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Abstract. In this paper, we formulate the requirements for privacy pro-
tecting biometric authentication systems. The secrecy capacity Cs is in-
vestigated for the discrete and the continuous case. We present, further-
more, a general algorithm that meets the requirements and achieves Cs

as well as Cid (the identification capacity). Finally, we present some prac-
tical constructions of the general algorithm and analyze their properties.

1 Introduction

The increasing demand for more reliable and convenient security systems gen-
erates a renewed interest in human identification based on biometric identifiers
such as fingerprints, iris, voice and gait. Since biometrics cannot be lost or for-
gotten like e.g. computer passwords, biometrics have the potential to offer higher
security and more convenience for the users.

A common approach to biometric authentication is to capture the biometric
templates of all users during the enrollment phase and to store the templates
in a reference database. During the authentication phase new measurements are
matched against the database information.

The fact that biometric templates are stored in a database introduces a
number of security and privacy risks. We identify the following threats:

1. Impersonation. An attacker steals templates from a database and constructs
artificial biometrics that pass authentication.

2. Irrevokability. Once compromised, biometrics cannot be updated, reissued
or destroyed.

3. Exposure of sensitive personal information.

The first threat was recognized by several authors [1–3]. When an authen-
tication system is used on a large scale, the reference database has to be made
available to many different verifiers, who, in general, cannot be trusted. Espe-
cially in a networked environment, attacks on the database pose a serious threat.
It was explicitly shown by Matsumoto et al. [4] that by using information stolen
from a database, artificial biometrics can be constructed to impersonate people.
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Construction of artificial fingerprints is possible even if only part of the template
is available. Hill [5] showed that if only minutiae templates of a fingerprint are
available, it is still possible to successfully construct artificial fingers that pass
authentication. The second threat was first addressed by Schneier [6]. The prob-
lem is concisely paraphrased by: “Theft of biometrics is theft of identity.” The
third threat is caused by the fact that biometrics contain sensitive personal infor-
mation. It is shown in [7]that fingerprints contain genetic information. From [8]
on the other hand it follows that retina scans reflect information about diseases
like diabetes and strokes.

We observe that a biometric authentication system does not need to store
the original biometric templates. In order to protect against the threats given
above, other authentication architectures are possible as well. Examples of sys-
tems that use other architectures and achieve protection of templates are private
biometrics [9], fuzzy commitment [10], cancelable biometrics [11], fuzzy vault [12],
quantizing secret extraction [13] and secret extraction from significant compo-
nents [14]. The systems proposed in [9, 10, 12–15] are all based on an architec-
ture that uses helper data. In this paper we analyze this architecture and derive
performance bounds. Moreover, we propose an algorithm that implements this
architecture and achieves these bounds.

This paper is organized as follows. In Section 2, we introduce our model and
give definitions. In Section 3, we identify the requirements for authentication sys-
tems that protect against the threats mentioned above. We introduce the helper
data architecture. Finally, we explain in this section the relation between the pro-
tection of biometric templates and secret extraction from common randomness.
In Section 4, we derive fundamental bounds for the helper data architecture.
A general algorithm that implements this helper data architecture is given in
Section 5. It is shown that this algorithm satisfies the requirements and meets
the performance bounds. Additionally, we show that by using the helper data
architecture for template protection, the maximum achievable performance of
a biometric identification system is not decreased. In Section 6, some concrete
examples of the general algorithm are discussed. These examples illustrate the
relation between our work and [10,13,14].

2 Model and Definitions

2.1 Security Assumptions

An overview of the possible attack scenarios to a biometric authentication system
is given in [1–3]. In this paper, we make the following security assumptions.

– Enrollment is performed at a trusted Certification Authority (CA). The CA

enrolls all users by capturing their biometrics, performing additional pro-
cessing and adding a protected form of the user data to a database.

– The database is vulnerable to attacks from the outside as well as from the
inside (malicious verifier).
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– During the authentication phase an attacker is able to present artificial bio-
metrics at the sensor.

– All capturing and processing during authentication is tamper resistant, e.g.
no information about biometrics can be obtained from the sensor.

– The communication channel between the sensor and the verification author-
ity is assumed to be public and authenticated, i.e. the line can be eaves-
dropped by an attacker.

