One 
an use a modi�ed Weil or Tate pairing [15℄.

The publi
 information is q, E

+

, P , `, e, and a 
ryptographi
 hash fun
tion

H : f0; 1g

�

! hP i:

Ali
e's private key: an integer a, random in the interval [1; `℄

Ali
e's publi
 key: P

A

= aP

{ To sign a message M 2 f0; 1g

�

, Ali
e 
omputes P

M

= H(M) and aP

M

=

(s; t) 2 hP i.

{ Ali
e's signature is s 2 F

q

(and 1 bit to re
over the sign of t).

{ To verify the signature, Bob 
omputes

t = �

p

s

3

� s+ 1 2 F

q

;

lets

P

0

= (s; t) ( = aP

M

),

and 
he
ks that

e(P; P

0

) = e(P

A

; P

M

):

4.2 RS 
ompression of BLS signatures

We give an example with �xed parameters, with n = 5. Let q

0

= 3

19

and let

q = (q

0

)

5

= 3

95

. Consider the ellipti
 
urve E

�

: y

2

= x

3

� x � 1, and take

P 2 E

�

(F

q

) of (prime) order

` = 6733238586040336762338876960599521:

Note that

#E

�

(F

q

) = 271 � 1162320517 � `;

#E

�

(F

3

5
) = 271; #E

�

(F

q

0

) = 1162320517:
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Take a pairing e and a hash fun
tion H as before. Let � be a generator of

Gal(F

q

=F

q

0

). For Q 2 E

�

(F

q

),

Tr

F

q

=F

q

0

(Q) = Q+ �(Q) + �

2

(Q) + �

3

(Q) + �

4

(Q):

Let

A

0

= fQ 2 E

�

(F

q

) : Tr

F

q

=F

q

0

(Q) = O

E

�
g;

the \tra
e-0 subgroup" of E

�

(F

q

). Then A

0

has order 271 � `. Sin
e P has order

`, we have P 2 A

0

.

Ali
e's private key: an integer a, random in the interval [1; `℄

Ali
e's publi
 key: P

A

= aP

{ To sign M , as before, Ali
e 
omputes P

M

= H(M) and aP

M

= (s; t).

{ Letting (s

0

; s

1

; s

2

; s

3

; s

4

) be the 
oordinates of s with respe
t to a basis for

F

q

over F

q

0

, Ali
e's signature is (s

1

; s

2

; s

3

; s

4

) (and 6 bits to re
over s

0

and

t).

{ To verify the signature, Bob �rst uses that Tr

F

q

=F

q

0

(P ) = O

E

�
to re
onstru
t

s

0

(see below).

{ Bob then, as before, 
omputes

t = �

p

s

3

� s� 1 2 F

q

;

lets

P

0

= (s; t) ( = aP

M

),

and 
he
ks that

e(P; P

0

) = e(P

A

; P

M

):

The pro
ess of re
onstru
ting s

0

and t from s

1

; s

2

; s

3

; s

4

is as follows. The

input is (s

1

; s

2

; s

3

; s

4

) 2 F

4

q

0

and the output will be s

0

; t 2 F

q

0

. Viewing F

q

as

F

q

0

(z) with z

5

� z + 1 = 0, let 
 = S +

P

4

i=1

s

i

z

i

and de�ne a

0

; � � � ; a

4

2 F

q

0

[S℄

by

4

Y

i=0

(Y � �

i

(
)) = Y

5

+ a

4

Y

4

+ a

3

Y

3

+ a

2

Y

2

+ a

1

Y + a

0

:

The tra
e-0 
ondition 
an (eventually) be redu
ed to �nding simultaneous solu-

tions of p

1

= 0 and p

2

= 0, where p

1

and p

2

are as follows:

