
Attacking a Public Key Cryptosystem Based on

Tree Replacement

Maŕıa Isabel González Vasco
∗

and David Pérez Garćıa
†

Área de Matemática Aplicada, Universidad Rey Juan Carlos

C/ Tulipán s/n. 28933, Móstoles, Madrid, Spain

{migonzalez, dperezg} @escet.urjc.es

Abstract

We point out several security flaws in the cryptosystem based on tree
replacement systems proposed by Samuel, Thomas, Abisha and Subra-
manian at INDOCRYPT 2002. Due to the success of (among others)
very simple ciphertext-only attacks, we evidence that this system does
not, in its present form, offer acceptable security guarantees for cryp-
tographic applications.

Keywords: Cryptanalysis, Public Key Cryptosystems Tree Replacement
systems

1 Introduction

In the recent years, the unceasing harassment of quantum computing to
number-theoretical cryptographic tools has encouraged an intensive search
for cryptographic primitives arising from different fields of mathematics and
theoretical computer science. A particularly active field of research has
been that of constructing public key cryptosystems from word/rewritting
problems in different structures (formal languages [9, 10], groups [11, 12, 13],
monoids [1] etc.). However, up until now all the proposed schemes have been
identified as insecure [3, 4, 5, 6].

At INDOCRYPT 2002, Samuel, Thomas, Abisha and Subramanian pro-
posed a public key encryption scheme based on tree replacement systems.

∗Work partially supported by project BFM2001-3239-C03-01.
†Work partially supported by project BFM2001-1284.

1

The spirit of their proposal is quite on the line of those mentioned above,
though their approach presented also the nice feature of representing both
plaintext and ciphertex messages in the form of trees, exploiting thus the
nice computational features of this discrete mathematical structure. Unfor-
tunately, we have identified several security flaws in their proposal, some of
which actually arise from the tree representation.

This contribution is organized as follows; in Section 2 we briefly describe
the scheme of Samuel et al. and its building blocks. Thereafter, we detail
the identified flaws on the system in Section 3. In Section 3.1 we remark the
necessity of detailing a careful key generation procedure in order to ensure
uniqueness of decryption. In this direction we study in Section 3.1.1 the case
when no variables are involved in the tree replacement system. Section 3.2.
is devoted to the description of the attacks we have successfully carried out
into the scheme. We conclude by pointing out roughly possible modifications
of the original design that could prevent our attacks.

2 The Scheme of Samuel et al.

We give a brief description of the Public Key Cryptosystem proposed in [8]
by Samuel et al.

Recall that, given a finite alphabet Υ and a finite set of variables X =
{x1, . . . , xn}, the set of trees over Υ , with variables in X, TΥ(X), can be
defined as the set of functions: t : D 7−→ {Υ

⋃

X} such that:

• D is a tree domain (that is, a set of strings over N s.t., for each u ∈ D

every prefix of u is also in D, and if ui ∈ D, i ∈ N, then uj ∈ D, for
all j ∈ {1, . . . , i − 1})

• For every u ∈ D, if n = |{i ∈ N|ui ∈ D}|, then n = r(t(u)), where
r : Υ ∪ X 7−→ N is a rank function.

That is, TΥ(X), is a set of trees which nodes are addressed by strings of
natural numbers (in D) and labelled with elements of Υ∪X. Each node has
a certain natural number assigned, its rank, which is actually its number of
direct descendants. The elements of a tree with no descendants are called
leaves and the element corresponding to the empty string is called the root
of the tree (and is, of course, unique).

A composition law of trees can be easily defined. For the case t, s ∈
TΥ({x}) is carried out as a substitution of each node of t labelled by a

2

variable x by the tree s. We denote the composition by ts. For the general
definition in the case |X| > 1 see [8].

