Provably Secure Authenticated Tree Based Group Key Agreement

Abstract

We present a provably secure authenticated tree based key agreement protocol. The protocol is
obtained by combining Boldyreva’s multi-signature with an unauthenticated ternary tree based multi-
party extension of Joux’s key agreement protocol. The security is in the standard model as formalized
by Bresson et al.. The proof is based on the techniques used by Katz and Yung in proving the security
of their key agreement protocol.

Keywords : group key agreement, authenticated key agreement, bilinear pairing, provable security.

1 Introduction

Key agreement protocols are important cryptographic primitives. These protocols allow two or more parties
to exchange information among themselves over an insecure channel and agree upon a common key. Diffie-
Hellman proposed the first two-party single-round key agreement protocol in their seminal paper [11].
In one of the breakthroughs in key agreement protocols, Joux [14] proposed a single-round three party
key agreement protocol that uses bilinear pairings. Earlier, Burmester and Desmedt [10] had proposed a
multi-party two-round key agreement protocol. Katz and Yung [15] proved that a variant of this protocol
is secure against a passive adversary in the standard model under decision Diffie-Hellman assumption. All
these protocols are unauthenticated in the sense that an active adversary who has control over the channel
can mount a man-in-the-middle attack to agree upon separate keys with the users without the users being
aware of this.

Authenticated key agreement protocols allow two or more parties to agree upon a common secret key
even in the presence of active adversaries. Authenticated key agreement protocols are the basic tools for
group-oriented and collaborative applications such as, distributed simulation, multi-user games, audio or
video-conferencing, and also peer-to-peer applications that are likely to involve a large number of users.

Recently, Katz and Yung [15] proposed the first scalable, constant round, authenticated group key agree-
ment protocol achieving forward secrecy. The protocol is a variant of Burmester and Desmedt (BD) [10]
key agreement protocol. Katz and Yung [15] provided a detailed proof of security in the security model
formalized by Bresson et al. [9].

Tree based key agreement protocols are applicable in situations where the users can be naturally
grouped into a hierarchical structure. Each leaf node in the tree corresponds to an individual user and
each internal node corresponds to a user who acts as a representative for the set of users in the subtree
rooted at that node. Typically the representative user has more computational resources than the other
users in the subtree. In a tree based group key agreement protocol the set of all users in each subtree
agree upon a common secret key. Thus all users in a subtree can securely communicate among themselves
using this common secret key. This feature makes tree based key agreement protocols useful for certain
applications and there have been quite a number of tree based key agreement protocols [2, 5, 16, 17, 18|.
Barua, Dutta and Sarkar [4] presented a ternary tree key agreement protocol by extending the basic Joux
protocol to multi-party setting and provided a proof of security against a passive adversary.

The main contribution of this paper is to obtain a provably secure authenticated tree based group
key agreement protocol from the unauthenticated protocol of Barua, Dutta and Sarkar [4]. The security
of the authenticated protocol is considered in the model formalized by Bresson et al [9]. Authentication
is achieved by modifying the Katz-Yung [15] technique to tree based protocol. The main component of
the Katz-Yung authenticated protocol is the use of a digital signature scheme. We also use a signature
scheme, where each user signs every message that (s)he sends. However, in keeping with the tree structure
of the protocol, we require that in each round each user sends the signed message to his/her representative.
The representative then combines these signatures and sends the multi-signature to the other users. This
results in savings in the total amount of communication.

To a certain extent, our work completes the task of extending Joux’s three-party key agreement protocol
to multi-party setting with a concrete security analysis against active adversaries in a formal security
model. Moreover, a similar construction can be used to modify any tree based unauthenticated group key
agreement protocol to an authenticated group key agreement protocol.

2 Preliminaries

In this section, we describe the required preliminaries. We use the notation a€rS to denote that a is
chosen randomly from the set S.

2.1 Cryptographic Bilinear Maps

Let G1,G2 be two groups of the same prime order q. We view G as an additive group and Go as
a multiplicative group. A mapping e : G1 x G1 — Go satisfying the following properties is called a
cryptographic bilinear map:

Bilinearity : e(aP,bQ) = e(P,Q)® for all P,Q € G| and a,b € Zy.
Non-degeneracy : If P is a generator of G1, then e(P, P) is a generator of Gs.
Computablity : There exists an efficient algorithm to compute e(P, Q) for all P,Q € G;.

Modified Weil Pairing [6] and Tate Pairing [3, 12] are examples of cryptographic bilinear maps.

2.2 Adversarial Model

The adversarial model that we follow is along the lines proposed by Bresson et al. [9] and used by Katz
and Yung [15].

Let P = {U1,...,U,} be a set of n (fixed) users. At any point of time, any subset of P may decide to
establish a session key. Thus a user can execute the protocol several times with different partners. The
adversarial model consists of allowing each user an unlimited number of instances with which it executes
the protocol. We will require the following notions.

