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Abstrat

We show that in appliations that use the DiÆe-Hellman (DH) transform but take are

of hashing the DH output (as required, for example, for seure DH-based enryption and key

exhange) the usual requirement to work over a DDH group, i.e., a group in whih the Deisional

DiÆe-Hellman assumption holds, an be relaxed to only requiring that the DH group ontains a

large enough DDH subgroup. In partiular, this implies the seurity of (hashed) DiÆe-Hellman

over non-prime order groups suh as Z

�

p

. Moreover, our results indiate that one an work

diretly over Z

�

p

without requiring any knowledge of the prime fatorization of p�1 and without

even having to �nd a generator of Z

�

p

. These results are obtained via a general haraterization

of DDH groups in terms of their DDH subgroups, and a relaxation (alled t-DDH) of the DDH

assumption via omputational entropy. We also show that, under the short-exponent disrete-

log assumption, the seurity of the hashed DiÆe-Hellman transform is preserved when replaing

full exponents with short exponents.

1 Introdution

The DiÆe-Hellman Transform and DDH Assumption. The DiÆe-Hellman transform is

one of the best-known and fundamental ryptographi primitives. Its disovery by Whit�eld DiÆe

and Martin Hellman [DH76℄ revolutionized the siene of ryptography and marked the birth of

Modern Cryptography. Even today, almost 30 years later, the DiÆe-Hellman (or DH for short)

transform remains the foundation of some of the most basi and widely used ryptographi teh-

niques. In partiular, it underlies the DiÆe-Hellman key exhange and the ElGamal enryption

sheme [ElG85℄, and is used over a large variety of mathematial groups. In its basi form the DH

transform maps a pair of elements g

a

; g

b

drawn from a yli group G generated by the element g

into the group element g

ab

. (Here we use the exponential notation that originates with multiplia-

tive groups but our treatment, whih is generi in nature, applies equally to additive groups suh

as Ellipti Curves.) The usefulness of this transform was originally envisioned under the onje-

ture, known as the Computational DiÆe-Hellman (CDH) assumption, that states the infeasibility

of omputing the value g

ab

given only the exponentials g

a

and g

b

. Namely, the value g

ab

should be

omputable only by those knowing one of the exponents a or b. Note that the CDH assumption

�
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implies the diÆulty of omputing disrete logarithms over the group G (the onverse, however, is

unknown for most pratial groups).

Over time it was realized that the CDH assumption is insuÆient to guarantee the seurity

of most DH appliations (in partiular those mentioned above). For this reason a muh stronger

assumption was introdued: the Deisional DiÆe-Hellman (DDH) assumption postulates that given

the values g

a

and g

b

not only it is omputationally hard to derive the value g

ab

but even the

seemingly muh easier task of distinguishing g

ab

from random group elements is infeasible [Bra93℄

(see [Bon98℄ for a survey on the DDH assumption). On the basis of this assumption one an onsider

the DH transform as a good generator of pseudorandomness as required in key-exhange, enryption

and other ryptographi appliations. Hereafter we refer to groups in whih the DDH assumption

holds as DDH groups. The need to rely on the DDH disquali�es many natural groups where the

assumption does not hold. For example, any group whose order is divisible by small fators, suh

as the lassi groups Z

�

p

of residues modulo a large prime p; in this ase the group's order, p� 1, is

always divisible by 2 (for random p, p�1 is very likely to have additional small fators). Due to the

pereived need to work over DDH groups it is often reommended in the ryptographi literature

that one work over subgroups of large prime order where the DDH assumption is believed to hold.

The Need for Hashing the DiÆe-Hellman Result. Interestingly, the DDH assumption, while

apparently neessary, turns out to be insuÆient for guaranteeing the seurity of some of the most

basi appliations of the DH transform. Consider for example the ElGamal enryption sheme:

Given a publi key y = g

a

(for seret a), a message m 2 G is enrypted by the pair (g

b

;my

b

)

where the value b is hosen randomly anew for eah enryption. In this ase, the DDH assumption

guarantees the semanti seurity [GM84℄ of the sheme (against hosen-plaintext attaks) provided

that the plaintexts m are elements of the group G. However, if the message spae is di�erent, e.g.

the set of strings of some length smaller than log jGj, then the above enryption sheme beomes

problemati. First of all, you need to enode messages m as group elements in G and that ould

be umbersome. If G is a subgroup of prime order of Z

�

p

, a naive (and ommon) approah would

be to trivially enode m as an integer and perform the multipliation my

b

modulo p. But now the

sheme is inseure even if the group G does satisfy the DDH assumption. A good illustration of the

potential weaknesses of this straightforward (or \textbook") appliation of ElGamal is presented

in [BJN00℄. It is shown that if the spae of plaintexts onsists of random strings of length shorter

than log jGj (e.g., when using publi key enryption to enrypt symmetri keys) the above sheme

turns out to be inseure even under a iphertext-only attak and, as said, even if the group G is

DDH. For example, if the plaintexts to be enrypted are keys of length 64, an attaker that sees a

iphertext has a signi�ant probability of �nding the plaintext with a work fator in the order of

2

32

operations and omparable memory; for enrypted keys of length 128 the omplexity of �nding

the key is redued to 2

64

.

A general and pratial approah to solving these serious seurity weaknesses is to avoid using

the DH value itself to \mask" m via multipliation, but rather to hash the DH value g

ab

to obtain

a pseudorandom key K of suitable length whih an then be used to enrypt the message m under

a partiular enryption funtion (in partiular, K an be used as a one-time pad). In this ase

the hash funtion is used to extrat the (pseudo) randomness present in the DH value. Suitable

hash funtions with provable extration properties are known, for example universal hash funtions

[CW79, HILL99℄. The above onsiderations are ommon to many other appliations of the DH

transform, inluding enryption shemes seure against hosen-iphertext attaks [CS98℄ and, most

prominently, the DiÆe-Hellman key-exhange protool (in the latter ase one should not use the

DH output as a ryptographi key but rather derive the agreed shared keys via a hashing of the DH

2



result); see Setion 4.2 for a disussion on how these appliations hoose a random hash funtion

out of a given family. For additional examples and justi�ation of the need for hashing the DH

output see [Bon98, NR97, CS98, ABR01℄. In the sequel we refer to the ombination of the DH

transform with a (universal) hash funtion as the hashed DH transform.

1.1 Our Results

The Seurity of the Hashed DH Transform over non-DDH Groups. In light of the need

to hash the DH value, some natural questions arise: when applying the hashed DH transform, is it

still neessary to work over groups where the DDH assumption holds, or an this requirement be

relaxed? Can one obtain a seure (hashed) DH transform over a non-DDH group, and spei�ally,

is doing hashed DH over Z

�

p

seure? In this paper we provide answers to these questions. Our

main result an be informally stated as follows: For any yli group G, applying the hashed DH

transform over G has the same seurity as applying the hashed DH transform diretly over the

maximal DDH subgroup of G. In partiular, one an obtain seure appliations of the hashed

DH transform over non-DDH groups; the only requirement is that G ontain a (suÆiently large)

DDH subgroup (see below for the exat meaning of \suÆiently large" and other parameter size

onsiderations). A signi�ant point is that we are only onerned with the existene of suh a

subgroup; there is no need to know the exat size or strutural properties of, nor to be able to

onstrut, this spei� (maximal) DDH subgroup.

A partiularly interesting onsequene of the above result is that assuming that DDH holds on

large subgroups of Z

�

p

(we will see later that it is suÆient to assume that DDH holds on large

prime-order subgroups of Z

�

p

), one an build seure (hashed) DH appliations working diretly over

Z

�

p

, where p is an unonstrained random prime. Only the length of the prime is spei�ed, while other

ommon requirements suh as the knowledge of the partial or full fatorization of p � 1, insisting

that p � 1 has a prime fator of a partiular size, or disqualifying primes for whih (p � 1)=2 has

a smooth part, are all avoided here. Moreover, there is no need to �nd a generator of Z

�

p

; instead,

the plaussible assumption that p�1 has suÆiently large prime fators allows us to use a randomly

hosen element r from Z

�

p

in lieu of a generator of Z

�

p

. In this ase the group G = hri is guaranteed

to have a large enough DDH subgroup, and therefore the hashed DH transform over G is seure

(this is true even if the order of r has small fators or if it misses some prime divisors of p�1). Note

that avoiding the need to �nd a generator for Z

�

p

allows us to work with primes p with unknown

fatorization of p� 1 (whih is otherwise required to �nd a Z

�

p

generator).

The t-DDH Assumption. In order to prove our main result (i.e., that the hashed DH transform

is seure over any group G, not neessarily a DDH group, that ontains a large enough DDH

subgroup), we introdue a relaxation of the DDH assumption whih we all the t-DDH assumption.