p

1

= X

8

�a

4

X

7

+(1+a

2

4

�a

3

)X

6

+(a

4

�a

3

4

�a

2

)X

5

+(a

4

�a

2

4

+a

4

4

�a

3

�a

4

a

2

)X

4

+ (1� a

4

+ a

2

4

� a

5

4

� a

3

+ a

3

4

a

3

+ a

2

� a

3

a

2

+ a

0

)X

3

+ (�1 + a

2

4

� a

3

4

+ a

4

4

+ a

6

4

+ a

3

+ a

4

a

3

� a

2

3

� a

3

3

� a

2

� a

3

4

a

2

+ a

4

a

3

a

2

+ a

2

2

)X

2

+ (�1� a

2

4

� a

3

4

� a

4

4

� a

5

4

� a

7

4

+ a

3

+ a

4

a

3

� a

2

4

a

3

� a

3

4

a

3

� a

2

3

� a

4

a

2

3

+ a

4

a

3

3

� a

2

� a

2

4

a

2

� a

4

4

a

2

+ a

3

a

2

� a

2

4

a

3

a

2

� a

2

3

a

2

)X

+ 1� a

2

4

� a

6

4

+ a

8

4

+ a

3

� a

6

4

a

3

+ a

3

3

� a

2

4

a

3

3

+ a

4

3

;
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p

2

= X

6

�X

4

+ (�1� a

4

� a

3

4

+ a

2

)X

3

+ (�1 + a

2

4

� a

3

� a

4

a

2

+ a

1

)X

2

+ (�1� a

4

+ a

2

4

+ a

3

4

� a

3

� a

4

a

3

� a

2

+ a

2

4

a

2

� a

3

a

2

)X � 1 + a

6

4

� a

3

3

:

Taking the resultant of p

1

and p

2

eliminates the variable X , and gives a degree

27 polynomial h 2 F

q

0

[S℄ that has s

0

as a root. The extra 6 bits allow one to

de
ide whi
h root of h to take for s

0

, and to determine t. The polynomial h(S)

is of the form h

1

(S

3

� S) for a 
ertain degree 9 polynomial h

1

(S) 2 F

q

0

[S℄, and

this simpli�es �nding the roots of h. See x5.1 of [24℄ for an explanation of this

re
onstru
tion step.

RS 
ompression was arrived at by studying the Weil restri
tion of s
alars

of ellipti
 
urves (whi
h are abelian varieties), and understanding the theory of

abelian varieties. In x5.7 we dis
uss some of the underlying mathemati
s.

Remark 5 In ellipti
 
urve point 
ompression and in BLS, an ellipti
 
urve

point (x; y) is 
ompressed to its x-
oordinate, giving lossy 
ompression. One


an transmit an extra bit that determines the y-
oordinate, in order to fully

re
onstru
t the point. The signature (s

1

; s

2

; s

3

; s

4

) above is similarly an example

of lossy 
ompression; the extra 6 bits and the re
onstru
tion step allow one to

fully re
over the ellipti
 
urve point (s; t).

4.3 Comparison

RS 
ompression (x4.2) produ
es signatures that are roughly

4

5

as large as BLS

signatures with 
omparable se
urity. In both 
ases, the se
urity is based on the

diÆ
ulty of the Ellipti
 Curve DiÆe-Hellman Problem in hP i. RS signing is

no more work than for BLS. Compared with BLS, RS veri�
ation requires an

additional re
onstru
tion step to re
over s

0

. For appli
ations in whi
h the veri�er

is powerful, this is not a signi�
ant problem.

Note that RS 
ompression (like BLS) only uses ellipti
 
urve arithmeti
, and

does not use any abelian variety arithmeti
.

Bernstein and Blei
henba
her have 
ompressed RSA and Rabin signatures

([2, 3℄). In Table 1 below, BCR stands for Blei
henba
her's Compressed Rabin

signatures, DSA is the Digital Signature Algorithm, and ECDSA is the Ellip-

ti
 Curve Digital Signature Algorithm. In the middle 
olumn of Table 1, the

signatures are all s
aled to 1024-bit RSA se
urity. In the remaining 
olumns

the signatures are s
aled to the MOV se
urity of the RS s
heme. The MOV

se
urity refers to atta
ks on the dis
rete log problem in F

�

q

6

. The DL se
urity

refers to generi
 atta
ks on the group hP i; the relevant value for DL se
urity is

log

2

(`)-bits, where ` is the order of P . (See [5, 24℄.)

There is an RS s
heme similar to the one in x4.2 (see x5.2 of [24℄) that uses

ellipti
 
urves over binary �elds F

2

w

. Working over binary �elds might yield some

eÆ
ien
y advantages. However, due to Coppersmith's atta
k on the dis
rete log

problem in low 
hara
teristi
 [9℄, larger parameters should be used.