I}, : i-th instance of user U.

sky; @ session key after execution of the protocol by IIf;.

sidy; : session identity for instance IIy;. We set sidy; = S = {(U1,%1),-- -, (Uk, ix)}
such that (U,) € S and Ty} , ... ,HZ[}“k wish to agree upon a common key.

pidzi] : partner identity for instance I1%;, defined by pidzi] ={Uy,..., U},
such that (Uj,i;) € sid}; for all 1 < j < k.

acc}'] : 0/1-valued variable which is set to be 1 by Hzi] upon normal termination of the session and
0 otherwise.

We will make the assumption that in each session at most one instance of each user participates. Further, an
instance of a particular user participates in exactly one session. This is not a very restrictive assumption,
since a user can spawn an instance for each session it participates in. On the other hand, there is an
important consequence of this assumption. Suppose there are several sessions which are being concurrently
executed. Let the session ID’s be Si,...,S;. Then for any instance Hzi], there is exactly one 7 such that
(U,i) € Sj and for any j; # j2, we have Sj, NSj, = 0. Thus at any particular point of time, if we consider
the collection of all instances of all users, then the relation of being in the same session is an equivalence
relation whose equivalence classes are the session IDs.

We assume that the adversary has complete control over all communications in the network. All
information that the adversary gets to see is written in a transcript. So a transcript consists of all the
public information flowing across the network. The following oracles model an adversary’s interaction with
the users in the network:

— Send(U, i, m) : This sends message m to instance I}, and outputs the reply (if any) generated by this
instance. The adversary is allowed to prompt the unused instance II7; to initiate the protocol with
partners U, ..., U, | < n, by invoking Send(U, i, (Us, ..., U;)).

— Execute((V1,41),--.,(Vi,4;)) : Here {V1,...,V}} is a non empty subset of P. This executes the protocol
between unused instances of players Hz‘}l, ... ,Hil,l € P and outputs the transcript of the execution.

— Reveal(U, 1) : This outputs session key sk;.
— Corrupt(U) : This outputs the long-term secret key (if any) of player U.

— Test(U, i) : This query is allowed only once, at any time during the adversary’s execution. A random
coin € {0,1} is generated; the adversary is given ski; if coin = 1, and a random session key if coin = 0.

An adversary which has access to the Execute, Reveal, Corrupt and Test oracles, is considered to be passive
while an active adversary is given access to the Send oracle in addition. We say that an instance H’i] is
fresh unless either the adversary, at some point, queried Reveal(U,7) or Reveal(U, ;) with U’ € pid, or
the adversary queried Corrupt(V) (with V € pid;) before a query of the form Send(U, 4, *) or Send(U", j, *)
where U’ € pidY;.

Let Succ denote the event that an adversary A queried the Test oracle to a protocol XP on a fresh
instance H’i] for which acc’i] = 1 and correctly predicted the coin used by the Test oracle in answering this
query. We define

Adv 4 xp := |2 Prob[Succ] — 1]

to be the advantage of the adversary A in attacking the protocol XP. The protocol XP is said to be a secure
unauthenticated group key agreement (KA) protocol if there is no polynomial time passive adversary with
non-negligible advantage. In other words, for every probabilistic, polynomial-time, 0/1 valued algorithm
A, Advyxp < ﬁ for every fixed L > 0 and sufficiently large integer M. We say that protocol XP is a
secure authenticated group key agreement (AKA) protocol if there is no polynomial time active adversary
with non-negligible advantage. Next we define

AdVES (¢, q5) := the maximum advantage of any passive adversary attacking protocol XP,
running in time ¢ and making ¢g calls to the Execute oracle.

AvaSA (t,qE,qs) := the maximum advantage of any active adversary attacking protocol XP,
running in time ¢ and making gg calls to the Execute oracle and gg calls
to the Send oracle.

2.3 Decision Hash Bilinear Diffie-Hellman (DHBDH) Problem
Let (G1,Go9,e) be as in Section 2.1. We define the following problem.

Instance : (P,aP,bP,cP,r) for some a,b,c,r€rZ; and a one way hash function H : G2 — Z;.
Solution : Output yes if r = H(e(P, P)*°) mod q and output no otherwise.

The DHBDH problem is defined in [4] and is a combination of the bilinear Diffie-Hellman(BDH) prob-
lem [6] and a variation of the hash Diffie-Hellman(HDH) problem [1]. The advantage of any probabilistic,
polynomial time, 0/1-valued algorithm A in solving DHBDH problem in (G1, Ga,e) is defined to be:

AdvOHBPH — Prob[A(P, aP,bP, cP,r) = 1] — Prob[A(P, aP,bP,cP, H(e(P, P)%)) = 1]

The probabilities are computed over a,b,c,r€rZ.

DHBDH assumption : There exists no probabilistic, polynomial time, 0/1-valued algorithm which
can solve the DHBDH problem with non-negligible probability of success. In other words, for every
probabilistic, polynomial time, 0/1-valued algorithm A, AdvElHBDH < ﬁ for every fixed L > 0 and

sufficiently large integer M.

