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Abstrat. This paper gives a survey of some ways to improve the ef-

�ieny of disrete log-based ryptography by using the restrition of

salars and the geometry and arithmeti of algebrai tori and abelian

varieties.

1 Introdution

This paper is a survey, intended to be readable by both mathematiians and

ryptographers, of some of the results in [24{26℄, along with a new result in x3.6.

It an be viewed as a sequel to the Brouwer-Pellikaan-Verheul paper \Doing

more with fewer bits" [8℄.

The overall objetive is to provide greater eÆieny for the same seurity.

The idea is to shorten transmissions by a fator of

n

'(n)

, by going from a �nite

�eld F

q

up to the larger �eld F

q

n

, and using \primitive subgroups". Here, '(n)

is the Euler '-funtion. Note that n='(n) goes to in�nity (very slowly), as n

goes to in�nity.

The �rst goal is to obtain the same seurity as the lassial DiÆe-Hellman

and ElGamal ryptosystems, while sending shorter transmissions. More preisely,

the goal is to do disrete log-based ryptography, relying on the seurity of F

�

q

n

,

while transmitting only '(n) elements of F

q

, instead of n elements of F

q

(i.e.,

one element of F

q

n

). We use algebrai tori. The next goal is to improve pairing-

based ryptosystems. Here, we use ellipti urves E and primitive subgroups of

E(F

q

n

).

As pointed out by Dan Bernstein, the tehniques disussed here an be viewed

as \ompression" tehniques, adding more exibility for the user, who might

?
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hoose to send ompressed information when the network is the bottlenek and

unompressed information when omputational power is the bottlenek.

In x2 we disuss some bakground and past results on ompressing the trans-

missions in disrete log-based ryptography for the multipliative group. In x3

we give an exposition of torus-based ryptography; we give a new implementa-

tion of CEILIDH in x3.6. In x4 we show how to ompress the transmissions in

pairing-based ryptosystems. In x5 we disuss some of the underlying mathe-

matis, inluding an elementary introdution to the Weil restrition of salars;

we de�ne \primitive subgroup" in x5.5. In x6 we disuss the mathematis un-

derlying torus-based ryptography, and interpret some earlier systems in terms

of quotients of algebrai tori.

For tehnial details, see the original papers. See also [11℄ (espeially x3.2)

for the use of primitive subgroups in ryptography.

Aknowledgments: The authors thank Dan Bernstein, Steven Galbraith, and

Paul Leyland for helpful omments on a draft of the paper.

2 Some bakground

We �rst reall the lassial DiÆe-Hellman key agreement sheme [10, 21℄.

2.1 Classial DiÆe-Hellman

In lassial DiÆe-Hellman key agreement, a large �nite �eld F

q

is publi (q �

2

1024

), as is an element g 2 F

�

q

of large (publi) multipliative order ` (> 2

160

).

Alie hooses a private integer a, random in the interval between 1 and ` � 1,

and Bob similarly hooses a private integer b.

{ Alie sends g

a

to Bob.

{ Bob sends g

b

to Alie.

{ They share g

ab

= (g

a

)

b

= (g

b

)

a

.

Tautologially, the seurity is based on the diÆulty of the DiÆe-Hellman

Problem in F

�

q

.

Note that when this is performed using F

q

n

in plae of F

q

, then the transmis-

sions are elements of F

q

n

(i.e., n elements of F

q

). If one an do DiÆe-Hellman

transmitting only '(n) elements of F

q

while relying on seurity oming from

F

�

q

n

, then one would like to have n log(q) large for high seurity, and '(n) log(q)

small for high bandwidth eÆieny. In partiular, for maximal eÆieny per

unit of seurity (i.e., to ahieve a system that is

n

'(n)

times as eÆient as DiÆe-

Hellman), one would like

n

'(n)

to be as large as possible. Thus, the most useful

n's to onsider are those in the sequene

1; 2; 2 � 3 = 6; 2 � 3 � 5 = 30; 2 � 3 � 5 � 7 = 210; : : :

(whose i-th entry is the produt of the �rst i� 1 primes). We will disuss some

ways to do this, below.
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2.2 A brief tour of some history

As noted in [17, 8℄, one an ahieve greater eÆieny per unit of seurity by

hoosing g in the subgroup of F

�

q

n

of order �

n

(q), where �

n

(x) is the n-th

ylotomi polynomial. (The polynomial �

n

(x) has integer oeÆients, and its

(omplex) roots are the primitive n-th roots of unity.)

DiÆe-Hellman key agreement is based on the full multipliative group F

�

q

,

whih is a group of order q � 1 = �

1

(q).

In [22, 31, 32, 28, 29, 25℄, analogues of the lassial DiÆe-Hellman key agree-

ment sheme are introdued that rely on the seurity of F

�

p

2

while transmitting

only one element of F

p

. One now takes the element g to lie in the subgroup of

F

�

p

2

of order p + 1 (= �

2

(p)). Sine n = 2, we have n='(n) = 2, and ahieve

twie the eÆieny of DiÆe-Hellman for omparable seurity. The papers [22,

31, 32, 28, 29℄ use Luas sequenes [20℄, to give what are known as Luas-based

ryptosystems. See [4℄ for a ritique of [28, 29℄. In [25℄ (see x3.4 below) we in-

trodued the T

2

-ryptosystem, whih is a torus-based system. It is related to

the Luas-based ryptosystems (see x6.5 below), and has some advantages over

them.

The Gong-Harn system [13℄ uses linear feedbak shift register sequenes. In

this ase n = 3, so n='(n) = 1:5. This ryptosystem relies on the seurity of F

�

p

3

while transmitting only two elements of F

p

, using the subgroup of F

�

p

3

of order

p

2

+ p+ 1 (= �

3

(p)).

The ase where n = 6 (so n='(n) = 3) is onsidered in [8℄, [19℄ (the XTR

system), and [25℄ (the CEILIDH system). These systems give three times the

eÆieny of DiÆe-Hellman, for the same seurity. They rely on the seurity of

F

�

p

6

while transmitting only two elements of F

p

, using the subgroup of F

�

p

6

of

order p

2

� p+ 1 (= �

6

(p)).

Arjen Lenstra [18℄ has asked whether one an use n = 30 to do better than

XTR. Note that '(30) = 8 and

�

30

(x) = x

8

+ x

7

� x

5

� x

4

� x

3

+ x+ 1:

Building on a onjeture in [8℄, onjetures for arbitrary n were given in [6℄.

Those onjetures were disproved in [6, 25, 26℄, and it was proposed in [25, 26℄

that a onjeture of Voskresenskii should replae those onjetures.

2.3 Classial ElGamal enryption

As before, the publi information is a large �nite �eld F

q

and an element g 2 F

�

q

of order `, along with q and `.

Alie's private key: an integer a, random in the interval [1; `� 1℄

Alie's publi key: P

A

= g

a

2 F

q

{ Bob represents the messageM in hgi and hooses a random integer r between

1 and `�1. Bob send Alie the iphertext (; d) where  = g

r

and d =M �P

r

A

.