Informally, a group G satis�es the t-DDH assumption (where 0 � t � jGj) if given the pair (g

a

; g

b

)

(where g is a generator of G) the value g

ab

ontains t bits of omputational entropy. The notion

of omputational entropy, introdued in [HILL99℄, aptures the amount of omputational hardness

present in a probability distribution. In other words, we relax the \full hardness" requirement at

the ore of the DDH assumption, and assume partial hardness only. Moreover, we do not are about

the exat subsets of bits or group elements where this hardness is ontained, but only assume their

existene. On this basis, and using the entropy-smoothing theorem from [HILL99℄ (also known as

the leftover hash lemma), we obtain a way to eÆiently transform (via universal hashing) DH values

over groups in whih the t-DDH assumption holds into shorter outputs that are omputationally

indistinguishable from the uniform distribution. The maximal length of (pseudorandom) strings

that one an obtain as output from the hashed DH transform depends on the maximal value of t for
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whih the t-DDH holds in G. In partiular, in order to be 2

�k

-omputationally lose to uniform one

an output up to t�2k pseudorandom bits (e.g., to produe 128-bit keys with a seurity parameter

of k = 80 the group G should be 288-DDH, while for k = 128, G is to be 384-DDH).

After de�ning the t-DDH assumption and showing its usefulness in extrating random bits from

t-DDH groups, we show that if G ontains a DDH subgroup of order m then G is log(m)-DDH.

This forms the basis for our main result as stated above. Indeed, it suÆes that G has a suitably

large-order DDH subgroup to ensure that hashing the DH output results in pseudorandom outputs

of the required length. Again, it is important to stress that we do not need to know the spei�

DDH subgroup or its order, only (assume) its existene.

A Diret Produt Charaterization of the DDH Assumption. A further ontribution of

our work is in providing a haraterization of the DDH assumption in a given group in terms of its

DDH subgroups. Spei�ally, we show that a group is DDH if and only if it is the diret produt

of (disjoint) prime power DDH groups. In other words, a group G is DDH if and only if all its

prime power subgroups are DDH. Moreover, for any yli group G, the maximal DDH group in

G is obtained as the produt of all prime power DDH subgroups in G. Beyond its independent

interest, this result plays a entral role in our proof that the hashed DH transform over Z

�

p

is seure

as long as the DDH assumption holds in the subgroups of Z

�

p

of large prime order. In partiular,

this allows us to expand signi�antly the groups in whih one an work seurely with the hashed

DH transform without having to strengthen the usual assumption that DDH holds in large prime

order subgroups.

Some Pratial Considerations. Beyond the theoretial interest in understanding the role of

the DDH assumption and proving the usefulness of relaxed assumptions, our results provide a

justi�ation of the use of non-DDH groups in pratial appliations of the DH transform as long as

these groups ontain a large enough prime-order subgroup and the appliation takes are of hashing

the DH output. One interesting pratial example is the IPse's Key Exhange (IKE) protool

[RFC2409, IKEv2℄ that uses a DiÆe-Hellman exhange to negotiate shared keys but is areful to

�rst hash the DH value (see [Kra03℄).

1

. In addition, and as pointed out before, our results also

show that under the sole assumption that the DDH holds in groups of large prime order one an

work diretly over Z

�

p

for a random prime p, without having to know the fatorization of p � 1

and without having to �nd a generator of Z

�

p

. Moreover, the ability to work over non-prime order

groups has the bene�t of eliminating the attaks on the DH transform desribed in [LL97℄, without

having to searh for primes of a speial form (and without neessitating speial parameter heks

when ertifying publi keys [LL97℄).

Short-Exponent DiÆe-Hellman. One important pratial onsideration is the length of expo-

nents used when applying the DH transform. Full exponents when working over Z

�

p

are, typially,

of size 1024 or more. Even if one works over a prime-order subgroup, one still needs to use rela-

tively large orders (e.g. 288-bit long primes), with their orrespondingly large exponents, to ensure

a hashed output (say of 128 bits) that is indistinguishable from uniform. (This requirement for

suÆiently large omputational entropy is often overlooked; indeed, the usual pratie of using

160-bit prime-order groups, whih originates with Shnorr's signatures, may not be appropriate for

hashed DH-type appliations.)

Motivated by the signi�ant ost of exponentiation using long exponents, we investigate whether

one an use short exponents (e.g. as in [RFC2409℄) and still preserve the seurity of the hashed

1

In IKE, the family of hash funtions used for extrating a pseudorandom key from the DH value are implemented

using ommon pseudorandom funtion families keyed with random, but known, keys. The randomness extration

properties of the latter families are studied in [DGHKR04℄.
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DH transform. An obviously neessary requirement for the short exponent pratie to be seure

is the assumption that the disrete log problem is hard when exponents are restrited to a short

length (say of s bits). We show that this requirement (referred to as the s-DLSE assumption) is

suÆient for the seure use of short exponents in the setting of the DH transform; more preisely,

we prove (based on [Gen00℄) that if the s-DLSE assumption holds in a group G, then the hashed

DH transform in G is as seure with full exponents as with s-bit exponents. As a onsequene,

one an analyze the seurity of the hashed DH transform in the group G with full exponents and

later replae the full exponents with muh shorter ones without sari�ing seurity. In this ase

the important parameter is the length s; we note that the appropriate value of s depends on the

underlying group. See [vOW96℄ for an extensive study of the plausible value of s for di�erent

groups.

Paper's Organization. Setion 2 introdues some of the notation and basi notions underlying

our tehnial treatment (inluding the de�nition of DDH groups and a disussion of our onrete

seurity treatment). In Setion 3 we prove the Diret Produt DDH Charaterization Theorem.

In Setion 4 we introdue the t-DDH Assumption and its appliation to the hashed DH transform,

and prove the entral Max-Subgroup Theorem. In Setion 5 we investigate the seurity of the

hashed DH transform when using short exponents. We onlude in Setion 6 by desribing the

appliability of our results to the hashed DH transform over non-DDH groups.

2 Preliminaries

Througout the paper we use the following notation. Let D be a probability distribution over a set

A. By x 2

D

A we mean that x is hosen in A aording to the distribution D, and with x 2

R

S we

denote the hoie of x with uniform distribution over the set S. When m is an integer we use the

notation jmj to indiate the length of m in bits.

2.1 The Deisional DiÆe-Hellman Assumption

Let G be a yli group of order m generated by an element g. Consider the following problem:

Given a pair g

a

; g

b

ompute the value g

ab

. If this problem is intratable for the group G then we

say that the Computational DiÆe-Hellman (CDH) assumption holds over G.

A muh stronger, but also more useful, assumption is the following. Consider the set G

3

=

G�G�G and the following two probability distributions over it:

R

G

= f(g

a

; g

b

; g



) for a; b;  2

R

[0::m℄g

and

DH

G

= f(g

a

; g

b

; g

ab

) for a; b 2

R

[0::m℄g

De�nition 1 We say that the (S; �) Deisional DiÆe-Hellman (DDH) Assumption holds over G = hgi

(alternatively, that G is a (S; �) DDH group) if the two distributions R

G

and DH

G

are (S; �)-

indistinguishable.

The notion of (S; �) indistinguishability is realled in Appendix A.

Informally, the DDH assumption states that no feasible algorithm (a \distinguisher") has a

signi�ant probability of deiding orretly whether the third element of the triple (g

a

; g

b

; g



) is
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the result of the DiÆe-Hellman transform applied to g

a

; g

b

or a randomly hosen group element.

Clearly this is a muh weaker requirement than omputing the value g

ab

from g

a

; g

b

, and therefore,

as a general hardness assumption, DDH is stronger than the CDH. We note that, in priniple, the

DDH assumption ould hold for a group G with respeto to a generator g but not with respet

to another generator g

0

. As we will see in Setion 2.2 this is not the ase when using a onrete

seurity formalism as in this paper.

Example 1: A group where the DDH assumption does not hold. Consider the group G = Z

�

p

for a

prime p. Sine testing for quadrati residuosity over Z

�

p

is easy, by omputing the Legendre symbol

(

�

p

), then we immediately get a distinguisher against DDH in this group: by mapping the Legendre

symbol of 1 (i.e., quadrati residues) to 0, and the Legendre symbol of -1 to 1, we an simply hek

that (

g

a

p

)(

g

b

p

) = (

g



p

), and output \DH" if it holds and \R" otherwise. Clearly, if the triple is a

legal DH triple then the distinguisher outputs DH with probability 1, while in the other ase the

probability is only 1/2.

Example 2: A group where the DDH is onjetured to hold. Let p; q be primes suh that q divides

p� 1, and p and q are \large" (say, jqj = 1024 and jqj � 160). Let G be the subgroup of order q in

Z

�

p

. In this ase no eÆient DDH distinguisher for G is known.

In informal statements and disussions (as in the above examples) we sometimes omit the (S; �)

parameters from the DDH assumption, e.g., we say that \G is DDH", in whih ase the intent

is, as before, that no \feasible-size" distinguisher sueeds in the above task with \signi�ant"

probability. (See the disussion below on the (in)dependene of the DDH assumption on a spei�

generator g.) Also, when the group G is lear from the ontext we often omit the subsript G in

the notation of the two distributions R

G

and DH

G

.