2.4 TUnauthenticated Protocol

We describe the multi-party extension [4] of Joux’s unauthenticated protocol in Section 3.1. This unauthen-
ticated protocol UP executes a single Execute oracle. Since it does not involve any long term public/private
keys, Corrupt oracles may simply be ignored and thus the protocol achieves forward secrecy. The protocol
UP has been proved to be secure against passive adversary [4] under DHBDH assumption for a single Ex-
ecute query. This proof can be extended for the case of multiple Execute queries by using standard hybrid
argument techniques: If Advﬁé(t, 1) is the advantage of the protocol UP for a single query to the Execute
oracle, then with gr queries to the Execute oracle, the advantage of UP is

Adviip(t,q) < qp Adv(ip(t,1).

2.5 Multi-signatures

We will use multi-signatures to obtain the authenticated protocol. Multi-signatures allow a group of
users to sign a message, such that a verifier can verify that all users indeed signed the message. For our
application, we require the signing protocol to be non-interactive as in [8]. In fact, any non-interactive
multi-signature scheme can be used with our protocol though we note that currently the only such known
scheme has been presented by Boldyreva [8] and is based on the Boneh-Lynn-Shacham [7] pairing based
short signature scheme. Our description of multi-signatures is based on the protocol presented in [8].

Let P = {Ui,...,Uy,} be the set of users who will be involved in generation of signatures and multi-
signatures. Let G; = (P),G2 (groups of prime order ¢) and e(,) be as defined in Section 2.1. Let
DSig = (K, S,V) be the BLS short signature scheme [7]. As part of this scheme each user U; generates a
signing key sk; € Z; and a verification key pk; = sk; P by invoking the BLS key generation algorithm K.
The signature on a message m is generated by the i-th user as o = sk;H;(m), where H; is a hash function
which maps arbitrary length strings to G;. Verification of a message-signature pair (m, o) is performed by
checking whether e(P, o) is equal to e(pk;, Hi(m)).

The Boldyreva multi-signature scheme is based on the BLS signature scheme and can be described as
follows.

Let L = {U;,,...,U;,} C P be the set of users who wish to sign a message m.

Each user U;; € L generates a signature o;; on m using the BLS signing algorithm S.
All signatures are transmitted (over a public channel) to a representative user U € L.
U combines all the signatures to obtain o7, = 05, +--- + 0.

U outputs (L,or) as the multi-signature of L on the message m.

A

The verification protocol runs as follows.

1. A user V receives the multi-signature (L, o) on a message m.

2. V computes pkr, = pk;; + - - + pk;,, where L = {U;,,...,U;, }.

3. V accepts if and only if the BLS verification algorithm V returns true for the public key pkr,
on the message-signature pair (m,or).

2.5.1 Security of Multi-signature Scheme

Formally, a multi-signature scheme consists of three algorithms MSig = (MK, MS, MV), where MK is the
key generation algorithm; MS is the signature generation algorithm and MYV is the signature verification
algorithm. We say that a multi-signature scheme is secure against existential forgery under chosen message
attack if the following task is computationally infeasible for the adversary:

The adversary is given a public key pk;; then outputs (n—1) pairs of public and secret keys pko, ..., pky,
and ska,..., sk, respectively; is allowed to run the multi-signature generation algorithm MS with user
U1 having public key pk; on messages of the adversary’s choosing; finally has to produce a message m, a
subset L of users with U; € L and a signature o such that MV returns true on input (L, m, o) and U; did
not participate in multi-signature generation algorithm for message m.

We denote by Succpsig(t) the maximum success probability of any adversary running in time ¢ to forge
signatures for the BLS signature scheme DSig. Similarly, by Succusig(t) the maximum success probability
of any adversary running in time ¢ to break the Boldyreva multi-signature scheme MSig.

Both the BLS short signature scheme and the Boldyreva multi-signature scheme have been proved to be
secure in the random oracle model. Since we use both the signature schemes in our authenticated protocol,
the complete security of our protocol is also in the random oracle model. However, we do not actually
require the random oracle in our security proof. Thus if one can replace the BLS signature scheme and the
Boldyreva multi-signature scheme with schemes which are secure in the standard model, then the security
of our protocol is also obtained in the standard model.

3 The Protocol

We start by describing the requirements of the protocol, follow it up with a description of the unauthenti-
cated protocol from [4] and finally describe the authenticated protocol.

Suppose a set of n users P = {U;,Us,...,U,} wish to agree upon a secret key. Let US be a subset
of users. Each such user set US has a representative Rep(US) and for the sake of concreteness we take
Rep(US) = U; where j = min{k : U, € US}. We use the notation A[1,...,n| for an array of n elements
Ai1,..., A, and write Afi] or A; to denote the ith element of array A[].

Let G1 = (P), G2 (groups of prime order ¢) and e(,) be as described in Section 2.1. We choose a hash
function H : G2 — Z;. The public parameters are params = (G1, G, e,q, P, H).

3.1 Unauthenticated Key Agreement Protocol of [4]

First we describe the idea behind the n-party key agreement protocol of Barua, Dutta and Sarkar [4] which
is an extension of Joux’s three-party single-round key agreement protocol to multi-party setting.