{ To derypt a iphertext (; d), Alie omputes

d � 

�a

=M � (g

a

)

r

� (g

r

)

�a

=M:
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2.4 Classial ElGamal signatures

With publi information as before, also �x a publi ryptographi hash funtion

H : f0; 1g

�

! Z=`Z (i.e., H takes bit strings to integers modulo `, is easy to

ompute and hard to invert, and its images look \random").

Alie's private key: an integer a, random in the interval [1; `� 1℄

Alie's publi key: P

A

= g

a

2 F

q

{ To sign a message M 2 f0; 1g

�

, Alie hooses a random integer r between 1

and ` � 1 with gd(r; `) = 1. Alie's signature on M is (; d) where  = g

r

and d = r

�1

(H(M)� aH(g

r

)) (mod `).

{ Bob aepts Alie's signature if and only if

g

H(M)

= P

H()

A

� 

d

in the �eld F

q

.

Remark 1 Note that DiÆe-Hellman key agreement only requires exponentia-

tions (i.e., omputing powers of elements in the group generated by g), while the

ElGamal enryption and signature shemes require multipliations in the �nite

�eld (i.e., M � P

r

A

, 

�a

� d, and P

H()

A

� 

d

).

2.5 Using XTR to illustrate the idea

We give an illustration, in the ase n = 6, of the idea behind [8, 13, 19℄ and the

Luas-based ryptosystems.

XTR is short for ECSTR, whih stands for EÆient Compat Subgroup Trae

Representation.

The trae is the trae map from F

p

6

to F

p

2

, whih is de�ned by

Tr(h) = h+ h

p

2

+ h

p

4

= h+ �(h) + �

2

(h);

where � generates the Galois group Gal(F

p

6

=F

p

2

). (Note that h

p

6

= h.)

The subgroup is the subgroup of F

�

p

6

of order p

2

� p + 1 = �

6

(p). Choose a

generator g of this subgroup.

{ Alie sends Tr(g

a

) to Bob.

{ Bob sends Tr(g

b

) to Alie.

{ They share Tr(g

ab

).

Sine the transmissions are elements of F

p

2

, Alie and Bob are sending 2

(= '(6)) elements of F

p

, rather than 6 elements of F

p

(i.e., one element of F

p

6

,

as would be the ase in lassial DiÆe-Hellman over the �eld F

p

6

). The point

is that the trae gives an eÆient ompat representation of elements in the

subgroup hgi.

We laim that Alie and Bob now share Tr(g

ab

) 2 F

p

2

. This is proved in [19℄,

where an eÆient way to ompute Tr(g

ab

) is given. Let's onvine ourselves that
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Alie and Bob really do have enough information to ompute Tr(g

ab

). Suppose

that h is an element of the subgroup of F

�

p

6

of order p

2

� p+ 1. Let

C

h

= fh; �(h); �

2

(h)g:

The three elementary symmetri polynomials of the set C

h

are:

�

1

(C

h

) = h+ �(h) + �

2

(h) = Tr(h);

�

2

(C

h

) = h � �(h) + h � �

2

(h) + �(h) � �

2

(h) = Tr(h � �(h));

�

3

(C

h

) = h � �(h) � �

2

(h) = N(h);

where N : F

p

6

! F

p

2

is the norm map. It turns out that if h is in the subgroup

of order p

2

� p+ 1, then �

2

(C

h

) = Tr(h)

p

and �

3

(C

h

) = 1.

Thus, knowing Tr(h) is equivalent to knowing the values of all the elemen-

tary symmetri polynomials of C

h

, whih is equivalent to knowing the set C

h

.

However, if you know C

h

and you know a, then you know C

h

a

, just by taking

every element of C

h

to the power a. But we have already noted that knowing

C

h

a

is equivalent to knowing Tr(h

a

).

To sum up, if h is in the subgroup of F

�

p

6

of order p

2

� p + 1, then a and

Tr(h) together determine Tr(h

a

). Sine Alie knows Tr(g

b

) and a, she has enough

information to ompute Tr((g

b

)

a

), and similarly Bob an ompute Tr((g

a

)

b

).

Note that knowing C

h

is equivalent to knowing the harateristi polynomial

of h over F

p

2
, sine that harateristi polynomial is

Y

2C

h

(X � ) = X

3

��

1

(C

h

)X

2

+�

2

(C

h

)X ��

3

(C

h

):

Remark 2 In XTR [19℄, the Gong-Harn system [13℄, and the Luas-based ryp-

tosystems, Alie an ompute f(g

ab

) from f(g

b

) and a, for a suitable funtion

f (usually a trae). In other words, these ryptosystems an exponentiate, as

is needed for doing (analogues of) DiÆe-Hellman. However, they annot multi-

ply in a straightforward way. If you know Tr(g) and Tr(h), that does not give

you enough information to ompute Tr(gh), sine C

g

and C

h

do not determine

the set C

gh

(knowing only C

g

and C

h

, you do not have enough information to

distinguish C

gh

from C

g��(h)

, for example). These are examples of \lossy" om-

pression. If one orders the onjugates of h and transmits a ouple of extra bits

to speify whih onjugate h is, then one an reonstrut h from Tr(h), and

perform multipliations in F

p

6

.

3 Torus-Based Cryptography

The goal is to �nd a omputable funtion f satisfying the following properties:

{ the number of bits needed to represent f(h) is less than the number of bits

needed to represent h (ideally, f(h) is

'(n)

n

as long as h),
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{ f(h) and a determine f(h

a

) and h

a

,

{ f(g) and f(h) determine f(gh) and gh,

{ f is de�ned on almost all elements of the subgroup of F

�

q

n

of order �

n

(q).

Note that these onditions imply that f has a omputable inverse funtion.

From now on, �x a square-free integer n and a prime power q. (Square-free

means that the only square that divides n is 1.)

De�nition 3 Let T

n

denote the subgroup of F

�

q

n

of order �

n

(q).

Example 4 (i) DiÆe-Hellman is based on the group T

1

= F

�

q

.

(ii) If q is not a power of 2, one an write F

q

2

= F

q

(

p

d). Then

T

2

= fa+ b

p

d : a; b 2 F

q

and (a+ b

p

d)

q+1

= 1g

= fa+ b

p

d : a; b 2 F

q

and a

2

� db

2

= 1g � F

�

q

2

;

sine (a+ b

p

d)

q

= a� b

p

d.

Choose a prime power q of about 1024=n bits, suh that �

n

(q) is divisible

by a large prime. Choose g 2 T

n

whose order ` is divisible by that large prime.

Suppose for now that one has eÆiently omputable maps

F

'(n)

q

j

))

f

b

_

\

X

U

T

n

f

jj i

f

b

_

\

X

(1)

that are inverses of eah other. The dotted arrows signify that these maps need

not be de�ned everywhere; they might be unde�ned at a \small" number of

elements. In x3.4, x3.6, x6.3, and [25℄ we disuss the maps f and j, and give

expliit examples. The following protools are generalized DiÆe-Hellman and

ElGamal [21℄, using the subgroup T

n

of F

�

q

n

. In x3.7 below we disuss how to

represent the message in hgi. Note that the maps f and j allow one to ompress

transmissions not only for DiÆe-Hellman and ElGamal, but also for any disrete

log-based system that an use a general group.

