

How to Re-initialize a Hash Chain

Vipul Goyal

Department of Computer Science & Engineering

Institute of Technology

 Banaras Hindu University

Varanasi, India
vipul.goyal@cse04.itbhu.org

Abstract
Hash Chains are used extensively in various cryptographic systems such as one-

time passwords, server supported signatures, secure address resolution, certificate

revocation, micropayments etc. However, currently they suffer from the

limitation that they have a finite number of links which when exhausted requires

the system to be re-initialized. In this paper, we present a new kind of hash chain

which we call a Re-initializable Hash Chain (RHC). A RHC has the property that

if its links are exhausted, it can be securely re-initialized in a non-repudiable

manner to result in another RHC. This process can be continued indefinitely to

give rise to an infinite length hash chain, or more precisely, an infinite number of

finite length hash chains tied together. Finally we illustrate how a conventional

hash chain (CHC) may be profitable replaced with a RHC in cryptographic

systems.

1 Introduction

The idea of one-way function chains or hash chains in short was first proposed by Lamport [1] to

facilitate safeguarding one time password schemes (OTPs) from ’eavesdrop and replay’ kinds of

attack. Since then it has been employed in a wide range of applications. Hash chains have

interesting properties while employing nothing more than a fast one way hash function (OWHF).

Examples of system build upon the concept of hash chains include password based authentication

[1, 3], certificate revocation [10, 37], secure address resolution [21], micropayments [19, 38, 39],

online auctions [14], digital cash [40], secure server logs [22], efficient multicasting [11-13],

server-supported signatures [35, 36], spam fighting protocols [41], one time signature schemes

[42], sensor network security protocols [48-49] and securing routing information [43-47].

Most of these applications suffer from a common limitation, i.e., the hash chains used in these

schemes have a finite length. To setup the system, the user chooses a constant, say N, to define

the maximum number of operations allowed. After these many operations, the system should be

re-initialized. N cannot be made very large because of the increase in computational and storage

requirements for the sender and also the verifier in many cases. Recently, a number of techniques

for fast traversal [50-52] and efficient setup and verification [47, 48, 53] of hash chains were

proposed. However, there is no technique, efficient or otherwise, for the re-initialization of hash

chains. Addressing this is precisely the topic of this paper. We introduce the notion of ‘tying’

multiple finite length hash chains. This tying is achieved using one time signatures.

Rest of the paper is organized as follows: Section 2 quickly reviews the idea of hash chains.

Section 3 discusses the related work. Section 4 provides a background on one time signatures.

Section 5 introduces the proposed construction of RHCs. Section 6 gives examples about how the

existing cryptographic systems employing hash chains may benefit from the concept of RHCs.

Section 7 concludes the paper.

2 An Introduction to Hash Chains

The idea of “hash chain” was first proposed by Lamport [1] in 1981 and suggested to be used for

safeguarding against password eavesdropping. However being an elegant and versatile low-cost

technique, the hash chain construction finds a lot of other applications.

A hash chain of length N is constructed by applying a one-way hash function h(.) recursively to

an initial seed value s.

h
N
(s) = h(h(...h(s)...)) (N times)

The last element h
N
(s) is also called the tip T of the hash chain. By knowing h

N
(s), h

N-1
(s) can not

be generated by those who do not know the value s, however given h
N-1
(s), its correctness can be

verified using h
N
(s). This property of hash chains has evolved from the property of one-way hash

functions.
1

In most of the hash-chain applications, first h
N
(s) is securely distributed and then the elements of

the hash chain are spent (or used) one by one by starting from h
N-1
(s) and continuing until the

value of s is reached. At this point the hash chain is said to be exhausted and the whole process

should be repeated again with a different s to reinitialize the systems. There are some other

variants [47, 48] of this construction of hash chains. Our re-initialization technique applies to

those constructions also.

3 Related Works

In an attempt to counter the ‘limited-links’ limitation of hash chains, Bicakci and Baykal [2]

recently proposed the use of signature chains based on public key cryptography.

Construction: Let algorithm A be a public-key algorithm (e.g. RSA [20]) where d is the private

key and e is the public key. Let s and c constitute a pair such that A(s, d) = c and A(c, e) = s. Let

A
N
(s, d) denote the application of the public key algorithm A recursively N times to the initial

input (seed) s using the private key d. As seen below, recursive applications results in an infinite

length chain originated from the initial input s:

s, A(s, d), A
2
(s, d), . . . , A

N-1
(s, d), A

N
(s, d), . . .