2.2 Biometrics

Biometric templates are processed measurement data, i.e. feature vectors. We
model biometric templates as realizations of a random process. Biometrics of
different individuals are independent realizations of a random process that is
equal for all individuals. We assume that the processing of biometrics results in
templates that can be described as a sequence of n independent identically dis-
tributed (i.i.d.) random variables with a known distribution PX . The probability
that the biometric sequence Xn of a certain individual equals xn is defined by

Pr{Xn = xn} =
n
∏

i=1

PX(xi) , (1)

where PX is the probability distribution of each component, defined on an al-
phabet X , which can be a discrete set or R. 1

Noisy measurements of biometrics are modeled as observations through a
memoryless noisy channel. For a measurement Y n of biometrics xn we have

Pr{Y n = yn|Xn = xn} =

n
∏

i=1

PY|X(yi|xi) , (2)

where PY |X characterizes the memoryless channel with input alphabet X and
output alphabet Y. It is assumed that the enrollment measurements of the bio-
metric templates are noise free.

2.3 Secret Extraction Codes (SECs)

In order to deal with noisy measurements, we introduce the notion of Secret
Extraction Codes (SECs). Let S denote the set of secrets and let X and Y
denote the input and output alphabets, respectively, of the channel representing
the noisy measurements.

Definition 1 (Secret Extraction Code). Let n, ε > 0. An (n, |S|, ε) Secret
Extraction Code C, defined on X n × Yn, is an ordered set of pairs of encoding
and decoding regions

C =
{

(Ei,Di)
∣

∣

∣
i = 1, 2, . . . , |S|

}

, (3)

1 For X = R the sequence Xn is characterized by the probability density function
fXn(xn) =

∏

i
fX(xi).
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where Ei ⊆ Xn and Di ⊆ Yn, such that

Ei ∩ Ej = ∅, Di ∩ Dj = ∅,
⋃

i

Di = Yn, (4)

for i, j = 1, 2, . . . , |S|, i 6= j and

PYn|Xn(Di|x
n
i ) ≥ 1 − ε, (5)

for all xn
i ∈ Ei and i = 1, 2, . . . , |S|.

Note that a SEC provides an encoding-decoding scheme of a (possibly con-
tinuous) variable into a finite alphabet S = {1, 2, . . . , |S|} by discretization. We
note that the condition in Eq. (4) guarantees that unambiguous encoding and
decoding is possible and the condition of Eq. (5) implies a low False Rejection
Rate (FRR).

Note that SECs are strongly related to geometric codes [16]. Furthermore,
when the sets Ci have cardinality one, the SECs are normal error correcting
codes.

3 Protection of Templates

3.1 Requirements

The requirements for an architecture that does not suffer from the threats men-
tioned in the introduction are:

1. The information that is stored in the database does not give sufficient infor-
mation to make successful impersonation possible.

2. The information in the database provides the least possible information
about the original biometrics, in particular it reveals no sensitive informa-
tion.

Note that an architecture that meets those requirements, guarantees that the
biometric cannot be compromised.

3.2 The Helper Data Architecture

The privacy protecting biometric authentication architecture that is proposed
in [13,14] is inspired by the protection mechanism used for computer passwords.
Passwords are stored in a computer system in a cryptographically hashed form.
This makes it computationally infeasible to retrieve the password from the in-
formation stored in the database. The hash function is also applied to the user
input that is given in the authentication phase and matching is based on the
hashed values. This approach, however, cannot be used for the protection of
biometric templates in a straightforward way, because the measurements in the
authentication phase are inherently noisy. Since small differences at the input of
one-way functions result in completely different outputs, the hashed versions of
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the enrollment and the noisy authentication measurements will be different with
high probability.

In order to combine biometric authentication with cryptographic techniques,
we derive helper data during the enrollment phase. The helper data guarantees
that a unique string can be derived from the biometrics of an individual during
the authentication as well as during the enrollment phase. Since the helper data
is stored in the database it has to be considered as public data. In order to
prevent impersonation, we need to derive reference data from the biometric that
is statistically independent of the helper data. In order to keep the reference data
secret for somebody having access to the database, we store the reference data
in hashed form. In this way impersonation becomes computationally infeasible.

A schematic representation of the architecture described in this section is
presented in Fig. 1.

PSfrag replacements
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Fig. 1. The proposed authentication architecture. In the enrollment phase, the biomet-
ric template Xn is used for the derivation of a secret S and helper data W . A hashed
version F (S) of the secret and the helper data W are stored in a database. In the au-
thentication phase a noisy version Y n of the biometric template is captured. The helper
data W is used to derive a secret V from Y n. If F (S) = F (V ), the authentication is
successful.