To a
hieve the 
exibility of higher 
hara
teristi
, in x6 of [24℄ we suggest

the use of (Ja
obian varieties of) 
ertain twists of Fermat 
urves. In a re
ent

preprint giving an expanded version of [5℄, Boneh, Lynn, and Sha
ham suggest

using MNT ellipti
 
urves.
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system

RSA 904 1024 2045

BCR 452 512 1024

DSA 320

ECDSA 320

BLS 152 172 342

RS 127 143 279

Table 1. Signature lengths, in bits, for 
omparable MOV se
urity

5 The underlying mathemati
s

5.1 Varieties and algebrai
 groups

De�nition 6 Loosely speaking, an algebrai
 variety (over a �eld k) is the so-

lution set of a system of polynomial equations (whose 
oeÆ
ients are in k). An

algebrai
 group (or group variety) over a �eld k is a variety over k su
h that the

group law and the inverse map are quotients of polynomials whose 
oeÆ
ients

are in k.

5.2 The Weil restri
tion of s
alars

Suppose that V is a variety over a �eld L. This means that V is the solution

set of a system of polynomial equations f

i

(x

1

; : : : ; x

r

) = 0, 1 � i � s, where the

polynomials f

i

have 
oeÆ
ients in the �eld L. Suppose k is a sub�eld of L, and

n is the degree of L over k. Fix a basis fv

1

; : : : ; v

n

g for L over k. Write x

i

=

P

n

j=1

y

ij

v

j

with variables y

ij

. Substitute this into the equations f

i

(x

1

; : : : ; x

r

) =

0. Multiplying out, writing everything with respe
t to the basis fv

1

; : : : ; v

n

g, and

equating 
oeÆ
ients, one obtains a system of polynomials in the variables fy

ij

g,

with 
oeÆ
ients in the �eld k. The variety de�ned by these new equations is

denoted Res

L=k

V , and is 
alled the (Weil) restri
tion of s
alars from L down to

k. It is a variety over k with the property that its k-points are the L-points of

V :

(Res

L=k

V )(k)

�

=

V (L):

Its dimension is n � dim(V ). See for example x3.12 in Chapter 1 of [30℄ for more

information.

5.3 The multipli
ative group G

m

DiÆe-Hellman is based on the multipli
ative group, denoted G

m

. Over any �eld

F , the F -points on G

m

are

G

m

(F ) = F

�

= F � f0g;

the multipli
ative group of invertible elements of the �eld F . The algebrai


variety G

m

is de�ned by the equation xy = 1, i.e., it 
onsists of the elements x

su
h that there exists a y with xy = 1. It is an algebrai
 group over any �eld k.

We will view G

m

as an algebrai
 group over the �eld F

q

.
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5.4 The restri
tion of s
alars Res

F

q

n

=F

q

G

m

The Weil restri
tion of s
alars Res

F

q

n

=F

q

G

m

is an algebrai
 variety (in fa
t, an

algebrai
 group) over F

q

. We have

(Res

F

q

n

=F

q

G

m

)(F

q

)

�

=

F

�

q

n

:

Example 7 To �nd equations de�ning the two-dimensional algebrai
 variety

Res

F

9

=F

3

G

m

, write F

9

= F

3

(

p

�1), and write x = x

1

+ x

2

p

�1 and y = y

1

+

y

2

p

�1. Substituting into xy = 1 and equating 
oeÆ
ients gives the equations:

x

1

y

1

� x

2

y

2

= 1; x

1

y

2

+ x

2

y

1

= 0:

5.5 The primitive subgroup G

0

Suppose that G is a 
ommutative algebrai
 group over a �eld k. In the 
ases of

interest to us, V will be the multipli
ative group G

m

or an ellipti
 
urve. For

now, we write G's group operation as multipli
ation.

If L is a �eld that is a �nite extension of k, de�ne the primitive subgroup G

0

of Res

L=k

G to be

G

0

= ker[Res

L=k

G

�N

L=F

�����!

L

k�F(L

Res

F=k

G℄;

where the norm maps N

L=F

indu
e the usual norm maps

N

L=F

: G(L)! G(F ); x 7!

Y

�2Gal(L=F )

�(x):

Then G

0

is an algebrai
 group over k, and G

0

(k) 
onsists of all elements of

G(L) whose norm down G(F ) is the identity, for every intermediate �eld F with

F 6= L.