3.1 Torus-based DiÆe-Hellman key agreement

Alie hooses an integer a randomly in the interval [1; ` � 1℄. Similarly, Bob

hooses a random integer b from the same range.

{ Alie sends P

A

= f(g

a

) 2 F

'(n)

q

to Bob.

{ Bob sends P

B

= f(g

b

) 2 F

'(n)

q

to Alie.

{ They share (j(P

B

))

a

= g

ab

= (j(P

A

))

b

, and also f(g

ab

).
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3.2 Torus-based ElGamal enryption

Alie's private key: an integer a, random in the interval [1; `� 1℄

Alie's publi key: P

A

= f(g

a

) 2 F

'(n)

q

{ Bob represents the message M in hgi and piks a random r between 1 and

`� 1. The iphertext is (; d) where  = f(g

r

) and d = f(M � j(P

A

)

r

).

{ To derypt a iphertext (; d), Alie omputes M = j(d) � j()

�a

.

3.3 Torus-based ElGamal signatures

Fix a ryptographi hash funtion H : f0; 1g

�

! Z=`Z.

Alie's private key: an integer a, random in the interval [1; `� 1℄

Alie's publi key: P

A

= f(g

a

) 2 F

'(n)

q

{ To sign a message M 2 f0; 1g

�

, Alie hooses a random integer r between

1 and ` � 1 with gd(r; `) = 1. Alie's signature on M is (; d) where  =

f(g

r

) 2 F

'(n)

q

and d = r

�1

(H(M)� aH()) (mod `).

{ Bob aepts Alie's signature if and only if

g

H(M)

= j(P

A

)

H()

� j()

d

:

The signature length is '(n) log

2

(q) + log

2

(`) bits, as opposed to n log

2

(q) +

log

2

(`) bits in the lassial ElGamal signature sheme over F

q

n

.

3.4 The T

2

-ryptosystem

Here, n = 2. Choose a prime power q that has about 512 bits, and suh that

q+1

2

is a prime. One an write F

q

2

= F

q

(

p

d) for some non-square d 2 F

�

q

. De�ne

j : F

q

! T

2

by j(a) =

a+

p

d

a�

p

d

.

De�ne an inverse map (de�ned on T

2

� f1;�1g):

f : T

2

//___

F

q

by f(a+ b

p

d) =

1 + a

b

.

It is easy to hek that if a; b 2 F

q

and a 6= �b, then

j(a)j(b) = j

�

ab+ d

a+ b

�

:

In the T

2

-ryptosystem, one does DiÆe-Hellman key agreement and ElGamal en-

ryption and signatures, using the group law on the group T

2

, while representing

the elements in F

q

. Here, it is not neessary to go bak and forth between F

q

and T

2

, sine the previous equation translates T

2

's multipliation to F

q

, i.e.,

multipliation in T

2

translates into the following operation on F

q

:

(a; b) 7!

ab+ d

a+ b

;

giving a way to ompose elements of F

q

without having to pass to T

2

eah time.
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3.5 The CEILIDH publi key system

The aronym CEILIDH (pronouned \ayley") stands for Compat, EÆient,

Improves on LUC, Improves on DiÆe-Hellman. The CEILIDH key agreement

(resp., enryption, resp., signature) sheme is torus-based DiÆe-Hellman (resp.,

ElGamal enryption, resp., ElGamal signatures) in the ase n = 6.

Examples 11 and 12 of [25℄ give expliit examples of maps f and j (alled �

and  there) when n = 6. We give a new example in x3.6 (and use it in x3.7).

3.6 An expliit example of maps f and j

Take an odd prime power q ongruent to 2, 6, 7, or 11 (mod 13) and suh that

�

6

(q) is prime. Then F

q

(�

13

)

�

=

F

q

12

, where �

13

is a primitive 13-th root of unity,

and F

q

(z)

�

=

F

q

6

, where z = �

13

+ �

�1

13

. Let

y = �

13

+ �

�1

13

+ �

5

13

+ �

�5

13

2 F

q

3

:

For u; v 2 F

q

, de�ne

j(u; v) =

r � s

p

13

r + s

p

13

2 T

6

where

r = (3(u

2

+ v

2

) + 7uv + 34u+ 18v + 40)y

2

+ 26uy

� (21u(3 + v) + 9(u

2

+ v

2

) + 28v + 42);

s = 3(u

2

+ v

2

) + 7uv + 21u+ 18v + 14:

For t 2 T

6

, de�ne

f(t) =

�

u

w + 1

;

v � 3

w + 1

�

2 F

2

q

;

with

t = a+ b

p

13 and

1 + a

b

= wy

2

+ u(y +

y

2

2

) + v

where t is written with respet to the basis f1;

p

13g for F

q

6

=F

q

3

, with a, b 2

F

q

3
= F

q

(y), and

1+a

b

is written with respet to the basis fy

2

; y +

y

2

2

; 1g for

F

q

3

=F

q

, with u, v, w 2 F

q

.

Then f and j are inverses. The map j : F

2

q

! T

6

is de�ned on all of F

2

q

. The

map f : T

6

//___

F

2

q

is de�ned exept at 1 and �2z

5

+ 6z

3

� 4z � 1 2 T

6

.

3.7 Representing elements of F

'(n)

q

in hgi

For torus-based ElGamal enryption, how does one represent a message as an

element of hgi? First, represent the message as an element M in F

'(n)

q

.
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If g is taken to be a generator of T

n

, then taking j(M) represents the message

in hgi (where j is as in (1)). Note that g is a generator of T

n

whenever �

n

(q) is

prime.

If g is taken to be in an index s subgroup of T

n

for some small integer s, then

by adding a few bits of redundany to M , after at most a few tries one obtains

an M suh that j(M) is in hgi. If g has order `, one an test whether j(M) is in

hgi by heking whether j(M)

`

= 1.

How does one represent the message in hgi when n = 6?

Take a prime r and an odd prime power q suh that the order of q (mod r)

is divisible by 6 but is not 6 itself, and suh that �

6

(q) is prime. (One expets,

but annot prove, that there are in�nitely many suh q; it is not hard to �nd

some in a suitable range for ryptography, e.g., suh that q has about 170 bits, to

get 1024-bit seurity.) These onditions ensure that F

q

(�

r

) ontains F

q

6

, where

�

r

is a primitive r-th root of unity. (Note that if the order of q (mod r) is 6,

then �

6

(q) is divisible by 6, so is not prime. Note also that the ondition that

the order of q (mod r) is divisible by 6 implies that r � 1 (mod 6).) In the ase

r = 13, one an use the example given in x3.6. Here, one represents the message

in F

2

q

, and uses the map j to put it in the prime order group T

6

= hgi.