However, in our view, using public key cryptography defeats the basic purpose of hash chains as

it compromises on efficiency. We stress that in most cases, hash chains are mainly used to

remove/complement the usage of public key cryptography for gaining efficiency.

4 A Background on One Time Signatures

The Concept of One time signatures (OTS) has been known for over two decades. It was initially

proposed by Lamport [17] and was the first digital signatures scheme ever designed.

Interestingly, OTS schemes employ nothing more than OWHFs. The concept of OTS was

subsequently enhanced by Merkle [28, 29], Winternitz [28] and Bicakci et al [33].

1
 Speaking more theoretically, the function h should behave like a one way permutation rather than a one

way function.

Bleichenbacher et al [30–32] formalized the concept of OTS using directed acyclic graphs

(DAGs).

To sign a one bit message [27], the signer chooses as the secret key two values x1 and x2

(representing ‘0’ and ‘1’) and publishes their images under a one-way function y1 = h(x1) and y2 =

h(x2) as the public key. These x’s and y’s are called the secret key components and the public key

components, respectively. To sign a single bit, reveal the pre-image corresponding to the actual

‘0’ or ‘1’. That is, reveal either x1 or x2 based upon whether the message to be signed is 0 or 1.

For signing longer messages, several instances of this basic scheme may be used. Thus we note

that to sign an n bit message, 2n x’s and 2n y’s are required. This means that the size of signatures

generated is equal to n x’s, i.e., n times the size of the secret values.

There are several improvements to this basic scheme. Most notably, Merkle [28, 29] proposed an

improvement which reduces the number of public and secret key components as well as the

signature size in the Lamport method by almost a factor of two.

Even though OTS are significantly efficient and faster than public key digital signatures, their use

as full fledged signatures schemes is limited due to their inherent one time nature and larger

signature size. However we note that for our purpose, they can prove to be a good tool because a

hash chain only needs to be re-initialized once (which would subsequently result in another re-

initializable hash chain and so on).

Before going further, we introduce some basic notations used in this paper:

L Length of the output of OWHF employed, e.g., 128 bit for MD5.

m Number of public/secret key components used in the OTS scheme. Equal to L + log2(L) for

Merkle’s construction.

PU One time public key of user U. Equal to the collection (or Concatenation) of m public key

components.

SU One time secret key of user U. Equal to the collection (or Concatenation) of m secret key

components.

5 The Proposed Construction

For simplicity, we start by describing a basic version of our scheme which is not very efficient.

Later on, we describe the main scheme which is obtained by an efficiency improvement on the

basic scheme.

5.1 The Basic Scheme

The construction of a Re-initializable Hash Chain (RHC) is similar to that of a Conventional

Hash Chain (CHC) except for the tip T. Recall that the tip T of a hash chain is computed in the

last.

The user U first chooses a seed s either randomly or pseudo randomly and computes a CHC of

length N-1 as follows:

h
N-1
(s) = h(h(h(...h(s)...))) (N-1 times)

Now, U generates an instance of the OTS scheme by generating SU and PU and securely stores SU

(this requirement may be relaxed if SU is generated pseudo randomly).

Finally, the tip T of the hash chain is computed as follows:

T = h(h
N-1
(s), h(PU))

Now, T is the tip of a RHC of length N. T is made public/distributed to the appropriate parties

depending upon the application in which it is used.

For using the first link of the constructed RHC, U sends h
N-1
(s) as well as h(PU) which the

verifier(s) can verify using the tip T. Alternatively, h(PU) can be distributed in the beginning

along with the tip of the chain. In that case, U needs to only send h
N-1
(s) as the first link of the

chain in the usual manner. Rest of the links in the chain are computed as for CHCs, i.e., the i
th

link is computed as h
N-i
(s). U can keep spending the links till i reaches 0, i.e. h

0
(s) or s is spent. At

this point, the RHC is exhausted and a new RHC should be computed and tied to the existing

RHC. For this purpose, we use the previously generated instance of the OTS scheme.

U choose a new seed s’ and generates another instance of the OTS scheme by generating SU’ and

PU’. The tip T’ of the new RHC is computed in the similar manner as before:

T’ = h(h
N-1
(s’), h(PU’))

U now sends, in addition to T’, the public key instance PU and the appropriate secret key

components from SU required to sign T’ to the verifier. The verifier checks the sent public key PU

using h(PU) embedded in the previous RHC, checks the signature on T’ using the revealed

components of SU and accepts the new RHC tip T’. At this point, the user U is ready to spend the

links of the new RHC with tip T’. This process can continue indefinitely to result in an infinite

number of finite length hash chains tied together. Note that non-repudiability is maintained

throughout.