The group Res

L=k

G is \almost the same" as the produ
t G �G

0

(there are

homomorphisms between them with \small" kernel and 
okernel).

5.6 The algebrai
 torus T

n

Let T

n

(or T

n;q

when it is important to keep tra
k of the ground �eld) denote

the primitive subgroup of Res

F

q

n

=F

q

G

m

, i.e.,

T

n

= T

n;q

= ker

�

Res

F

q

n

=F

q

G

m

�N

F

q

n

=F

q

d

�������!

L

djn

d6=n

Res

F

q

d

=F

q

G

m

�

:

By de�nition, T

n

(F

q

) is the group of elements of F

�

q

n

that have norm 1 down

to every intermediate �eld F

q

d (for d 6= n). By Lemma 7 of [25℄,

T

n

(F

q

) = T

n

: (2)
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Example 8 Continuing Example 7, where q = 3 and n = 2, it is easy to write

down embeddings:

G

m

,! Res

F

9

=F

3

G

m

; x 7! (x; 0; x

�1

; 0);

T

2

,! Res

F

9

=F

3

G

m

; x

1

+ x

2

p

�1 7! (x

1

; x

2

; x

1

;�x

2

):

The 
ompositions (in both orders) of the resulting map

G

m

� T

2

! Res

F

9

=F

3

G

m

with the map

Res

F

9

=F

3

G

m

! G

m

� T

2

de�ned by

(x

1

; x

2

; y

1

; y

2

) 7! (x

2

1

+ x

2

2

; x

1

y

1

+ x

2

y

2

+ 2x

2

y

1

p

�1)

are the squaring maps. Thus, Res

F

9

=F

3

G

m

is \almost the same" as G

m

� T

2

.

5.7 The tra
e-0 subgroup of Res

F

q

=F

q

0

(E

�

)

Abelian varieties are, by de�nition, proje
tive algebrai
 groups. Ellipti
 
urves

are exa
tly the one-dimensional abelian varieties.

With E

�

; q

0

; q; `, and P as in x4.2, let

B = Res

F

q

=F

q

0

(E

�

);

and let A be the primitive subgroup of B:

A = ker[B

N

F

q

=F

q

0

�����! E

�

℄:

Then A and B are abelian varieties over F

q

0

of dimensions 4 and 5, respe
tively,

and B is isogenous to E

�

� A. (See also x3.2 of [11℄.) The abelian variety A

is simple. Sin
e the group law on an abelian variety is written additively, the

norm map now 
orresponds to the sum of the 
onjugates, i.e., the tra
e de�ned

in x4.2. We have

hP i � A

0

= fQ 2 E

�

(F

q

) : Tr

F

q

=F

q

0

(Q) = O

E

�
g

�

=

A(F

q

0

)

\ \

E

�

(F

q

)

�

=

B(F

q

0

)

Note that the underlying four-dimensional abelian variety A is invisible in

the algorithms in x4.2.

6 Cryptographi
 appli
ations of algebrai
 tori and their

quotients

We give an exposition of some of the mathemati
s underlying torus-based 
ryp-

tography (i.e., the T

n

-
ryptosystems) and the 
ryptosystems dis
ussed in x2. We

dis
uss how the latter s
hemes are based on quotients of tori by the a
tions of

symmetri
 groups.
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6.1 Algebrai
 tori

De�nition 9 An algebrai
 torus is an algebrai
 group that over some larger

�eld is a produ
t of multipli
ative groups. A �eld over whi
h the torus be
omes

isomorphi
 to a produ
t of multipli
ative groups is 
alled a splitting �eld for the

torus; one says that the torus splits over that �eld. See [23, 30℄ for expositions.

Example 10 (i) For every positive integer r, G

r

m

is an r-dimensional algebrai


torus.

(ii) Res

F

q

n

=F

q

G

m

is an n-dimensional algebrai
 torus over F

q

that splits over

F

q

n

.

By Proposition 2.6 of [26℄, the group T

n

de�ned in x5.6 is a '(n)-dimensional

torus.

6.2 Rationality and birational isomorphisms

If r is a positive integer, write A

r

for aÆne r-spa
e. For any �eld F , we have

A

r

(F ) = F

r

, the dire
t sum of r 
opies of F .

De�nition 11 A rational map between algebrai
 varieties is a fun
tion de�ned

by polynomials or quotients of polynomials that is de�ned almost everywhere.