During the enrollment phase a secret S, belonging to an alphabet S =
{1, 2, . . . , |S|}, is extracted from a sequence Xn. In order to guarantee robustness
to noise, the CA derives helper data W that will be used during the authenti-
cation phase to achieve noise robustness.

During the authentication phase, a noisy version Y n of the enrollment se-
quence Xn is obtained. Using the helper data W , which is provided to the
verifier, a secret V ∈ S is derived. The scheme is designed such that V equals
S with high probability. Note that in contrast to usual biometric systems, we
perform an exact match on F (S) and F (V ).

The first requirement given in Section 3.1, is to prevent abuse of database
information for impersonation. To this end the system is designed such that the
mutual information between the helper data and the secret is sufficiently small
and the secrets are uniformly distributed. Furthermore the set of secrets has to
be sufficiently large to exclude an attack by exhaustive trial.

The helper data architecture was introduced as an architecture for verifi-
cation, i.e. a situation in which an identity claim is verified. The helper data
architecture can, however, also be used in an identification setting. In that case
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a biometric measurement is matched against the database information of all en-
rolled users. In the remaining part of this paper, algorithms will be proposed in
a verification setting. The extension to the identification setting is left implicit.

3.3 Relation with Secret Extraction from Common Randomness

There is a strong relation between the protection of biometric templates and se-
cret extraction from common randomness [17,18]. The term common randomness
is used for the situation that two parties possess sequences of correlated random
variables. In the case of biometrics, the biometric is the source of common ran-
domness. Another well-known example of this is quantum key exchange [19]. The
secret extraction problem arises if the parties want to extract a common secret
from the correlated data by communicating over a public channel. As the com-
munication channel is public, the secret extraction protocol has to be designed
such that no information about the secret is revealed to an eavesdropper.

Fig. 2 gives an alternative representation of the situation that was already
visualized in Fig. 1. In the case of biometrics a secret S and helper data W

PSfrag replacements
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Y n

W
S V

PY |X

enc dec

Fig. 2. The sequences Xn and Y n are correlated random variables. The goal is to use
helper data W to derive secrets S and V in such a way that W does not give much
information about these secrets.

are derived from Xn during enrollment. During the authentication phase Y n,
a noisy version of Xn (and hence correlated with Xn) is obtained and a secret
V is computed using the public helper data W . The helper data W is designed
such that V equals S with very high probability and such that no information
about S is revealed.

The main difference between secret extraction from biometrics and for in-
stance quantum key exchange is that in the case of biometrics all helper data
are be derived during enrollment. In quantum key exchange on the other hand,
communications can only start after random variables are obtained by both
parties. In general multiple rounds of communications are required.

4 Bounds: Secrecy and Identification Capacity

4.1 Secret Extraction

We express the size of the secrets in the rate Rs. The maximum achievable rate
is defined accordingly by the secrecy capacity Cs.
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Definition 2 (Secrecy Capacity). The secrecy capacity Cs is the maximal
rate Rs, such that for all ε > 0, there exist encoders and decoders that, for
sufficiently large n, achieve

Pr{V 6= S} ≤ ε, (6)

I(W ;S) ≤ ε, (7)

1

n
H(S) =

1

n
log |S| ≥ (Rs − ε). (8)

Eq. (6) ensures correctness of the secret, Eq. (7) ensures secrecy with respect
to eavesdropping of the communication line and Eq. (8) guarantees a uniform
distribution of the secrets.

According to requirement 2 from Section 3.1, I(W ;Xn) should be small. It
was proven in [14], that in order to guarantee correctness and a large number of
secrets, the helper data W should depend on the biometric template Xn. Hence
I(W ;Xn) cannot be zero. In Section 6 we show, however, that it is possible to
keep I(W ;Xn) small. More in particular, it will not be possible to derive from
the helper data W a good (in the least squared sense) estimate of Xn. Finally,
if the requirement of Eq. (7) is satisfied and the number of secrets is large, an
impersonation attack based on artificial biometrics X̂n (which is an estimate
of Xn based on helper data W ) is infeasible, hence satisfying requirement 1
of Section 3.1. We remark that in general I(F (S),W ;Xn) is large in the strict
information-theoretic sense. In the computational sense, however, it is infeasible
to derive information about S from F (S). Hence from a computational point
of view F (S) does not reveal information about Xn and the only information
revealed about Xn is I(W ;Xn).

