
Classification of genus 2 curves over F2n

and optimization of their arithmetic

Bertrand Byramjee1 and Sylvain Duquesne2

1 Oberthur Card Systems,

25, rue Auguste Blanche, 92800 Puteaux, France,

b.byramjee@oberthurcs.com
2 Université de Bordeaux I, Laboratoire A2X

351 Cours de la libération, 33405 Talence Cedex, France,

duquesne@math.u-bordeaux.fr

Abstract

To obtain efficient cryptosystems based on hyperelliptic curves, we
studied genus 2 isomorphism classes of hyperelliptic curves in charac-
teristic 2. We found general and optimal form for these curves, just as
the short Weierstrass form for elliptic curves. We studied the security
and the arithmetic on their jacobian. We also rewrote and optimized
the formulas of Lange in characteristic 2, and we introduced a new
system of coordinate. Therefore, we deduced the best form of hyper-
elliptic curves of genus 2 in characteristic 2 to use in cryptography.

Key words. hyperelliptic curve cryptography, genus 2, characteristic
2, explicit formulas, security, isomorphism classes, standardization of
curves.

1 Introduction

There is no sub-exponential time algorithm to solve the discrete problem
based on abelian generic group. Elliptic curves provide the simplest example
with no better algorithm than for generic group. In 1985, Elliptic curves
cryptosystems were introduced independently by Miller [13] and Koblitz
[6]. In 1989, Koblitz [7] suggested using the jacobian of hyperelliptic curves
as a source of finite abelian groups. The main advantage is to use smaller
ground field for the same level of security. For example, a hyperelliptic curve

1



of genus 2 over F280 can be used in order to have the same level of security
as an elliptic curve defined over F2160 .

This paper deals with hyperelliptic curves of genus 2 in characteristic
2. It is organized as follows. In section 2, we recall the basic notions of
hyperelliptic curves. We refer the reader to [8] for further details and in
section 3 we proceed as in [2] and [16] to classify hyperelliptic curves. In the
case of elliptic curves (g = 1), one can prove that every non supersingular
curve can be transformed into a curve of the type:

y2 + xy = x3 + a2x
2 + a6.

At this point, there is no analogous in higher genus. Such a representa-
tion is very important to define a standard for hyperelliptic curves. Some
work has already been done in this field, at least in genus 2 in [2]. Nev-
ertheless we can improve it. We suggest two types of curves suitable for
cryptography which are general and optimal in a sense that we will precise
later.

In section 4, we analyze the security of the different classes of curves
defined in the previous section. In section 5, we rewrite and optimize char-
acteristic 2 formulas of Lange, but we count multiplications of all the co-
efficients. Moreover we suggest a new system of coordinates which allows
faster scalar multiplications on jacobians. All these formulas are given in
appendix. Thanks to the results of the last two sections, we suggest a form
for equations for hyperelliptic curves of genus 2 in characteristic 2 for future
standards in cryptography.

2 Background on Hyperelliptic curves

Let F2n be an algebraic closure of the field F2n . A hyperelliptic curve C of
genus g ≥ 1 on F2n is given by the general equation :

C : y2 + h(x)y = f(x) (G)

where h ∈ F2n [X], is a polynomial of degree at most g, f ∈ F2n [X] is a
monic polynomial of degree 2g + 1 and there is no singular points (x, y) ∈
F2n × F2n . These are the solutions satisfying simultaneously equation (G)
and the partial derivative equations h(x) = 0 and h′(x)y + f ′(x) = 0.

Now, we concentrate in the genus 2 case. Let us define some objects on
these curves.
A divisor D is a formal sum of points on the hyperelliptic curve C. The

2



jacobian J is the group of degree 0 divisors modulo principal divisors. In
practice, we use the Mumford representation : each divisor is represented
by a pair of polynomials [u, v] such that u is a monic polynomial of degree 2,
deg v < deg u and u|f −hv− v2 (these types of divisors are called reduced).