A birational isomorphism between algebrai
 varieties is a rational map that

has a rational inverse (the maps are inverses wherever both are de�ned). A

d-dimensional variety is rational if it is birationally isomorphi
 to A

d

.

Note that birational isomorphisms are not ne
essarily group isomorphisms.

Note also that rational maps are not ne
essarily fun
tions | they might fail to

be de�ned on a lower dimensional set.

By (2), if T

n

is rational (i.e., birationally isomorphi
 to A

'(n)

), then almost

all elements of T

n


an be represented by '(n) elements of F

q

.

The maps f and j in x3 are only birational. The sets T

n

and F

'(n)

q

are of size

approximately q

'(n)

. The \bad" sets where f and j are not de�ned 
orrespond to

algebrai
 subvarieties of dimension at most '(n)�1, and therefore have at most


q

'(n)�1

elements for some 
onstant 
. Thus the probability that an element

lands in the bad set is at worst 
=q, whi
h will be small for large q. In any given


ase the bad sets might be even smaller. For example, in x3.6 the bad sets have

2 and 0 elements, respe
tively.

6.3 Obtaining the rational maps f and j

How were the maps in Examples 11 and 12 of [25℄ and in x3.6 above arrived at?

The idea is as follows.

F

q

6

F

q

2

�

�

�

�

�

F

q

3

?

?

?

?

?

F

q

?

?

?

?

?

�

�

�

�

�
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The one-dimensional torus T

2;q

3

is, by de�nition, the kernel of the norm map

N

F

q

6

=F

q

3

. The torus

T := Res

F

q

3

=F

q

(T

2;q

3

)

has dimension 3. As in x3.4, the torus T

2;q

3

is rational (i.e., is birationally iso-

morphi
 to A

1

), and thus the torus T is rational (i.e., birationally isomorphi
 to

A

3

). The two-dimensional torus T

6

is the hypersurfa
e 
ut out by the equation

N

F

q

6

=F

q

2

= 1 inside the torus T . This hypersurfa
e is de�ned by a quadrati


equation that 
an be used to parametrize the hypersurfa
e. We gave examples

of this in Examples 11 and 12 of [25℄. Se
tion 3.6 gives an additional example.

6.4 A group a
tion on the torus

Next, we de�ne a
tions of symmetri
 groups on the tori T

n

. Suppose e is a divisor

of n, and let d = n=e. Sin
e n is square-free, we have g
d(e; d) = 1, so

Z=nZ

�

=

Z=eZ�Z=dZ:

The symmetri
 group on e letters, S

e

, a
ts on Z=eZ. Extend this a
tion to an

a
tion of S

e

on Z=nZ, by a
ting trivially on Z=dZ. Now de�ne an a
tion of S

e

on A

n

(= A

Z=nZ

) as follows. For � 2 S

e

,

(x

i

)

i2Z=nZ

7! (x

�

�1

(i)

)

i2Z=nZ

:

We have

A

n

�

=

F

q

n

Res

F

q

n

=F

q

A

1

� Res

F

q

n

=F

q

G

m

� T

n

:

The a
tion of S

e

on A

n

preserves Res

F

q

n

=F

q

G

m

. However, it does not ne
essarily

preserve the torus T

n

.

Theorem 12 (Lemma 3.5 of [26℄) If p is a prime divisor of n, then the above

a
tion of S

p

on A

n

preserves the torus T

n

.

6.5 Interpreting the other systems in terms of quotients of tori

{ The Lu
as-based 
ryptosystems are \based on" the quotient variety T

2

=S

2

.

{ The Gong-Harn system is based on the quotient variety T

3

=S

3

.

{ XTR is based on the quotient variety T

6

=S

3

.

{ Conje
tural \Looking beyond XTR" systems would rely on the quotient

variety T

30

=(S

3

� S

5

) or T

30

=(S

2

� S

3

� S

5

).

These quotient varieties are not groups. This is why the Lu
as-based systems

and XTR do not do straightforward multipli
ation.

{ The T

2

-
ryptosystem is based on the group (and torus) T

2

.

{ CEILIDH is based on the group (and torus) T

6

.
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{ The (sometimes 
onje
tural) T

n

-
ryptosystems are based on the group (and

torus) T

n

.