5.2 Improving the Efficiency of the Basic Scheme

The efficiency of the described construction can be improved if the to be revealed components of

the secret key are also ‘spent’ in the same manner as the normal links of the RHC.

Consider that in the OTS of the tip T’ of the new RHC, there are n bits whose value is 1. Then

using the improved scheme, a RHC having N links may be reusable (N+n+1) times. In the

average case, assuming that half of the m (= L + log2L) bits in the OTS would be 1, a RHC of

length N may be used (N + m/2 + 1) times. This can be done as follows-

a) The N links of the RHC are spent in the usual manner.

b) After N spendings, U gives out the public key PU as one more link which can be verified

using h(PU).

c) After this, U computes T’ and supplies T’ to the verifier which stores it without

verification. Now U gives out the secret key components required to sign T’s one by one

as links. Thus considering the average case, m/2 more spendings can be done.

After all the required secret key components are revealed, the verifier would have authenticated

T’s and thus the user U is now ready to spend RHC with tip T’. Again note that non-repudiability

is maintained throughout.

6 Example Schemes Replacing CHCs with RHCs

Now we move on to examples schemes demonstrating the profitable replacement of CHCs with

RHCs.

6.1 One Time Passwords (OTPs)

Introduced in 1981 by Lamport [1] and subsequently implemented, improved [3, 25] and

standardized in RFCs [6-8], OTPs are considered as a popular choice for password based

authentication. OTPs are more commonly known as Lamport hashes or S/KEY
TM
 One Time

Password System. Currently, they suffer from the limitation that a user may only authenticate a

finite number of times, say N, before the system should be re-initialized. The re-initialization can

either be done manually or automatically. Automatic re-initializations suffer from straightforward

active attacks in which an adversary may take complete control of the user account. Further, the

value of N should also be kept low since the computation burden per authentication on the client

increases linearly with N. The system can be substantially improved by employing our concept of

RHCs. This is despite the fact that in this environment, the user and the generator of hash chain is

a human remembering only a password and no secret key components. Relaxing the client side

storage requirement is accomplished by generating the secret key components pseudo randomly

using the password as the seed to the pseudorandom function. Thus, the client generates an RHC

using his password and uses its links to authenticate to the server. The RHC may be re-initialized

once all its links are over.

6.2 Micropayment Schemes

To support micropayments, exceptional efficiency is required; otherwise the cost of the

mechanism will exceed the value of the payments. This directly implies that the number of public

key operations should be minimized. As a consequence, micropayment schemes using hash

chains were developed [19]. Very informally, the basic idea is that the user (or the customer), for

repeated payments of small and fixed amount to the merchant, generates a hash chain and

digitally signs its tip along with other information such as the merchant identifier and the value of

each payment. The customer passes the signed message to the merchant. Now, the customer can

pay the fixed amount to the merchant anytime by releasing a link of the hash chain. Multiples of

this amount may also be paid by releasing multiple links.

A direct advantage to the merchant is that now she can aggregate many payments from a single

customer and get the payments credited to her account in a single transaction with the bank (recall

that the banks usually charge a transaction fee from the merchant for every transaction). This is

done by sending the signed message received from the customer containing the tip h
N
(s) of the

hash chain along with the value of the last link h
N-i
(s) collected from the customer to the bank.

Thus the bank transfers the amount i*c to the merchant where c is the value of each payment as

specified in the signature. Further, the system dramatically reduces the required computation for

all the 3 parties involved in the system. This also makes it practical for the customer to access the

service of merchant on low power mobile devices where public key cryptography and hence

conventional payments are not possible. For more details about such micropayment systems, an

interested reader is referred to Payword [19].

A problem however with the system is that the customer should again sign a new message

containing the tip of a new hash chain once all the links in the hash chain are exhausted. This can

be overcome by using RHCs where the customer signs the tip of a RHC instead of a CHC in the

beginning. Thus the customer can now continue payments indefinitely without the need of

generating a new digital signature after some time. This results in better payment aggregation for

the merchant as well as the feasibility of continual mobile device usage for the customer. Note

that the system is extremely efficient when the improved version of RHCs is used.

6.3 Server Supported Signatures

Server supported signature schemes allow a user using a constrained mobile device to digitally

sign a message by employing a semi trusted server called a virtual server (VS). An example is the

SAS protocol [35, 36]. First we provide a brief summary of the SAS protocol, for details, the

reader is referred to [35].