In Example 11 of [25℄, we have q � 2 or 5 (mod 9). Here, �

6

(q) is divisible

by 3. One an hoose the prime power q so that �

6

(q)=3 is prime. If one takes g

to have order �

6

(q), then j(M) is in hgi = T

6

.

Similarly for Example 12 of [25℄, we have q � 3 or 5 (mod 7). Now �

6

(q) is

divisible by 7. One an hoose q so that �

6

(q)=7 is prime. If g is taken to have

order �

6

(q), then j(M) 2 hgi = T

6

.

The following sample parameters are all the primes q between 2

170

�10

5

and

2

170

+ 10

5

suh that q

2

� q + 1 is prime and q has order 12 modulo 13:

1496577676626844588240573268701473812127674923933621;

1496577676626844588240573268701473812127674923946773;

1496577676626844588240573268701473812127674923949251;

1496577676626844588240573268701473812127674924018047;

1496577676626844588240573268701473812127674924027533:

3.8 Comparison between CEILIDH and XTR

The seurity of CEILIDH is exatly the same as that of XTR, with the same

seurity proof; they both rely on the seurity of the \hardest" subgroup of F

�

q

6

(see x3.11). Parameter seletion for CEILIDH is exatly the same as for XTR.

The advantage of the T

2

-ryptosystem and CEILIDH over LUC and XTR is

that T

2

and CEILIDH make full use of the multipliation in the group T

n

(for

n = 2 and 6). This is espeially useful for signature shemes. XTR is eÆient for

key agreement and hybrid enryption (i.e., using a DiÆe-Hellman-like protool

to exhange a seret key, and using symmetri key enryption, not publi key

enryption). CEILIDH an do eÆient key agreement, publi key (i.e., non-

hybrid) enryption, and signatures.
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XTR has omputational eÆieny advantages over CEILIDH (key agreement

an be performed with fewer operations).

3.9 Conjetural T

n

-ryptosystems

Whenever f and j exist as in (1), one has a \T

n

-ryptosystem", or T

n

om-

pression tehnique. As in x3.1{x3.3, use f to ompatly represent transmissions

in F

'(n)

q

, and use j to send elements of F

'(n)

q

to the group T

n

, where group

operations an be performed.

3.10 Parameter seletion when n = 30

For torus-based ElGamal signatures, �nding good parameters when n = 30

amounts to �nding prime powers q of about 1024=30 � 35 bits suh that �

30

(q)

has a prime fator ` of about 160 bits. Here is a method for doing this:

{ hoose a 20{30 bit prime p � 1 (mod 30),

{ �nd the x

1

; : : : ; x

8

with 1 < x

i

< p whose orders modulo p are 30,

{ �nd 35-bit primes q ongruent to some x

i

(mod p),

{ fator out small (< 90{100 bits) prime divisors from the integer �

30

(q)=p,

{ see if what is left is a prime of about 160-bits.

Paul Leyland suggested doing the fatorization step by using the Ellipti

Curve Method optimized for 90 { 100 bit fators. Using this, he an obtain a

few examples per hour on a laptop.

Note that the parameters are like DiÆe-Hellman parameters | they do not

need to be hanged often, and the same q and g an be used for all users.

The table below gives some pairs of primes q and ` where q has 35 bits, ` has

160 or 161 bits, and ` divides �

30

(q). One expets there to be about

717267168(ln(161)� ln(160)) � 4:47� 10

6

35-bit primes q suh that �

30

(q) has a 160-bit prime divisor (717267168 is the

number of 35-bit primes).

q `

18849585563 2721829278598645763229135555203875381215025850251

18859507111 1145377552213689334808880803247608425700596690441

18918018433 2191067457957167273280468413326196522745324110911

18937704077 2622917550423816956639040650402145314798081975731

19020912667 2009907944188511109843286107856362388569736938661

19096959863 2670351518767065322212846696686298421468094820481

19123281371 1089731979081189465083403285791765213322453796291

19200181867 1382108007746224782292716444254570494753142184301

19241156549 1292631930593942028414888386684571922308680383411
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3.11 Seurity

The seurity of all the systems disussed thus far is the disrete log seurity of

the \hardest" subgroup of F

�

q

n

, in the following sense. The group F

�

q

n

is \almost

the same" as the diret produt

Q

djn

T

d

= T

n

�

Q

djn

d6=n

T

d

(there are homomorphisms between them for whih the prime divisors of the

orders of the kernel and okernel all divide n); see pp. 60{61 of [30℄.

We have T

d

� F

�

q

d

for all d, so for d < n the elements of these subgroups

lie in a stritly smaller �eld than F

q

n

. Therefore, these groups T

d

are weaker

for ryptographi purposes | they are vulnerable to attaks on the disrete

logarithm problem in F

�

q

d

, where now d < n.

Almost none of the elements of T

n

lie in a smaller �eld than F

q

n

(see Lemma 1

of [6℄). Therefore, T

n

an be viewed as the ryptographially strongest subgroup

of F

�

q

n

.

4 Improving Pairing-Based Cryptography

Inspired by and building on a paper of Galbraith [12℄, in [24℄ we use the the-

ory of supersingular abelian varieties to improve the eÆieny of pairing-based

ryptosystems.

Pairing-based ryptography was oneived of independently by Joux [14℄

and by Sakai, Ohgishi, and Kasahara [27℄. There are numerous appliations of

pairing-based ryptography, inluding tripartite DiÆe-Hellman, identity-based

enryption, and short signatures. See [1℄ for numerous referenes and informa-

tion.

The Boneh-Lynn-Shaham (BLS) short signature sheme [5℄ uses pairings

assoiated with ellipti urves. The question of whether one an use abelian va-

rieties (whih are higher dimensional generalizations of ellipti urves) to obtain

shorter signatures was stated as an open problem in [5℄, and answered in the

aÆrmative in [24℄. While we arrived at our method (see x4.2 below) for om-

pressing BLS signatures by studying the arithmeti of abelian varieties, in fat

our �nal algorithm an be performed entirely using ellipti urve arithmeti,

without going to higher dimensional abelian varieties.

The Rubin-Silverberg (RS) modi�ation of the BLS signature sheme mul-

tiplies the seurity of BLS signatures by n while multiplying the signature size

by '(n). Implementations when n = 3 and n = 5 are given in [24℄. We give an

example when n = 5 in x4.2 below.

Our methods an be used to improve the bandwidth eÆieny of any pairing-

based ryptosystem, not just the BLS signature sheme.
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4.1 BLS short signature sheme

We give an example of the Boneh-Lynn-Shaham signature sheme, with �xed

parameters.

Let q = 3

97

. Consider the ellipti urve E

+

: y

2

= x

3

� x + 1 over F

q

, and

take P 2 E

+

(F

q

) of (prime) order

` = 2726865189058261010774960798134976187171462721:

Note that #E

+

(F

q

) = 7`.

Use a pairing

e : hP i � hP i ! F

�

q

6

that satis�es

e(aP; bP ) = e(P; P )

ab

for every a; b 2 Z,

e(P; P ) 6= 1:

One an use a modi�ed Weil or Tate pairing [15℄.