We therefore 
all the T

n

-
ryptosystems \torus-based 
ryptosystems".

What do we mean when we say that these systems are \based on" 
ertain

algebrai
 varieties?

XTR works be
ause the variety T

6

=S

3

is rational, and the tra
e map F

p

6

!

F

p

2
indu
es a birational isomorphism:

T

6

=S

3

//___

A

2

= Res

F

q

2

=F

q

A

1

:

Similarly for the Lu
as-based 
ryptosystems, the tra
e map F

p

2

! F

p

indu
es

a birational isomorphism:

T

2

=S

2

//___

A

1

:

More pre
isely, let B

(d;e)

denote the image of T

n

in (Res

F

q

n

=F

q

G

m

)=S

e

(where

n = de). By Theorem 3.7 of [26℄, B

(d;e)

is birationally isomorphi
 to T

n

=(S

p

1

�

� � � � S

p

r

) where e = p

1

� � � p

r

is the prime fa
torization of e. Note that the

quotient map T

n

! T

n

=S

e

indu
es a (non-surje
tive) map on F

q

-points:

T

n

= T

n

(F

q

)! (T

n

=S

e

)(F

q

):

Let

XTR(d; e) = fTr

F

q

n

=F

q

d

(�) : � 2 T

n

g � F

q

d :

When (d; e) = (1; 2) or (2; 3), then XTR(d; e) is the set of tra
es that o

ur in the

Lu
as-based systems and XTR, respe
tively. In these two 
ases, XTR(d; e) 
an

be naturally identi�ed with the image of T

n

(F

q

) in (T

n

=S

e

)(F

q

). More pre
isely

(see Theorem 13 of [25℄), when (d; e) = (1; 2) or (2; 3), the tra
e map Tr

F

q

n

=F

q

d

indu
es a birational embedding

T

n

=S

e

,! Res

F

q

d

=F

q

A

1

su
h that XTR(d; e) is the image of the 
omposition

T

n

= T

n

(F

q

) �! (T

n

=S

e

)(F

q

) ,! (Res

F

q

d

=F

q

A

1

)(F

q

)

�

=

F

q

d :

6.6 \Looking beyond XTR"

The paper \Looking beyond XTR" [6℄, building on a 
onje
ture in [8℄, asks

whether, for n > 6, some set of elementary symmetri
 polynomials 
an be used

in pla
e of the tra
e. In parti
ular, [6℄ asks whether, when d j n and d j '(n),

one 
an re
over the values of all the elementary symmetri
 polynomials (i.e., the

entire 
hara
teristi
 polynomial) for Gal(F

p

n

=F

p

d ) from the �rst '(n)=d of them

(this was already answered in the aÆrmative in some 
ases in [8, 13℄). If this

were true, one 
ould use the �rst '(n)=d elementary symmetri
 polynomials on
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the set of Gal(F

p

n

=F

p

d
)-
onjugates of an element h 2 T

n

to represent h by '(n)

elements of F

q

. More generally, [6℄ asks whether, for d j n, one 
an re
over the

entire 
hara
teristi
 polynomial over F

p

d from its �rst d'(n)=de 
oeÆ
ients.

The answer is no. In parti
ular, in [25℄ we show that when n = 30 and p = 7,

then:

{ for d = 1, no 8 (= '(n)=d) elementary symmetri
 polynomials determine

any of the remaining ones (ex
ept those determined by the symmetry of the


hara
teristi
 polynomial),

{ for d = 1, no 10 elementary symmetri
 polynomials determine all of them;

{ for d = 2, no 4 (= '(n)=d) elementary symmetri
 polynomials determine all

of them.

Reinterpreted in terms of algebrai
 tori, the 
onje
tures in [6℄ imply (see

[26℄) that the �rst eight elementary symmetri
 polynomials indu
e a birational

isomorphism over F

p

:

T

30

=(S

2

� S

3

� S

5

)

//___

A

8

;

and the �rst four elementary symmetri
 polynomials on the Gal(F

p

30

=F

p

2

)-


onjugates of an element in T

30

indu
e a birational isomorphism over F

p

:

T

30

=(S

3

� S

5

)

//___

Res

F

p

2

=F

p

A

4

�

=

A

8

:

In [26℄ we prove that these statements are both false, for all but possibly �nitely

many primes p.

