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Abstra
t

We show that in appli
ations that use the DiÆe-Hellman (DH) transform but take 
are

of hashing the DH output (as required, for example, for se
ure DH-based en
ryption and key

ex
hange) the usual requirement to work over a DDH group, i.e., a group in whi
h the De
isional

DiÆe-Hellman assumption holds, 
an be relaxed to only requiring that the DH group 
ontains a

large enough DDH subgroup. In parti
ular, this implies the se
urity of (hashed) DiÆe-Hellman

over non-prime order groups su
h as Z

�

p

. Moreover, our results indi
ate that one 
an work

dire
tly over Z

�

p

without requiring any knowledge of the prime fa
torization of p�1 and without

even having to �nd a generator of Z

�

p

. These results are obtained via a general 
hara
terization

of DDH groups in terms of their DDH subgroups, and a relaxation (
alled t-DDH) of the DDH

assumption via 
omputational entropy. We also show that, under the short-exponent dis
rete-

log assumption, the se
urity of the hashed DiÆe-Hellman transform is preserved when repla
ing

full exponents with short exponents.

1 Introdu
tion

The DiÆe-Hellman Transform and DDH Assumption. The DiÆe-Hellman transform is

one of the best-known and fundamental 
ryptographi
 primitives. Its dis
overy by Whit�eld DiÆe

and Martin Hellman [DH76℄ revolutionized the s
ien
e of 
ryptography and marked the birth of

Modern Cryptography. Even today, almost 30 years later, the DiÆe-Hellman (or DH for short)

transform remains the foundation of some of the most basi
 and widely used 
ryptographi
 te
h-

niques. In parti
ular, it underlies the DiÆe-Hellman key ex
hange and the ElGamal en
ryption

s
heme [ElG85℄, and is used over a large variety of mathemati
al groups. In its basi
 form the DH

transform maps a pair of elements g

a

; g

b

drawn from a 
y
li
 group G generated by the element g

into the group element g

ab

. (Here we use the exponential notation that originates with multipli
a-

tive groups but our treatment, whi
h is generi
 in nature, applies equally to additive groups su
h

as Ellipti
 Curves.) The usefulness of this transform was originally envisioned under the 
onje
-

ture, known as the Computational DiÆe-Hellman (CDH) assumption, that states the infeasibility

of 
omputing the value g

ab

given only the exponentials g

a

and g

b

. Namely, the value g

ab

should be


omputable only by those knowing one of the exponents a or b. Note that the CDH assumption

�
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implies the diÆ
ulty of 
omputing dis
rete logarithms over the group G (the 
onverse, however, is

unknown for most pra
ti
al groups).

Over time it was realized that the CDH assumption is insuÆ
ient to guarantee the se
urity

of most DH appli
ations (in parti
ular those mentioned above). For this reason a mu
h stronger

assumption was introdu
ed: the De
isional DiÆe-Hellman (DDH) assumption postulates that given

the values g

a

and g

b

not only it is 
omputationally hard to derive the value g

ab

but even the

seemingly mu
h easier task of distinguishing g

ab

from random group elements is infeasible [Bra93℄

(see [Bon98℄ for a survey on the DDH assumption). On the basis of this assumption one 
an 
onsider

the DH transform as a good generator of pseudorandomness as required in key-ex
hange, en
ryption

and other 
ryptographi
 appli
ations. Hereafter we refer to groups in whi
h the DDH assumption

holds as DDH groups. The need to rely on the DDH disquali�es many natural groups where the

assumption does not hold. For example, any group whose order is divisible by small fa
tors, su
h

as the 
lassi
 groups Z

�

p

of residues modulo a large prime p; in this 
ase the group's order, p� 1, is

always divisible by 2 (for random p, p�1 is very likely to have additional small fa
tors). Due to the

per
eived need to work over DDH groups it is often re
ommended in the 
ryptographi
 literature

that one work over subgroups of large prime order where the DDH assumption is believed to hold.

The Need for Hashing the DiÆe-Hellman Result. Interestingly, the DDH assumption, while

apparently ne
essary, turns out to be insuÆ
ient for guaranteeing the se
urity of some of the most

basi
 appli
ations of the DH transform. Consider for example the ElGamal en
ryption s
heme:

Given a publi
 key y = g

a

(for se
ret a), a message m 2 G is en
rypted by the pair (g

b

;my

b

)

where the value b is 
hosen randomly anew for ea
h en
ryption. In this 
ase, the DDH assumption

guarantees the semanti
 se
urity [GM84℄ of the s
heme (against 
hosen-plaintext atta
ks) provided

that the plaintexts m are elements of the group G. However, if the message spa
e is di�erent, e.g.

the set of strings of some length smaller than log jGj, then the above en
ryption s
heme be
omes

problemati
. First of all, you need to en
ode messages m as group elements in G and that 
ould

be 
umbersome. If G is a subgroup of prime order of Z

�

p

, a naive (and 
ommon) approa
h would

be to trivially en
ode m as an integer and perform the multipli
ation my

b

modulo p. But now the

s
heme is inse
ure even if the group G does satisfy the DDH assumption. A good illustration of the

potential weaknesses of this straightforward (or \textbook") appli
ation of ElGamal is presented

in [BJN00℄. It is shown that if the spa
e of plaintexts 
onsists of random strings of length shorter

than log jGj (e.g., when using publi
 key en
ryption to en
rypt symmetri
 keys) the above s
heme

turns out to be inse
ure even under a 
iphertext-only atta
k and, as said, even if the group G is

DDH. For example, if the plaintexts to be en
rypted are keys of length 64, an atta
ker that sees a


iphertext has a signi�
ant probability of �nding the plaintext with a work fa
tor in the order of

2

32

operations and 
omparable memory; for en
rypted keys of length 128 the 
omplexity of �nding

the key is redu
ed to 2

64

.

A general and pra
ti
al approa
h to solving these serious se
urity weaknesses is to avoid using

the DH value itself to \mask" m via multipli
ation, but rather to hash the DH value g

ab

to obtain

a pseudorandom key K of suitable length whi
h 
an then be used to en
rypt the message m under

a parti
ular en
ryption fun
tion (in parti
ular, K 
an be used as a one-time pad). In this 
ase

the hash fun
tion is used to extra
t the (pseudo) randomness present in the DH value. Suitable

hash fun
tions with provable extra
tion properties are known, for example universal hash fun
tions

[CW79, HILL99℄. The above 
onsiderations are 
ommon to many other appli
ations of the DH

transform, in
luding en
ryption s
hemes se
ure against 
hosen-
iphertext atta
ks [CS98℄ and, most

prominently, the DiÆe-Hellman key-ex
hange proto
ol (in the latter 
ase one should not use the

DH output as a 
ryptographi
 key but rather derive the agreed shared keys via a hashing of the DH
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result); see Se
tion 4.2 for a dis
ussion on how these appli
ations 
hoose a random hash fun
tion

out of a given family. For additional examples and justi�
ation of the need for hashing the DH

output see [Bon98, NR97, CS98, ABR01℄. In the sequel we refer to the 
ombination of the DH

transform with a (universal) hash fun
tion as the hashed DH transform.

1.1 Our Results

The Se
urity of the Hashed DH Transform over non-DDH Groups. In light of the need

to hash the DH value, some natural questions arise: when applying the hashed DH transform, is it

still ne
essary to work over groups where the DDH assumption holds, or 
an this requirement be

relaxed? Can one obtain a se
ure (hashed) DH transform over a non-DDH group, and spe
i�
ally,

is doing hashed DH over Z

�

p

se
ure? In this paper we provide answers to these questions. Our

main result 
an be informally stated as follows: For any 
y
li
 group G, applying the hashed DH

transform over G has the same se
urity as applying the hashed DH transform dire
tly over the

maximal DDH subgroup of G. In parti
ular, one 
an obtain se
ure appli
ations of the hashed

DH transform over non-DDH groups; the only requirement is that G 
ontain a (suÆ
iently large)

DDH subgroup (see below for the exa
t meaning of \suÆ
iently large" and other parameter size


onsiderations). A signi�
ant point is that we are only 
on
erned with the existen
e of su
h a

subgroup; there is no need to know the exa
t size or stru
tural properties of, nor to be able to


onstru
t, this spe
i�
 (maximal) DDH subgroup.

A parti
ularly interesting 
onsequen
e of the above result is that assuming that DDH holds on

large subgroups of Z

�

p

(we will see later that it is suÆ
ient to assume that DDH holds on large

prime-order subgroups of Z

�

p

), one 
an build se
ure (hashed) DH appli
ations working dire
tly over

Z

�

p

, where p is an un
onstrained random prime. Only the length of the prime is spe
i�ed, while other


ommon requirements su
h as the knowledge of the partial or full fa
torization of p � 1, insisting

that p � 1 has a prime fa
tor of a parti
ular size, or disqualifying primes for whi
h (p � 1)=2 has

a smooth part, are all avoided here. Moreover, there is no need to �nd a generator of Z

�

p

; instead,

the plaussible assumption that p�1 has suÆ
iently large prime fa
tors allows us to use a randomly


hosen element r from Z

�

p

in lieu of a generator of Z

�

p

. In this 
ase the group G = hri is guaranteed

to have a large enough DDH subgroup, and therefore the hashed DH transform over G is se
ure

(this is true even if the order of r has small fa
tors or if it misses some prime divisors of p�1). Note

that avoiding the need to �nd a generator for Z

�

p

allows us to work with primes p with unknown

fa
torization of p� 1 (whi
h is otherwise required to �nd a Z

�

p

generator).

The t-DDH Assumption. In order to prove our main result (i.e., that the hashed DH transform

is se
ure over any group G, not ne
essarily a DDH group, that 
ontains a large enough DDH

subgroup), we introdu
e a relaxation of the DDH assumption whi
h we 
all the t-DDH assumption.