The publi information is q, E

+

, P , `, e, and a ryptographi hash funtion

H : f0; 1g

�

! hP i:

Alie's private key: an integer a, random in the interval [1; `℄

Alie's publi key: P

A

= aP

{ To sign a message M 2 f0; 1g

�

, Alie omputes P

M

= H(M) and aP

M

=

(s; t) 2 hP i.

{ Alie's signature is s 2 F

q

(and 1 bit to reover the sign of t).

{ To verify the signature, Bob omputes

t = �

p

s

3

� s+ 1 2 F

q

;

lets

P

0

= (s; t) ( = aP

M

),

and heks that

e(P; P

0

) = e(P

A

; P

M

):

4.2 RS ompression of BLS signatures

We give an example with �xed parameters, with n = 5. Let q

0

= 3

19

and let

q = (q

0

)

5

= 3

95

. Consider the ellipti urve E

�

: y

2

= x

3

� x � 1, and take

P 2 E

�

(F

q

) of (prime) order

` = 6733238586040336762338876960599521:

Note that

#E

�

(F

q

) = 271 � 1162320517 � `;

#E

�

(F

3

5
) = 271; #E

�

(F

q

0

) = 1162320517:
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Take a pairing e and a hash funtion H as before. Let � be a generator of

Gal(F

q

=F

q

0

). For Q 2 E

�

(F

q

),

Tr

F

q

=F

q

0

(Q) = Q+ �(Q) + �

2

(Q) + �

3

(Q) + �

4

(Q):

Let

A

0

= fQ 2 E

�

(F

q

) : Tr

F

q

=F

q

0

(Q) = O

E

�
g;

the \trae-0 subgroup" of E

�

(F

q

). Then A

0

has order 271 � `. Sine P has order

`, we have P 2 A

0

.

Alie's private key: an integer a, random in the interval [1; `℄

Alie's publi key: P

A

= aP

{ To sign M , as before, Alie omputes P

M

= H(M) and aP

M

= (s; t).

{ Letting (s

0

; s

1

; s

2

; s

3

; s

4

) be the oordinates of s with respet to a basis for

F

q

over F

q

0

, Alie's signature is (s

1

; s

2

; s

3

; s

4

) (and 6 bits to reover s

0

and

t).

{ To verify the signature, Bob �rst uses that Tr

F

q

=F

q

0

(P ) = O

E

�
to reonstrut

s

0

(see below).

{ Bob then, as before, omputes

t = �

p

s

3

� s� 1 2 F

q

;

lets

P

0

= (s; t) ( = aP

M

),

and heks that

e(P; P

0

) = e(P

A

; P

M

):

The proess of reonstruting s

0

and t from s

1

; s

2

; s

3

; s

4

is as follows. The

input is (s

1

; s

2

; s

3

; s

4

) 2 F

4

q

0

and the output will be s

0

; t 2 F

q

0

. Viewing F

q

as

F

q

0

(z) with z

5

� z + 1 = 0, let  = S +

P

4

i=1

s

i

z

i

and de�ne a

0

; � � � ; a

4

2 F

q

0

[S℄

by

4

Y

i=0

(Y � �

i

()) = Y

5

+ a

4

Y

4

+ a

3

Y

3

+ a

2

Y

2

+ a

1

Y + a

0

:

The trae-0 ondition an (eventually) be redued to �nding simultaneous solu-

tions of p

1

= 0 and p

2

= 0, where p

1

and p

2

are as follows:

p

1

= X

8

�a

4

X

7

+(1+a

2

4

�a

3

)X

6

+(a

4

�a

3

4

�a

2

)X

5

+(a

4

�a

2

4

+a

4

4

�a

3

�a

4

a

2

)X

4

+ (1� a

4

+ a

2

4

� a

5

4

� a

3

+ a

3

4

a

3

+ a

2

� a

3

a

2

+ a

0

)X

3

+ (�1 + a

2

4

� a

3

4

+ a

4

4

+ a

6

4

+ a

3

+ a

4

a

3

� a

2

3

� a

3

3

� a

2

� a

3

4

a

2

+ a

4

a

3

a

2

+ a

2

2

)X

2

+ (�1� a

2

4

� a

3

4

� a

4

4

� a

5

4

� a

7

4

+ a

3

+ a

4

a

3

� a

2

4

a

3

� a

3

4

a

3

� a

2

3

� a

4

a

2

3

+ a

4

a

3

3

� a

2

� a

2

4

a

2

� a

4

4

a

2

+ a

3

a

2

� a

2

4

a

3

a

2

� a

2

3

a

2

)X

+ 1� a

2

4

� a

6

4

+ a

8

4

+ a

3

� a

6

4

a

3

+ a

3

3

� a

2

4

a

3

3

+ a

4

3

;



14 K. Rubin and A. Silverberg

p

2

= X

6

�X

4

+ (�1� a

4

� a

3

4

+ a

2

)X

3

+ (�1 + a

2

4

� a

3

� a

4

a

2

+ a

1

)X

2

+ (�1� a

4

+ a

2

4

+ a

3

4

� a

3

� a

4

a

3

� a

2

+ a

2

4

a

2

� a

3

a

2

)X � 1 + a

6

4

� a

3

3

:

Taking the resultant of p

1

and p

2

eliminates the variable X , and gives a degree

27 polynomial h 2 F

q

0

[S℄ that has s

0

as a root. The extra 6 bits allow one to

deide whih root of h to take for s

0

, and to determine t. The polynomial h(S)

is of the form h

1

(S

3

� S) for a ertain degree 9 polynomial h

1

(S) 2 F

q

0

[S℄, and

this simpli�es �nding the roots of h. See x5.1 of [24℄ for an explanation of this

reonstrution step.

RS ompression was arrived at by studying the Weil restrition of salars

of ellipti urves (whih are abelian varieties), and understanding the theory of

abelian varieties. In x5.7 we disuss some of the underlying mathematis.

Remark 5 In ellipti urve point ompression and in BLS, an ellipti urve

point (x; y) is ompressed to its x-oordinate, giving lossy ompression. One

an transmit an extra bit that determines the y-oordinate, in order to fully

reonstrut the point. The signature (s

1

; s

2

; s

3

; s

4

) above is similarly an example

of lossy ompression; the extra 6 bits and the reonstrution step allow one to

fully reover the ellipti urve point (s; t).

4.3 Comparison

RS ompression (x4.2) produes signatures that are roughly

4

5

as large as BLS

signatures with omparable seurity. In both ases, the seurity is based on the

diÆulty of the Ellipti Curve DiÆe-Hellman Problem in hP i. RS signing is

no more work than for BLS. Compared with BLS, RS veri�ation requires an

additional reonstrution step to reover s

0

. For appliations in whih the veri�er

is powerful, this is not a signi�ant problem.

Note that RS ompression (like BLS) only uses ellipti urve arithmeti, and

does not use any abelian variety arithmeti.