More generally, we have

T

n

� B

(d;e)

,! (Res

F

q

d

=F

q

A

1

)

e

�

=

A

n

;

where the middle map �

e

i=1

s

i

is indu
ed by the e elementary symmetri
 poly-

nomials s

1

; : : : ; s

e

on Gal(F

q

n

=F

q

d )-
onjuga
y 
lasses. (Re
all that B

(d;e)

was

de�ned at the end of x6.5, and de = n.)

The 
onje
tures in [6℄ would imply that, when d divides '(n), then the �rst

'(n)=d fun
tions s

1

; : : : ; s

'(n)=d

indu
e a birational isomorphism

B

(d;e)

//___

(Res

F

q

d

=F

q

A

1

)

'(n)=d

�

=

A

'(n)

:

This is true when the pairs (d; e) are (1; 1) (this is DiÆe-Hellman), (1; 2)

(Lu
as-based systems), (1; 3) (Gong-Harn), and (2; 3) (XTR). It is also true (see

[8℄) when ` is a prime and (d; e) = (1; `) or (2; `). As noted above, we showed in

[25, 26℄ that this is false for (d; e) = (1; 30) and (2; 15) (in all but at most �nitely

many 
hara
teristi
s).

When (d; e) = (n; 1), the underlying variety B

(d;e)

is T

n

itself, 
orresponding

to the T

n

-
ryptosystems.

In summary, elementary symmetri
 polynomials are not the 
orre
t fun
tions

to use. In the next se
tion we state a 
onje
ture (of Voskresenskii) that seems

to be 
loser to the truth.
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6.7 Voskresenskii's Conje
ture

Conje
ture 13 (Voskresenskii) T

n

is rational; i.e., for every n, there is a

birational isomorphism

T

n

//___

A

'(n)

:

The 
onje
ture is true, and not diÆ
ult to prove, if n is a prime power [30℄.

The 
onje
ture was proved by Klya
hko [16℄ when n is a produ
t of two prime

powers. Expli
it birational isomorphisms are given in x5 of [25℄ and x3.6 above

(see also x3.4 above), in the 
ases n = 2 and 6. A T

n

-
ryptosystem arises for

every n for whi
h Voskresenskii's Conje
ture is true with eÆ
iently 
omputable

birational maps.

When n is divisible by more than two distin
t primes, Voskresenskii's Con-

je
ture is still an open question. In parti
ular, the 
onje
ture is not known when

n = 30 = 2 � 3 � 5. We have tried unsu

essfully to 
onstru
t a birational isomor-

phism between T

30

and A

8

. It would be interesting to know whether Voskresen-

skii's Conje
ture is true or false when n = 30. We have been able to 
onstru
t

expli
it rational maps of low degree in this 
ase, whi
h might be useful if no

birational map exists. For example, an s-to-1 map from T

30

to A

8

would provide

a lossy 
ompression s
heme, and would allow one to represent elements of T

30

in F

8

q

� f1; : : : ; sg.

Rationality of the varieties B(1; n) (or more generally the varieties B(d; e))

would imply the 
onje
ture in [8℄.

6.8 Stable rationality

One reason that Voskresenskii's Conje
ture would be diÆ
ult to disprove is that

the tori T

n

are known to always be stably rational over F

q

(see the Corollary on

p. 61 of [30℄).

De�nition 14 A variety V over k is 
alled stably rational over k if for some r

and s, V � A

r

is birationally isomorphi
 over k to A

s

(i.e., V � A

r

is rational for

some r � 0).

Although the stable rationality of T

n

does not allow one to represent elements

of T

n

in F

'(n)

q

, it does allow one to represent elements of T

n

�F

r

q

in F

s

q

for suitable

r and s, and this might be useful.

7 Open problems

Some goals for the future are:

{ Improve the eÆ
ien
y of CEILIDH.

{ Obtain more eÆ
ient key agreement, en
ryption, and signature s
hemes, by

generalizing to T

30

-
ryptosystems:

� �nd expli
it and eÆ
ient birational isomorphisms f and j between T

30

and A

8

, if su
h exist,
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� look for spe
ial atta
ks on the dis
rete log problem in F

�

q

30

.

{ Use non-supersingular (i.e., ordinary) abelian varieties to further improve

pairing-based 
ryptography.

Progress has been made on the last point in the 
ase of ellipti
 
urves; see

for example [7℄.
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