Informally, a group G satis�es the t-DDH assumption (where 0 � t � jGj) if given the pair (g

a

; g

b

)

(where g is a generator of G) the value g

ab


ontains t bits of 
omputational entropy. The notion

of 
omputational entropy, introdu
ed in [HILL99℄, 
aptures the amount of 
omputational hardness

present in a probability distribution. In other words, we relax the \full hardness" requirement at

the 
ore of the DDH assumption, and assume partial hardness only. Moreover, we do not 
are about

the exa
t subsets of bits or group elements where this hardness is 
ontained, but only assume their

existen
e. On this basis, and using the entropy-smoothing theorem from [HILL99℄ (also known as

the leftover hash lemma), we obtain a way to eÆ
iently transform (via universal hashing) DH values

over groups in whi
h the t-DDH assumption holds into shorter outputs that are 
omputationally

indistinguishable from the uniform distribution. The maximal length of (pseudorandom) strings

that one 
an obtain as output from the hashed DH transform depends on the maximal value of t for
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whi
h the t-DDH holds in G. In parti
ular, in order to be 2

�k

-
omputationally 
lose to uniform one


an output up to t�2k pseudorandom bits (e.g., to produ
e 128-bit keys with a se
urity parameter

of k = 80 the group G should be 288-DDH, while for k = 128, G is to be 384-DDH).

After de�ning the t-DDH assumption and showing its usefulness in extra
ting random bits from

t-DDH groups, we show that if G 
ontains a DDH subgroup of order m then G is log(m)-DDH.

This forms the basis for our main result as stated above. Indeed, it suÆ
es that G has a suitably

large-order DDH subgroup to ensure that hashing the DH output results in pseudorandom outputs

of the required length. Again, it is important to stress that we do not need to know the spe
i�


DDH subgroup or its order, only (assume) its existen
e.

A Dire
t Produ
t Chara
terization of the DDH Assumption. A further 
ontribution of

our work is in providing a 
hara
terization of the DDH assumption in a given group in terms of its

DDH subgroups. Spe
i�
ally, we show that a group is DDH if and only if it is the dire
t produ
t

of (disjoint) prime power DDH groups. In other words, a group G is DDH if and only if all its

prime power subgroups are DDH. Moreover, for any 
y
li
 group G, the maximal DDH group in

G is obtained as the produ
t of all prime power DDH subgroups in G. Beyond its independent

interest, this result plays a 
entral role in our proof that the hashed DH transform over Z

�

p

is se
ure

as long as the DDH assumption holds in the subgroups of Z

�

p

of large prime order. In parti
ular,

this allows us to expand signi�
antly the groups in whi
h one 
an work se
urely with the hashed

DH transform without having to strengthen the usual assumption that DDH holds in large prime

order subgroups.

Some Pra
ti
al Considerations. Beyond the theoreti
al interest in understanding the role of

the DDH assumption and proving the usefulness of relaxed assumptions, our results provide a

justi�
ation of the use of non-DDH groups in pra
ti
al appli
ations of the DH transform as long as

these groups 
ontain a large enough prime-order subgroup and the appli
ation takes 
are of hashing

the DH output. One interesting pra
ti
al example is the IPse
's Key Ex
hange (IKE) proto
ol

[RFC2409, IKEv2℄ that uses a DiÆe-Hellman ex
hange to negotiate shared keys but is 
areful to

�rst hash the DH value (see [Kra03℄).

1

. In addition, and as pointed out before, our results also

show that under the sole assumption that the DDH holds in groups of large prime order one 
an

work dire
tly over Z

�

p

for a random prime p, without having to know the fa
torization of p � 1

and without having to �nd a generator of Z

�

p

. Moreover, the ability to work over non-prime order

groups has the bene�t of eliminating the atta
ks on the DH transform des
ribed in [LL97℄, without

having to sear
h for primes of a spe
ial form (and without ne
essitating spe
ial parameter 
he
ks

when 
ertifying publi
 keys [LL97℄).

Short-Exponent DiÆe-Hellman. One important pra
ti
al 
onsideration is the length of expo-

nents used when applying the DH transform. Full exponents when working over Z

�

p

are, typi
ally,

of size 1024 or more. Even if one works over a prime-order subgroup, one still needs to use rela-

tively large orders (e.g. 288-bit long primes), with their 
orrespondingly large exponents, to ensure

a hashed output (say of 128 bits) that is indistinguishable from uniform. (This requirement for

suÆ
iently large 
omputational entropy is often overlooked; indeed, the usual pra
ti
e of using

160-bit prime-order groups, whi
h originates with S
hnorr's signatures, may not be appropriate for

hashed DH-type appli
ations.)

Motivated by the signi�
ant 
ost of exponentiation using long exponents, we investigate whether

one 
an use short exponents (e.g. as in [RFC2409℄) and still preserve the se
urity of the hashed

1

In IKE, the family of hash fun
tions used for extra
ting a pseudorandom key from the DH value are implemented

using 
ommon pseudorandom fun
tion families keyed with random, but known, keys. The randomness extra
tion

properties of the latter families are studied in [DGHKR04℄.
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DH transform. An obviously ne
essary requirement for the short exponent pra
ti
e to be se
ure

is the assumption that the dis
rete log problem is hard when exponents are restri
ted to a short

length (say of s bits). We show that this requirement (referred to as the s-DLSE assumption) is

suÆ
ient for the se
ure use of short exponents in the setting of the DH transform; more pre
isely,

we prove (based on [Gen00℄) that if the s-DLSE assumption holds in a group G, then the hashed

DH transform in G is as se
ure with full exponents as with s-bit exponents. As a 
onsequen
e,

one 
an analyze the se
urity of the hashed DH transform in the group G with full exponents and

later repla
e the full exponents with mu
h shorter ones without sa
ri�
ing se
urity. In this 
ase

the important parameter is the length s; we note that the appropriate value of s depends on the

underlying group. See [vOW96℄ for an extensive study of the plausible value of s for di�erent

groups.

Paper's Organization. Se
tion 2 introdu
es some of the notation and basi
 notions underlying

our te
hni
al treatment (in
luding the de�nition of DDH groups and a dis
ussion of our 
on
rete

se
urity treatment). In Se
tion 3 we prove the Dire
t Produ
t DDH Chara
terization Theorem.

In Se
tion 4 we introdu
e the t-DDH Assumption and its appli
ation to the hashed DH transform,

and prove the 
entral Max-Subgroup Theorem. In Se
tion 5 we investigate the se
urity of the

hashed DH transform when using short exponents. We 
on
lude in Se
tion 6 by des
ribing the

appli
ability of our results to the hashed DH transform over non-DDH groups.

2 Preliminaries

Througout the paper we use the following notation. Let D be a probability distribution over a set

A. By x 2

D

A we mean that x is 
hosen in A a

ording to the distribution D, and with x 2

R

S we

denote the 
hoi
e of x with uniform distribution over the set S. When m is an integer we use the

notation jmj to indi
ate the length of m in bits.

2.1 The De
isional DiÆe-Hellman Assumption

Let G be a 
y
li
 group of order m generated by an element g. Consider the following problem:

Given a pair g

a

; g

b


ompute the value g

ab

. If this problem is intra
table for the group G then we

say that the Computational DiÆe-Hellman (CDH) assumption holds over G.

A mu
h stronger, but also more useful, assumption is the following. Consider the set G

3

=

G�G�G and the following two probability distributions over it:

R

G

= f(g

a

; g

b

; g




) for a; b; 
 2

R

[0::m℄g

and

DH

G

= f(g

a

; g

b

; g

ab

) for a; b 2

R

[0::m℄g

De�nition 1 We say that the (S; �) De
isional DiÆe-Hellman (DDH) Assumption holds over G = hgi

(alternatively, that G is a (S; �) DDH group) if the two distributions R

G

and DH

G

are (S; �)-

indistinguishable.

The notion of (S; �) indistinguishability is re
alled in Appendix A.

Informally, the DDH assumption states that no feasible algorithm (a \distinguisher") has a

signi�
ant probability of de
iding 
orre
tly whether the third element of the triple (g

a

; g

b

; g




) is

5



the result of the DiÆe-Hellman transform applied to g

a

; g

b

or a randomly 
hosen group element.

Clearly this is a mu
h weaker requirement than 
omputing the value g

ab

from g

a

; g

b

, and therefore,

as a general hardness assumption, DDH is stronger than the CDH. We note that, in prin
iple, the

DDH assumption 
ould hold for a group G with respe
to to a generator g but not with respe
t

to another generator g

0

. As we will see in Se
tion 2.2 this is not the 
ase when using a 
on
rete

se
urity formalism as in this paper.

Example 1: A group where the DDH assumption does not hold. Consider the group G = Z

�

p

for a

prime p. Sin
e testing for quadrati
 residuosity over Z

�

p

is easy, by 
omputing the Legendre symbol

(

�

p

), then we immediately get a distinguisher against DDH in this group: by mapping the Legendre

symbol of 1 (i.e., quadrati
 residues) to 0, and the Legendre symbol of -1 to 1, we 
an simply 
he
k

that (

g

a

p

)(

g

b

p

) = (

g




p

), and output \DH" if it holds and \R" otherwise. Clearly, if the triple is a

legal DH triple then the distinguisher outputs DH with probability 1, while in the other 
ase the

probability is only 1/2.

Example 2: A group where the DDH is 
onje
tured to hold. Let p; q be primes su
h that q divides

p� 1, and p and q are \large" (say, jqj = 1024 and jqj � 160). Let G be the subgroup of order q in

Z

�

p

. In this 
ase no eÆ
ient DDH distinguisher for G is known.