Let p = |5 and 7 = n mod 3. The set of users is partitioned into three user sets US;,USy, US3 with
respective cardinalities being p,p,p if r =0; p,p,p+ 1 if r=1; and p,p+ 1,p+ 1 if r = 2. This top down
procedure is used recursively for further partitioning. Essentially a ternary tree structure is obtained. The
lowest level 0 consists of singleton users having a secret key. The formal description of the protocol is given
below.

procedure KeyAgreement(l,US[i +1,...,i +1],S[i +1,...,1+1])
1. if (I=2) then

2. call CombineTwo(US[i + 1,i + 2],S[i + 1,7 + 2]);

3. return;

4. end if

5. if (Il =3) then

6. call CombineThree(US[i + 1,7+ 2,7 + 3],S[i + 1,7 + 2,7 + 3]);

7. return;

8. end if

9. po=0;p1=[/3]; p3=[1/3]; p2=1—p1 —ps;

10. ng = 0; n1 = p1; n2 = p1 + p2;

11. for 7 =1 to 3 do in parallel

12. U\Sj=US[i+nj_1+1,...,'i+nj_1 -I-pj];

13. if p; = 1, then S; = S[i +n,_1 +1];

14. else

15. call KeyAgreement(p;, L/J\Sj, Sli+mnj_1+1,...,i+nj_1+pj]);
16. Let §j be the common agreed key among all members of l/J\Sj;
17. end if;

18. end for;

19. call CombineThree(l/J\S[l,2,3],@[1,2,3]);
end KeyAgreement

procedure CombineTwo(US[1,2],S[1,2])

1. do Steps 2 and 3 in parallel

2 US; generates S €p Z, and sends SP and S1P to USy;
3 US;, sends So P to USq;

4. end do;

5. do steps 6 and 7 in parallel

6 US; computes H(e(S2P, SP)Sl);

7 USy computes H(e(S1 P, SP)S2);

8. end do;

end CombineTwo

procedure CombineThree(US[1, 2, 3],S[1, 2, 3])

1. for s =1 to 3 do in parallel

2. Let {j,k} ={1,2,3} \ {i};

3. Rep(US;) sends S; P to all members US; U USy;

end for;
. for 1 =1 to 3 do in parallel
let {7,k} = {1,2,3} \ {i};
each member of US; computes H(e(S; P, SkP)S");
end for;
end CombineThree

® N @ o

The start of the recursive protocol KeyAgreement is made by the following statements:

start main

1. US; ={U;} for 1 < j < m;

2. User j chooses a secret s; €g Zg;

3. User j sets S[j] = s;;

4. call KeyAgreement(n,US([1,...,n],S[1,...,n]).

end main
The values s1,...,8, are session specific and determine the final common key for the users. Note that
CombineTwo is invoked only for two individual users, (i.e. |US;| = |USg| = 1), whereas CombineThree is

invoked for three individual users as well as for three groups of users. In CombineThree the common agreed
key of user sets US1, USq, US3 is H(e(P, P)SIS2S3) and in CombineTwo the common agreed key of the two
users in the singleton sets USy, USq is H(e(P, P)SISQS).

The protocol described above allows Uy, ..., U, to agree upon a common key. The same protocol can
be used by an arbitrary subset of {U1,...,Uy} to agree upon a common key. This feature will be explained
in more details for the authenticated protocol.

3.2 Authenticated Key Agreement Protocol

Authentication is obtained by incorporating signature schemes into the unauthenticated protocol of Sec-
tion 3.1. More specifically, we use the BLS short signature and the Boldyreva multi-signature scheme based
on it. As part of the two signature schemes each user U; chooses a signing and a verification key sk;(or
sky,) and pk;(or pky,) respectively.

An important issue in authenticating the protocol is that of session ID. Recall that II% is the ith
instance of user U. Suppose instances l'I’[ijlil,...,l"IdU’j;]c wish to agree upon a common key. According to

our definition, sid?]j, ={(Ui,,d1),...,(Ui,,dx)}. At the start of a session, H‘[jjj, need not know the entire
i i

set sidde, . This set is built up as the protocol proceeds. Of course, we assume that H((i]j, knows the pair
Zj lj
(Ui;,dj). Clearly, H?f knows U;;. Knowledge of d; can be maintained by U;; by keeping a counter which
i
is incremented when a new instance is created. Each instance keeps the partial information about the

session ID in a variable psidé;. Before the start of a session an instance H([i]j, sets psidde, = {(Ui;,d;)}. On
Z i

the other hand, we do assume that any instance H?} knows its partner ID pid?}, , 1.e., the set of users with
ij ij

which it is partnered in the particular session.

Another issue is the numbering of the messages. Any instance H%I sends out a finite number of messages,
which can be uniquely numbered by H’i] based on their order of occurrence. The number of instances
participating in a session determines the leaf level of the ternary key agreement tree which in turn uniquely
determines the ternary tree structure. Once the ternary tree structure is defined, the numbering of the
messages is also defined uniquely. More specifically, if US is a user set at some intermediate point in the

execution of a session and U = Rep(US), then all instances in US knows the number of the next message
to be sent out by U.

We now explain the signing part of the protocol. All messages are exchanged as part of CombineTwo
and CombineThree and hence signing is also introduced as part of CombineTwo and CombineThree. The
call to CombineTwo and CombineThree in Steps 2 and 6 of KeyAgreement involve individual users whereas
the call to CombineThree in Step 19 of KeyAgreement are on three sets of users. In the first case, we require
only the BLS signature scheme, whereas in the second case we require the multi-signature scheme.