2.2 On Conrete Seurity and Non-Uniformity

In De�nition 1 and througout this paper, our treatment of omputational diÆulty follows the

\onrete seurity" approah in whih onrete (numerial) bounds are established on the re-

soures (time/spae) and suess probability of algorithms (or \attakers"). This approah has

the advantage of providing very lear quantitative results whih, in partiular, highlight the exat

ost of seurity redutions (the downside is making the formal statements of results somewhat

more umbersome). Maybe more signi�ant is the fat that onrete seurity allows us to talk

about individual, �nite objets, suh as a single �nite group. In ontrast, when stating results in

terms of polynomial-time one must resort to asymptotis and in�nite families, something that is

not very well suited to the typial use of DiÆe-Hellman groups whih are usually de�ned and �xed

in advane for repeated use by many appliations and in many sessions (e.g., IKE, SSH, et.)

Moreover, for some of our results it is natural to speak about an individual group and its

individial subgroups; trying to map this into an asymptoti presentation just obsures the results.

Another fundamental aspet of onrete seurity that �ts well into our setting is that onrete

seurity aptures a non-uniform notion of omputation. For example, when solving a problem for

a partiular group, an algorithm an always inlude an \auxiliary input" that helps solving the

problem over that partiular group. To emphasize the non-uniformity behind the onrete seurity

approah, we talk about iruits with onrete size S. (We note that while the onrete seurity

literature usually states bounds in terms of time, talking of \size" rather than \time" is more

aurate sine even if one talks about time, the size of algorithms must be taken into aount, or

else some problems an be trivialized via huge pre-omputed tables.)
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In our ontext, it is interesting to onsider two onsequenes of the non-uniform aspet of

onrete seurity. First, an algorithm that works for a spei� group G an always inlude (as

part of the algorithm \ode" or auxiliary input) the order of the group or even the fatorization

of jGj. Hene, in this setting we need to work under the assumption that an attaker may have

suh information. For example, in Theorem 2 we assume that the attaker may know the group's

order m and may even know the fatorization of m (both of whih an be inluded in the \ode",

or \auxiliary input" of the algorithm). This is a non-trivial example in the sense that the theorem

does not neessarily hold for groups in whih the fatorization of jGj is seret, e.g., G = Z

�

N

where

N = pq is a modulus of unknown fatorization.

Seond, in a uniform (asymptoti) treatment one annot talk about the DDH assumption hold-

ing in a group G; instead the validity of DDH may depend on a spei� generator g of G. In

ontrast, in a non-uniform setting as ours if the DDH assumption holds in G with respet to a

generator g then it holds with respet to any other generator g

0

of G and hene the DDH property

is independent of the spei� generator (indeed, if DDH is easy in G with respet to a generator h

then it is also easy with respet to any other generator g: just give the distinguisher with respet

to g the value log

h

(g) as auxiliary input). This independene from spei� generators is more

\elegant" and partiularly useful when stating several of our results.

3 A Diret-Produt DDH Charaterization

The following theorem provides a full haraterization of DDH groups in terms of their prime

(power) order subgroups. As remarked in Setion 2.2, the proof of this theorem assumes that

the distinguisher is given the fatorization of ord(G). The theorem is �rst formulated informally

without onrete bounds; these are stated and proved in the following Lemmas.

Theorem 2 (Diret Produt Charaterization Theorem { informal.) A yli group G is

DDH if and only if all its prime-power order subgroups are DDH.

The preise meaning of the above Theorem is spei�ed by the following Lemmas 3 and 4. Below

we denote with exp

G

the size of the iruit that omputes exponentiations in G.

Lemma 3 Let G be a group of order order m = m

1

m

2

, and let G

1

be the subgroup of G of order

m

1

. If the (S; �) DDH holds in G then the (S

1

; �) DDH holds in G

1

where S

1

= S � 3exp

G

.

Proof Let G be a DDH (yli) group of order order m = m

1

m

2

, and let G

1

be a subgroup of G

of orderm

1

. Let g be a generator of G and g

1

= g

m

2

be a generator of G

1

. Assume by ontradition

that the (S

1

; �) DDH does not hold in G

1

, i.e., there is a distinguisher D

1

of size � S

1

that upon

reeiving a triple (A

1

= g

a

1

1

; B

1

= g

b

1

1

; C

1

= g



1

1

) 2 G

3

1

, an distinguish whether it ame from the

distributionR

G

1

or DH

G

1

with advantage > �. We build a distinguisher D of size � S for G whih

distinguishes between the distributions DH

G

and R

G

with the same probability �. This ontradits

the assumption that (S; �) DDH holds in G.

Upon reeiving a triple (A = g

a

; B = g

b

; C = g



); where a; b 2

R

Z

m

1

m

2

and  is either the

produt of ab or piked uniformly at random in Z

m

1

m

2

; the distinguisher D :

1. Computes (A

1

; B

1

; C

1

) by setting A

1

= A

m

2

; B

1

= B

m

2

, and C

1

= C

m

2

.

2. Passes the triple (A

1

; B

1

; C

1

) to D

1

7



3. Outputs the same output bit as D

1

.

Note that by onstrution the values A

1

; B

1

; C

1

equal g

a

1

1

; g

b

1

1

; g



1

1

, respetively, where a

1

= a mod

m

1

; b

1

= b mod m

1

; 

1

=  mod m

1

. Sine a; b 2

R

Z

m

1

m

2

then a

1

; b

1

2

R

Z

m

1

. Also, if  =

ab mod m

1

m

2

then 

1

= a

1

b

1

mod m

1

, while if  2

R

Z

m

1

m

2

then 

1

2

R

Z

m

1

(independently of

a

1

; b

1

). In other words, whenever the triple (A;B;C) is distributed aording to DH

G

then the

triple (A

1

; B

1

; C

1

) is distributed aording to DH

G

1

, while if (A;B;C) is distributed aording to

R

G

then the triple (A

1

; B

1

; C

1

) is distributed aording toR

G

1

. Therefore, D distinguishes between

the distributions DH

G

and R

G

with the same probability � that D

1

distinguishes between DH

G

1

and R

G

1

. Notie that the size of D is � S sine all it does is omputing three exponentiations in

G and then invoke D

1

.

Lemma 4 Let G be a yli group of order m = m

1

m

2

, where (m

1

;m

2

) = 1, and let G

1

and G

2

be the subgroups of G of orders m

1

;m

2

resp. If (S

1

; �

1

) DDH holds in G

1

and (S

2

; �

2

) DDH holds

in G

2

then (S; �) DDH holds in G where S = min(S

1

; S

2

)� 9exp

G

and � = �

1

+ �

2

.

Proof Let g; g

1

; g

2

be generators of G;G

1

; and G

2

, respetively; in partiular, g

1

= g

m

2

and

g

2

= g

m

1

. Given a triple t

1

= (A

1

= g

a

1

1

; B

1

= g

b

1

1

; C

1

= g



1

1

) 2 G

3

1

and a triple t

2

= (A

2

=

g

a

2

2

; B

2

= g

b

2

2

; C

2

= g



2

2

) 2 G

3

2

we de�ne the following transformation T whih \lifts" this pair of

triples into a triple in G

3

. (T is the standard isomorphism between the group G and its produt

group representation as determined by the Chinese Reminder Theorem.) On input t

1

; t

2

, T (t

1

; t

2

)

outputs a triple (A = g

a

; B = g

b

; C = g



) 2 G

3

de�ned as follows:

1. Let r

1

; r

2

be suh that r

1

m

1

+ r

2

m

2

= 1 (i.e., r

1

= m

�1

1

mod m

2

and r

2

= m

�1

2

mod m

1

)

2. Set A = A

r

2

1

A

r

1

2

= g

a

1

m

2

r

2

+a

2

m

1

r

1

2 G, i.e., a = a

1

m

2

r

2

+ a

2

m

1

r

1

mod m

3. Set B = B

r

2

1

B

r

1

2

= g

b

1

m

2

r

2

+b

2

m

1

r

1

2 G, i.e., b = b

1

m

2

r

2

+ b

2

m

1

r

1

mod m

4. Set C = C

m

2

r

2

2

1

C

m

1

r

2

1

2

= g



1

m

2

2

r

2

2

+

2

m

2

1

r

2

1

2 G, i.e.,  = 

1

m

2

2

r

2

2

+ 

2

m

2

1

r

2

1

mod m

Note the following fats about the triple (A;B;C) whih result from the above transformation:

Fat 1 If a

1

; b

1

2

R

Z

m

1

, and a

2

; b

2

2

R

Z

m

2

, then a; b 2

R

Z

m

.

Fat 2 � ab � 

1

� a

1

b

1

mod m

1

and � ab � 

2

� a

2

b

2

mod m

2

Fat 3 Following Fats 1 and 2, if the triple t

1

is hosen aording to distribution DH

G

1

and

t

2

aording to distribution DH

G

2

, then the triple (A;B;C) is distributed aording to the

distribution DH

G

. Similarly, if t

1

; t

2

are distributed aording to R

G

1

and R

G

2

, respetively,

then (A;B;C) is distributed aording to R

G

.