In informal statements and dis
ussions (as in the above examples) we sometimes omit the (S; �)

parameters from the DDH assumption, e.g., we say that \G is DDH", in whi
h 
ase the intent

is, as before, that no \feasible-size" distinguisher su

eeds in the above task with \signi�
ant"

probability. (See the dis
ussion below on the (in)dependen
e of the DDH assumption on a spe
i�


generator g.) Also, when the group G is 
lear from the 
ontext we often omit the subs
ript G in

the notation of the two distributions R

G

and DH

G

.

2.2 On Con
rete Se
urity and Non-Uniformity

In De�nition 1 and througout this paper, our treatment of 
omputational diÆ
ulty follows the

\
on
rete se
urity" approa
h in whi
h 
on
rete (numeri
al) bounds are established on the re-

sour
es (time/spa
e) and su

ess probability of algorithms (or \atta
kers"). This approa
h has

the advantage of providing very 
lear quantitative results whi
h, in parti
ular, highlight the exa
t


ost of se
urity redu
tions (the downside is making the formal statements of results somewhat

more 
umbersome). Maybe more signi�
ant is the fa
t that 
on
rete se
urity allows us to talk

about individual, �nite obje
ts, su
h as a single �nite group. In 
ontrast, when stating results in

terms of polynomial-time one must resort to asymptoti
s and in�nite families, something that is

not very well suited to the typi
al use of DiÆe-Hellman groups whi
h are usually de�ned and �xed

in advan
e for repeated use by many appli
ations and in many sessions (e.g., IKE, SSH, et
.)

Moreover, for some of our results it is natural to speak about an individual group and its

individial subgroups; trying to map this into an asymptoti
 presentation just obs
ures the results.

Another fundamental aspe
t of 
on
rete se
urity that �ts well into our setting is that 
on
rete

se
urity 
aptures a non-uniform notion of 
omputation. For example, when solving a problem for

a parti
ular group, an algorithm 
an always in
lude an \auxiliary input" that helps solving the

problem over that parti
ular group. To emphasize the non-uniformity behind the 
on
rete se
urity

approa
h, we talk about 
ir
uits with 
on
rete size S. (We note that while the 
on
rete se
urity

literature usually states bounds in terms of time, talking of \size" rather than \time" is more

a

urate sin
e even if one talks about time, the size of algorithms must be taken into a

ount, or

else some problems 
an be trivialized via huge pre-
omputed tables.)
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In our 
ontext, it is interesting to 
onsider two 
onsequen
es of the non-uniform aspe
t of


on
rete se
urity. First, an algorithm that works for a spe
i�
 group G 
an always in
lude (as

part of the algorithm \
ode" or auxiliary input) the order of the group or even the fa
torization

of jGj. Hen
e, in this setting we need to work under the assumption that an atta
ker may have

su
h information. For example, in Theorem 2 we assume that the atta
ker may know the group's

order m and may even know the fa
torization of m (both of whi
h 
an be in
luded in the \
ode",

or \auxiliary input" of the algorithm). This is a non-trivial example in the sense that the theorem

does not ne
essarily hold for groups in whi
h the fa
torization of jGj is se
ret, e.g., G = Z

�

N

where

N = pq is a modulus of unknown fa
torization.

Se
ond, in a uniform (asymptoti
) treatment one 
annot talk about the DDH assumption hold-

ing in a group G; instead the validity of DDH may depend on a spe
i�
 generator g of G. In


ontrast, in a non-uniform setting as ours if the DDH assumption holds in G with respe
t to a

generator g then it holds with respe
t to any other generator g

0

of G and hen
e the DDH property

is independent of the spe
i�
 generator (indeed, if DDH is easy in G with respe
t to a generator h

then it is also easy with respe
t to any other generator g: just give the distinguisher with respe
t

to g the value log

h

(g) as auxiliary input). This independen
e from spe
i�
 generators is more

\elegant" and parti
ularly useful when stating several of our results.

3 A Dire
t-Produ
t DDH Chara
terization

The following theorem provides a full 
hara
terization of DDH groups in terms of their prime

(power) order subgroups. As remarked in Se
tion 2.2, the proof of this theorem assumes that

the distinguisher is given the fa
torization of ord(G). The theorem is �rst formulated informally

without 
on
rete bounds; these are stated and proved in the following Lemmas.

Theorem 2 (Dire
t Produ
t Chara
terization Theorem { informal.) A 
y
li
 group G is

DDH if and only if all its prime-power order subgroups are DDH.

The pre
ise meaning of the above Theorem is spe
i�ed by the following Lemmas 3 and 4. Below

we denote with exp

G

the size of the 
ir
uit that 
omputes exponentiations in G.

Lemma 3 Let G be a group of order order m = m

1

m

2

, and let G

1

be the subgroup of G of order

m

1

. If the (S; �) DDH holds in G then the (S

1

; �) DDH holds in G

1

where S

1

= S � 3exp

G

.

Proof Let G be a DDH (
y
li
) group of order order m = m

1

m

2

, and let G

1

be a subgroup of G

of orderm

1

. Let g be a generator of G and g

1

= g

m

2

be a generator of G

1

. Assume by 
ontradi
tion

that the (S

1

; �) DDH does not hold in G

1

, i.e., there is a distinguisher D

1

of size � S

1

that upon

re
eiving a triple (A

1

= g

a

1

1

; B

1

= g

b

1

1

; C

1

= g




1

1

) 2 G

3

1

, 
an distinguish whether it 
ame from the

distributionR

G

1

or DH

G

1

with advantage > �. We build a distinguisher D of size � S for G whi
h

distinguishes between the distributions DH

G

and R

G

with the same probability �. This 
ontradi
ts

the assumption that (S; �) DDH holds in G.

Upon re
eiving a triple (A = g

a

; B = g

b

; C = g




); where a; b 2

R

Z

m

1

m

2

and 
 is either the

produ
t of ab or pi
ked uniformly at random in Z

m

1

m

2

; the distinguisher D :

1. Computes (A

1

; B

1

; C

1

) by setting A

1

= A

m

2

; B

1

= B

m

2

, and C

1

= C

m

2

.

2. Passes the triple (A

1

; B

1

; C

1

) to D

1

7



3. Outputs the same output bit as D

1

.

Note that by 
onstru
tion the values A

1

; B

1

; C

1

equal g

a

1

1

; g

b

1

1

; g




1

1

, respe
tively, where a

1

= a mod

m

1

; b

1

= b mod m

1

; 


1

= 
 mod m

1

. Sin
e a; b 2

R

Z

m

1

m

2

then a

1

; b

1

2

R

Z

m

1

. Also, if 
 =

ab mod m

1

m

2

then 


1

= a

1

b

1

mod m

1

, while if 
 2

R

Z

m

1

m

2

then 


1

2

R

Z

m

1

(independently of

a

1

; b

1

). In other words, whenever the triple (A;B;C) is distributed a

ording to DH

G

then the

triple (A

1

; B

1

; C

1

) is distributed a

ording to DH

G

1

, while if (A;B;C) is distributed a

ording to

R

G

then the triple (A

1

; B

1

; C

1

) is distributed a

ording toR

G

1

. Therefore, D distinguishes between

the distributions DH

G

and R

G

with the same probability � that D

1

distinguishes between DH

G

1

and R

G

1

. Noti
e that the size of D is � S sin
e all it does is 
omputing three exponentiations in

G and then invoke D

1

.

Lemma 4 Let G be a 
y
li
 group of order m = m

1

m

2

, where (m

1

;m

2

) = 1, and let G

1

and G

2

be the subgroups of G of orders m

1

;m

2

resp. If (S

1

; �

1

) DDH holds in G

1

and (S

2

; �

2

) DDH holds

in G

2

then (S; �) DDH holds in G where S = min(S

1

; S

2

)� 9exp

G

and � = �

1

+ �

2

.

Proof Let g; g

1

; g

2

be generators of G;G

1

; and G

2

, respe
tively; in parti
ular, g

1

= g

m

2

and

g

2

= g

m

1

. Given a triple t

1

= (A

1

= g

a

1

1

; B

1

= g

b

1

1

; C

1

= g




1

1

) 2 G

3

1

and a triple t

2

= (A

2

=

g

a

2

2

; B

2

= g

b

2

2

; C

2

= g




2

2

) 2 G

3

2

we de�ne the following transformation T whi
h \lifts" this pair of

triples into a triple in G

3

. (T is the standard isomorphism between the group G and its produ
t

group representation as determined by the Chinese Reminder Theorem.) On input t

1

; t

2

, T (t

1

; t

2

)

outputs a triple (A = g

a

; B = g

b

; C = g




) 2 G

3

de�ned as follows:

1. Let r

1

; r

2

be su
h that r

1

m

1

+ r

2

m

2

= 1 (i.e., r

1

= m

�1

1

mod m

2

and r

2

= m

�1

2

mod m

1

)

2. Set A = A

r

2

1

A

r

1

2

= g

a

1

m

2

r

2

+a

2

m

1

r

1

2 G, i.e., a = a

1

m

2

r

2

+ a

2

m

1

r

1

mod m

3. Set B = B

r

2

1

B

r

1

2

= g

b

1

m

2

r

2

+b

2

m

1

r

1

2 G, i.e., b = b

1

m

2

r

2

+ b

2

m

1

r

1

mod m

4. Set C = C

m

2

r

2

2

1

C

m

1

r

2

1

2

= g




1

m

2

2

r

2

2

+


2

m

2

1

r

2

1

2 G, i.e., 
 = 


1

m

2

2

r

2

2

+ 


2

m

2

1

r

2

1

mod m

Note the following fa
ts about the triple (A;B;C) whi
h result from the above transformation:

Fa
t 1 If a

1

; b

1

2

R

Z

m

1

, and a

2

; b

2

2

R

Z

m

2

, then a; b 2

R

Z

m

.