In this setting, a tree replacement system (S,−→), is a subset of TΥ(X)×
TΥ(X), together with a relation −→ defined by:

t −→ s ⇐⇒ t ←→ s and |t| > |s|

where t ←→ s if and only if t and s can be obtained from the same tree
T ∈ TΥ(X) by substituting one of its subtrees by two trees s̄ and t̄ s.t.,
either

1. (s̄, t̄) ∈ S

or

2. s̄ and t̄ are constructed by choosing a function h : X → TΥ(X) and
then substituting each variable x ∈ X of two trees ŝ, t̂ (with (ŝ, t̂) ∈ S)
by the tree h(x).

Here |t| denotes the number of nodes of t. We say that a tree t is irreducible
with respect to S if there exists no tree s s.t. t −→ s.

Essentially, a tree replacement system S defines a congruence relation on
the set TΥ(X), which identifies trees constructed by inserting at some point
‘branches’ that are equivalent with respect to S. Using the function h, we
can insert this equivalent branches in the ‘middle’ of a tree. However, it is
easy to see that, when S ⊂ TΥ × TΥ, this cannot be done and equivalent
trees are constructed only by subtitutions of type 1 as above.

A tree replacement system is called Church-Rosser if,

∀ t1, t2 ∈ TΥ(X)with t1 ←→∗ t2 there is t3 ∈ TΥ(X)

such that t1 −→∗ t3 and t2 −→∗ t3.

Here, ←→∗ and −→∗ denote, respectively, the equivalence relation defined
as the reflexive transitive closure of ←→ and −→ .

As it is proved in [2], the word problem for any Church Rosser tree re-
placement system is solvable in polynomial time. On the other hand, the
problem of deciding whether two trees are congruent w.r.t. an arbitrary tree
replacement system can be computationally very hard.

With these ingredients, the scheme of Samuel et al. can be described as
follows:

3

Let ∆, Σ be two finite alphabets, such that the cardinal of ∆, |∆|, is signif-
icantly greater than that of Σ, |Σ|.
Consider a Church-Rosser tree replacement system (S,−→) over Σ, and n

trees t1, . . . , tn which are irreducible and not congruent with respect to S.

Let g : ∆ −→ Σ ∪ {λ} be a mapping, which we may extend to map trees in
T∆(X) to trees in TΣ(X). Let (S̄,−→) be a tree replacement system over ∆
fulfilling the following requirements:

• S̄ ⊆ {(s, t) | g(s) ←→∗ g(t) w.r.t. S}

• If a node in t is labelled by a symbol mapped by g to λ, (i.e., a dummy
symbol), all but one of the subtrees rooted by a children of that node
consist only of dummy-labelled nodes.

Public Key: The tree replacement system (S̄,−→), together with n trees
s1, . . . , sn ∈ T∆(X), such that

∀i = 1, . . . , n, g(si) is congruent to ti.

Secret Key: The Church Rosser replacement system (S,−→), together
with the trees t1, . . . , tn ∈ TΣ(X) and the mapping g.

Encryption: Given a plaintext p = i1 · · · ik, with ir ∈ {1, . . . , n}, the
corresponding ciphertext is a tree C = s′i1 · · · s

′
ik

, where for each r, s′ir is a
tree congruent to sir w.r.t. S. To be sure that we can encrypt every plaintex
using this system (and avoid composition problems), the natural assumption
is to consider X = {x}.

Decryption: Given a valid ciphertext c, g(c) is actually a composition
t′i1 · · · t

′
ik

, where each t′ir is a tree congruent to tir w.r.t. S̄. As S̄ is Church-
Rosser, there exists a polynomial time algorithm for computing tir from
t′ir , and thus the authors claim that the plaintext p can be recovered in
polynomial time.

3 Cryptanalysis of the scheme

3.1 A remark on the uniqueness of decryption

A first question that arises when reading the description of the above scheme
is whether the decryption procedure can actually be done uniquely. As a

4

matter of fact, from the given proposal, it is not clear why a given ciphertext
should only correspond to a valid plaintext. In other words, given a tree
t ∈ TΣ(X), could it be the case that t is congruent to two different trees
constructed composing the elements of {t1, . . . , tn}?