For probability distributions P

1

;P

2

we denote by T (P

1

;P

2

) the probability distribution indued by

the random variable T (x

1

; x

2

) where x

1

; x

2

are random variables distributed aording to P

1

;P

2

,

respetively, and T is the above de�ned transform. Using this notation and Fat 3 we get:

DH

G

= T (DH

G

1

;DH

G

2

) and R

G

= T (R

G

1

;R

G

2

). Let us now onsider the \hybrid" probabil-

ity distribution T (R

G

1

;DH

G

2

).

Note that this distribution is (S

1

� 9exp

G

; �

1

) indistinguishable from T (DH

G

1

, DH

G

2

). Indeed,

sine the distribution DH

G

2

is eÆiently samplable (it osts 3 exponentiations to sample it) and

8



the transformation T is eÆiently omputable (it osts 6 exponentiations to ompute it), then one

an transform any (S; �) distinguisher between the above two distributions into a (S + 9exp

G

; �)

distinguisher between R

G

1

and DH

G

1

. Thus if S < S

1

� 9exp

G

and � > �

1

we have a distinguisher

for R

G

1

and DH

G

1

of size � S

1

that distinguishes with probability > �

1

, in ontradition to the

hypothesis that G

1

is a (S

1

; �

1

) DDH group.

Similarly, we have that the hybrid distribution T (R

G

1

;DH

G

2

) is (S

2

� 9exp

G

; �

2

) indistinguish-

able from T (R

G

1

;R

G

2

).

By invoking the triangle inequality for omputational indistinguishability (see Prop. 22 in

Appendix A) we have thatR

G

and DH

G

are (S; �) indistinguishable where S = min(S

1

�9exp

G

; S

2

�

9exp

G

) = min(S

1

; S

2

)� 9exp

G

and � = �

1

+ �

2

as required.

Disussion (On prime-power subgroups). We note that the result summarized in Theorem 2

is atually asymmetri. In the \only if" diretion (Lemma 3) all subgroups are guaranteed to be

DDH, while for the \if" diretion (Lemma 4) we need the DDH assumption on prime-power order

subgroups. The reason for the latter is the ondition (m

1

;m

2

) = 1 in the statement and proof of

Lemma 4. A natural question is whether one an strengthen the latter lemma and prove a similar

result for fators m

1

;m

2

whih are not neessarily o-prime. More spei�ally, we are interested

in the following. Let G be a yli group of order q

2

for prime q, and let H be the subgroup

of G of order q. Assume that H is DDH. Does this imply that G is DDH as well? This was

posed as an open question in an earlier version of this paper. Reently, Don Coppersmith has

built [Cop04℄ an ingenious ounter-example, namely, a yli group G of order q

2

whih ontains a

subgroup H of order q, suh that H is believed to be DDH but G is trivially not DDH. We present

Coppersmith's example in Appendix B. It is still interesting to settle this question for spei�

families of groups (e.g., the subgroups of Z

�

p

for prime p). In general, how plausible is it to assume

the DDH assumption in prime-power order subgroups of Z

�

p

?

We end this setion by mentioning a result by Maurer and Wolf (Corollary 5, [MW96℄) that

shows a relation between the hardness of the (omputational) DiÆe-Hellman problem in a yli

group and the hardness of this problem in some of its subgroups. More spei�ally, they prove

that if G is a yli group and H a subgroup suh that the index jGj=jHj is smooth then the CDH

problem in G and H are polynomial-time equivalent.

4 The t-DDH Assumption and the Hashed DH Transform

In this setion we introdue an intratability assumption that is, in general, weaker than the DDH

assumption, yet it suÆes for ensuring DH outputs from whih a large number of pseudorandom

bits an be extrated. We start by realling the notions of omputational entropy and entropy

smoothing. We use the notations introdued at the end of Setion 1.

4.1 Computational Entropy and Entropy Smoothing

De�nition 5 Let X be a probability distribution over A. The min-entropy of X is the value

min-ent(X ) = min

x2A:Prob

X

[x℄6=0

(� log(Prob

X

[x℄))

Note that if X has min-entropy t then for all x 2 A, Prob

X

[x℄ � 2

�t

.

The notion of min-entropy provides a measurement of the amount of randomness present in a

probability distribution. Indeed, the Entropy Smoothing Theorem (see below) shows that if X has

9



min-entropy t it is possible to onstrut from X an (almost) uniform distribution over (almost) t

bits, by simply hashing elements hosen aording to X . The basi hashing tool to do this uses the

following notion of universal hashing.

De�nition 6 Let H be a family of funtions, where eah H 2 H is de�ned as H : A ! f0; 1g

m

.

We say that H is a family of (pairwise-independent) universal hash funtions if, for all x; x

0

2 A,

x 6= x

0

, and for all a; a

0

2 f0; 1g

m

we have

Prob

H2H

[H(x) = a and H(x

0

) = a

0

℄ = 2

�2m

:

That is, a randomly hosen H will map any pair of distint elements independently and uniformly.

Our tehniques use as a entral tool the following Entropy Smoothing Theorem from [HILL99℄

(see also [Gol01, Lub96℄), also known as the \Leftover Hash Lemma". The de�nition of statistial

distane used in the theorem's statement is realled in Appendix A.

Theorem 7 (Entropy Smoothing Theorem [HILL99℄) Let t be a positive integer and let X be

a random variable de�ned on f0; 1g

n

suh that min-ent(X ) > t. Let k > 0 be an integer parameter.

Let H be a family of universal hash funtions suh that 8h 2 H; h : f0; 1g

n

! f0; 1g

t�2k

:

Let U be the uniform distribution over f0; 1g

t�2k

. Then, the distributions [hh(X ); hi℄

h2

R

H

and

[< U ; h >℄

h2

R

H

have statistial distane at most 2

�(k+1)

.

Thus, the Entropy Smoothing Theorem guarantees that if X is a probability distribution over A

with min-entropy of at least t, and H a family of universal hash funtions from A to f0; 1g

t�2k

,

then the random variable h(x), where h 2

R

H and x is hosen aording to the distribution X ,

is \almost" uniformly distributed over f0; 1g

t�2k

even when the hash funtion h is given. Here,

\almost" means a statistial distane of at most 2

�k�1

.

The following notion represents a omputational analogue of the notion of min-entropy and was

introdued in [HILL99℄. We reall it here (under a onrete seurity formulation) for ompleteness

and beause it is impliit in our de�nition of the t-DDH assumption in the next sub-setion.

De�nition 8 A probability distribution Y has (S; �) omputational entropy t if there exists a prob-

ability distribution X suh that

� min-ent(X ) � t

� X and Y are (S; �) indistinguishable

Using a standard hybrid argument it is easy to show that the Entropy Smoothing Theorem, as

disussed above, an be generalized to probability distributions X that have (S; �) omputational

entropy t. In this ase, applying a (randomly hosen) universal hash funtion with output in

f0; 1g

t�2k

results in a distribution whih is (S; �+ 2

�k�1

) indistinguishable from the uniform one.

4.2 t-DDH: A Relaxed DDH Assumption

We proeed to de�ne the t-DDH assumption. The intuition behind this assumption is that if the

Computational DiÆe-Hellman Assumption holds in a group G generated by a generator g, then

the DH value g

ab

must have some degree of unpreditability (or \partial hardness") even when

g

a

and g

b

are given. Spei�ally, we say that the t-DDH Assumption holds in the group G if the

DiÆe-Hellman output g

ab

has t bits of omputational entropy (here 0 � t � log(G)). Formally:

10



De�nition 9 We say that the (S; �) t-DDH Assumption holds over a group G if there exists a

family of probability distributions X (g

a

; g

b

) over G (one distribution for eah pair g

a

; g

b

) suh that

� min-ent(X (g

a

; g

b

)) � t

� The probability distribution DH

G

(see Setion 2) is (S; �) indistinguishable from the ensemble

R

�

= f(g

a

; g

b

; C) for a; b 2

R

ord(G) and C 2

X (g

a

;g

b

)

Gg

It is important to note that the distributions X (g

a

; g

b

) in the above de�nition may be di�erent

for eah pair of values g

a

; g

b

. Requiring instead a single distribution X for all pairs g

a

; g

b

(as may

seem more natural at �rst glane) results in a signi�antly stronger, and onsequently less useful,

assumption.

Consider Example 1 from Setion 2: over Z

�

p

one an break the DDH by deteting if the

quadrati residuosity harater of C is onsistent with the one indued by g

a

; g

b

. Yet, Z

�

p

an

satisfy the t-DDH assumption even for high values of t. For example, if for all a; b for whih one

of a; b is even we de�ne X (g

a

; g

b

) to be the set of quadrati residues in Z

�

p

, and for all other pairs

g

a

; g

b

we de�ne X (g

a

; g

b

) to be the set of quadrati non-residues in Z

�

p

, then the trivial break of

DDH in the above example does not hold against these distributions. More generally, if we onsider

a prime p of the form 2

u

q + 1 where q is a prime then we an get that (given urrent knowledge)

the t-DDH assumption holds for Z

�

p

for t = jpj � u, while learly the DDH assumptions does not

hold over this group.