Fa
t 2 
� ab � 


1

� a

1

b

1

mod m

1

and 
� ab � 


2

� a

2

b

2

mod m

2

Fa
t 3 Following Fa
ts 1 and 2, if the triple t

1

is 
hosen a

ording to distribution DH

G

1

and

t

2

a

ording to distribution DH

G

2

, then the triple (A;B;C) is distributed a

ording to the

distribution DH

G

. Similarly, if t

1

; t

2

are distributed a

ording to R

G

1

and R

G

2

, respe
tively,

then (A;B;C) is distributed a

ording to R

G

.

For probability distributions P

1

;P

2

we denote by T (P

1

;P

2

) the probability distribution indu
ed by

the random variable T (x

1

; x

2

) where x

1

; x

2

are random variables distributed a

ording to P

1

;P

2

,

respe
tively, and T is the above de�ned transform. Using this notation and Fa
t 3 we get:

DH

G

= T (DH

G

1

;DH

G

2

) and R

G

= T (R

G

1

;R

G

2

). Let us now 
onsider the \hybrid" probabil-

ity distribution T (R

G

1

;DH

G

2

).

Note that this distribution is (S

1

� 9exp

G

; �

1

) indistinguishable from T (DH

G

1

, DH

G

2

). Indeed,

sin
e the distribution DH

G

2

is eÆ
iently samplable (it 
osts 3 exponentiations to sample it) and

8



the transformation T is eÆ
iently 
omputable (it 
osts 6 exponentiations to 
ompute it), then one


an transform any (S; �) distinguisher between the above two distributions into a (S + 9exp

G

; �)

distinguisher between R

G

1

and DH

G

1

. Thus if S < S

1

� 9exp

G

and � > �

1

we have a distinguisher

for R

G

1

and DH

G

1

of size � S

1

that distinguishes with probability > �

1

, in 
ontradi
tion to the

hypothesis that G

1

is a (S

1

; �

1

) DDH group.

Similarly, we have that the hybrid distribution T (R

G

1

;DH

G

2

) is (S

2

� 9exp

G

; �

2

) indistinguish-

able from T (R

G

1

;R

G

2

).

By invoking the triangle inequality for 
omputational indistinguishability (see Prop. 22 in

Appendix A) we have thatR

G

and DH

G

are (S; �) indistinguishable where S = min(S

1

�9exp

G

; S

2

�

9exp

G

) = min(S

1

; S

2

)� 9exp

G

and � = �

1

+ �

2

as required.

Dis
ussion (On prime-power subgroups). We note that the result summarized in Theorem 2

is a
tually asymmetri
. In the \only if" dire
tion (Lemma 3) all subgroups are guaranteed to be

DDH, while for the \if" dire
tion (Lemma 4) we need the DDH assumption on prime-power order

subgroups. The reason for the latter is the 
ondition (m

1

;m

2

) = 1 in the statement and proof of

Lemma 4. A natural question is whether one 
an strengthen the latter lemma and prove a similar

result for fa
tors m

1

;m

2

whi
h are not ne
essarily 
o-prime. More spe
i�
ally, we are interested

in the following. Let G be a 
y
li
 group of order q

2

for prime q, and let H be the subgroup

of G of order q. Assume that H is DDH. Does this imply that G is DDH as well? This was

posed as an open question in an earlier version of this paper. Re
ently, Don Coppersmith has

built [Cop04℄ an ingenious 
ounter-example, namely, a 
y
li
 group G of order q

2

whi
h 
ontains a

subgroup H of order q, su
h that H is believed to be DDH but G is trivially not DDH. We present

Coppersmith's example in Appendix B. It is still interesting to settle this question for spe
i�


families of groups (e.g., the subgroups of Z

�

p

for prime p). In general, how plausible is it to assume

the DDH assumption in prime-power order subgroups of Z

�

p

?

We end this se
tion by mentioning a result by Maurer and Wolf (Corollary 5, [MW96℄) that

shows a relation between the hardness of the (
omputational) DiÆe-Hellman problem in a 
y
li


group and the hardness of this problem in some of its subgroups. More spe
i�
ally, they prove

that if G is a 
y
li
 group and H a subgroup su
h that the index jGj=jHj is smooth then the CDH

problem in G and H are polynomial-time equivalent.

4 The t-DDH Assumption and the Hashed DH Transform

In this se
tion we introdu
e an intra
tability assumption that is, in general, weaker than the DDH

assumption, yet it suÆ
es for ensuring DH outputs from whi
h a large number of pseudorandom

bits 
an be extra
ted. We start by re
alling the notions of 
omputational entropy and entropy

smoothing. We use the notations introdu
ed at the end of Se
tion 1.

4.1 Computational Entropy and Entropy Smoothing

De�nition 5 Let X be a probability distribution over A. The min-entropy of X is the value

min-ent(X ) = min

x2A:Prob

X

[x℄6=0

(� log(Prob

X

[x℄))

Note that if X has min-entropy t then for all x 2 A, Prob

X

[x℄ � 2

�t

.

The notion of min-entropy provides a measurement of the amount of randomness present in a

probability distribution. Indeed, the Entropy Smoothing Theorem (see below) shows that if X has

9



min-entropy t it is possible to 
onstru
t from X an (almost) uniform distribution over (almost) t

bits, by simply hashing elements 
hosen a

ording to X . The basi
 hashing tool to do this uses the

following notion of universal hashing.

De�nition 6 Let H be a family of fun
tions, where ea
h H 2 H is de�ned as H : A ! f0; 1g

m

.

We say that H is a family of (pairwise-independent) universal hash fun
tions if, for all x; x

0

2 A,

x 6= x

0

, and for all a; a

0

2 f0; 1g

m

we have

Prob

H2H

[H(x) = a and H(x

0

) = a

0

℄ = 2

�2m

:

That is, a randomly 
hosen H will map any pair of distin
t elements independently and uniformly.

Our te
hniques use as a 
entral tool the following Entropy Smoothing Theorem from [HILL99℄

(see also [Gol01, Lub96℄), also known as the \Leftover Hash Lemma". The de�nition of statisti
al

distan
e used in the theorem's statement is re
alled in Appendix A.

Theorem 7 (Entropy Smoothing Theorem [HILL99℄) Let t be a positive integer and let X be

a random variable de�ned on f0; 1g

n

su
h that min-ent(X ) > t. Let k > 0 be an integer parameter.

Let H be a family of universal hash fun
tions su
h that 8h 2 H; h : f0; 1g

n

! f0; 1g

t�2k

:

Let U be the uniform distribution over f0; 1g

t�2k

. Then, the distributions [hh(X ); hi℄

h2

R

H

and

[< U ; h >℄

h2

R

H

have statisti
al distan
e at most 2

�(k+1)

.

Thus, the Entropy Smoothing Theorem guarantees that if X is a probability distribution over A

with min-entropy of at least t, and H a family of universal hash fun
tions from A to f0; 1g

t�2k

,

then the random variable h(x), where h 2

R

H and x is 
hosen a

ording to the distribution X ,

is \almost" uniformly distributed over f0; 1g

t�2k

even when the hash fun
tion h is given. Here,

\almost" means a statisti
al distan
e of at most 2

�k�1

.

The following notion represents a 
omputational analogue of the notion of min-entropy and was

introdu
ed in [HILL99℄. We re
all it here (under a 
on
rete se
urity formulation) for 
ompleteness

and be
ause it is impli
it in our de�nition of the t-DDH assumption in the next sub-se
tion.

De�nition 8 A probability distribution Y has (S; �) 
omputational entropy t if there exists a prob-

ability distribution X su
h that

� min-ent(X ) � t

� X and Y are (S; �) indistinguishable

Using a standard hybrid argument it is easy to show that the Entropy Smoothing Theorem, as

dis
ussed above, 
an be generalized to probability distributions X that have (S; �) 
omputational

entropy t. In this 
ase, applying a (randomly 
hosen) universal hash fun
tion with output in

f0; 1g

t�2k

results in a distribution whi
h is (S; �+ 2

�k�1

) indistinguishable from the uniform one.

4.2 t-DDH: A Relaxed DDH Assumption

We pro
eed to de�ne the t-DDH assumption. The intuition behind this assumption is that if the

Computational DiÆe-Hellman Assumption holds in a group G generated by a generator g, then

the DH value g

ab

must have some degree of unpredi
tability (or \partial hardness") even when

g

a

and g

b

are given. Spe
i�
ally, we say that the t-DDH Assumption holds in the group G if the

DiÆe-Hellman output g

ab

has t bits of 
omputational entropy (here 0 � t � log(G)). Formally:

10



De�nition 9 We say that the (S; �) t-DDH Assumption holds over a group G if there exists a

family of probability distributions X (g

a

; g

b

) over G (one distribution for ea
h pair g

a

; g

b

) su
h that

� min-ent(X (g

a

; g

b

)) � t

� The probability distribution DH

G

(see Se
tion 2) is (S; �) indistinguishable from the ensemble

R

�

= f(g

a

; g

b

; C) for a; b 2

R

ord(G) and C 2

X (g

a

;g

b

)

Gg

It is important to note that the distributions X (g

a

; g

b

) in the above de�nition may be di�erent

for ea
h pair of values g

a

; g

b

. Requiring instead a single distribution X for all pairs g

a

; g

b

(as may

seem more natural at �rst glan
e) results in a signi�
antly stronger, and 
onsequently less useful,

assumption.

Consider Example 1 from Se
tion 2: over Z

�

p

one 
an break the DDH by dete
ting if the

quadrati
 residuosity 
hara
ter of C is 
onsistent with the one indu
ed by g

a

; g

b

. Yet, Z

�

p


an

satisfy the t-DDH assumption even for high values of t. For example, if for all a; b for whi
h one

of a; b is even we de�ne X (g

a

; g

b

) to be the set of quadrati
 residues in Z

�

p

, and for all other pairs

g

a

; g

b

we de�ne X (g

a

; g

b

) to be the set of quadrati
 non-residues in Z

�

p

, then the trivial break of

DDH in the above example does not hold against these distributions. More generally, if we 
onsider

a prime p of the form 2

u

q + 1 where q is a prime then we 
an get that (given 
urrent knowledge)

the t-DDH assumption holds for Z

�

p

for t = jpj � u, while 
learly the DDH assumptions does not

hold over this group.