Bernstein and Bleihenbaher have ompressed RSA and Rabin signatures

([2, 3℄). In Table 1 below, BCR stands for Bleihenbaher's Compressed Rabin

signatures, DSA is the Digital Signature Algorithm, and ECDSA is the Ellip-

ti Curve Digital Signature Algorithm. In the middle olumn of Table 1, the

signatures are all saled to 1024-bit RSA seurity. In the remaining olumns

the signatures are saled to the MOV seurity of the RS sheme. The MOV

seurity refers to attaks on the disrete log problem in F

�

q

6

. The DL seurity

refers to generi attaks on the group hP i; the relevant value for DL seurity is

log

2

(`)-bits, where ` is the order of P . (See [5, 24℄.)

There is an RS sheme similar to the one in x4.2 (see x5.2 of [24℄) that uses

ellipti urves over binary �elds F

2

w

. Working over binary �elds might yield some

eÆieny advantages. However, due to Coppersmith's attak on the disrete log

problem in low harateristi [9℄, larger parameters should be used.

To ahieve the exibility of higher harateristi, in x6 of [24℄ we suggest

the use of (Jaobian varieties of) ertain twists of Fermat urves. In a reent

preprint giving an expanded version of [5℄, Boneh, Lynn, and Shaham suggest

using MNT ellipti urves.
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system

RSA 904 1024 2045

BCR 452 512 1024

DSA 320

ECDSA 320

BLS 152 172 342

RS 127 143 279

Table 1. Signature lengths, in bits, for omparable MOV seurity

5 The underlying mathematis

5.1 Varieties and algebrai groups

De�nition 6 Loosely speaking, an algebrai variety (over a �eld k) is the so-

lution set of a system of polynomial equations (whose oeÆients are in k). An

algebrai group (or group variety) over a �eld k is a variety over k suh that the

group law and the inverse map are quotients of polynomials whose oeÆients

are in k.

5.2 The Weil restrition of salars

Suppose that V is a variety over a �eld L. This means that V is the solution

set of a system of polynomial equations f

i

(x

1

; : : : ; x

r

) = 0, 1 � i � s, where the

polynomials f

i

have oeÆients in the �eld L. Suppose k is a sub�eld of L, and

n is the degree of L over k. Fix a basis fv

1

; : : : ; v

n

g for L over k. Write x

i

=

P

n

j=1

y

ij

v

j

with variables y

ij

. Substitute this into the equations f

i

(x

1

; : : : ; x

r

) =

0. Multiplying out, writing everything with respet to the basis fv

1

; : : : ; v

n

g, and

equating oeÆients, one obtains a system of polynomials in the variables fy

ij

g,

with oeÆients in the �eld k. The variety de�ned by these new equations is

denoted Res

L=k

V , and is alled the (Weil) restrition of salars from L down to

k. It is a variety over k with the property that its k-points are the L-points of

V :

(Res

L=k

V )(k)

�

=

V (L):

Its dimension is n � dim(V ). See for example x3.12 in Chapter 1 of [30℄ for more

information.

5.3 The multipliative group G

m

DiÆe-Hellman is based on the multipliative group, denoted G

m

. Over any �eld

F , the F -points on G

m

are

G

m

(F ) = F

�

= F � f0g;

the multipliative group of invertible elements of the �eld F . The algebrai

variety G

m

is de�ned by the equation xy = 1, i.e., it onsists of the elements x

suh that there exists a y with xy = 1. It is an algebrai group over any �eld k.

We will view G

m

as an algebrai group over the �eld F

q

.
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5.4 The restrition of salars Res

F

q

n

=F

q

G

m

The Weil restrition of salars Res

F

q

n

=F

q

G

m

is an algebrai variety (in fat, an

algebrai group) over F

q

. We have

(Res

F

q

n

=F

q

G

m

)(F

q

)

�

=

F

�

q

n

:

Example 7 To �nd equations de�ning the two-dimensional algebrai variety

Res

F

9

=F

3

G

m

, write F

9

= F

3

(

p

�1), and write x = x

1

+ x

2

p

�1 and y = y

1

+

y

2

p

�1. Substituting into xy = 1 and equating oeÆients gives the equations:

x

1

y

1

� x

2

y

2

= 1; x

1

y

2

+ x

2

y

1

= 0:

5.5 The primitive subgroup G

0

Suppose that G is a ommutative algebrai group over a �eld k. In the ases of

interest to us, V will be the multipliative group G

m

or an ellipti urve. For

now, we write G's group operation as multipliation.

If L is a �eld that is a �nite extension of k, de�ne the primitive subgroup G

0

of Res

L=k

G to be

G

0

= ker[Res

L=k

G

�N

L=F

�����!

L

k�F(L

Res

F=k

G℄;

where the norm maps N

L=F

indue the usual norm maps

N

L=F

: G(L)! G(F ); x 7!

Y

�2Gal(L=F )

�(x):

Then G

0

is an algebrai group over k, and G

0

(k) onsists of all elements of

G(L) whose norm down G(F ) is the identity, for every intermediate �eld F with

F 6= L.

The group Res

L=k

G is \almost the same" as the produt G �G

0

(there are

homomorphisms between them with \small" kernel and okernel).

5.6 The algebrai torus T

n

Let T

n

(or T

n;q

when it is important to keep trak of the ground �eld) denote

the primitive subgroup of Res

F

q

n

=F

q

G

m

, i.e.,

T

n

= T

n;q

= ker

�

Res

F

q

n

=F

q

G

m

�N

F

q

n

=F

q

d

�������!

L

djn

d6=n

Res

F

q

d

=F

q

G

m

�

:

By de�nition, T

n

(F

q

) is the group of elements of F

�

q

n

that have norm 1 down

to every intermediate �eld F

q

d (for d 6= n). By Lemma 7 of [25℄,

T

n

(F

q

) = T

n

: (2)
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Example 8 Continuing Example 7, where q = 3 and n = 2, it is easy to write

down embeddings:

G

m

,! Res

F

9

=F

3

G

m

; x 7! (x; 0; x

�1

; 0);

T

2

,! Res

F

9

=F

3

G

m

; x

1

+ x

2

p

�1 7! (x

1

; x

2

; x

1

;�x

2

):

The ompositions (in both orders) of the resulting map

G

m

� T

2

! Res

F

9

=F

3

G

m

with the map

Res

F

9

=F

3

G

m

! G

m

� T

2

de�ned by

(x

1

; x

2

; y

1

; y

2

) 7! (x

2

1

+ x

2

2

; x

1

y

1

+ x

2

y

2

+ 2x

2

y

1

p

�1)

are the squaring maps. Thus, Res

F

9

=F

3

G

m

is \almost the same" as G

m

� T

2

.

5.7 The trae-0 subgroup of Res

F

q

=F

q

0

(E

�

)

Abelian varieties are, by de�nition, projetive algebrai groups. Ellipti urves

are exatly the one-dimensional abelian varieties.