Note that the DDH assumption an also be stated in terms of omputational entropy. Indeed the

DDH assumption over a group G is equivalent to the t-DDH assumption over G for t = log(ord(G)).

Sampling X (g

a

; g

b

). The t-DDH Assumption as stated above makes no requirement on the ex-

istene of an eÆient sampling algorithm for the distribution X (g

a

; g

b

). We say that X (g

a

; g

b

) is

S

0

-samplable if there exists a (probabilisti) iruit of size S

0

whose output distribution (on null

input) is X (g

a

; g

b

). We say that X (g

a

; g

b

) is S

0

-semi-samplable if there exists a iruit of size S

0

whih is run on input either a or b and whose output distribution is X (g

a

; g

b

).

We note that our results do not neessitate of any form of samplability of the X distributions

exept for the results on using DDH with short exponents (Setion 5). In the latter ase our seurity

proof requires X (g

a

; g

b

) to be S

0

-semi-samplable and the parameter S

0

will a�et the quality of the

redution.

As a diret onsequene of the Entropy Smoothing Theorem and the de�nition of t-DDH we

have:

Lemma 10 Let G be a group in whih the (S; �) t-DDH Assumption holds, and let H be a olletion

of universal hash funtions suh that for all h 2 H; h : G ! f0; 1g

t

0

where t

0

= t� 2k. Then the

indued distribution of h(g

ab

), for a; b 2

R

[1::ord(G)℄ and h 2

R

H, is (S; �+ 2

�k

) indistinguishable

from the uniform distribution over f0; 1g

t

0

even when h, g

a

and g

b

are given to the distinguisher.

Notie that the above lemma requires the hash funtion h to be hosen at random for eah

appliation. This is the ase in several pratial protools (suh as the ase of IKE [RFC2409,

IKEv2℄, mentioned in the Introdution, in whih a key to the hash funtion is hosen by the

ommuniating parties anew with eah run of the protool). However, it is also possible to �x

a randomly hosen hash funtion and apply it repeatedly to di�erent DH values. An example of

suh an appliation would be its use in the ontext of the Cramer-Shoup CCA-seure ryptosystem
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[CS98℄ (also disussed in the Introdution) in whih the spei� hash funtion h would be hosen

at random from the family H by the owner of the deryption key, and published as part of the

publi key parameters. In this ase, the seurity of the repeated use of the same hash funtion h

an be proved via a standard simulation argument.

Next we show that for groups of prime order, the t-DDH Assumption is equivalent to the full

DDH assumption. The proof uses a standard random self-reduibility argument [Sta96, NR97℄.

Lemma 11 Let G be a group of prime order q. If the (S; �) t-DDH Assumption holds in G for

t > 0 then the (S

0

; �

0

) DDH Assumption holds in G with S

0

= S � 8exp

G

and �

0

=

�

1�2

�t

.

Proof Assume by ontradition that there exists a distinguisher D of size � S

0

that distinguishes

between R

G

and DH

G

with probability > �

0

. We use D to break the (S; �) t-DDH assumption in

G.

Let X (g

a

; g

b

) be a family of distributions with min-entropy t de�ned over G. We are given three

values A = g

a

; B = g

b

; C = g



where either  = g

ab

or C 2

X (g

a

;g

b

)

G. We sample r; s; u; v 2

R

[1::q℄

and set A

0

= A

r

g

u

= g

ar+u

, B

0

= B

s

g

v

= g

bs+v

and C

0

= C

rs

A

rv

B

us

g

uv

. Notie that

log

g

C

0

= rs+ arv + bsu+ uv = (� ab)rs+ (ar + u)(v + bs) mod q

thus if C = g

ab

then C

0

is the result of the DH transform over A

0

; B

0

. On the other hand, sine q is

a prime and thus any element has an inverse modq, if  6= ab then C

0

is uniformly distributed over

G. Notie that if C 2

X (g

a

;g

b

)

G then  = ab with probability at most 2

�t

.

Thus by feeding A

0

; B

0

; C

0

to D we an distinguish the ase in whih C = g

ab

and C 2

X (g

a

;g

b

)

G

with probability larger than �

0

(1� 2

�t

). Notie that this distinguisher has size S

0

+ 8exp

G

sine it

osts 8 exponentiations to ompute A

0

; B

0

; C

0

before running D.

Thus by setting S

0

= S � 8exp

G

and �

0

=

�

1�2

�t

we ontradit the assumption that the (S; �)

t-DDH Assumption holds in G.

This yields an interesting 0-1 law for prime order groups, in whih either the DDH Assumption

holds, and thus the DH output has log(q) bits of omputational entropy, or we annot laim that

the DH output has any bits of omputational entropy. We stress that this result, by itself, does

not imply that over prime order groups either DDH holds or the DiÆe-Hellman problem (i.e.,

Computational DiÆe-Hellman) is easy. What the result says is that in this ase (i.e. a prime-order

group whih is CDH but not DDH), pseudorandomness annot be extrated from a DH value solely

based on the omputational min-entropy of the distribution but rather may require speialized hard

ore funtions (suh as Goldreih-Levin, et. [Gol01℄).

4.3 The Max-Subgroup Theorem

We now proeed to prove our main theorem onerning the t-DDH assumption. The signi�ane

of the theorem below is that for a yli group G to be t-DDH it suÆes that t be the order of the

maximal (or maximal disjoint) subgroup of G where the DDH holds.

Theorem 12 Let G be a yli group of order m = m

1

m

2

where (m

1

;m

2

) = 1, and G

1

be a sub-

group of order m

1

in G. If the (S; �) DDH Assumption holds over G

1

then the (S

0

; �) log(m

1

)-DDH

Assumption holds in G, where S

0

= S � 5exp

G

.
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Proof An initial intuition behind the orretness of the theorem is that the hardness hidden in

G

1

ould be \sampled" when applying a hash funtion to the DH values over G. This however

is inorret: the size of G

1

may be negligible in relation to jGj and as suh the probability to

sample a triple (g

a

; g

b

; g

ab

) from G

1

is negligible too. The atual argument, presented next, uses

the observation that the \hardness" present in G

1

an be extended to its osets in G.

Let g be a generator of G and g

1

= g

m

2

be a generator of order m

1

of G

1

. Given g

a

; g

b

2 G,

we de�ne the distribution X (g

a

; g

b

) to be the uniform distribution over fC = g



2 G suh that  2

Z

m

and  � ab mod m

2

g. Thus, it is easy to see that X (g

a

; g

b

) has log(m

1

) bits of min-entropy

(sine the above set hasm

1

elements). LetR

�

denote the probability distribution f(g

a

; g

b

; C) : a; b 2

R

Z

m

and C 2

X (g

a

;g

b

)

Gg.

We assume by ontradition that the (S

0

; �) log(m

1

)-DDH assumption does not hold in G, and

thus we have a iruit D of size � S

0

whih distinguishes between the distributions DH

G

and

R

�

with advantage �. Using D we build a distinguisher D

1

of size � S that distinguishes be-

tween the distributions DH

G

1

and R

G

1

with the same advantage, thus ontraditing the theorem's

assumption.

Given a triple (A

1

; B

1

; C

1

) where A

1

= g

a

1

1

; B

1

= g

b

1

1

, and C

1

either equals g

a

1

b

1

1

or g



1

1

for



1

2

R

Z

m

1

, the distinguisher D

1

does the following:

1. Chooses i; j 2

R

Z

m

2. Sets A = A

1

g

i

; B = B

1

g

j

and C = C

m

2

1

A

j

1

B

i

1

g

ij

omputed in G

3. Hands D the triple (A;B;C)

4. Outputs the same output bit as D.

Notie that D

1

omputes 5 exponentiations and runs D, thus is of size � S.

Let's examine the distribution of the triple (A;B;C). The value A is set to A = A

1

g

i

= g

a

1

1

g

i

=

g

m

2

a

1

+i

thus a = m

2

a

1

+i. Sine i 2

R

Z

m

then also a 2

R

Z

m

. Similarly for B = g

b

we get b 2

R

Z

m

.

In the ase of C we have C = C

m

2

1

A

j

1

B

i

1

g

ij

= g



1

m

2

2

+m

2

a

1

j+m

2

b

1

i+ij

; thus  = 

1

m

2

2

+m

2

a

1

j+m

2

b

1

i+

ij. In addition, we have that ab = (m

2

a

1

+ i)(m

2

b

1

+ j) = m

2

2

a

1

b

1

+m

2

a

1

j +m

2

b

1

i+ ij. Thus

� ab = m

2

2



1

+m

2

a

1

j +m

2

b

1

i+ ij � (m

2

2

a

1

b

1

+m

2

a

1

j +m

2

b

1

i+ ij) = m

2

2



1

�m

2

2

a

1

b

1

whih implies  = m

2

2

(

1

� a

1

b

1

) + ab mod m. Therefore, if 

1

= a

1

b

1

then  = ab. On the other

hand, if 

1

2

R

Z

m

1

then 

1

� a

1

b

1

2

R

Z

m

1

, i.e.,  = ab + rm

2

2

(for r 2

R

Z

m

1

). Now, using

the fat that m

2

has an inverse modulo m

1

, we get that  is uniformly distributed over the set

fab + im

2

: 0 � i < m

1

g or, equivalently, that C is distributed aording to the distribution

X (g

a

; g

b

). In other words, the triple (A;B;C) is distributed aording to DH

G

if (A

1

; B

1

; C

1

)

ame from DH

G

1

, and it is distributed aording to R

�

if (A

1

; B

1

; C

1

) ame from R

G

1

. Therefore,

D

1

distinguishes between DH

G

1

and R

G

1

with the same probability that D distinguishes between

DH

G

and R

�

, that is �.