Note that the DDH assumption 
an also be stated in terms of 
omputational entropy. Indeed the

DDH assumption over a group G is equivalent to the t-DDH assumption over G for t = log(ord(G)).

Sampling X (g

a

; g

b

). The t-DDH Assumption as stated above makes no requirement on the ex-

isten
e of an eÆ
ient sampling algorithm for the distribution X (g

a

; g

b

). We say that X (g

a

; g

b

) is

S

0

-samplable if there exists a (probabilisti
) 
ir
uit of size S

0

whose output distribution (on null

input) is X (g

a

; g

b

). We say that X (g

a

; g

b

) is S

0

-semi-samplable if there exists a 
ir
uit of size S

0

whi
h is run on input either a or b and whose output distribution is X (g

a

; g

b

).

We note that our results do not ne
essitate of any form of samplability of the X distributions

ex
ept for the results on using DDH with short exponents (Se
tion 5). In the latter 
ase our se
urity

proof requires X (g

a

; g

b

) to be S

0

-semi-samplable and the parameter S

0

will a�e
t the quality of the

redu
tion.

As a dire
t 
onsequen
e of the Entropy Smoothing Theorem and the de�nition of t-DDH we

have:

Lemma 10 Let G be a group in whi
h the (S; �) t-DDH Assumption holds, and let H be a 
olle
tion

of universal hash fun
tions su
h that for all h 2 H; h : G ! f0; 1g

t

0

where t

0

= t� 2k. Then the

indu
ed distribution of h(g

ab

), for a; b 2

R

[1::ord(G)℄ and h 2

R

H, is (S; �+ 2

�k

) indistinguishable

from the uniform distribution over f0; 1g

t

0

even when h, g

a

and g

b

are given to the distinguisher.

Noti
e that the above lemma requires the hash fun
tion h to be 
hosen at random for ea
h

appli
ation. This is the 
ase in several pra
ti
al proto
ols (su
h as the 
ase of IKE [RFC2409,

IKEv2℄, mentioned in the Introdu
tion, in whi
h a key to the hash fun
tion is 
hosen by the


ommuni
ating parties anew with ea
h run of the proto
ol). However, it is also possible to �x

a randomly 
hosen hash fun
tion and apply it repeatedly to di�erent DH values. An example of

su
h an appli
ation would be its use in the 
ontext of the Cramer-Shoup CCA-se
ure 
ryptosystem
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[CS98℄ (also dis
ussed in the Introdu
tion) in whi
h the spe
i�
 hash fun
tion h would be 
hosen

at random from the family H by the owner of the de
ryption key, and published as part of the

publi
 key parameters. In this 
ase, the se
urity of the repeated use of the same hash fun
tion h


an be proved via a standard simulation argument.

Next we show that for groups of prime order, the t-DDH Assumption is equivalent to the full

DDH assumption. The proof uses a standard random self-redu
ibility argument [Sta96, NR97℄.

Lemma 11 Let G be a group of prime order q. If the (S; �) t-DDH Assumption holds in G for

t > 0 then the (S

0

; �

0

) DDH Assumption holds in G with S

0

= S � 8exp

G

and �

0

=

�

1�2

�t

.

Proof Assume by 
ontradi
tion that there exists a distinguisher D of size � S

0

that distinguishes

between R

G

and DH

G

with probability > �

0

. We use D to break the (S; �) t-DDH assumption in

G.

Let X (g

a

; g

b

) be a family of distributions with min-entropy t de�ned over G. We are given three

values A = g

a

; B = g

b

; C = g




where either 
 = g

ab

or C 2

X (g

a

;g

b

)

G. We sample r; s; u; v 2

R

[1::q℄

and set A

0

= A

r

g

u

= g

ar+u

, B

0

= B

s

g

v

= g

bs+v

and C

0

= C

rs

A

rv

B

us

g

uv

. Noti
e that

log

g

C

0

= 
rs+ arv + bsu+ uv = (
� ab)rs+ (ar + u)(v + bs) mod q

thus if C = g

ab

then C

0

is the result of the DH transform over A

0

; B

0

. On the other hand, sin
e q is

a prime and thus any element has an inverse modq, if 
 6= ab then C

0

is uniformly distributed over

G. Noti
e that if C 2

X (g

a

;g

b

)

G then 
 = ab with probability at most 2

�t

.

Thus by feeding A

0

; B

0

; C

0

to D we 
an distinguish the 
ase in whi
h C = g

ab

and C 2

X (g

a

;g

b

)

G

with probability larger than �

0

(1� 2

�t

). Noti
e that this distinguisher has size S

0

+ 8exp

G

sin
e it


osts 8 exponentiations to 
ompute A

0

; B

0

; C

0

before running D.

Thus by setting S

0

= S � 8exp

G

and �

0

=

�

1�2

�t

we 
ontradi
t the assumption that the (S; �)

t-DDH Assumption holds in G.

This yields an interesting 0-1 law for prime order groups, in whi
h either the DDH Assumption

holds, and thus the DH output has log(q) bits of 
omputational entropy, or we 
annot 
laim that

the DH output has any bits of 
omputational entropy. We stress that this result, by itself, does

not imply that over prime order groups either DDH holds or the DiÆe-Hellman problem (i.e.,

Computational DiÆe-Hellman) is easy. What the result says is that in this 
ase (i.e. a prime-order

group whi
h is CDH but not DDH), pseudorandomness 
annot be extra
ted from a DH value solely

based on the 
omputational min-entropy of the distribution but rather may require spe
ialized hard


ore fun
tions (su
h as Goldrei
h-Levin, et
. [Gol01℄).

4.3 The Max-Subgroup Theorem

We now pro
eed to prove our main theorem 
on
erning the t-DDH assumption. The signi�
an
e

of the theorem below is that for a 
y
li
 group G to be t-DDH it suÆ
es that t be the order of the

maximal (or maximal disjoint) subgroup of G where the DDH holds.

Theorem 12 Let G be a 
y
li
 group of order m = m

1

m

2

where (m

1

;m

2

) = 1, and G

1

be a sub-

group of order m

1

in G. If the (S; �) DDH Assumption holds over G

1

then the (S

0

; �) log(m

1

)-DDH

Assumption holds in G, where S

0

= S � 5exp

G

.

12



Proof An initial intuition behind the 
orre
tness of the theorem is that the hardness hidden in

G

1


ould be \sampled" when applying a hash fun
tion to the DH values over G. This however

is in
orre
t: the size of G

1

may be negligible in relation to jGj and as su
h the probability to

sample a triple (g

a

; g

b

; g

ab

) from G

1

is negligible too. The a
tual argument, presented next, uses

the observation that the \hardness" present in G

1


an be extended to its 
osets in G.

Let g be a generator of G and g

1

= g

m

2

be a generator of order m

1

of G

1

. Given g

a

; g

b

2 G,

we de�ne the distribution X (g

a

; g

b

) to be the uniform distribution over fC = g




2 G su
h that 
 2

Z

m

and 
 � ab mod m

2

g. Thus, it is easy to see that X (g

a

; g

b

) has log(m

1

) bits of min-entropy

(sin
e the above set hasm

1

elements). LetR

�

denote the probability distribution f(g

a

; g

b

; C) : a; b 2

R

Z

m

and C 2

X (g

a

;g

b

)

Gg.

We assume by 
ontradi
tion that the (S

0

; �) log(m

1

)-DDH assumption does not hold in G, and

thus we have a 
ir
uit D of size � S

0

whi
h distinguishes between the distributions DH

G

and

R

�

with advantage �. Using D we build a distinguisher D

1

of size � S that distinguishes be-

tween the distributions DH

G

1

and R

G

1

with the same advantage, thus 
ontradi
ting the theorem's

assumption.

Given a triple (A

1

; B

1

; C

1

) where A

1

= g

a

1

1

; B

1

= g

b

1

1

, and C

1

either equals g

a

1

b

1

1

or g




1

1

for




1

2

R

Z

m

1

, the distinguisher D

1

does the following:

1. Chooses i; j 2

R

Z

m

2. Sets A = A

1

g

i

; B = B

1

g

j

and C = C

m

2

1

A

j

1

B

i

1

g

ij


omputed in G

3. Hands D the triple (A;B;C)

4. Outputs the same output bit as D.

Noti
e that D

1


omputes 5 exponentiations and runs D, thus is of size � S.

Let's examine the distribution of the triple (A;B;C). The value A is set to A = A

1

g

i

= g

a

1

1

g

i

=

g

m

2

a

1

+i

thus a = m

2

a

1

+i. Sin
e i 2

R

Z

m

then also a 2

R

Z

m

. Similarly for B = g

b

we get b 2

R

Z

m

.