Cantor described a general algorithm (working in every genera) to add
divisors on J , see [1] for more definitions on hyperelliptic curves and details
on this algorithm. Nevertheless, his algorithm is too slow, mainly because
using gcd algorithms, and uses up too much memory for restricted environ-
ments like smart cards.

To improve it in the genus 2 case, Lange following Harley [5], suggests
several explicit formulas in affine, projective and weighted projective, in [9],
[10] & [11]. Nevertheless she doesn’t count multiplications by the coefficients
of h, as with the Koblitz curves. Therefore her formulas are not general.
That’s why we suggest here to rewrite her formulas in the general case and
in the different types we define in section 2. In so doing, we optimize these
formulas. The best optimizations we obtained, are in the doubling case
which is the most important in scalar multiplication.

3 Classification of genus 2 hyperelliptic curves over F2n

For the genus 2 case, we use the following equation

y2 + (h2x
2 + h1x + h0)y = x5 + f4x

4 + f3x
3 + f2x

2 + f1x + f0.

We divide the hyperelliptic curves into three types depending on the leading
coefficient of h, following the notation of [2]:

• type I: h2 6= 0.

• type II: h2 = 0, h1 6= 0.

• type III: h2 = h1 = 0, h0 6= 0.

Moreover, Choie and Yun prove in [2] that type I has asymptotically
between 2q3 and 4q3 isomorphism classes (q = 2n), type II about 2q2 and
type III between 2q and 32q. Nevertheless, from these 3 types, only 2 are
interesting for a cryptosystem based on the Discrete Logarithm problem, as
Galbraith proves in [4] the following result.

Proposition 1. A characteristic 2 hyperelliptic curve is of type III if and

only if it is supersingular.

3



Let us first give results concerning the resolution of some simple equation
in F2n .

Proposition 2. Let a, b ∈ F2n,

1. The equation x2k

= b has always a solution in F2n for k ≥ 1.

2. The equation x3 = b has always a solution in F2n if n is odd.

3. For a 6= 0, x2 + ax + b = 0 has a solution in F2n iff Tr(a−2b) = 0.

4. If Tr(a−2b) = 1, the equation x2 + ax + b = ta2 has a solution in F2n

where t is an element of trace 1.

Remark:

• Here the Trace function is defined by Tr(x) =
∑

n−1

i=0
x2i

.

• In 4, if n is odd, t can be chosen equal to 1 and if n is even, t is a
power of π in polynomial basis representation (i.e. F2n ≃ F2[π]). In
all cases, multiplication by t is free.

Sketch of the proof:

1. x2 = b has always the solution x = b2n−1

. This proves the first point.

2. x3 = b has a solution in F2n iff b
2
n
−1

d = 1 where d = gcd(2n − 1, 3). If
n is odd, d = 1 so x3 = b has a solution.

3. This is an application of the additive form of Hilbert’s ”Satz 90”.

4. Please note that Tr(a−2(b + ta2)) = 0. �

We will now write equation for type I and type II in a minimal form, in
the sense that if the coefficients of the equation describe the base field, the
expected number of curves is obtained (say 2q3 for type I and 2q2 for type
II). In the following, t denotes an element of trace 1 (t = 1 if n is odd) as
explained in the previous proposition and ε an element of F2.

Theorem 1. A characteristic 2 hyperelliptic curve of type I can always be

transformed into one of the following equations:

type Ia : y2 + (x2 + h1x + th2

1)y = x5 + tεx4 + f1x + f0,

type Ib : y2 + x(x + h1)y = x5 + tεx4 + f1x + f0.

4



Remark:

• It is possible to define only one type, but we chose to separate the case
where the polynomial h is irreducible (type Ia) and the case where it
can be factorized (type Ib) because they are mathematically different.
For example, the order of the jacobian of a type Ia curve will always
be divisible by two, (since there exists a divisor of order 2) whereas it
is divisible by 4 (since there exists two divisors of order 2) in type Ib
case.
This kind of observation is of course very important in cryptography
and must be taken into account if one wants to construct good curves
for future standards.