Sine we assumed that the (S; �) DDH holds in G

1

we reahed a ontradition.

Remark on samplability. The distributions X (g

a

; g

b

) de�ned in the above proof are eÆiently

samplable given m

1

;m

2

and at least one of a; b (i.e., X (g

a

; g

b

) is semi-samplable in the terminology

of Setion 4.2). Indeed given, say, a;B = g

b

we an sample X (g

a

; g

b

) by hoosing k 2

R

Z

m

1

and

setting C = g

km

2

B

a

.

13



From the above theorem we get the following important orollary. Its �rst part follows immedi-

ately from Theorem 12 when using the following terminology: a subgroup H of G is alled a disjoint

subgroup if (jHj; jGj=jHj) = 1. The seond part of the orollary (whih does not involve the notion

of disjoint subgroups) follows from Theorem 12 ombined with Theorem 2. The orollary is stated

without onrete bounds whih an be derived from the previous theorems.

Corollary 13 For any yli group G, G is log(m)-DDH where m is the order of the maximal

disjoint DDH subgroup of G. If all the large prime-power subgroups of G are DDH, then G is

log(m)-DDH where m is the order of the maximal DDH subgroup of G.

The above Corollary is stated somewhat informally, in partiular one has to speify the meaning of

\large" subgroups. The idea is the following: let G be a yli group of order m = �

`

i=1

p

e

i

i

where

p

1

< : : : < p

`

is the prime deomposition of m. Thus G is the diret produt of the subgroups

G

i

where eah G

i

has order p

e

i

i

. Fix an (S; �) seurity parameter and onsider the subgroups

fG

j

1

; : : : ; G

j

`

0

g whih are (S; �)-DDH. Then we an apply Theorem 12 and Lemma 4 sine the

orders of the subgroups G

i

are relatively prime with eah other. And thus we have that G is (S

0

; �

0

)

m

0

-DDH where: m

0

= �

`

0

i=1

e

j

i

log p

j

i

, S

0

= S � 14exp

G

and �

0

= `

0

�.

5 DDH and t-DDH with Short Exponents

In this setion we investigate the use of the DDH and t-DDH assumptions in onjuntion with the

so alled \short-exponent disrete-log" assumption.

The Short-Exponent Disrete-Log Assumption. A ommon pratie for inreasing the eÆ-

ieny of exponentiation in ryptographi appliations based on the hardness of omputing disrete

logarithms, and in partiular those using the DiÆe-Hellman transform, is to replae full-length ex-

ponents (i.e., of length logarithmi in the group order) with (signi�antly) shorter exponents. The

seurity of this pratie annot be justi�ed by the usual assumption that omputing disrete loga-

rithms (with full-length exponents) is hard, but rather requires a spei� assumption �rst analyzed

in [vOW96℄ and formalized in [PS98℄. We give a onrete seurity formalization below.

Assumption 14 (s-DLSE [PS98℄) Let G be a yli group generated by g and of order ord(G) =

m. We say that the (S; �) s-DLSE Assumption holds in G if for every iruit I of size � S, we

have that Prob

x2

R

[1::2

s

℄

(I(g;m; s; g

x

) = x) � �.

Current knowledge points to the plausibility of the above assumption even for exponents s signif-

iantly shorter than log(ord(g)). The exat values of s for whih the assumption seems to hold

depend on the group generated by the element g. An obvious lower bound on s, if one wants to

ahieve seurity against 2

k

-omplexity attaks, is s � 2k whih is neessary to thwart the usual

square-root attaks suh as Shanks and Pollard methods. However, as pointed out in [vOW96℄,

there are ases where s needs to be hosen larger than 2k. Spei�ally, they show how to use a

Pohlig-Hellman deomposition to obtain some of the bits of the exponent. The power of the attak

depends on the (relatively) small prime fators of the group order. For example, when working over

Z

�

p

with a random prime p, the [vOW96℄ results indiate the use of s � 4k (e.g., with a seurity

parameter of 80 one should use s = 320 whih is muh shorter than the 1024 or 2048 bits of p,

yet twie as muh as the bare minimum of s = 160). If one wants to use s = 2k (i.e., assume the

14



2k-DLSE), it is neessary to work in speial groups suh as those of prime order or Z

�

p

with p a

safe prime (i.e., p = 2q + 1, and q prime).

From Hardness to Indistinguishability. Gennaro [Gen00℄ proves that if the s-DLSE as-

sumption holds in G = Z

�

p

with p a safe prime then the distribution over G generated by g

x

for x 2

R

[1::2

s

℄ is omputationally indistinguishable from the uniform distribution over G. The

following proposition generalizes this result as needed for our purposes

2

.

Proposition 15 Let G be a yli group of order m generated by g, suh that m is odd or m=2 is

odd. If the (S; �) s-DLSE Assumption holds in G, then the following two distributions S

G

= fg

x

:

x 2

R

[1::2

s

℄g and U

G

= fg

x

: x 2

R

Z

m

g are (S

0

; �) indistinguishable, where S

0

�

�

�

jmj�s

�

2

S

The proof is presented in Appendix C.

Next we show that if in a group G, both the s-DLSE and the t-DDH Assumptions hold, then

performing the DiÆe-Hellman transform with short exponents a and b, yields a DH output with t

bits of omputational entropy. In other words, the seurity of the hashed DH transform over suh

groups when using s-bit long exponents is essentially equivalent to that of using full exponents.

Theorem 16 Let G be a yli group of order m generated by g, suh that m is odd, or m=2 is odd.

Let s; t be suh that the (S

1

; �

1

) s-DLSE and the (S

2

; �

2

) t-DDH Assumptions hold in G. Denote

with X (g

a

; g

b

) the family of distributions indued by the t-DDH assumption over G (see Def. 9).

Assume that X (g

a

; g

b

) is S

3

-semi-samplable (see Se. 4.2). Then the following two distributions

SDH = f(g

a

; g

b

; g

ab

) for a; b 2

R

[1::2

s

℄g

and

SR

�

= f(g

a

; g

b

; C) for a; b 2

R

[1::2

s

℄ and C 2

X (g

a

;g

b

)

Gg

are (S; �) indistinguishable where S = min(S

2

;

�

�

jmj�s

�

2

S

1

� S

3

) and � � �

2

+ 4�

1

.

Before proving the Theorem, we point out that for a tehnial reason inside the proof (an hybrid

argument) we need the semi-samplable version of the t-DDH assumption here. We stress that the

\short exponent" tehnique is the only ase in whih we need semi-samplability, and in this ase it

is easily seen that this ondition holds (see Remark at the end of the next Setion).

Proof Reall that if the (S

2

; �

2

) t-DDH Assumption holds over the group G of order m, then

there exists a family of probability distributions X (g

a

; g

b

) with min-entropy t (one distribution for

eah pair g

a

; g

b

) over G suh that the distributions

DH = f(g

a

; g

b

; g

ab

) for a; b 2

R

Z

m

g

and

R

�

= f(g

a

; g

b

; C) for a; b 2

R

Z

m

and C 2

X (g

a

;g

b

)

Gg

are (S

2

; �

2

) indistinguishable.

The following standard hybrid argument yields the proof of the theorem. Consider the inter-

mediate distributions

D

0

= f(g

a

; g

b

; g

ab

) for a; b 2

R

[1::2

s

℄g

2

A similar, but slightly weaker statement was independently stated in [KK04℄.
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D

1

= f(g

�

; g

b

; g

�b

) for � 2

R

Z

m

; b 2

R

[1::2

s

℄g

D

2

= f(g

�

; g

�

; g

��

) for �; � 2

R

Z

m

g

D

3

= f(g

�

; g

�

; C) for �; �;2

R

Z

m

and C 2

X (g

�

;g

�

)

Gg

D

4

= f(g

�

; g

b

; C) b 2

R

[1::2

s

℄; � 2

R

Z

m

and C 2

X (g

�

;g

b

)

Gg

D

5

= f(g

a

; g

b

; C) : a; b 2

R

[1::2

s

℄ and C 2

X (g

a

;g

b

)

Gg

Clearly D

0

= SDH while D

5

= SR

�

.

Under the (S

2

; �

2

) t-DDH Assumption we know that D

2

is (S

2

; �

2

) indistinguishable from D

3

.

Also, under the (S

1

; �

1

) s-DLSE Assumption we know that D

i

is (S

1

=s� S

3

; (jmj � s)�

1

) indis-

tinguishable from D

i+1

for i = 0; 1; 3; 4 by redution to Proposition 15. The extra additive fator

of S

3

is due to the fat that in the ase i = 3; 4 one needs X (g

a

; g

b

) to be semi-samplable, whih

by assumption an be done by a iruit of size S

3

.