In the 
ase of C we have C = C

m

2

1

A

j

1

B

i

1

g

ij

= g




1

m

2

2

+m

2

a

1

j+m

2

b

1

i+ij

; thus 
 = 


1

m

2

2

+m

2

a

1

j+m

2

b

1

i+

ij. In addition, we have that ab = (m

2

a

1

+ i)(m

2

b

1

+ j) = m

2

2

a

1

b

1

+m

2

a

1

j +m

2

b

1

i+ ij. Thus


� ab = m

2

2




1

+m

2

a

1

j +m

2

b

1

i+ ij � (m

2

2

a

1

b

1

+m

2

a

1

j +m

2

b

1

i+ ij) = m

2

2




1

�m

2

2

a

1

b

1

whi
h implies 
 = m

2

2

(


1

� a

1

b

1

) + ab mod m. Therefore, if 


1

= a

1

b

1

then 
 = ab. On the other

hand, if 


1

2

R

Z

m

1

then 


1

� a

1

b

1

2

R

Z

m

1

, i.e., 
 = ab + rm

2

2

(for r 2

R

Z

m

1

). Now, using

the fa
t that m

2

has an inverse modulo m

1

, we get that 
 is uniformly distributed over the set

fab + im

2

: 0 � i < m

1

g or, equivalently, that C is distributed a

ording to the distribution

X (g

a

; g

b

). In other words, the triple (A;B;C) is distributed a

ording to DH

G

if (A

1

; B

1

; C

1

)


ame from DH

G

1

, and it is distributed a

ording to R

�

if (A

1

; B

1

; C

1

) 
ame from R

G

1

. Therefore,

D

1

distinguishes between DH

G

1

and R

G

1

with the same probability that D distinguishes between

DH

G

and R

�

, that is �.

Sin
e we assumed that the (S; �) DDH holds in G

1

we rea
hed a 
ontradi
tion.

Remark on samplability. The distributions X (g

a

; g

b

) de�ned in the above proof are eÆ
iently

samplable given m

1

;m

2

and at least one of a; b (i.e., X (g

a

; g

b

) is semi-samplable in the terminology

of Se
tion 4.2). Indeed given, say, a;B = g

b

we 
an sample X (g

a

; g

b

) by 
hoosing k 2

R

Z

m

1

and

setting C = g

km

2

B

a

.
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From the above theorem we get the following important 
orollary. Its �rst part follows immedi-

ately from Theorem 12 when using the following terminology: a subgroup H of G is 
alled a disjoint

subgroup if (jHj; jGj=jHj) = 1. The se
ond part of the 
orollary (whi
h does not involve the notion

of disjoint subgroups) follows from Theorem 12 
ombined with Theorem 2. The 
orollary is stated

without 
on
rete bounds whi
h 
an be derived from the previous theorems.

Corollary 13 For any 
y
li
 group G, G is log(m)-DDH where m is the order of the maximal

disjoint DDH subgroup of G. If all the large prime-power subgroups of G are DDH, then G is

log(m)-DDH where m is the order of the maximal DDH subgroup of G.

The above Corollary is stated somewhat informally, in parti
ular one has to spe
ify the meaning of

\large" subgroups. The idea is the following: let G be a 
y
li
 group of order m = �

`

i=1

p

e

i

i

where

p

1

< : : : < p

`

is the prime de
omposition of m. Thus G is the dire
t produ
t of the subgroups

G

i

where ea
h G

i

has order p

e

i

i

. Fix an (S; �) se
urity parameter and 
onsider the subgroups

fG

j

1

; : : : ; G

j

`

0

g whi
h are (S; �)-DDH. Then we 
an apply Theorem 12 and Lemma 4 sin
e the

orders of the subgroups G

i

are relatively prime with ea
h other. And thus we have that G is (S

0

; �

0

)

m

0

-DDH where: m

0

= �

`

0

i=1

e

j

i

log p

j

i

, S

0

= S � 14exp

G

and �

0

= `

0

�.

5 DDH and t-DDH with Short Exponents

In this se
tion we investigate the use of the DDH and t-DDH assumptions in 
onjun
tion with the

so 
alled \short-exponent dis
rete-log" assumption.

The Short-Exponent Dis
rete-Log Assumption. A 
ommon pra
ti
e for in
reasing the eÆ-


ien
y of exponentiation in 
ryptographi
 appli
ations based on the hardness of 
omputing dis
rete

logarithms, and in parti
ular those using the DiÆe-Hellman transform, is to repla
e full-length ex-

ponents (i.e., of length logarithmi
 in the group order) with (signi�
antly) shorter exponents. The

se
urity of this pra
ti
e 
annot be justi�ed by the usual assumption that 
omputing dis
rete loga-

rithms (with full-length exponents) is hard, but rather requires a spe
i�
 assumption �rst analyzed

in [vOW96℄ and formalized in [PS98℄. We give a 
on
rete se
urity formalization below.

Assumption 14 (s-DLSE [PS98℄) Let G be a 
y
li
 group generated by g and of order ord(G) =

m. We say that the (S; �) s-DLSE Assumption holds in G if for every 
ir
uit I of size � S, we

have that Prob

x2

R

[1::2

s

℄

(I(g;m; s; g

x

) = x) � �.

Current knowledge points to the plausibility of the above assumption even for exponents s signif-

i
antly shorter than log(ord(g)). The exa
t values of s for whi
h the assumption seems to hold

depend on the group generated by the element g. An obvious lower bound on s, if one wants to

a
hieve se
urity against 2

k

-
omplexity atta
ks, is s � 2k whi
h is ne
essary to thwart the usual

square-root atta
ks su
h as Shanks and Pollard methods. However, as pointed out in [vOW96℄,

there are 
ases where s needs to be 
hosen larger than 2k. Spe
i�
ally, they show how to use a

Pohlig-Hellman de
omposition to obtain some of the bits of the exponent. The power of the atta
k

depends on the (relatively) small prime fa
tors of the group order. For example, when working over

Z

�

p

with a random prime p, the [vOW96℄ results indi
ate the use of s � 4k (e.g., with a se
urity

parameter of 80 one should use s = 320 whi
h is mu
h shorter than the 1024 or 2048 bits of p,

yet twi
e as mu
h as the bare minimum of s = 160). If one wants to use s = 2k (i.e., assume the

14



2k-DLSE), it is ne
essary to work in spe
ial groups su
h as those of prime order or Z

�

p

with p a

safe prime (i.e., p = 2q + 1, and q prime).

From Hardness to Indistinguishability. Gennaro [Gen00℄ proves that if the s-DLSE as-

sumption holds in G = Z

�

p

with p a safe prime then the distribution over G generated by g

x

for x 2

R

[1::2

s

℄ is 
omputationally indistinguishable from the uniform distribution over G. The

following proposition generalizes this result as needed for our purposes

2

.

Proposition 15 Let G be a 
y
li
 group of order m generated by g, su
h that m is odd or m=2 is

odd. If the (S; �) s-DLSE Assumption holds in G, then the following two distributions S

G

= fg

x

:

x 2

R

[1::2

s

℄g and U

G

= fg

x

: x 2

R

Z

m

g are (S

0

; �) indistinguishable, where S

0

�

�

�

jmj�s

�

2

S

The proof is presented in Appendix C.

Next we show that if in a group G, both the s-DLSE and the t-DDH Assumptions hold, then

performing the DiÆe-Hellman transform with short exponents a and b, yields a DH output with t

bits of 
omputational entropy. In other words, the se
urity of the hashed DH transform over su
h

groups when using s-bit long exponents is essentially equivalent to that of using full exponents.

Theorem 16 Let G be a 
y
li
 group of order m generated by g, su
h that m is odd, or m=2 is odd.

Let s; t be su
h that the (S

1

; �

1

) s-DLSE and the (S

2

; �

2

) t-DDH Assumptions hold in G. Denote

with X (g

a

; g

b

) the family of distributions indu
ed by the t-DDH assumption over G (see Def. 9).

Assume that X (g

a

; g

b

) is S

3

-semi-samplable (see Se
. 4.2). Then the following two distributions

SDH = f(g

a

; g

b

; g

ab

) for a; b 2

R

[1::2

s

℄g

and

SR

�

= f(g

a

; g

b

; C) for a; b 2

R

[1::2

s

℄ and C 2

X (g

a

;g

b

)

Gg

are (S; �) indistinguishable where S = min(S

2

;

�

�

jmj�s

�

2

S

1

� S

3

) and � � �

2

+ 4�

1

.

Before proving the Theorem, we point out that for a te
hni
al reason inside the proof (an hybrid

argument) we need the semi-samplable version of the t-DDH assumption here. We stress that the

\short exponent" te
hnique is the only 
ase in whi
h we need semi-samplability, and in this 
ase it

is easily seen that this 
ondition holds (see Remark at the end of the next Se
tion).

Proof Re
all that if the (S

2

; �

2

) t-DDH Assumption holds over the group G of order m, then

there exists a family of probability distributions X (g

a

; g

b

) with min-entropy t (one distribution for

ea
h pair g

a

; g

b

) over G su
h that the distributions

DH = f(g

a

; g

b

; g

ab

) for a; b 2

R

Z

m

g

and

R

�

= f(g

a

; g

b

; C) for a; b 2

R

Z

m

and C 2

X (g

a

;g

b

)

Gg

are (S

2

; �

2

) indistinguishable.

The following standard hybrid argument yields the proof of the theorem. Consider the inter-

mediate distributions

D

0

= f(g

a

; g

b

; g

ab

) for a; b 2

R

[1::2

s

℄g

2

A similar, but slightly weaker statement was independently stated in [KK04℄.
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D

1

= f(g

�

; g

b

; g

�b

) for � 2

R

Z

m

; b 2

R

[1::2

s

℄g

D

2

= f(g

�

; g

�

; g

��

) for �; � 2

R

Z

m

g

D

3

= f(g

�

; g

�

; C) for �; �;2

R

Z

m

and C 2

X (g

�

;g

�

)

Gg

D

4

= f(g

�

; g

b

; C) b 2

R

[1::2

s

℄; � 2

R

Z

m

and C 2

X (g

�

;g

b

)

Gg

D

5

= f(g

a

; g

b

; C) : a; b 2

R

[1::2

s

℄ and C 2

X (g

a

;g

b

)

Gg

Clearly D

0

= SDH while D

5

= SR

�

.

Under the (S

2

; �

2

) t-DDH Assumption we know that D

2

is (S

2

; �

2

) indistinguishable from D

3

.