It is known (see [7]) that in the above setting, if S is Church Rosser,
normal forms for trees are unique, that is, if given t ∈ TΣ(X), there exists
s, s′, irreducible, so that t −→∗ s and t −→∗ s′, then s = s′. However,
from this property it is not clear whether given a set of irreducible trees
{t1, . . . , tn} there may not be two trees

ti1 · · · tik , and tj1 · · · tjm , (ir, js ∈ {1, . . . , n} for r = 1, . . . , k, s = 1, . . . , m)

both congruent to a fixed t ∈ TΣ(X).

For a trivial example take Σ = {a}, X = {x}, S = ∅ and consider t1 :=
a(x), t2 := a(a(x)) (note that, trivially, the system S is Church-Rosser). It
is clear that these trees are irreducible and non-congruent. However, t1t1 is
congruent (in fact equal) to t2.

As a result, we stress the necessity of imposing further conditions on the set
{t1, . . . , tn} to assure uniqueness of the decryption process (see Corollary
3.3). To avoid this problem with the current design, it suffices to impose
encrypting only one element of {1, . . . , n} at a time (with the corresponding
lack of efficiency).

3.1.1 The case S ⊂ TΥ × TΥ

When no variable is involved in a tree replacement system, that is, S ⊂
TΥ × TΥ, the location of the variables in equivalent trees is in some sense
stable:

Proposition 3.1 If S ∈ TΥ × TΥ and s, t ∈ TΥ(X) verify s ←→ t, then
s and t have the same variables, in the same addresses and with the same
ancestors. Formally,

If u = u1 · · ·un ∈ dom(t) is s.t. t(u) = xi ∈ X, then u ∈ dom(s),
s(u) = xi and t(u1 · · ·uj) = s(u1 · · ·uj) for every 1 ≤ j ≤ n.

Proof: The idea behind is really simple. If S ∈ TΥ × TΥ, we know that
both s and t are obtained from a tree T by substituting a certain address
u by s̄ ∈ TΥ and t̄ ∈ TΥ (recall that in this case transformations of type 2
are not carried out). Therefore, as in the resulting tree there is no variable
among the children of u, u cannot be an ancestor of any variable of t or s.

5

In conclusion, t and s have the same variables, in the same addresses and
with the same ancestors. ¤

The result above shows that two equivalent trees have the same ‘skele-
ton’, consisting of the set of ancestors of the variables. Using this it is not
difficult to obtain the following

Corollary 3.2 If S ⊆ TΥ × TΥ and t1, . . . , tn ∈ TΥ(X), the following are
equivalent:

1. t1, . . . , tn are irreducible.

2. t = t1 · · · tn is irreducible.

We can now show that the example given in [8] does have uniqueness in
the decryption.

Corollary 3.3 If S ∈ TΥ × TΥ, S is a Church-Rosser, X = {x} and
t1, . . . , tn ∈ TΥ(X) are non-congruent irreducible trees such that x appears
just one time in each ti and such that

|ti| = |tj |, for every i, j ∈ {1, . . . , n}, (1)

then there is uniqueness in the decryption, that is, if ti1 · · · tik is equivalent
(by S) to tj1 · · · tjm, then k = m and ir = jr for each r ∈ {1, . . . , k}.

Proof: By Corollary 3.2, both ti1 · · · tik and tj1 · · · tjm are irreducible.
As they are equivalent and S is Church-Rosser, we obtain that they are in
fact equal.

By the hypothesis, there is just one x in the tree. So, as we know |tik |,
we can go up in the tree from x to obtain the root of tik . But |tjm | = |tik |,
so, doing the same reasoning, we obtain that the root of tjm is exactly the
same. As ti1 · · · tik = tj1 · · · tjm we can conclude that tik = tjm . We erase
this branch from the tree and go on to obtain that k = m and ir = jr for
each r ∈ {1, . . . , k}. ¤

3.2 Attacking the scheme

We expose different types of attacks that may be applied to the proposed
scheme. To illustrate its effectiveness, we make use of the example described
in [8], specified by:

6

Σ = {a, b, c, d, e, f, g},

r(e) = 2, r(a) = r(b) = r(c) = 1, r(d) = r(f) = r(g) = 0

X = {x}, ∆ = {c1, . . . , c17}

t1 = e(a(d), e(x, c(d))), t2 = e(e(x, c(d)), b(d))

s1 = c5(c12(c3(c7), c2(x, c4(c7))), c9(c16)),
s2 = c5(c2(c12(x, c4(c7)), c6(c13)), c5(c16, c9))

S ≈ [a(d) ←→ a(a(d)); b(d) ←→ e(f, b(d)); c(d) ←→ e(g, b(d))]

S̄ ≈













c3(c7) ←→ c8(c8(c7)) ←→ c11(c5(c3(c13)))
←→ c5(c3(c13)) ←→ c16(c9, c8(c8(c7)));

c6(c13) ←→ c2(c1, c10(c7)) ←→ c12(c1, c5(c6(c13)));
c4(c7) ←→ c12(c17, c6(c13)) ←→ c5(c9, c4(c7));

c9 ←→ c5(c16, c9); c19 ←→ c9(c5)













g(c1) = f ; g(c17) = g; g(c4) = g(c14) = c; g(c7) = g(c13) = d;
g(c3) = g(c8) = g(c11) = a; g(c6) = g(c10) = g(c15) = b;

g(c5) = g(c9) = g(c16) = λ; g(c2) = g(c12) = e.

Rank analyzing attack. Note that, if the mapping g is to preserve the tree
structure, it should indeed preserve ranks. Thus, knowledge of the ranks in
∆ and Σ may reveal valuable information for retrieving g. Rank analyzing
can in particular help identifying dummy symbols, reducing subsequently
the size of the alphabet ∆.

For instance, in the example above; c5 appears to have rank two and one
(as it appears in the trees c5(c6(c13))) and c5(c9, c4(c7)) in which it has one
and two sons, respectively. Thus, we conclude g(c5) = λ. Similarly, just by
analyzing the public key one can infer g(c16) = g(c9) = λ (as c16 appears as
a node with zero and two sons in two different trees, and c9 as a node with
zero and one son).

7

After erasing these dummy symbols, we reduce the public key to:

✄

✂

¡

✁
s1 c12

❝❝★★
c3

c7

c2

❡❡✪✪
x c4

c7

✄

✂

¡

✁
s2 c2

❩❩✚✚
c12

❡❡✪✪
x c4

c7

c6

c13

S̄ ≈





c3(c7) ←→ c8(c8(c7)) ←→ c11(c3(c13)) ←→ c3(c13);
c6(c13) ←→ c2(c1, c10(c7)) ←→ c12(c1, c6(c13));

c4(c7) ←→ c12(c17, c6(c13))





But we can even know more. For example, as r(c12) = r(c2) = r(e), we
know it must be g(c12), g(c2) ∈ {e, λ}. But if r(c2) = λ, then looking at s1

one sees that c4(c7) must be also equal to λ. But using that, we obtain that
c12 appears with rank 1 in s2 and so c12 is also equal to λ. But this cannot
happen because then, necessarily, s1 = s2 = {x}.
Also, it is clear that g should map the elements of the set {c13, c19, c7, c1, c17}
to elements of rank 0 in Σ or to λ, that is, to elements in {d, f, g, λ}. In a
similar way, g({c3, c8, c11, c6, c10, c4}) ⊆ {a, b, c, λ}.

The case S ⊂ TΣ × TΣ. By Proposition 3.1, we have a fixed ‘skeleton’
in the ciphertext from which we can separate the basic trees s′i1 , . . . , s

′
ik

to
crytanalize them separately.

For example, in [8], they give as ciphertext a tree Q. After erasing the
dummy symbols (so we will work with the reduced public key) we obtain
the following tree.