Thus by invoking the triangle inequality for omputational indistinguishability (see Prop 22 in

Appendix A) we have that SDH is (S; �) indistinguishable from SR

�

where S = min(S

2

; S

1

=s�S

3

)

and � = �

2

+ 4(jmj � s)�

1

as desired.

Note that, as a partiular ase, when t = log(m) the theorem states that if G is a DDH group in

whih the s-DLSE assumption holds, then performing the DH transform over G with exponents of

size s yields values that are indistinguishable from random elements in G.

6 Hashed DH over Z

�

p

and its Subgroups

Here we disuss the seurity of the hashed DH transform over groups and subgroups of Z

�

p

for

random prime p. Throughout this setion we assume that the DDH assumption holds over the

large prime-order subgroups of Z

�

p

(or the prime-power order subgroups in the unusual ase that

p � 1 is divisible by a large prime with multipliity larger than 1). Under this assumption we

immediately get that it is seure to use the hashed DH transform over a subgroup G

q

of Z

�

p

of

order q, provided that q is a suÆiently large prime that divides p � 1. The meaning of \large"

here is that DDH holds over G

q

with parameters (S; �) that make the distinguishing task infeasible;

spei�ally, when talking of a \seurity parameter" k we require S=� � 2

k

. Also, a large q is one

for whih a suÆient number of bits an be extrated from a DiÆe-Hellman value. For example, if

the appliation requires a pseudorandom output of ` bits then q needs to satisfy jqj � `+ 2k (see

Theorem 7).

Very importantly, however, due to our results we an extrat from a DiÆe-Hellman value over

Z

�

p

more bits than those guaranteed by individual fators q of p� 1. If we want to extrat ` bits

and Z

�

p

has a subgroup of order m, where m is the produt of di�erent large primes (say, eah of

size � 2k), then it suÆes that jmj � `+ 2k in order to extrat ` bits from a DH value over suh

subgroup. Moreover, these results show that one an seurely apply the hashed DH transform also

over some non-DDH groups whose order is divisible by small prime fators whih, in partiular, is

the ase of Z

�

p

(the order m = p� 1 of this group is always divisible by small prime fators, e.g.,

2). Spei�ally, we showed that the hashed DH is seure over Z

�

p

provided that p � 1 has enough

prime divisors (with multipliity 1) whose produt is larger than the entropy bound 2

`+2k

, and for

whih the subgroups of orresponding prime order are DDH in the above sense. (In partiular, the

fat that p� 1 has additional smaller prime fators does not invalidate the seurity of the hashed

DDH in Z

�

p

.)
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A partiularly interesting group is Z

�

p

for p = 2q + 1 and q prime. In this ase, working

diretly with the hashed DH over Z

�

p

is seure sine we are assuming that its subgroup of order q

is DDH, and therefore the whole Z

�

p

group is

�

�

�

p�1

2

�

�

�

-DDH. Working over Z

�

p

in this ase has several

important advantages: (i) one an produe a large (atually, largest) number of pseudorandom

bits (spei�ally, jpj � 1 � 2k bits); (ii) p an be hosen suh that 2 is a generator of Z

�

p

(whih

speeds up exponentiation); (iii) the 2k-DLSE Assumption (see Setion 5) is onjetured to hold

in these groups [vOW96℄ and therefore one an use minimal-length exponents (i.e., of length 2k)

in these groups, obtaining yet another signi�ant exponentiation speedup without sari�ing the

seurity of the (hashed) DH transform; and (iv) these groups are free from the potentially serious

attaks desribed in [LL97℄ (that a�et subgroups of prime order q where (p� 1)=q has a relatively

large smooth fator). Note that items (i) and (iii) use our results in an essential way. The only

downside of working over suh a group is the ost of generating p's of the above form; this, however

is insigni�ant in typial appliations (e.g., IKE [RFC2409, IKEv2℄) in whih prime generation is

very rare, and usually done at the set-up of the system and used for a large period of time.

Note that in all of the above examples it is assumed that one knows the full or partial fa-

torization of p � 1; in partiular, the knowledge of this fatorization is essential for seleting a

generator of the group. It is a theoretially and pratially important question to establish whether

the knowledge of the fatorization of p � 1 is essential for working seurely over Z

�

p

or over one

of its subgroups. In the rest of this setion we show that this knowledge is not essential (at least

under some plausible assumptions on the distribution of the prime fators of p� 1). Spei�ally, it

follows from our results that if one hooses a random prime p (of a pre-spei�ed size suh that the

Disrete Logarithm Problem is hard in Z

�

p

) and a random element e in Z

�

p

, then performing the

hashed DH transform over the group generated by e is seure.

3

Let p be a random prime suh that p�1 = p

1

p

2

� � � p

n

and p

1

� p

2

� ::: � p

n

are all (not neessarily

di�erent and possibly unknown) primes. Let e be an element randomly hosen from Z

�

p

, and let G

e

denote the subgroup of Z

�

p

generated by e. We �rst laim that with overwhelming probability the

large prime fators of p� 1 divide the order of G

e

.

Lemma 17 Let Z

�

p

and p� 1 = p

1

� � � p

n

be as desribed above. Then for all 1 � i � n:

Pr

e2

R

Z

�

p

[p

i

6 j ord(e)℄ � 1=p

i

:

Proof Let g be a generator of Z

�

p

. There are at most (p � 1)=p

i

elements whose order is not

divisible by p

i

, and they are the elements of the form g

jp

i

for 1 � j � (p � 1)=p

i

. When p

2

i

jp � 1

this is a strit upper bound, otherwise this is an exat bound. Thus, the probability to hoose e

suh that p

i

6 j ord(e) is at most

(p�1)=p

i

p�1

=

1

p

i

.

Corollary 18 For a given bound B, let p� 1 = �

n

i=1

p

i

where p

j

; p

j+1

; :::; p

n

> B. Then

Pr

e2

R

Z

�

p

[�

n

i=j

p

i

j ord(e)℄ � 1�

n

X

i=j

1

p

i

� 1�

n� j

B

� 1�

log p

B

:

Thus, for large values of B, the order of a random element e is divisible, with overwhelming

probability, by all the prime fators of p� 1 whih are larger than B. Or, equivalently, G

e

has as

subgroups all the prime-order subgroups of Z

�

p

whose order is larger than B.

3

We stress that while the legitimate users of suh a sheme do not need to know the fatorization of p � 1, the

sheme remains seure even if this fatorization is known to the attaker.
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Now, if we set our seurity parameter to k, de�ne B = 2

2k

, and assume that the DDH holds

in subgroups of prime order larger than B, then we have that, with overwhelming probability,

G

e

ontains all the prime order DDH subgroups of Z

�

p

. In other words, if we denote by P the

produt of all prime fators of p�1 larger than B, we have that G

e

ontains, by virtue of our DDH

Charaterization Theorem (Theorem 2), a DDH subgroup of size P , and then by the Max-Subgroup

Theorem (Theorem 12) we get that G

e

is jP j-DDH.

All that is left to argue is that jP j is large enough. For this we use the following lemma from

[vOW96℄ that provides an upper bound on the expeted size of the produt of all prime divisors of

p� 1 that are smaller than B (and thus, it provides a lower bound on the expeted size of jP j).

Lemma 19 ([vOW96℄) For a random prime p (as above) and a �xed bound B, the expeted length

of �

i

p

i

where p

i

< B is logB + 1:

In other words, the lemma states that the expeted size of jP j is jpj � jBj = jpj � 2k.

If, for the sake of illustration, we set jpj = 1024 and k = 80 we get that we expet G

e

to be

864-DDH. However, note that this expeted size may vary for spei� p's, and in partiular the

above result does not rule out that there ould be many primes p's for whih p � 1 is smooth.

Fortunately this is not the ase: a better estimate of the probability that for a random prime p,

the value p� 1 is smooth an be found in [PS02℄ from whih one an state that most primes p have

a large prime q dividing p� 1. We refer the reader to [PS02℄ for details.

Remark (Short exponents and semi-samplability). Notie that in order to use short expo-

nents in the above senario (i.e., when working over a random prime p with a random generator e),

one must make sure that the order m of the group generated by e is either odd, or m=2 is odd (so

that we an invoke Theorem 16). This an be easily ahieved by hoosing �rst a random element e

in Z

�

p

and then using as the group generator the element e

2

f

mod p where f is the maximal integer

suh that 2

f

j(p � 1). In addition, for the appliation of Theorem 16, we need to show that the

distributions X (g

a

; g

b

) in this ase are semi-samplable. This is so sine in the above arguments we

are (impliitly) using the distributions de�ned in the proof of Theorem 12 whih are semi-samplable

when the fatorization of the group order is known (see the remark following the proof of Theorem

12). Therefore, we obtain that, even though the honest parties may not know the fatorization of

p� 1, the DH transform with short exponents remains seure in this ase even if suh fatorization

is available to the attaker.
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A Indistinguishability of Probability Distributions

De�nition 20 Let X ;Y be two probability distributions over a set A. We say that X and Y have

statistial distane bounded by � if

X

x2A

jProb

X

[x℄� Prob

Y

[x℄j � �

Next we adapt the lassial notion of omputational indistinguishability [GM84℄ to the onrete

seurity setting (informally, two distributions X and Y are (S; �) indistinguishable if no iruit of

size S an distinguish between samples drawn aording to X or aording to Y with advantage

larger than �).