The uncertainty expressed by H(S|W ) = H(S) − I(W ;S), defines a security
parameter κ for impersonation. The number 2κ−2 + 1 is a lower bound to the
average number of attempts an attacker needs to achieve successful imperson-
ation.

The following is a technical lemma whose proof follows from measure-theoretic
entropy considerations.

Lemma 1. For continuous random variables X, Y and ε > 0, there exists a
sequence of discretized random variables Xd, Yd that converge pointwise to X,
Y (when d → ∞) such that for sufficiently large d,

I(X;Y ) ≥ I(Xd;Yd) ≥ I(X;Y ) − ε. (9)

With some modifications to the results from [17, 18], the following theorem
can be proven.

Theorem 1. The secrecy capacity of a biometric system equals

Cs = I (X;Y ) . (10)
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Proof. We start with the achievability argument. The proof that I(X;Y ) can be
achieved if Xn and Y n are discrete variables, is analogous to the proof in [17].
In order to prove achievability in the continuous case, we choose ε ≥ 0, and
approximate the random variables Xn, Y n by discretized (quantized) versions,
Xn

d , Y n
d such that I(X;Y ) − I(Xn

d ;Y n
d ) ≤ ε. (The fact that such a quantization

exists follows from lemma 1). Then, taking the encoder that achieves the capacity
for the discrete case, it follows that we can achieve I(Xn

d ;Y n
d ). Since this can be

done for any ε ≥ 0 the proof follows.
The fact that I(X;Y ) is an upper bound for Cs for discrete random vari-

ables, follows from the Fano inequality and some entropy inequalities. For the
continuous case this follows again by an approximation argument. ut

4.2 Biometric Identification

In the enrollment phase of an identification setting, a database is created with
data from a set of |M| enrolled users, each identified with an index m ∈
{1, 2, . . . , |M|}. In the identification phase, a measurement Y n and the informa-
tion in the database are used to find the identity of an unknown (but properly
enrolled) individual M . The identifier output is denoted by M̂ .

Reliability of the identification is expressed by the average error probability,
assuming that the individual is chosen at random. Performance in terms of the
number of users in the system is expressed by the rate R. The maximum rate
at which reliable identification is possible is given by the identification capacity
Cid.

Definition 3 (Identification Capacity). The identification capacity Cid is
the maximal rate Rid, such that for every ε > 0, for sufficiently large n, there
exists an identification strategy that achieves

avg Pr
{

M̂ 6= M
}

≤ ε, and
1

n
log |M| ≥ Rid − ε, (11)

where the average is over all individuals and over all random realizations of all
biometrics.

It was proven in [20, 21] that all biometric identification systems, including
template protecting systems, satisfy Cid = I (X;Y ).

5 Secure Biometric Authentication Algorithm (SBA)

We introduce a general algorithm that implements the architecture given in
Fig. 1. The algorithm basically describes a class of encoders/decoders. It will be
shown that the algorithm meets the requirements given by Equations (6), (7)
and (8) at a maximum rate.

Initially we define a finite collection C of (n, |S|, ε) SECs on X n × Yn. The
collection of SECs is made available in both the enrollment and the authenti-
cation phase. Furthermore, for xn ∈ Xn we define Φxn ⊆ C as follows. A SEC

C = {(Ei,Di)}
|S|
i=1 ∈ Φxn iff xn ∈

⋃

i Ei.
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Enrollment

1. The biometrics xn of the users are measured.
2. Choose a SEC C at random in Φxn . Define w as the index of this SEC C.

If Φxn = ∅, a SEC is selected at random from C.

3. Given a C = {(Ei,Di)}
|S|
i=1, the secret s is defined as, s = i if xn ∈ Ei. For

Φxn = ∅, s is chosen at random.
4. The one-way function F is applied to s. The data F (s) and w are stored in

a database together with some metadata about the user identity.

Authentication

1. An individual makes an identity claim.
2. The database information F (s) and w for the claimed user is retrieved.
3. A measurement yn of the user’s biometrics and the helper data w are given

to the decoder.
4. The SEC C(w) is used to derive the secret v as, v = i if yn ∈ Di.
5. If F (v) = F (s), the user is positively authenticated.