• In both cases, we obtain in this way at most 2q3 isomorphism classes
of curves of type I, which was the expected number as proved in [2].

Sketch of the proof: specializing Lockhart’s formula (see [12] for details),
{

x = h2
2
x + λ

y = h5
2
y + h4

2
αx2 + h2

2
βx + γ

with

• λ a root of h2X
2 + h1X + h0, if Tr(h0h2h

−2

1
) = 0 and we obtain a

curve of type Ib.

• λ a root of h2X
2 + h1X + h0 + th2

1
h−1

2
, if Tr(h0h2h

−2

1
) = 1 and we

obtain a curve of type Ia.

• α a root of X2 + h2X + f4 + λ + εth2
2

with ε =Tr((f4 + λ)h2
2
).

• β = (f3 + h1α)h−1

2
.

• γ = (β2 + h1β + α(h2λ
2 + h1λ + h0) + f3λ + f2)h

−1

2
. �

Theorem 2. If n is odd, a hyperelliptic curve of type II defined over F2n

can be transformed into the following equation :

y2 + xy = x5 + f3x
3 + εx2 + f0.

Sketch of the proof: with Lockhart’s formula:
{

x = µ2x + λ
y = µ5y + µ4αx2 + µ2βx + γ

with

5



• µ such as µ3 = h1,

• λ = h0h
−1

1
,

• α =
√

λ + f4,

• β is a root of X2 + h1X + f2 + εh2
1

with ε =Tr(f2h
−2

1
),

• γ =
(

(h0 + h1λ)β + λ2f3 + λ4 + f1

)

h−1

1
. �

Theorem 2’. If n is even, a hyperelliptic curve of type II defined over F2n

can be transformed into the following equation :

y2 + h1xy = x5 + ε′x3 + tεh2

1x
2 + f0.

Remark:

• To prove theorem 2’, one just have to choose µ so that µ4 = f3 + h1α.

• In theorem 2, we could have erased f3 instead of h0, choosing λ before
α and so would have had the following form:

y2 + (x + h0)y = x5 + εx2 + f0.

This form can be useful if someone wants to implement a general form
of a hyperelliptic curve as there is no f3 term in type I or type II.
Nevertheless we didn’t choose this form as we lose performance by
keeping h0 in the explicit formulas.

• To avoid the Weil-descent attack, n must be chosen prime, which
means that only the theorem 2 is of interest for cryptographic pur-
poses.

• If n is odd (resp. even), we obtain in this way at the most 2q2 (resp.
4q2) isomorphism classes of curves of type II, which was the expected
number as proved in [2].

If one wants to use pairings, we provide the following result for the last
type of hyperelliptic curves.

Theorem 3. A characteristic 2 hyperelliptic curve of type III can be trans-

formed into the following equation :

y2 + y = x5 + f3x
3 + f1x + tε.

6



Sketch of the proof: with Lockhart’s formula:

{

x = µ2x
y = µ5y + µ4αx2 + µ2βx + γ

with

• µ such as µ5 = h0,

• α =
√

f4,

• β =
√

f2 + f4,

• γ is a root of X2 + h0X + f0 + εh2

0
with ε =Tr(f0h

−2

0
). �

Remark:

This is not the optimal form as there are between 2q and 32q curves of type
III. Nevertheless, we believe that the correct choice is to take f1 = 0, but
we can’t prove it in a general way.

4 Analysis of the security of different types of curves

In the previous section, we have classified the curves of genus 2 define over
F2n . In order to use these curves in cryptography, it is very interesting
to check the security of each type of curve and to compare them. For
example, in proposition 1, we have already seen that all curves of type III
are supersingular, which means that they are weak for cryptographic use.

To compare the behavior of different curves, we computed the cardinality
of at least 10 000 curves of each type and each value of ε. We use the
implementation of Kedlaya’s algorithm to compute the cardinality of the
jacobian of a curve of genus 2 [15]. We thank F. Vercauteren for allowing
us to use his implementation and for answering kindly all our questions.