8

✄

✂

¡

✁
c2
❵❵❵❵❵❵❵

✥✥✥✥✥✥✥
✄

✂

¡

✁
c12❤❤❤❤❤❤❤❤❤
✭✭✭✭✭✭✭✭✭

✄

✂

¡

✁
c12

❤❤❤❤❤❤❤❤
✭✭✭✭✭✭✭✭

c11

c11

c3

c7

✄

✂

¡

✁
c2
❳❳❳❳❳❳

✘✘✘✘✘✘✄

✂

¡

✁
c2
❳❳❳❳❳❳

✘✘✘✘✘✘✄

✂

¡

✁
c12

❍❍❍
✟✟✟

✄

✂

¡

✁
x c12

❜
❜❜

✧
✧✧

c17 c12

❩❩✚✚
c1 c2

❅❅¡¡
c1 c10

c7

c12

❅❅¡¡
c1 c6

c13

c12

❅❅¡¡
c17 c6

c13

c4

c7

c12

❩❩✚✚
c1 c2

❅❅¡¡
c1 c10

c7

As in both s1 and s2, x has just two ancestors, we begin in the x of
Q and go up to its grandfather. We call s′i1 the subtree generated by it,
replace it by an x and apply the same procedure again. Doing this three
times we are able to decompose Q = s′i3s

′
i2

s′i1 (see below), where (as stated
in Proposition 3.1) s′ij is equivalent to sij and the plaintext we are trying

to obtain is i3i2i1. Now, the father and grandfather of x in s′ij and sij are

the same (again by Proposition 3.1). As c2 is the root of s2, s
′
i3

, s′i1 and c12

is the root of s1, s
′
i2

, we obtain directly that the plaintext has to be 212.

9

✄

✂

¡

✁

si3

✄

✂

¡

✁
c2

❍❍❍
✟✟✟

✄

✂

¡

✁
c12

❅❅¡¡
✄

✂

¡

✁
x c4

c7

c12

❩❩✚✚
c1 c2

❅❅¡¡
c1 c10

c7

✄

✂

¡

✁

si2

✄

✂

¡

✁
c12

❍❍❍
✟✟✟

c11

c11

c3

c7

✄

✂

¡

✁
c2

❜
❜

✧
✧

✄

✂

¡

✁
x c12

❅❅¡¡
c17 c6

c13

✄

✂

¡

✁

si1

✄

✂

¡

✁
c2
❳❳❳❳❳❳

✘✘✘✘✘✘✄

✂

¡

✁
c12

❍❍❍
✟✟✟

✄

✂

¡

✁
x c12

❜
❜❜

✧
✧✧

c17 c12

❩❩✚✚
c1 c2

❅❅¡¡
c1 c10

c7

c12

❅❅¡¡
c1 c6

c13

Moreover, there are even more ways to gain information about the plain-
text.

Ciphertext-only attacks. It is also worth noticing that if the public key
(namely, the rewriting system) is not carefully chosen, a lot of information
about the corresponding plaintext may be retrieved just by observing a given
ciphertext string. Let us consider the encryption of a one-digit text in the
example given in [8] (we consider the reduced form obtained after erasing
the dummy symbols). The letter c3 appears only in s1 and the only chain
of relations in S̄ that contains c3 is the following

c3(c7) ←→ c8(c8(c7)) ←→ c11(c3(c13)) ←→ c3(c13)

Now, if we use this relations we will obtain at least one of the letters
c3, c8, c11. But neither of them appears in any other relation of S̄. Thus, if

10

the ciphertext contains the letters c8, c11 or c3 it clearly corresponds to the
plaintext 1. If not, it will correspond to the plaintext 2.

Reaction attacks. Finally we want to stress that also, if the keys of the
above scheme are not chosen carefully, it could also be vulnerable to so-called
Reaction Attacks, which have been proven useful in similar rewriting-based
cryptosystems [5, 6].

Let us now suppose that the attacker has access to a black box that
allows him to distinguish random trees in T∆(X) from proper ciphertexts.
Such a device could indeed prove useful for gaining information about the
public key; namely it can be used for identifying dummy symbols, or letters
that have the same image by g (see the discussion in [6]).