With E

�

; q

0

; q; `, and P as in x4.2, let

B = Res

F

q

=F

q

0

(E

�

);

and let A be the primitive subgroup of B:

A = ker[B

N

F

q

=F

q

0

�����! E

�

℄:

Then A and B are abelian varieties over F

q

0

of dimensions 4 and 5, respetively,

and B is isogenous to E

�

� A. (See also x3.2 of [11℄.) The abelian variety A

is simple. Sine the group law on an abelian variety is written additively, the

norm map now orresponds to the sum of the onjugates, i.e., the trae de�ned

in x4.2. We have

hP i � A

0

= fQ 2 E

�

(F

q

) : Tr

F

q

=F

q

0

(Q) = O

E

�
g

�

=

A(F

q

0

)

\ \

E

�

(F

q

)

�

=

B(F

q

0

)

Note that the underlying four-dimensional abelian variety A is invisible in

the algorithms in x4.2.

6 Cryptographi appliations of algebrai tori and their

quotients

We give an exposition of some of the mathematis underlying torus-based ryp-

tography (i.e., the T

n

-ryptosystems) and the ryptosystems disussed in x2. We

disuss how the latter shemes are based on quotients of tori by the ations of

symmetri groups.
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6.1 Algebrai tori

De�nition 9 An algebrai torus is an algebrai group that over some larger

�eld is a produt of multipliative groups. A �eld over whih the torus beomes

isomorphi to a produt of multipliative groups is alled a splitting �eld for the

torus; one says that the torus splits over that �eld. See [23, 30℄ for expositions.

Example 10 (i) For every positive integer r, G

r

m

is an r-dimensional algebrai

torus.

(ii) Res

F

q

n

=F

q

G

m

is an n-dimensional algebrai torus over F

q

that splits over

F

q

n

.

By Proposition 2.6 of [26℄, the group T

n

de�ned in x5.6 is a '(n)-dimensional

torus.

6.2 Rationality and birational isomorphisms

If r is a positive integer, write A

r

for aÆne r-spae. For any �eld F , we have

A

r

(F ) = F

r

, the diret sum of r opies of F .

De�nition 11 A rational map between algebrai varieties is a funtion de�ned

by polynomials or quotients of polynomials that is de�ned almost everywhere.

A birational isomorphism between algebrai varieties is a rational map that

has a rational inverse (the maps are inverses wherever both are de�ned). A

d-dimensional variety is rational if it is birationally isomorphi to A

d

.

Note that birational isomorphisms are not neessarily group isomorphisms.

Note also that rational maps are not neessarily funtions | they might fail to

be de�ned on a lower dimensional set.

By (2), if T

n

is rational (i.e., birationally isomorphi to A

'(n)

), then almost

all elements of T

n

an be represented by '(n) elements of F

q

.

The maps f and j in x3 are only birational. The sets T

n

and F

'(n)

q

are of size

approximately q

'(n)

. The \bad" sets where f and j are not de�ned orrespond to

algebrai subvarieties of dimension at most '(n)�1, and therefore have at most

q

'(n)�1

elements for some onstant . Thus the probability that an element

lands in the bad set is at worst =q, whih will be small for large q. In any given

ase the bad sets might be even smaller. For example, in x3.6 the bad sets have

2 and 0 elements, respetively.

6.3 Obtaining the rational maps f and j

How were the maps in Examples 11 and 12 of [25℄ and in x3.6 above arrived at?

The idea is as follows.

F

q

6

F

q

2

�

�

�

�

�

F

q

3

?

?

?

?

?

F

q

?

?

?

?

?

�

�

�

�

�
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The one-dimensional torus T

2;q

3

is, by de�nition, the kernel of the norm map

N

F

q

6

=F

q

3

. The torus

T := Res

F

q

3

=F

q

(T

2;q

3

)

has dimension 3. As in x3.4, the torus T

2;q

3

is rational (i.e., is birationally iso-

morphi to A

1

), and thus the torus T is rational (i.e., birationally isomorphi to

A

3

). The two-dimensional torus T

6

is the hypersurfae ut out by the equation

N

F

q

6

=F

q

2

= 1 inside the torus T . This hypersurfae is de�ned by a quadrati

equation that an be used to parametrize the hypersurfae. We gave examples

of this in Examples 11 and 12 of [25℄. Setion 3.6 gives an additional example.

6.4 A group ation on the torus

Next, we de�ne ations of symmetri groups on the tori T

n

. Suppose e is a divisor

of n, and let d = n=e. Sine n is square-free, we have gd(e; d) = 1, so

Z=nZ

�

=

Z=eZ�Z=dZ:

The symmetri group on e letters, S

e

, ats on Z=eZ. Extend this ation to an

ation of S

e

on Z=nZ, by ating trivially on Z=dZ. Now de�ne an ation of S

e

on A

n

(= A

Z=nZ

) as follows. For � 2 S

e

,

(x

i

)

i2Z=nZ

7! (x

�

�1

(i)

)

i2Z=nZ

:

We have

A

n

�

=

F

q

n

Res

F

q

n

=F

q

A

1

� Res

F

q

n

=F

q

G

m

� T

n

:

The ation of S

e

on A

n

preserves Res

F

q

n

=F

q

G

m

. However, it does not neessarily

preserve the torus T

n

.

Theorem 12 (Lemma 3.5 of [26℄) If p is a prime divisor of n, then the above

ation of S

p

on A

n

preserves the torus T

n

.

6.5 Interpreting the other systems in terms of quotients of tori

{ The Luas-based ryptosystems are \based on" the quotient variety T

2

=S

2

.

{ The Gong-Harn system is based on the quotient variety T

3

=S

3

.

{ XTR is based on the quotient variety T

6

=S

3

.

{ Conjetural \Looking beyond XTR" systems would rely on the quotient

variety T

30

=(S

3

� S

5

) or T

30

=(S

2

� S

3

� S

5

).

These quotient varieties are not groups. This is why the Luas-based systems

and XTR do not do straightforward multipliation.

{ The T

2

-ryptosystem is based on the group (and torus) T

2

.

{ CEILIDH is based on the group (and torus) T

6

.
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{ The (sometimes onjetural) T

n

-ryptosystems are based on the group (and

torus) T

n

.

We therefore all the T

n

-ryptosystems \torus-based ryptosystems".

What do we mean when we say that these systems are \based on" ertain

algebrai varieties?

XTR works beause the variety T

6

=S

3

is rational, and the trae map F

p

6

!