We now describe the modified versions of CombineTwo and CombineThree. In these algorithms, US will
represent sets of instances (as opposed to sets of users as in Section 3.1). In case US is a singleton set (as
in AuthCombineTwo and AuthCombineThree-A) we will identify US with the instance it contains. We also
define Rep(US) =TI, where j = min{k : TIf} € US}.

AuthCombineTwo(US[1,2],S[1,2])

1. perform Steps 2,3 and 4 in parallel with Steps 5,6, and 7;
2 usS; = H?}l generates S € Z; and forms m; = (SP,S1P);
3 US; computes o1 = S(sky,,US1|1|m1);

4. U51 sends U51|1|m1|01 to USQ;

5. USy = H‘[% sets mo = SoP;

6 USy computes o2 = S(sky,, USa|1|me);

7 USQ sends U52|1|m2|02 to USl;

8. end;

9. for¢=1,2 do in parallel

10. set i =3 —4; let US; = I ; USy = TI77 ;
11. US; verifies o on US;|1|m; using pkUi,l and algorithm V;

12. if verification fails, then US; sets acc‘[i}i =0, sk?}i = NULL and aborts;
13. else US; sets psid?}i = psid?}i U{(Uy,dir)};

14. end for;

15. US; computes H(e(S2P, SP)SI;

16. USy computes H(e(S1 P, SP)S2;

end AuthCombineTwo

There are two versions of CombineThree for the authenticated protocol.

AuthCombineThree-A(US[1, 2, 3],S[1, 2, 3])

1. fori=1,2,3 do in parallel

2. set {7,k} ={1,2,3}\ {i};

3. US;(= H‘[i}'i) computes o; = S(sky,, US;|1|S;P);
4. US; sends US;|1|S;P|o; to US; and USg;

5. end for;

6. for:=1,2,3 do in parallel

7. set {5k} = {1,2,3}\ {i}; let US; = T} ; US; =TIy} ; US, = I ;
8. US; verifies

9. e g; on US,|1|S;P using pku;;

10. e o, on US;|1|S, P using pky, ;

11. if any of the above verification fails then

12. US; sets acc?ji =0, sk?ji = NULL and aborts;

13.
14.
15.
16.
17.

else
US; sets psidi = psid{i U{(U;,d;), (Uk,dk)};
US; computes H(e(SjP,SkP)Si);
end if;
end for;

end AuthCombineThree-A

The next authenticated variation of CombineThree uses multi-signature. We need a notation to describe
the algorithm. Suppose psid;, = {(Us,,d1),.. ., (ivsdi)} is the (partial) session ID for instance IT};. Then
First(psidl;) is defined to be the set {U;,,...,U;, }. In the next algorithm, we use the notation H"i,v to
denote an instance of a user V. The value of the instance number dy is not uniquely determined by V.
However, it is unique for one particular session. Since one particular invocation of the next algorithm will
involve only one session, there will be no confusion in the use of the notation dy .

AuthCombineThree-B(US|1,2,3],5[1,2,3])

© NSO RN

10.
11.
12.
13.

14.
15.
16.
17.
18.
19.
20.

21.
22.

23.
24.

25.
26.
27.

for i =1,2,3 do in parallel
set {7,k} = {1,2,3} \ {i}; I& = Rep(US,);
for each TI{Y € US; do in parallel
H?,V computes oy = S(sky, psid“i," |ti|SiP), where t; is number of next message to be sent by HdUU;
H"i," sends (V,oy) to U;
end for;
H?]U computes the multi-signature oys, = MS({ov : V € US;});
H?]U sends psid‘{l]U\ti|S,<P|ousi to US; U USy;
end for;
for : =1,2,3 do in parallel
dw, d
set {j,k} = {1,2,3} \ {i}; TIy,) = Rep(US;); Iyy* = Rep(US);
for each H"i)’ € US; do in parallel
. . dw; . d
H"i}’ receives pSIdV;:J |t;|S;Ploys; from W; and p5|dWWk’° |tk|SkP|ous, from Wy;
. . Aw; . . ,d
Let F; = F|rst(p5|deJ) and Fj = F|rSt(pS|dWWk’°);
H"i,v verifies
e F; and Fj, are subsets of pid(‘i)’; ,
e ¢; and ?; are the next expected message numbers from HV‘Z 7 and H?/VW: respectively;
dw.
e oys; is the multi-signature of F; on psidvf,:] |t;|S;P;
e oys, is the multi-signature of Fj on psid?,VWk’c |tk |SkP;
if any of the above verification fails, then
H"i)’ sets acc?," =0, sk“i," = NULL and aborts;
else
H?,V computes H (e(S;P, SkP)S;); ,
% sets psid?V = psid® U psidV;:j U psidyy *;
end if;
end for;
end for;

end AuthCombineThree-B

The calls of CombineTwo and CombineThree from KeyAgreement are modified as follows:

Step 2 : change to call AuthCombineTwo(US[z + 1,7 + 2],S[i + 1,7 + 2]);
Step 6 : change to call AuthCombineThree-A(US[i + 1,7 + 2,7+ 3],S[i + 1,7 + 2,7 + 3]);
Step 19 : change to call AuthCombineThree-B(US|[1,2,3],S[1,2, 3]);

The start of the protocol between instances H“[l]ll, e ,H?}Z is made as follows:
start session(l'[dUli1 - ,H’Iij’;k)
1. forj=1tok
2. instance H([i]j, chooses a secret key s; €r Z; and sets S[j] = s;;

g
3. set US; = {1 }; psidll = {(Ui;,d))};

ij i

4. end for;
5. call KeyAgreement(k,US[1,...,k],S[1,...,k]).
end session

The following property is easy to verify from the description of the protocol.