Theorem 2. For all ε > 0 and sufficiently large n, a collection C of SECs
for the SBA algorithm can be found such that 1

n
H(S) = 1

n
log |S| ≥ Cs − ε =

I(X;Y ) − ε and the requirements of Equations (6) and (7) are satisfied.

Proof. We start with the discrete case. Fix ε > 0. Define a set S = {1, 2, . . . , |S|},
such that |S| = exp[n(Cs − ε)]. It follows from [17] that for sufficiently large n,
one can find a size K collection C of (n, |S|, ε

2
) SECs on X n × Yn,

Ck =

{

(

{ek
i },D

k
i

)

}|S|

i=1

, for k = 1, 2, . . . ,K, (12)

such that PXn

(

ek
i

)

= PXn

(

ek
j

)

,
⋃

i{e
k
i } ∩

⋃

i{e
m
i } = ∅, for k 6= m and i, j =

1, 2, . . . , |S| and

PXn

(

⋃

k

⋃

i

{ek
i }

)

≥ 1 −
ε

2
. (13)

Using the collection C defined above for the SBA algorithm, it follows from
Eq. (13) that Pr{Φxn = ∅} ≤ ε

2
. From the construction of the collection C and

Eq. (5) we derive

Pr{S 6= V |Φxn 6= ∅} ≤
ε

2
, for k = 1, 2, . . . ,K, (14)

which combined with Eq. (13) leads to Pr{S 6= V } ≤ ε.
Define W to be the index of the SEC in C that has to be used to extract the

secret. Since for each code, all encoding sets have equal probability, the secrets
are uniformly distributed and I(W ;S) = 0. Hence, requirements (6), (7) and (8)
are fulfilled.



10 Pim Tuyls and Jasper Goseling

For the proof of the continuous case, we proceed as follows. From Lemma 1,
it follows that we can construct quantized variables Xn

d , Y n
d in such a way that

I(Xn
d ;Y n

d ) ≥ I(Xn;Y n) −
ε

2
, (15)

if d is sufficiently large. The quantization of Xn, Y n to Xn
d , Y n

d induces a parti-
tion P = {P1, . . . ,Pd} of R

n. The random variables Xn
d and Y n

d defined on the
set {1, 2, . . . , d} have probability distribution PXn

d
(i) =

∫

Pi

fX(xn)dxn, for all i =

1, 2, . . . , d. Define a size K collection Cd of SECs on {1, 2, . . . , d} × {1, 2, . . . , d}
as follows,

Ck
d =

{

(

{ek
i },D

k
i

)

}|S|

i=1

, for k = 1, 2, . . . ,K. (16)

For each SEC Ck
d there is a corresponding SEC Ck on R

n × R
n given by,

Ck =

{

(

Pek

i

,
⋃

j∈Dk

i

Pj

)

}|S|

i=1

, (17)

resulting in a collection C of SECs defined on R
n×R

n. Note that secrets derived
from Xn and Y n, by means of the collection C, are equal to those derived from
Xn

d and Y n
d using Cd. It was proven for the discrete case that a collection Cd can

be found such that Pr{S 6= V } ≤ ε, I(W ;S) = 0 and

|S| = exp

[

n
(

I(Xn
d ;Y n

d ) −
ε

2

)

]

≥ exp

[

n
(

Cs − ε
)

]

, (18)

where the last inequality follows from Eq. (15) and Cs = I(X;Y ) (Theorem 1).
This concludes the proof for the continuous case. ut

Theorem 3. For all ε > 0, there exists a collection C of SECs such that
an identification scheme based on the SBA algorithm achieves both 1

n
H(S) =

1

n
log |S| ≥ Cs − ε and 1

n
log |M| ≥ Cid − ε, while satisfying the requirements of

Equations (6), (7) and (11).

Proof. (sketch) Given ε > 0, choose ε′ such that ε > ε′ > 0. Theorem 2 states
that for sufficiently large n, there exists a collection C of SECs such that, an
implementation of the SBA algorithm using C, satisfies |S| = exp[n(I(X;Y ) −
ε′)], Pr{S 6= V } ≤ ε

2
and I(W ;S) = 0.