There is an initialization phase in SAS where each user (originator) gets a certificate from an

offline certification authority specifying h
N
(s), the tip of the hash chain, where s is kept secret by

the originator O. In addition, O should register to a VS (which has the traditional public-key

based signing capability) before operation. Then the SAS protocol works in three rounds [35]:

1. The originator (O) sends m and h
N-i
(s) to VS where

– m is the message

– h
N-i
(s) is the i

th
 element of the hash chain. The counter i is initially set to 1 and

incremented after each run.

2. Having received O’s request, VS checks the followings:

– Whether O’s certificate is revoked or not.

– Whether h
i
(supplied i

th
 link) = h

N
(s) or in a more efficient way h(supplied i

th
 link) = h

N-

i+1
(s) since h

N-i+1
(s) has already been received as the (i-1)

th
 link

If these checks are OK, VS signs m concatenated with h
N-i
(s) and sends it back to O.

3. After receiving the signed message from VS, O verifies the VS’s signature, attaches

h
N-i-1

(s) to this message and sends it to the receiver R.

Upon receipt of the signed message, the receiver verifies VS’s signature and checks

whether h(h
N-i-1

(s)) = h
N-i
(s)

Note that VS may try to sign m’ instead of m once O releases the i
th
 link. But then, since O

verifies the signature, it would not release the (i-1)
th
 link thus rendering the signature on m’

incomplete. The best VS can do is to sign two messages m and m’ with the same link embedded

in both signatures. However, this leaves O with a cryptographic proof of server fraud if she gets

hold of both signatures. [35] discusses efficient techniques to safeguard O against such VS frauds.

It is clear that once all the links of the hash chain are exhausted, the originator O should generate

another hash chain and get a new certificate from the CA specifying its tip. Thus, the system can

be significantly improved by employing RHCs instead of the CHCs. The CA would certify the tip

of a RHC generated by the originator O. O spends the links in the RHC. Once all the links are

exhausted, a new RHC may be computed and tied to the existing one. Thus the system can

continue without the need to get new certificate from the CA. This may also be a cost saving for

O since presumably the CA would charge an amount to issue a new certificate for O.

Thus we see from the above illustrative examples that CHCs can be quite easily replaced by

RHCs in various cryptographic systems. As the examples demonstrate, the details of modifying a

system to use RHCs instead of CHCs are quite straight forward. We leave it as future work to

apply the idea of RHCs in various other systems employing hash chains.

7 Conclusions

The need for an elegant method for the secure re-initialization of hash chains was clear due to the

‘limited-link’ limitations most systems employing hash chains suffer from. In this paper, we have

presented a new kind of hash chains which we call RHCs. A RHC has the property that if its links

are exhausted, it can be securely re-initialized in a non-repudiable manner to result in another

RHC. This process can be continued indefinitely to give rise to an infinite number of finite length

hash chains tied together.

We replaced CHCs with RHCs in OTPs, micropayment systems and server supported signature

schemes and demonstrate that the modified systems overcomes the ‘limited-link’ limitation of the

original systems. We believe that RHCs may be profitably employed in a similar manner in other

systems as well.

References

[1] L. Lamport, “Password Authentication with Insecure Communication”, Communications

of the ACM 24.11 (November 1981), pp 770-772.

[2] K. Bicakci and N. Baykal, Infinite Length Hash Chains and Their Applications,

Proceedings of IEEE 11th International Workshops on Enabling Technologies (WETICE

2002), June 10-12, 2002, Pittsburgh, USA.

[3] N Haller, "The S/KEY One-Time Password System", Proceedings of the ISOC

Symposium on Network and Distributed System Security, pp 151-157, February 1994.

[4] G Tsudik, “Message authentication with one-way hash functions”, ACM Computer

Communications Review, 22(5), 1992, pp 29-38.

[5] A. D. Rubin, “Independent One-Time Passwords”, USENIX Journal of Computer

Systems, February 1996.

[6] N Haller, “The S/KEY One-Time Password System”, RFC 1760, February 1995.

Available from http://www.ietf.org.

[7] N Haller, “A One-Time Password System”, RFC 1938, May 1996. Available from

http://www.ietf.org.

[8] N Haller, C. Metz, P. Nesser and M. Straw, “A One-Time Password System”, RFC

2289, Feb 1998. Available from http://www.ietf.org.

[9] National Institute of Standards and Technology (NIST), "Announcing the Secure Hash

Standard", FIPS 180-1, U.S. Department of Commerce, April 1995.