F

p

2
indues a birational isomorphism:

T

6

=S

3

//___

A

2

= Res

F

q

2

=F

q

A

1

:

Similarly for the Luas-based ryptosystems, the trae map F

p

2

! F

p

indues

a birational isomorphism:

T

2

=S

2

//___

A

1

:

More preisely, let B

(d;e)

denote the image of T

n

in (Res

F

q

n

=F

q

G

m

)=S

e

(where

n = de). By Theorem 3.7 of [26℄, B

(d;e)

is birationally isomorphi to T

n

=(S

p

1

�

� � � � S

p

r

) where e = p

1

� � � p

r

is the prime fatorization of e. Note that the

quotient map T

n

! T

n

=S

e

indues a (non-surjetive) map on F

q

-points:

T

n

= T

n

(F

q

)! (T

n

=S

e

)(F

q

):

Let

XTR(d; e) = fTr

F

q

n

=F

q

d

(�) : � 2 T

n

g � F

q

d :

When (d; e) = (1; 2) or (2; 3), then XTR(d; e) is the set of traes that our in the

Luas-based systems and XTR, respetively. In these two ases, XTR(d; e) an

be naturally identi�ed with the image of T

n

(F

q

) in (T

n

=S

e

)(F

q

). More preisely

(see Theorem 13 of [25℄), when (d; e) = (1; 2) or (2; 3), the trae map Tr

F

q

n

=F

q

d

indues a birational embedding

T

n

=S

e

,! Res

F

q

d

=F

q

A

1

suh that XTR(d; e) is the image of the omposition

T

n

= T

n

(F

q

) �! (T

n

=S

e

)(F

q

) ,! (Res

F

q

d

=F

q

A

1

)(F

q

)

�

=

F

q

d :

6.6 \Looking beyond XTR"

The paper \Looking beyond XTR" [6℄, building on a onjeture in [8℄, asks

whether, for n > 6, some set of elementary symmetri polynomials an be used

in plae of the trae. In partiular, [6℄ asks whether, when d j n and d j '(n),

one an reover the values of all the elementary symmetri polynomials (i.e., the

entire harateristi polynomial) for Gal(F

p

n

=F

p

d ) from the �rst '(n)=d of them

(this was already answered in the aÆrmative in some ases in [8, 13℄). If this

were true, one ould use the �rst '(n)=d elementary symmetri polynomials on
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the set of Gal(F

p

n

=F

p

d
)-onjugates of an element h 2 T

n

to represent h by '(n)

elements of F

q

. More generally, [6℄ asks whether, for d j n, one an reover the

entire harateristi polynomial over F

p

d from its �rst d'(n)=de oeÆients.

The answer is no. In partiular, in [25℄ we show that when n = 30 and p = 7,

then:

{ for d = 1, no 8 (= '(n)=d) elementary symmetri polynomials determine

any of the remaining ones (exept those determined by the symmetry of the

harateristi polynomial),

{ for d = 1, no 10 elementary symmetri polynomials determine all of them;

{ for d = 2, no 4 (= '(n)=d) elementary symmetri polynomials determine all

of them.

Reinterpreted in terms of algebrai tori, the onjetures in [6℄ imply (see

[26℄) that the �rst eight elementary symmetri polynomials indue a birational

isomorphism over F

p

:

T

30

=(S

2

� S

3

� S

5

)

//___

A

8

;

and the �rst four elementary symmetri polynomials on the Gal(F

p

30

=F

p

2

)-

onjugates of an element in T

30

indue a birational isomorphism over F

p

:

T

30

=(S

3

� S

5

)

//___

Res

F

p

2

=F

p

A

4

�

=

A

8

:

In [26℄ we prove that these statements are both false, for all but possibly �nitely

many primes p.

More generally, we have

T

n

� B

(d;e)

,! (Res

F

q

d

=F

q

A

1

)

e

�

=

A

n

;

where the middle map �

e

i=1

s

i

is indued by the e elementary symmetri poly-

nomials s

1

; : : : ; s

e

on Gal(F

q

n

=F

q

d )-onjugay lasses. (Reall that B

(d;e)

was

de�ned at the end of x6.5, and de = n.)

The onjetures in [6℄ would imply that, when d divides '(n), then the �rst

'(n)=d funtions s

1

; : : : ; s

'(n)=d

indue a birational isomorphism

B

(d;e)

//___

(Res

F

q

d

=F

q

A

1

)

'(n)=d

�

=

A

'(n)

:

This is true when the pairs (d; e) are (1; 1) (this is DiÆe-Hellman), (1; 2)

(Luas-based systems), (1; 3) (Gong-Harn), and (2; 3) (XTR). It is also true (see

[8℄) when ` is a prime and (d; e) = (1; `) or (2; `). As noted above, we showed in

[25, 26℄ that this is false for (d; e) = (1; 30) and (2; 15) (in all but at most �nitely

many harateristis).

When (d; e) = (n; 1), the underlying variety B

(d;e)

is T

n

itself, orresponding

to the T

n

-ryptosystems.

In summary, elementary symmetri polynomials are not the orret funtions

to use. In the next setion we state a onjeture (of Voskresenskii) that seems

to be loser to the truth.
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6.7 Voskresenskii's Conjeture

Conjeture 13 (Voskresenskii) T

n

is rational; i.e., for every n, there is a

birational isomorphism

T

n

//___

A

'(n)

:

The onjeture is true, and not diÆult to prove, if n is a prime power [30℄.

The onjeture was proved by Klyahko [16℄ when n is a produt of two prime

powers. Expliit birational isomorphisms are given in x5 of [25℄ and x3.6 above

(see also x3.4 above), in the ases n = 2 and 6. A T

n

-ryptosystem arises for

every n for whih Voskresenskii's Conjeture is true with eÆiently omputable

birational maps.

When n is divisible by more than two distint primes, Voskresenskii's Con-

jeture is still an open question. In partiular, the onjeture is not known when

n = 30 = 2 � 3 � 5. We have tried unsuessfully to onstrut a birational isomor-

phism between T

30

and A

8

. It would be interesting to know whether Voskresen-

skii's Conjeture is true or false when n = 30. We have been able to onstrut

expliit rational maps of low degree in this ase, whih might be useful if no

birational map exists. For example, an s-to-1 map from T

30

to A

8

would provide

a lossy ompression sheme, and would allow one to represent elements of T

30

in F

8

q

� f1; : : : ; sg.

Rationality of the varieties B(1; n) (or more generally the varieties B(d; e))

would imply the onjeture in [8℄.

6.8 Stable rationality

One reason that Voskresenskii's Conjeture would be diÆult to disprove is that

the tori T

n

are known to always be stably rational over F

q

(see the Corollary on

p. 61 of [30℄).

De�nition 14 A variety V over k is alled stably rational over k if for some r

and s, V � A

r

is birationally isomorphi over k to A

s

(i.e., V � A

r

is rational for

some r � 0).

Although the stable rationality of T

n

does not allow one to represent elements

of T

n

in F

'(n)

q

, it does allow one to represent elements of T

n

�F

r

q

in F

s

q

for suitable

r and s, and this might be useful.

7 Open problems

Some goals for the future are:

{ Improve the eÆieny of CEILIDH.

{ Obtain more eÆient key agreement, enryption, and signature shemes, by

generalizing to T

30

-ryptosystems:

� �nd expliit and eÆient birational isomorphisms f and j between T

30

and A

8

, if suh exist,
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� look for speial attaks on the disrete log problem in F

�

q

30

.

{ Use non-supersingular (i.e., ordinary) abelian varieties to further improve

pairing-based ryptography.

Progress has been made on the last point in the ase of ellipti urves; see

for example [7℄.
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