Also, under the (S

1

; �

1

) s-DLSE Assumption we know that D

i

is (S

1

=s� S

3

; (jmj � s)�

1

) indis-

tinguishable from D

i+1

for i = 0; 1; 3; 4 by redu
tion to Proposition 15. The extra additive fa
tor

of S

3

is due to the fa
t that in the 
ase i = 3; 4 one needs X (g

a

; g

b

) to be semi-samplable, whi
h

by assumption 
an be done by a 
ir
uit of size S

3

.

Thus by invoking the triangle inequality for 
omputational indistinguishability (see Prop 22 in

Appendix A) we have that SDH is (S; �) indistinguishable from SR

�

where S = min(S

2

; S

1

=s�S

3

)

and � = �

2

+ 4(jmj � s)�

1

as desired.

Note that, as a parti
ular 
ase, when t = log(m) the theorem states that if G is a DDH group in

whi
h the s-DLSE assumption holds, then performing the DH transform over G with exponents of

size s yields values that are indistinguishable from random elements in G.

6 Hashed DH over Z

�

p

and its Subgroups

Here we dis
uss the se
urity of the hashed DH transform over groups and subgroups of Z

�

p

for

random prime p. Throughout this se
tion we assume that the DDH assumption holds over the

large prime-order subgroups of Z

�

p

(or the prime-power order subgroups in the unusual 
ase that

p � 1 is divisible by a large prime with multipli
ity larger than 1). Under this assumption we

immediately get that it is se
ure to use the hashed DH transform over a subgroup G

q

of Z

�

p

of

order q, provided that q is a suÆ
iently large prime that divides p � 1. The meaning of \large"

here is that DDH holds over G

q

with parameters (S; �) that make the distinguishing task infeasible;

spe
i�
ally, when talking of a \se
urity parameter" k we require S=� � 2

k

. Also, a large q is one

for whi
h a suÆ
ient number of bits 
an be extra
ted from a DiÆe-Hellman value. For example, if

the appli
ation requires a pseudorandom output of ` bits then q needs to satisfy jqj � `+ 2k (see

Theorem 7).

Very importantly, however, due to our results we 
an extra
t from a DiÆe-Hellman value over

Z

�

p

more bits than those guaranteed by individual fa
tors q of p� 1. If we want to extra
t ` bits

and Z

�

p

has a subgroup of order m, where m is the produ
t of di�erent large primes (say, ea
h of

size � 2k), then it suÆ
es that jmj � `+ 2k in order to extra
t ` bits from a DH value over su
h

subgroup. Moreover, these results show that one 
an se
urely apply the hashed DH transform also

over some non-DDH groups whose order is divisible by small prime fa
tors whi
h, in parti
ular, is

the 
ase of Z

�

p

(the order m = p� 1 of this group is always divisible by small prime fa
tors, e.g.,

2). Spe
i�
ally, we showed that the hashed DH is se
ure over Z

�

p

provided that p � 1 has enough

prime divisors (with multipli
ity 1) whose produ
t is larger than the entropy bound 2

`+2k

, and for

whi
h the subgroups of 
orresponding prime order are DDH in the above sense. (In parti
ular, the

fa
t that p� 1 has additional smaller prime fa
tors does not invalidate the se
urity of the hashed

DDH in Z

�

p

.)
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A parti
ularly interesting group is Z

�

p

for p = 2q + 1 and q prime. In this 
ase, working

dire
tly with the hashed DH over Z

�

p

is se
ure sin
e we are assuming that its subgroup of order q

is DDH, and therefore the whole Z

�

p

group is

�

�

�

p�1

2

�

�

�

-DDH. Working over Z

�

p

in this 
ase has several

important advantages: (i) one 
an produ
e a large (a
tually, largest) number of pseudorandom

bits (spe
i�
ally, jpj � 1 � 2k bits); (ii) p 
an be 
hosen su
h that 2 is a generator of Z

�

p

(whi
h

speeds up exponentiation); (iii) the 2k-DLSE Assumption (see Se
tion 5) is 
onje
tured to hold

in these groups [vOW96℄ and therefore one 
an use minimal-length exponents (i.e., of length 2k)

in these groups, obtaining yet another signi�
ant exponentiation speedup without sa
ri�
ing the

se
urity of the (hashed) DH transform; and (iv) these groups are free from the potentially serious

atta
ks des
ribed in [LL97℄ (that a�e
t subgroups of prime order q where (p� 1)=q has a relatively

large smooth fa
tor). Note that items (i) and (iii) use our results in an essential way. The only

downside of working over su
h a group is the 
ost of generating p's of the above form; this, however

is insigni�
ant in typi
al appli
ations (e.g., IKE [RFC2409, IKEv2℄) in whi
h prime generation is

very rare, and usually done at the set-up of the system and used for a large period of time.

Note that in all of the above examples it is assumed that one knows the full or partial fa
-

torization of p � 1; in parti
ular, the knowledge of this fa
torization is essential for sele
ting a

generator of the group. It is a theoreti
ally and pra
ti
ally important question to establish whether

the knowledge of the fa
torization of p � 1 is essential for working se
urely over Z

�

p

or over one

of its subgroups. In the rest of this se
tion we show that this knowledge is not essential (at least

under some plausible assumptions on the distribution of the prime fa
tors of p� 1). Spe
i�
ally, it

follows from our results that if one 
hooses a random prime p (of a pre-spe
i�ed size su
h that the

Dis
rete Logarithm Problem is hard in Z

�

p

) and a random element e in Z

�

p

, then performing the

hashed DH transform over the group generated by e is se
ure.

3

Let p be a random prime su
h that p�1 = p

1

p

2

� � � p

n

and p

1

� p

2

� ::: � p

n

are all (not ne
essarily

di�erent and possibly unknown) primes. Let e be an element randomly 
hosen from Z

�

p

, and let G

e

denote the subgroup of Z

�

p

generated by e. We �rst 
laim that with overwhelming probability the

large prime fa
tors of p� 1 divide the order of G

e

.

Lemma 17 Let Z

�

p

and p� 1 = p

1

� � � p

n

be as des
ribed above. Then for all 1 � i � n:

Pr

e2

R

Z

�

p

[p

i

6 j ord(e)℄ � 1=p

i

:

Proof Let g be a generator of Z

�

p

. There are at most (p � 1)=p

i

elements whose order is not

divisible by p

i

, and they are the elements of the form g

jp

i

for 1 � j � (p � 1)=p

i

. When p

2

i

jp � 1

this is a stri
t upper bound, otherwise this is an exa
t bound. Thus, the probability to 
hoose e

su
h that p

i

6 j ord(e) is at most

(p�1)=p

i

p�1

=

1

p

i

.

Corollary 18 For a given bound B, let p� 1 = �

n

i=1

p

i

where p

j

; p

j+1

; :::; p

n

> B. Then

Pr

e2

R

Z

�

p

[�

n

i=j

p

i

j ord(e)℄ � 1�

n

X

i=j

1

p

i

� 1�

n� j

B

� 1�

log p

B

:

Thus, for large values of B, the order of a random element e is divisible, with overwhelming

probability, by all the prime fa
tors of p� 1 whi
h are larger than B. Or, equivalently, G

e

has as

subgroups all the prime-order subgroups of Z

�

p

whose order is larger than B.

3

We stress that while the legitimate users of su
h a s
heme do not need to know the fa
torization of p � 1, the

s
heme remains se
ure even if this fa
torization is known to the atta
ker.

17



Now, if we set our se
urity parameter to k, de�ne B = 2

2k

, and assume that the DDH holds

in subgroups of prime order larger than B, then we have that, with overwhelming probability,

G

e


ontains all the prime order DDH subgroups of Z

�

p

. In other words, if we denote by P the

produ
t of all prime fa
tors of p�1 larger than B, we have that G

e


ontains, by virtue of our DDH

Chara
terization Theorem (Theorem 2), a DDH subgroup of size P , and then by the Max-Subgroup

Theorem (Theorem 12) we get that G

e

is jP j-DDH.

All that is left to argue is that jP j is large enough. For this we use the following lemma from

[vOW96℄ that provides an upper bound on the expe
ted size of the produ
t of all prime divisors of

p� 1 that are smaller than B (and thus, it provides a lower bound on the expe
ted size of jP j).

Lemma 19 ([vOW96℄) For a random prime p (as above) and a �xed bound B, the expe
ted length

of �

i

p

i

where p

i

< B is logB + 1:

In other words, the lemma states that the expe
ted size of jP j is jpj � jBj = jpj � 2k.

If, for the sake of illustration, we set jpj = 1024 and k = 80 we get that we expe
t G

e

to be

864-DDH. However, note that this expe
ted size may vary for spe
i�
 p's, and in parti
ular the

above result does not rule out that there 
ould be many primes p's for whi
h p � 1 is smooth.

Fortunately this is not the 
ase: a better estimate of the probability that for a random prime p,

the value p� 1 is smooth 
an be found in [PS02℄ from whi
h one 
an state that most primes p have

a large prime q dividing p� 1. We refer the reader to [PS02℄ for details.

Remark (Short exponents and semi-samplability). Noti
e that in order to use short expo-

nents in the above s
enario (i.e., when working over a random prime p with a random generator e),

one must make sure that the order m of the group generated by e is either odd, or m=2 is odd (so

that we 
an invoke Theorem 16). This 
an be easily a
hieved by 
hoosing �rst a random element e

in Z

�

p

and then using as the group generator the element e

2

f

mod p where f is the maximal integer

su
h that 2

f

j(p � 1). In addition, for the appli
ation of Theorem 16, we need to show that the

distributions X (g

a

; g

b

) in this 
ase are semi-samplable. This is so sin
e in the above arguments we

are (impli
itly) using the distributions de�ned in the proof of Theorem 12 whi
h are semi-samplable

when the fa
torization of the group order is known (see the remark following the proof of Theorem

12). Therefore, we obtain that, even though the honest parties may not know the fa
torization of

p� 1, the DH transform with short exponents remains se
ure in this 
ase even if su
h fa
torization

is available to the atta
ker.
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A Indistinguishability of Probability Distributions

De�nition 20 Let X ;Y be two probability distributions over a set A. We say that X and Y have

statisti
al distan
e bounded by � if

X

x2A

jProb

X

[x℄� Prob

Y

[x℄j � �

Next we adapt the 
lassi
al notion of 
omputational indistinguishability [GM84℄ to the 
on
rete

se
urity setting (informally, two distributions X and Y are (S; �) indistinguishable if no 
ir
uit of

size S 
an distinguish between samples drawn a

ording to X or a

ording to Y with advantage

larger than �).