[10] S. Micali, "Eficient Certificate Revocation," Proceedings of RSA '97, and U.S. Patent No.

5,666,416.

[11] A. Perrig, R. Canetti, D. Song, and D. Tygar, "Eficient and Secure Source Authentication

for Multicast," Proceedings of Network and Distributed System Security Symposium

NDSS 2001, February 2001.

[12] A. Perrig, R. Canetti, D. Song, and D. Tygar, "Eficient Authentication and Signing of

Multicast Streams over Lossy Channels," Proc. of IEEE Security and Privacy Symposium

S & P 2000, May 2000.

[13] A. Perrig, R. Canetti, D. Song, and D. Tygar, "TESLA: Multicast Source Authentication

Transform", Proposed IRTF draft, http://paris.cs.berkeley.edu/ ~perrig/

[14] S. Stubblebine and P. Syverson, "Fair On-line Auctions Without Special Trusted Parties,"

Financial Cryptography '01.

[15] R Impagliazzo and S Rudich, "Limites on the Provable Consequances of one way

permutations," Proceedings of the 21st Annual Symposium on Theory of Computing,

ACM, 1989.

[16] S. Halevi and H. Krawczyk, “Public-Key Cryptography and Password Protocols,” ACM

Transactions on Information and System Security, Vol. 2, No. 3, August 1999, Pages

230–268.

[17] W. Diffie, and M. E. Hellman, “New directions in cryptography”. IEEE Transactions on

Information Theory IT-11 (November 1976), 644–654.

[18] R. H. Morris, and K. Thompson, “Unix password security”, Communications of the

ACM 22, 11 (November 1979), 594.

[19] R. L. Rivest and A. Shamir. PayWord and MicroMint-two simple micropayment

schemes. In Mark Lomas, editor, Proceedings of 1996 International Workshop on

Security Protocols, volume 1189, Lecture Notes in Computer Science, pages 69-87.

Springer, 1997.

[20] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems”, Communications of the ACM, 21(2):120–126, 1978.

[21] Vipul Goyal and Rohit Tripathy, “An Efficient Solution to the ARP Cache Poisoning

Problem”, 10th Australasian Conference on Information Security and Privacy (ACISP

2005), LNCS 3574, Springer-Verlag, July 2005.

[22] B. Schneier and J. Kelsey, “Cryptographic support for secure logs on untrusted

machines”, In Proceedings 7th USENIX Security Symposium (San Antonio, Texas), Jan

1998.

[23] P. T. Devanbu and S. Stubblebine. Stack and queue integrity on hostile platforms. In

Proceedings 1998 IEEE Symposium on Research in Security and Privacy, May 1998.

(Oakland).

[24] S. Even, O. Goldreich, and S. Micali, “On-line/off-line digital signatures”, Crypto ‘89,

LNCS Vol No. 435, pp 263–277, Springer-Verlag, 1990.

[25] D.L. McDonald, R.J. Atkinson, C. Metz "One-Time Passwords in Everything (OPIE):

Experiences with Building and Using Strong Authentication," In Proc. of the 5th

USENIX UNIX Security Symposium, June 1995.

[26] T. Berson, L. Gong and M. Lomas, "Secure, Keyed and Collisionful Hash Function",

Technical Report, SRI International, September 1994.

[27] Kan Zhang, Efficient Protocols for Signing Routing Messages, Proceedings of the

Network and Distributed System Security Symposium, San Diego, California, USA,

1998.

[28] R.C. Merkle, A Digital Signature Based on a Conventional Encryption Function, Proc.

CRYPTO’87, LNCS 293, Springer Verlag, 1987, pp 369-378.

[29] R.C. Merkle, A Certified Digital Signature, Proc. CRYPTO’89, LNCS 435, Springer

Verlag, 1990, pp 218-238.

[30] D. Bleichenbacher and U.M. Maurer, Directed Acyclic Graphs, One-way Functions and

Digital Signatures, Proc. CRYPTO’94, LNCS 839, Springer Verlag, 1994, pp 75-82.

[31] D. Bleichenbacher, U.M. Maurer, Optimal Tree-Based One-time Digital Signature

Schemes, Proc. STACS’96, LNCS 1046, Springer-Verlag, pages: 363-374, 1996.

[32] D. Bleichenbacher, U.M. Maurer, On the efficiency of one-time digital signatures, Proc.

ASIACRYPT’96, LNCS 1163. Springer-Verlag, pages: 145-158, 1996.