4 Conclusion

Indeed, there are ways of minimizing the effect of the above mentioned
attacks. In order to prevent rank attacks, it would be necessary that knowing
the rank of a letter δ ∈ ∆ there still were ‘many ’ possibilities for its image
by g. Ideally, most letters in Σ should have the same rank, which in the
end means the message spaces should be restricted to homogeneous trees.
Preventing ciphertex-only attacks is also a rather subtle task; one should
carefully study the distributions of the trees in T∆(X) in all public words as
well as in the rewriting rules, so that they are as close to uniform as possible
(and thus its appearance on the ciphertext provides no information about
the corresponding plaintext). In particular, that implies all letters in ∆
should play a similar role (appear in all the trees si and in all the rewritting
rules). Situations like that of the example in [8], where the letters c14, c15

neither appear on the public trees, nor in the rules of S̄, should not occur.
Finally, in order to avoid the attacks given by Proposition 3.1, one should
consider tree replacement systems that involve the variables. The problem
is that then it seems to be very involved to prove the necessary uniqueness
of the decryption.

Thus, as a summary, we can give no concrete steps towards the design of
a key generation process with could guarantee an acceptable security level.

References

[1] P.J. Abisha and D.G. Thomas and K.G. Subramanian, ‘Public Key
Cryptosystems Based on Free Partially Commutative Monoids and

11

Groups’ In Proceedings of INDOCRYPT 2003, Lecture Notes in
Computer Science 2904, 2003, pp. 218–227.

[2] J.H. Gallier and R.V. Book. ‘Reductions in tree replacement systems’,
Theoretical Computer Science, 37, 1985, pp. 123–150.

[3] M.I. González Vasco and R. Steinwandt ‘Clouds over a Public Key
Cryptosystem Based on Lyndon Words’ Information Processing Let-
ters, 80, 2001, pp.239–242.

[4] J-M. Bohli and M.I. González Vasco and C. Mart́ınez and R. Stein-
wandt ‘Weak Keys in MST1’ Preprint. Available at: Cryptology
ePrint Archive: Report 2002/070, 2002.

[5] M.I. González Vasco and R. Steinwandt. ‘A Reaction Attack on a
Public Key Cryptosystem Based on the Word Problem’, Applicable
Algebra in Engineering, Communication and Computing, 14: 335–
340, 2004.

[6] M.I. González Vasco and R. Steinwandt. ‘Pitfalls in public key cryp-
tosystems based on free partially commutative monoids and groups’,
Cryptology ePrint Archive: Report 2004/012 .

[7] B.K. Rosen ‘Tree-Manipulating Systems and Church-Rosser Theo-
rems’, Journal of the ACM, 20, 1, 1973, pp. 160–187.

[8] S.C. Samuel, D.G. Thomas, P.J. Abisha, and K.G. Subramanian
‘Tree Replacement and Public Key Cryptosystem’, Proc. of IN-
DOCRYPT 2002, LNCS , 2551, 2002, pp. 71–78.

[9] K.G. Subramanian, R. Siromoney and P.J. Abisha ‘A DOL-TOL
Public Key Cryptosystem’, Information Processing Letters, 26, 1987,
pp. 95–97.

[10] R. Siromoney and L. Mathew ‘A Public Key Cryptosystem Based on
Lyndon Words’, Information Processing Letters, 35, 1990, pp. 33–36.

[11] N.R. Wagner and M.R. Magyarik ‘A Public Key Cryptosystem
Based on the Word Problem’ Advances in Cryptology: Proceedings
of CRYPTO 84, LNCS, 196, 1985, pp. 19–36.

[12] S.S. Magliveras and D.R. Stinson and T. Trung ‘New approaches
to designing public key cryptosystems using one-way functions and
trap-doors in finite groups’ Journal of Cryptology, 15, 2002, pp. 285–
297.

12

[13] M. Garzon and Y. Zalcstein ‘The Complexity of Grigorchuk groups
with application to cryptography’Theoretical Computer Science, 88,
1991, pp. 83–98.

13