Applying the SBA algorithm results in a uniform random assignment of se-
crets to all users. Let the number of users in the system satisfy |M| = exp[n(I(X;Y )−
ε)]. The collision probability Pcoll that two users share the same secret is bounded
as follows

Pcoll =

|M|
∑

m=2

1

exp
[

n
(

I(X;Y ) − ε′
)] ≤ exp

[

− n(ε − ε′)
]

≤
ε

2
,
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where the last inequality holds for sufficiently large n. The overall error proba-
bility is upper bounded by

avg Pr
{

M̂ 6= M
}

≤ Pcoll + Pr
{

S 6= V
}

≤ ε, (19)

which is the requirement of Eq. (11). ut

6 Code Constructions for the SBA Algorithm

In this section we give two examples of SEC constructions for the SBA algorithm
and show that these constructions meet the requirements.

6.1 Secret Extraction from Significant Components

The biometrics are modeled as i.i.d sequences of Gaussian distributed random
variables with zero mean, i.e. Xi ∼ N (0, σ2

X). We assume additive uncorrelated
Gaussian noise, i.e. Y n = Xn +Nn, where Ni ∼ N (0, σ2

N ). The secrecy capacity

of these biometrics is Cs = n log(1 +
σ2

X

σ2

N

).

The scheme extracts binary secrets of length k from biometric sequences of
length n. The secrets are derived as the sign of k components that have “large”
absolute value. We define a collection C of SECs for encoding and decoding.
First we define some base sets,

E0 = (−∞,∞), E−1 = (−∞,−δ], E1 = [δ,∞), (20)

D0 = (−∞,∞), D−1 = (−∞, 0], D1 = (0,∞), (21)

where δ is chosen sufficiently large considering σ2
X and σ2

N . The SECs in C are
indexed by an ordered set w,

w = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n}. (22)

The SEC Cw extracts a secret from the components denoted by w and is defined
by

Cw =

{

(

Ewc

0 ×Eσ
−1×Eσc

1 , Dwc

0 ×Dσ
−1×Dσc

1

)

∣

∣

∣

∣

∣

σ⊆w

}

, (23)

where wc is the complement of w relative to {1, 2, . . . , n} and σc is the com-
plement of σ relative to w. Furthermore Ewc

0 ×Eσ
−1×Eσc

1 is the n dimensional
Cartesian product with E0, E−1 and E1 at positions wc, σ and σc, respectively.

It follows from the results in [14] that I(W ;S) = 0, |Φxn | is sufficiently large
for almost all xn ∈ Xn and I(W ;Xn) < k. The impersonation security parameter
κ for this scheme is κ = k.
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6.2 Secret Extraction from Discrete Biometrics

In this section we model the biometrics as binary uniform i.i.d. sequences Xn ∈
{0, 1}n. The authentication sequence Y n is an observation of Xn through a bi-
nary symmetric channel with cross-over probability p. It follows from Theorem 1
that this channel results in a secrecy capacity equal to Cs = 1 − H(p).

Take an error correcting code C = {cn
1 , cn

2 , . . . , cn
|S|} on {0, 1}n. The error cor-

recting capability of C implies decoding sets (balls) D1,D2, . . . ,D|S|. A collection
C of SECs is constructed as follows. For every w ∈ {0, 1}n,

Cw =

{

(

{cn
i + w},Di + w

)

}|S|

i=1

, (24)

where Di +w = {xn +w|xn ∈ Di}. Note that Cxn
+cn

i , i = 1, 2, . . . , |S|, is a SEC

containing xn as one of the encoding regions. It follows that |Φxn | = |S| for all
xn ∈ Xn.

Proposition 1. For all ε > 0 and sufficiently large n, the error correcting code
C used to construct C, can be chosen such that the scheme achieves

Pr{S 6= V } ≤ ε (25)

|S| = exp[n(Cs − ε)] = exp[n(1 − H(p) − ε)] (26)

The proof follows directly from the channel coding theorem.

Proposition 2. The scheme achieves

I(W ;S) = 0. (27)

Proof. First observe that the secret extracted from xn using the SEC Cxn
+cn

i

is exactly i. This leads to w = xn + cn
s . Since the biometric data xn is uniformly

distributed, we have H(W |S) = H(W |Cn
s ) = n. Furthermore, since there are 2n

different SECs, H(W ) = n, which leads to I(W ;S) = 0. ut

It follows that the impersonation security parameter κ = log |S|. Finally we note
that,

I(W ;Xn) = H(Xn) − H(Xn|W ) = n − log |S| (28)

and in case of |S| near capacity, I(W ;Xn) ≈ nH(p).

The construction presented here gives a rigorous formalism to fuzzy commit-
ment [10] and quantized secret extraction [13]. We note that this construction
can be generalized from binary to larger alphabets.
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