Proposition 1 Suppose US is a set of instances occurring in AuthCombineThree-B in some session. Then
for any two instances Iy} and I1j3, participating in the session with Iy 1T € US, we have psid;, = psid, .

Moreover, after the completion of a session in which Héj participates, we have psidzi] = sidzi].

One consequence of the first statement of Proposition 1 is that in AuthCombineThree-B, each user in a user
set computes the signature on the same message. Further, the second statement assures us that the partial
session IDs finally “grow” into full session IDs.

Note that our protocol does not include key verification between users. This can be achieved at extra
computational and communication cost.

4 Security Analysis

The goal is to show that the modification described in Section 3.2, converts the protocol of Section 3.1
into an authenticated key agreement protocol. Our proof technique is based on the proof technique used
by Katz and Yung [15]. The idea behind the proof is the following. Assuming that DSig and MSig are
secure, we can convert any adversary attacking the authenticated protocol into an adversary attacking the
unauthenticated protocol. There are some technical differences between our proof and that of [15].

1. The Katz-Yung technique is a generic technique for converting any unauthenticated protocol into an
authenticated protocol. On the other hand, we concentrate on one particular protocol. Hence we
can avoid some of the complexities of the Katz-Yung proof.

2. Our protocol involves a multi-signature scheme whereas Katz-Yung requires only a signature scheme.
3. Katz-Yung protocol uses random nonces whereas our protocol does not.

4. In our unauthenticated protocol, there are no long term secret keys. Thus we can avoid the Corrupt
oracle queries and can trivially achieve forward secrecy.

Theorem 2 The protocol AP described in Section 3.2 satisfies the following:
AdVARA (t, g5, gs) < Advip (¢, g + gs/2) + |P| Succpsig(') + |P| Succwmsig(t')
where t' < t+ (|Plge + gs)tap, where tap is the time required for execution of AP by any one of the users.

Proof : Let A’ be an adversary which attacks the authenticated protocol AP. Using this we construct an
adversary A which attacks the unauthenticated protocol UP. We first have the following claim.
Claim : Let Forge be the event that a signature (either of DSig or of MSig) is forged by A’. Then

Prob[Forge] < |P| Succmsig(t') + |P| Succpsig(t')-

Proof of Claim: Let F; be the event that A’ forges a multi-signature, i.e., it makes a query of the
type Send(V, i, psid¥;|j|SP|o) such that user V uses algorithm MYV to verify o to be the multi-signature of
First(psidf;) on psid¥|j|SP and this message-signature pair was not previously returned by A.

Let E, be the event that A’ makes a query of the type Send(V,4,Y) where Y has the form ¥V =
1'[‘[1]’1\1\SP|0U,c with V(pkUk,H‘[i]’Z\l\SP, oy,,) = 1. Then clearly Forge = F; V Ej.

First consider the event E,. Using A’, we construct an algorithm F that forges a signature for DSig
as follows: Given a public key pk, algorithm F chooses a random U € P and sets pky = pk. The other
public keys and private keys for the system are generated honestly by F. The forger F simulates all oracle
queries of A’ by executing protocol AP itself, obtaining the necessary signatures with respect to pky, as
needed, from its signing oracle. Thus F provides a perfect simulation for A’. If A’ ever outputs a new
valid message/signature pair with respect to pky = pk, then F outputs this pair as its forgery. The success
probability of F is equal to %DHEQ] and hence Prob[Es] < |P| Succpsig(t').

Next consider the event E;. Using A’, we may construct an algorithm F that forges a multi-signature
for the scheme MSig as follows: Given a public key pki, algorithm F chooses a random U € P, sets
pky = pk1 and honestly generates all other public/private keys for the system and outputs them. The
forger F simulates all oracle queries of A’ in the natural way by executing protocol AP itself, obtaining the
necessary signatures with respect to pky, as needed, from its signing oracle and thus providing a perfect
simulation for A’. Now, if A’ ever outputs a valid multi-signature o on a message m for a set of users
L ={Uj,,...,U; }, which was not obtained from the signing oracle, then F outputs the message m, o and

L as its forgery. The success probability of F is equal to %HEI} and hence Prob[E] < |P| Succmsig(t').

Then Prob[Forge] = Prob[E; V Es] < Prob[E;] 4+ Prob[Ey] < |P| Succumsig(t’) + |P| Succpsig(t’), yielding
the result of the Claim. m(of Claim)

Now we describe the construction of the passive adversary A attacking UP that uses adversary A’
attacking AP. Adversary A uses a list tlist. It stores pairs of session IDs and transcripts in tlist.