De�nition 21 Let X ;Y be two probability distributions over A. Given a 
ir
uit D (
alled the

distinguisher) 
onsider the following quantities

Æ

D;X

= Prob

x2X

[D(x) = 1℄ and Æ

D;Y

= Prob

y2Y

[D(y) = 1℄

We say that the probability distributions X and Y are (S; �) indistinguishable if for every 
ir
uit D

of size � S we have that

jÆ

D;X

� Æ

D;Y

j � �

We now state a simple \triangle inequality" for (S; �) indistinguishability (a.k.a. the \hybrid

argument").

Proposition 22 Given three probability distributions X ;Y;Z over a set A, su
h that (i) X is

(S

1

; �

1

) indistinguishable from Y and (ii) Y is (S

2

; �

2

) indistinguishable from Z. Then X is (S; �)

indistinguishable from Z where S = min(S

1

; S

2

) and � = �

1

+ �

2

.

Proof Assume that X is not (S; �) indistinguishable from Z. Then there exists a distinguisher D

of size S su
h that

jÆ

D;X

� Æ

D;Z

j > �

Now by the triangle inequality we have that

� < jÆ

D;X

� Æ

D;Y

j+ jÆ

D;Y

� Æ

D;Z

j � �

1

+ �

2

= �

whi
h is a 
ontradi
tion. Note that the se
ond upper bound is due to the fa
t that the size of D is

smaller than both S

1

and S

2

.

B Coppersmith's Example

As mentioned at the end of Se
tion 3, Coppersmith [Cop04℄ has provided us with an example of

a non-DDH 
y
li
 group G of order q

2

(for prime q) that 
ontains a DDH subgroup G

q

of order

q. Moreover, su
h a group G 
an be 
onstru
ted on the basis of any given DDH group of order q.

Here we present Coppersmith's 
onstru
tion.

Let G

q

be a 
y
li
 DDH group of order q, for prime q, generated by an element g. We build a

group G as follows. The set of elements in G is S = f(h; a) : h 2 G

q

; 0 � a < qg and the group

19



operation � is de�ned as: (h

1

; a

1

) � (h

2

; a

2

) = (h; a) where (i) if a

1

+ a

2

< q then h = h

1

h

2

(with

multipli
ation over G

q

) and a = a

1

+a

2

; and (ii) if a

1

+a

2

� q then h = h

1

h

2

g and a = a

1

+a

2

� q.

The idea behind the 
onstru
tion of the group G, and its operation, is given by the following natural

bije
tion between the set of integers between 0 and q

2

� 1 and the set S: for any 0 � b; 
 < q, we

map bq+ 
 into (g

b

; 
). More spe
i�
ally, we 
onsider G as a 
y
li
 group with generator (1; 1) (the

�rst 1 is the unit element in G

q

, the se
ond is the integer 1). In this 
ase we have that for any

0 � b; 
 < q, (1; 1)

bq+


= (g

b

; 
), (or, equivalently, dlog

(1;1)

(g

b

; 
) = bq + 
).

Clearly, the element (1; 1)

q

= (g; 0) generates the subgroup G

q

� f0g of order q whi
h is (by

assumption) DDH. However G is not DDH (not even CDH). Indeed, the DiÆe-Hellman transform

over G is (see footnote

4

)DH((h

1

; a

1

); (h

2

; a

2

)) = (h

1

a

2

h

2

a

1

g

ba

1

a

2

=q


; a

1

a

2

mod q), and then trivial

to 
ompute given (h

1

; a

1

) and (h

2

; a

2

). Note that in this example G is not even CDH. Yet, a similar,

but somewhat more involved, example shows that one 
an build G of prime-power order (q

e

; e > 1)

with the following properties (i) CDH holds in G, (ii) DDH holds in a subgroup of G; yet (iii) DDH

does not hold in G.

C Proof of Proposition 15

In this se
tion we prove the following proposition from Se
tion 5.

Proposition 15 Let G be a 
y
li
 group of order m generated by g, su
h that m is odd or

m=2 is odd. If the (S; �) s-DLSE Assumption holds in G, then the following two distributions

S

G

= fg

x

: x 2

R

[1::2

s

℄g and U

G

= fg

x

: x 2

R

Z

m

g are (S

0

; �) indistinguishable, where

S

0

=

�

�

jmj�s

�

2

S.

What follows is an extension of arguments that appeared �rst in [PS98, Gen00℄.

Let m be the order of 
y
li
 group G and g a generator for G. Let n = jmj.

[Hugo: Rosario: 
he
k that indeed n is used below in lieu of jmj.℄ H

Hard-Core Bits and the s-DLSE Assumption. In [PS98℄ Patel and Sundaram prove that

under the s-DLSE Assumption the bits x

2

; x

3

; : : : ; x

n�s

are simultaneously hard for the fun
tion

f(x) = g

x

mod p, if p is 
ongruent to 3 mod 4. It is not diÆ
ult to see that their proof 
an be

extended in two ways:

� It holds for any 
y
li
 group of odd order, in whi
h 
ase even the bit x

1

is hard.

� It holds for any 
y
li
 group G of even order m but su
h that m=2 is odd. Noti
e that for

these groups, 
omputing x

1

when given y = g

x

is easy.

Short-Exponent Indistinguishability. Gennaro in [Gen00℄ builds on the above result from

[PS98℄ as follows. An alternative way to say that the the bits x

i

; : : : ; x

j

are simultaneously hard is

to say that the two distributions:

[g

x

; x

i

; : : : ; x

j

℄ for x 2

R

Z

m

[g

x

; r

i

; : : : ; r

j

℄ for x 2

R

Z

m

; r

i

; : : : ; r

j

2 f0; 1g

4

Let h

1

= g

b

1

,h

2

= g

b

2

. Then: DH((h

1

; a

1

); (h

2

; a

2

)) = DH((g

b

1

; a

1

); (g

b

2

; a

2

)) = DH((1; 1)

b

1

q+a

1

; (1; 1)

b

2

q+a

2

)

def

= (1; 1)

(b

1

q+a

1

)(b

2

q+a2)

= (1; 1)

(b

1

a

2

+a

1

b

2

)q+a

1

a

2

= (g

b

1

a

2

+a

1

b

2

+ba

1

a

2

=q


; a

1

a

2

mod q) = (h

1

a

2

h

2

a

1

g

ba

1

a

2

=q


; a

1

a

2

mod q).
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are 
omputationally indistinguishable. Denote with x(i; j) the value x with the bits in position

from i to j zeroed out. Then a 
onsequen
e of the above statement is that the two distributions

[g

x

℄ and [g

x(i;j)

℄ for x 2

R

Z

m

are 
omputationally indistinguishable.

Gennaro uses this to 
onstru
t eÆ
ient pseudo-random generators in whi
h the basi
 operation

is an exponentiation with an exponent with a lot of 
ontiguous zero's in it (the positions from i to

j indeed) whi
h is substantially faster to 
ompute than a regular exponentiation.

Noti
e, however, that the above 
on
lusion is still di�erent from the statement of Proposition

15. But we show now that if Proposition 15 is false then we 
an 
ontradi
t the above 
on
lusion.

We distinguish two 
ases.

Case 1: m is odd. In this 
ase we have that [Gen00℄ implies that

[g

x

℄ and [g

x(1;n�s)

℄ for x 2

R

Z

m

are 
omputationally indistinguishable. Assume that we have a distinguisher D that distinguishes

between [g

x

℄

x2

R

Z

m

and [g

z

℄

z2

R

[1::2

s

℄

then we 
an use D to distinguish in the 
ase above. Given

an element y we 
ompute y

2

�(n�s)

mod m

g

w

with w 2

R

[1::2

s

℄. A random group element y will be

mapped to a random group element, while an element of the form y = g

x(1;n�s)

(i.e., with the least

n� s signi�
ant bits zeroed out) will be mapped to a random element of the form g

z

with z < 2

s

.

Case 2: m is even, but m=2 is odd. In this 
ase we have that [Gen00℄ implies that

[g

x

℄ and [g

x(2;n�s)

℄ for x 2

R

Z

m

are 
omputationally indistinguishable. Noti
e also that given y = g

x

, the bit x

1

is easily 
om-

putable. Assume that we have a distinguisherD that distinguishes between [g

x

℄

x2

R

Z

m

and [g

z

℄

z2

R

[1::2

s

℄

then we 
an use D to distinguish in the 
ase above. Given an element y we perform the following

steps:

� Compute x

1

and set y

1

= y � g

�x

1

� For i = 2 to n � s, 
ompute y

i

as the prin
ipal square root of y

i�1

. The prin
ipal square

root of a square y is that square root whi
h is also a square. When m=2 is odd, the prin
ipal

square root is unique and 
an be eÆ
iently 
omputed.

� Set y

0

= y

n�s

� g

w

with w 2

R

[1::2

s

℄.

A random group element y will be mapped to a random group element, while an element of the

form y = g

x(2;n�s)

will be mapped to a random element of the form g

z

with z < 2

s

.

Con
rete Complexity. The 
on
rete 
omplexity bounds stated in Prop. 15 are a re�nement of

the ones stated in [Gen00℄.
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