[33] K. Bicakci, G. Tsudik, B. Tung, How to construct optimal one-time signatures, Computer

Networks (Elsevier), Vol.43(3), pp. 339-349, October 2003.

[34] M.Jakobsson and S.Wetzel, Secure Server-Aided Signature Generation. In Proc.of the

Workshop on Practice and Theory in Public Key Cryptography (PKC 2001), LNCS

No.1992, Springer, 2001.

[35] N.Asokan, G.Tsudik and M.Waidners, “Server-supported signatures”, Journal of

Computer Security, November 1997.

[36] X.Ding, D.Mazzocchi and G.Tsudik. Experimenting with Server-Aided Signatures,

Network and Distributed Systems Security Symposium (NDSS ’02), February 2002.

[37] William Aiello, Sachin Lodha, and Rafail Ostrovsky. Fast digital identity revocation. In

Hugo Krawczyk, editor, Advances in Cryptology – Crypto ’98, volume 1462 of Lecture

Notes in Computer Science, Springer-Verlag, Berlin, Germany, 1998.

[38] Ralf Hauser, Michael Steiner, and Michael Waidner. Micro-payments based on iKP. In

14th Worldwide Congress on Computer and Communications Security Protection, pages

67–82, C.N.I.T Paris-La Defense, France, June 1996.

[39] Torben Pryds Pedersen. Electronic payments of small amounts. Mark Lomas, editor.

Security Protocols—International Workshop, volume 1189 of Lecture Notes in Computer

Science, Cambridge, UK, April 1997. Springer-Verlag, Berlin Germany.

[40] Khanh Quoc Nguyen, Yi Mu, Vijay Varadharajan, “Digital Coins based on Hash Chain”.

[41] C. Dwork, A. Goldberg, and M. Naor. On Memory-Bound Funtions for Fighting Spam.

Advances in Cryptology - Crypto 2003, Volume 2729 of Lecture Notes in Computer

Science. Springer-Verlag, 2003.

[42] A. Perrig. The BiBa One-Time Signature and Broadcast Authentication Protocol.

Proceedings of the Annual Conference on Computer and Communications Security

(CCS), pages 28-37. ACM Press, 2001.

[43] Steven Cheung. An efficient message authentication scheme for link state routing. In 13th

Annual Computer Security Applications Conference, pages 90–98, 1997.

[44] Ralf Hauser, Antoni Przygienda, and Gene Tsudik. Reducing the cost of security in link

state routing. In Proceedings of the Symposium on Network and Distributed Systems

Security (NDSS ’97), pages 93–99, San Diego, California, February 1997. Internet

Society.

[45] Kan Zhang. Efficient protocols for signing routing messages. In Proceedings of the

Symposium on Network and Distributed Systems Security (NDSS ’98), San Diego,

California, March 1998. Internet Society.

[46] Y.-C. Hu, D. Johnson, and A. Perrig. SEAD: Secure Efficient Distance Vector Routing in

Mobile Wireless Ad Hoc Networks. Workshop on Mobile Computing Systems and

Applications (WMCSA) 2002. IEEE Computer Society Press, 2002.

[47] Y.-C. Hu, A. Perrig, and D. Johnson. Efficient Security Mechanisms for Routing

Protocols. Annual Symposium on Network and Distributed System Security (NDSS)

2003. Internet Society, 2003.

[48] Donggang Liu and Peng Ning. Efficient distribution of key chain commitments for

broadcast authentication in distributed sensor networks. In Network and Distributed

System Security Symposium, NDSS ’03, pages 263– 276, February 2003.

[49] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J. D. Tygar. SPINS:

Security protocols for sensor networks. Wireless Networks, 8(5):521–534, September

2002.

[50] D. Coppersmith and M. Jakobsson. Almost optimal hash sequence traversal. In

Proceedings of the Fourth Conference on Financial Cryptography (FC ’02), Lecture

Notes in Computer Science, 2002.

[51] M. Jakobsson. Fractal hash sequence representation and traversal. In Proceedings of the

2002 IEEE International Symposium on Information Theory (ISIT ’02), pages 437–444,

July 2002.

[52] Yaron Sella. On the computation-storage trade-offs of hash chain traversal. In

Proceedings of Financial Cryptography 2003 (FC 2003), 2003.

[53] Marc Fischlin. Fast Verification of Hash Chains. In Proceedings of RSA Security 2004 -

Cryptographer's Track, Lecture Notes in Computer Science, Springer-Verlag, 2004.