Adversary A generates the verification/signing keys pky, sky for each user U € P and gives the verifi-
cation keys to A’. If ever the event Forge occurs, adversary A aborts and outputs a random bit. Otherwise,
A outputs whatever bit is eventually output by A’. Note that since the signing and verification keys are
generated by A, it can detect occurrence of the event Forge. A simulates the oracle queries of A’ using its
own queries to the Execute oracle. We provide details below.
Execute queries: Suppose A’ makes a query Execute((U;,,d1),. .., (Ui,,dx)). This means that instances
H?}il - ,H%k are involved in this session. A defines S = {(U;,,d1),...,(Ui,,dx)} and sends the execute

query to its Execute oracle. It receives as output a transcript 7' of an execution of UP. It appends (S,T")
to tlist. Adversary A then expands the transcript T for the unauthenticated protocol into a transcript 7"
for the authenticated protocol according to the modification described in Section 3.2. It returns 7" to A’.

Send queries: The first send query that A’ makes to an instance is to start a new session. We will denote
such queries by Sendy queries. To start a session between unused instances H?}Z_l yee ,H‘[ij’zk, the adversary

has to make the following send queries.

Sendo(Uil,dl, <Ui27 ceey Ulk>),
SendO(UiQ,dQ, <UZ’1,Ui3 ceey U1k>)’

SendO(Uik;dka <Ui1a SRR U’ik_1>)'

Note that the above queries may be made in any order. When all the above queries have been made,
A sets S = {(U;,,d1),...,(Us,,d;)} and makes an Execute query to its own execute oracle. It receives a
transcript 7" in return and stores (S,7') in the list tlist.

Assuming that signatures (both DSig and MSig) cannot be forged, any subsequent Send query (i.e.,

after a Sendy query) to an instance Hzi] is a properly structured message with a valid signature. For any
such Send query, A verifies the query according to the algorithm of Section 3.2. If the verification fails,
A sets acc’i] = 0 and skzi] = NULL and aborts Hzi]. Otherwise, A performs the action to be done by H’b
in the authenticated protocol. This is done in the following manner: A first finds the unique entry (S,7")
in tlist such that (U,i) € S. From T, it finds the message which corresponds to the message sent by A’
to H’[']. From the transcript T, adversary A finds the next public information to be output by H’ij. If this
involves computation of a multi-signature and all the individual signatures have not yet been received by
H’i] (using Send queries from A’), then there is no output to this Send query. In all other cases, A returns
the next public information to be output by II¢; to A’
Reveal/Test queries : Suppose A’ makes the query Reveal(U,i) or Test(U,4) for an instance II¢; for
which acc}'] = 1. At this point the transcript 7" in which HZ('J participates has already been defined. Now
A finds the unique pair (S,7) in tlist such that (U,i) € S. Assuming that the event Forge does not occur,
T is the unique unauthenticated transcript which corresponds to the transcript 77. Then A makes the
appropriate Reveal or Test query to one of the instances involved in 7' and returns the result to A’.

As long as Forge does not occur, the above simulation for A’ is perfect. Whenever Forge occurs,
adversary A aborts and outputs a random bit. So Prob 4 ap[Succ|Forge] = 3. Now

Advgup := 2 |Probyuyp[Succ]—1/2|

= 2 |Prob g ap[Succ A Forge] + Prob 4 ap[Succ A Forge] — 1/2|

= 2 |Prob 4 ap[Succ A Forge] 4+ Prob 4 ap[Succ|Forge| Prob 4 ap[Forge] — 1/2|
= 2 |Prob g ap[Succ A Forge] + (1/2)Prob 4 ap[Forge] — 1/2]
= 2 |Prob g ap[Succ] — Prob 4 ap[Succ A Forge] + (1/2)Prob 4 ap[Forge] — 1/2|

|2 Prob_g ap[Succ] — 1| — |Prob 4 ap[Forge] — 2 Prob 4 ap[Succ A Forge]|

v v

Adv 4 ap — Prob[Forge]

The adversary A makes an Execute query for each Execute query of A’. Also A makes an Execute query
for each session started by A’ using Send queries. Since a session involves at least two instances, such an
Execute query is made after at least two Send queries of A’. Hence the number of such Execute queries
is at most gs/2, where gg is the number of Send queries made by A’. Hence the total number of Execute
queries made by A is at most gg + ¢gg/2, where ¢ is the number of Execute queries made by A’. Also since
Adv 4 up < AdvES (¢, g + q5/2) by assumption, we obtain:

Advap® < Adv(ip(t', gz + qs/2) + Prob[Forge].
This yields the statement of the theorem. [

5 [Efficiency

Efficiency of a protocol is measured by communication and computation cost. Communication cost in-
volves counting total number of rounds needed and total number of messages transmitted through the
network during a protocol execution. Computation cost counts total scalar multiplications, pairings, group
exponentiations etc..

Let Y be the total number of singleton user sets in level 1 and set R(n) = [logz n].