De�nition 21 Let X ;Y be two probability distributions over A. Given a iruit D (alled the

distinguisher) onsider the following quantities

Æ

D;X

= Prob

x2X

[D(x) = 1℄ and Æ

D;Y

= Prob

y2Y

[D(y) = 1℄

We say that the probability distributions X and Y are (S; �) indistinguishable if for every iruit D

of size � S we have that

jÆ

D;X

� Æ

D;Y

j � �

We now state a simple \triangle inequality" for (S; �) indistinguishability (a.k.a. the \hybrid

argument").

Proposition 22 Given three probability distributions X ;Y;Z over a set A, suh that (i) X is

(S

1

; �

1

) indistinguishable from Y and (ii) Y is (S

2

; �

2

) indistinguishable from Z. Then X is (S; �)

indistinguishable from Z where S = min(S

1

; S

2

) and � = �

1

+ �

2

.

Proof Assume that X is not (S; �) indistinguishable from Z. Then there exists a distinguisher D

of size S suh that

jÆ

D;X

� Æ

D;Z

j > �

Now by the triangle inequality we have that

� < jÆ

D;X

� Æ

D;Y

j+ jÆ

D;Y

� Æ

D;Z

j � �

1

+ �

2

= �

whih is a ontradition. Note that the seond upper bound is due to the fat that the size of D is

smaller than both S

1

and S

2

.

B Coppersmith's Example

As mentioned at the end of Setion 3, Coppersmith [Cop04℄ has provided us with an example of

a non-DDH yli group G of order q

2

(for prime q) that ontains a DDH subgroup G

q

of order

q. Moreover, suh a group G an be onstruted on the basis of any given DDH group of order q.

Here we present Coppersmith's onstrution.

Let G

q

be a yli DDH group of order q, for prime q, generated by an element g. We build a

group G as follows. The set of elements in G is S = f(h; a) : h 2 G

q

; 0 � a < qg and the group
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operation � is de�ned as: (h

1

; a

1

) � (h

2

; a

2

) = (h; a) where (i) if a

1

+ a

2

< q then h = h

1

h

2

(with

multipliation over G

q

) and a = a

1

+a

2

; and (ii) if a

1

+a

2

� q then h = h

1

h

2

g and a = a

1

+a

2

� q.

The idea behind the onstrution of the group G, and its operation, is given by the following natural

bijetion between the set of integers between 0 and q

2

� 1 and the set S: for any 0 � b;  < q, we

map bq+  into (g

b

; ). More spei�ally, we onsider G as a yli group with generator (1; 1) (the

�rst 1 is the unit element in G

q

, the seond is the integer 1). In this ase we have that for any

0 � b;  < q, (1; 1)

bq+

= (g

b

; ), (or, equivalently, dlog

(1;1)

(g

b

; ) = bq + ).

Clearly, the element (1; 1)

q

= (g; 0) generates the subgroup G

q

� f0g of order q whih is (by

assumption) DDH. However G is not DDH (not even CDH). Indeed, the DiÆe-Hellman transform

over G is (see footnote

4

)DH((h

1

; a

1

); (h

2

; a

2

)) = (h

1

a

2

h

2

a

1

g

ba

1

a

2

=q

; a

1

a

2

mod q), and then trivial

to ompute given (h

1

; a

1

) and (h

2

; a

2

). Note that in this example G is not even CDH. Yet, a similar,

but somewhat more involved, example shows that one an build G of prime-power order (q

e

; e > 1)

with the following properties (i) CDH holds in G, (ii) DDH holds in a subgroup of G; yet (iii) DDH

does not hold in G.

C Proof of Proposition 15

In this setion we prove the following proposition from Setion 5.

Proposition 15 Let G be a yli group of order m generated by g, suh that m is odd or

m=2 is odd. If the (S; �) s-DLSE Assumption holds in G, then the following two distributions

S

G

= fg

x

: x 2

R

[1::2

s

℄g and U

G

= fg

x

: x 2

R

Z

m

g are (S

0

; �) indistinguishable, where

S

0

=

�

�

jmj�s

�

2

S.

What follows is an extension of arguments that appeared �rst in [PS98, Gen00℄.

Let m be the order of yli group G and g a generator for G. Let n = jmj.

[Hugo: Rosario: hek that indeed n is used below in lieu of jmj.℄ H

Hard-Core Bits and the s-DLSE Assumption. In [PS98℄ Patel and Sundaram prove that

under the s-DLSE Assumption the bits x

2

; x

3

; : : : ; x

n�s

are simultaneously hard for the funtion

f(x) = g

x

mod p, if p is ongruent to 3 mod 4. It is not diÆult to see that their proof an be

extended in two ways:

� It holds for any yli group of odd order, in whih ase even the bit x

1

is hard.

� It holds for any yli group G of even order m but suh that m=2 is odd. Notie that for

these groups, omputing x

1

when given y = g

x

is easy.

Short-Exponent Indistinguishability. Gennaro in [Gen00℄ builds on the above result from

[PS98℄ as follows. An alternative way to say that the the bits x

i

; : : : ; x

j

are simultaneously hard is

to say that the two distributions:

[g

x

; x

i

; : : : ; x

j

℄ for x 2

R

Z

m

[g

x

; r

i

; : : : ; r

j

℄ for x 2

R

Z

m

; r

i

; : : : ; r

j

2 f0; 1g

4

Let h

1

= g

b

1

,h

2

= g

b

2

. Then: DH((h

1

; a

1

); (h

2

; a

2

)) = DH((g

b

1

; a

1

); (g

b

2

; a

2

)) = DH((1; 1)

b

1

q+a

1

; (1; 1)

b

2

q+a

2

)

def

= (1; 1)

(b

1

q+a

1

)(b

2

q+a2)

= (1; 1)

(b

1

a

2

+a

1

b

2

)q+a

1

a

2

= (g

b

1

a

2

+a

1

b

2

+ba

1

a

2

=q

; a

1

a

2

mod q) = (h

1

a

2

h

2

a

1

g

ba

1

a

2

=q

; a

1

a

2

mod q).

20



are omputationally indistinguishable. Denote with x(i; j) the value x with the bits in position

from i to j zeroed out. Then a onsequene of the above statement is that the two distributions

[g

x

℄ and [g

x(i;j)

℄ for x 2

R

Z

m

are omputationally indistinguishable.

Gennaro uses this to onstrut eÆient pseudo-random generators in whih the basi operation

is an exponentiation with an exponent with a lot of ontiguous zero's in it (the positions from i to

j indeed) whih is substantially faster to ompute than a regular exponentiation.

Notie, however, that the above onlusion is still di�erent from the statement of Proposition

15. But we show now that if Proposition 15 is false then we an ontradit the above onlusion.

We distinguish two ases.

Case 1: m is odd. In this ase we have that [Gen00℄ implies that

[g

x

℄ and [g

x(1;n�s)

℄ for x 2

R

Z

m

are omputationally indistinguishable. Assume that we have a distinguisher D that distinguishes

between [g

x

℄

x2

R

Z

m

and [g

z

℄

z2

R

[1::2

s

℄

then we an use D to distinguish in the ase above. Given

an element y we ompute y

2

�(n�s)

mod m

g

w

with w 2

R

[1::2

s

℄. A random group element y will be

mapped to a random group element, while an element of the form y = g

x(1;n�s)

(i.e., with the least

n� s signi�ant bits zeroed out) will be mapped to a random element of the form g

z

with z < 2

s

.

Case 2: m is even, but m=2 is odd. In this ase we have that [Gen00℄ implies that

[g

x

℄ and [g

x(2;n�s)

℄ for x 2

R

Z

m

are omputationally indistinguishable. Notie also that given y = g

x

, the bit x

1

is easily om-

putable. Assume that we have a distinguisherD that distinguishes between [g

x

℄

x2

R

Z

m

and [g

z

℄

z2

R

[1::2

s

℄

then we an use D to distinguish in the ase above. Given an element y we perform the following

steps:

� Compute x

1

and set y

1

= y � g

�x

1

� For i = 2 to n � s, ompute y

i

as the prinipal square root of y

i�1

. The prinipal square

root of a square y is that square root whih is also a square. When m=2 is odd, the prinipal

square root is unique and an be eÆiently omputed.

� Set y

0

= y

n�s

� g

w

with w 2

R

[1::2

s

℄.

A random group element y will be mapped to a random group element, while an element of the

form y = g

x(2;n�s)

will be mapped to a random element of the form g

z

with z < 2

s

.

Conrete Complexity. The onrete omplexity bounds stated in Prop. 15 are a re�nement of

the ones stated in [Gen00℄.
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