For the unauthenticated protocol [4], number of rounds required is R(n) and total messages sent is
< 3(n —1). The computation cost of this protocol is as follows :
total number of scalar multiplications in G is < g(n —1), total pairings required is nR(n) and total group

exponentiations in Gg is nR(n).

Note that in the authenticated protocol, the representative of a user set with more than one user creates a
multi-signature after it collects the basic (BLS) signatures from the other users in that user set. This makes
the representative to wait for accumulating the basic signatures. In the first round of the authenticated
protocol, no multi-signature is required because each user set is a singleton set with a user itself being the
representative and only a basic signature on the transmitted message is sent by the representative. The
authenticated protocol additionally requires the followings :

1. The number of rounds increases by R(n) — 1.

2. Total number of basic (BLS) signatures computed is nR(n).

3. Total number of additional messages (basic signatures) communicated is n[R(n) — 1] — 3 (3f(m)—1 1),
4. Total bilinear aggregate signatures computed, communicated and verified is %(?)R(”)*1 -1)-Y.

5. Total number of basic signatures verified is n.

This protocol involves no basic signature verification above level 1, only verification of multi-signatures are
required. If any of the basic signature used in multi-signature creation on a message is improper, then this
can be detected during multi-signature verification. This feature reduces the cost of verification for the
authenticated protocol. Moreover, only representatives are required to have more computation power than
other users. They are allowed to create and communicate multi-signatures which saves the total amount
of communications.

6 Conclusion

We have described an authentication mechanism to authenticate the tree based key agreement protocol
proposed by Barua, Dutta and Sarkar [4] in a standard fomalized security model. The bilinear pairing
based multi-signature by Boldyreva [8] is used and the formal security model of Bresson et al. [9] is adopted.
Using the proof technique of Katz and Yung [15], we get a provably secure authenticated tree based key
agreement protocol.

References

[1] M. Abdalla, M. Bellare and P. Rogaway. DHIES : An encryption scheme based on the Diffie-Hellman
problem, CT-RSA 2001 : 143-158.

2]

[3]

[4]

[5]
[6]

[7]

(8]

[9]

[10]

[17]

[18]

G. Ateniese, M. Steiner, and G. Tsudik. New Multiparty Authenticated Services and Key Agreement
Protocols, Journal of Selected Areas in Communications, 18(4):1-13, IEEE, 2000.

P. S. L. M. Barreto, H. Y. Kim and M. Scott. Efficient algorithms for pairing-based cryptosystems.
Advances in Cryptology - Crypto 2002, LNCS 2442, Springer-Verlag (2002), pp. 354-368.

R. Barua, R. Dutta, P. Sarkar. Fxtending Joux Protocol to Multi Party Key Agreement. Indocrypt
2003, Also available at http://eprint.iacr.org/2003/062.

K. Becker and U. Wille. Communication Complezity of Group Key Distribution. ACMCCS ’98.

D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. In Advances in Cryp-
tology - CRYPTO 01, LNCS 2139, pages 213-229, Springer-Verlag, 2001.

D. Boneh, B. Lynn, and H. Shacham. Short Signature from Weil Pairing, Proc. of Asiacrypt 2001,
LNCS, Springer, pp. 213-229, 2001.

A. Boldyreva. Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-
Hellman-Group Signature Scheme. Public Key Cryptography 2003: 31-46.

E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic Group Diffie-Hellman Key Exchange under
Standerd Assumptions. Advances in Cryptology - Eurocrypt 02, LNCS 2332, L. Knudsen ed.,
Springer-Verlag, 2002, pp- 321-336.

M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key Distribution System. In
A. De Santis, editor, Advances in Cryptology EUROCRYPT ’94, Workshop on the theory and
Application of Cryptographic Techniques, LNCS 950, pages 275-286, Springer-Verlag, 1995.

W. Diffie and M. Hellman. New Directions In Cryptography, IEEE Transactions on Information
Theory, IT-22(6) : 644-654, November 1976.

S. Galbraith, K. Harrison and D. Soldera. Implementing the Tate Pairing, Algorithm Number
Theory Symposium - ANTS V, LNCS 2369, Springer- Verlag (2002), pp. 324-337.

I. Ingemarsson, D. T. Tang, and C. K. Wong. A Conference Key Distribution System, IEEE Trans-
actions on Information Theory 28(5) : 714-720 (1982).

A. Joux. A One Round Protocol for Tripartite Diffie-Hellman, ANTS IV, LNCS 1838, pp. 385-394,
Springer-Verlag, 2000.

J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key Exchange, In Advances in
Cryptology - CRYPTO 2003.

Y. Kim, A. Perrig, and G. Tsudik. Simple and Fault-tolerant Key Agreement for Dynamic Collab-
orative Groups. In S. Jajodia, editor, 7th ACM Conference on Computation and Communication
Security, pages 235-244, Athens, Greece, Nov. 2000, ACM press.

Y. Kim, A. Perrig, and G. Tsudik. Tree based Group Key Agreement. Report 2002/009,
http://eprint.iacr.org, 2002.

M. Steiner, G. Tsudik, M. Waidner. Diffie-Hellman Key Distribution Eztended to Group Commu-
nication, ACM Conference on Computation and Communication Security, 1996.