We have chosen F289 as ground field so that all the curves are resistant
to Weil descent attacks, see Rück in [14] for details.

We call good curves those suitable for cryptography, i.e. where there is a
divisor of prime order greater than 2160 and nice curves those with minimal
cofactor. In characteristic 2, as in the case of elliptic curves, the cardinality
cannot be prime, but we want the cofactor to be minimal (we denote it by
f). For example a nice curve with cofactor 2 means that the cardinality of
the jacobian is two times a prime.

7



For each type of curve, we computed the rate of good curves and the
rate of nice curves. Moreover, proposition 1 states that curves of type III
are the only supersingular curves. However, this didn’t prove that curves
of type I or II are resistant to Frey-Rück attack [3] (using transfer via the
Tate-Lichtenbaum pairing) but it seems to be true in practice. In fact all
the curves we tested are resistant.

good curves nice curves minimal f curves tested

Type Ia, ε = 0 10.4 % 0.56 % 2 10 000

ε = 1 10 % 0.53 % 2 11 446

Type Ib, ε = 0 8.9 % 0.33 % 4 10 000

ε = 1 9.6 % 0.6 % 4 11 445

Type II, ε = 0 9.6 % 0.6 % 4 20 917

ε = 1 10.9 % 1.23 % 2 16 724

We note with these computations, that there are some differences be-
tween different types of curves. We already stated that the order of the
jacobian is always divisible by 2 for type Ia and by 4 for type Ib, therefore
one could hope to find more good curves of type Ia than Ib. This is in fact
the case. We can conclude that if one wants to use curves of type I, it is
better to choose type Ia because there are more good curves and moreover
the minimal cofactor is 2 instead of 4. Nevertheless, we will see in the next
section that formulas for doubling and adding in the jacobian are slightly
faster in the case of type Ib.

Concerning curves of type II, even if it was not obvious at first sight, we
have the following properties on the cardinality of the jacobian:

Proposition 3. Let C be a type II hyperelliptic curve of genus 2 defined

over F2n by the equation

y2 + xy = x5 + f3x
3 + εx2 + f0

The minimal cofactor is 4 if ε = 0 and 2 if ε = 1.

Sketch of the proof:

The divisor
(

0,
√

f0

)

+ ∞ is the only one divisor of order 2 and it exists a
divisor D such that 2D =

(

0,
√

f0

)

+ ∞ (i.e. a divisor of order 4) if and
only if ε = 0. This proves that the cardinality of the jacobian is congruent
to zero modulo 4 if ε = 0 and to 2 if ε = 1. �

In this last case, we find many of both good curves and nice curves.
From these results, it appears that, among hyperelliptic curves of genus 2 in

8



characteristic 2, the curves of type II with ε = 1 are the best from a security
point of view.

5 Application to jacobian scalar multiplication

We use this classification of hyperelliptic curve of genus 2, to rewrite and
even optimize formulas of Lange for mixed addition and doubling on their
jacobian. Lange uses three types of coordinates, affine [9], projective [10]
and weighted projective [11]. In these papers Lange chose the coefficients of
h in F2. In the last sections, we proved that we can’t always assume that.
That is why contrary to Lange we count multiplications by h0 and h1.

These formulas can be found in the appendix for curves of type II which
is the most efficient. In fact the mixed addition formulas are just those
of Lange rewritten in characteristic 2. We did not rewrite formulas for
classical addition as they are also the same as Lange one’s. Nevertheless,
for doubling, our formulas are slightly different and optimized for each type
of curve. Formulas for general cases and curves of type I can be found on
the web page of the author.

Besides, we also introduced a new system of coordinates called Modified

Projective Coordinates. Based on Projective representation, we add two
coordinates Z0, Z1. So the septuple [U1, U0, V1, V0, Z0, Z1, Z] stand for [x2 +
U1/Z +U0/Z, x2 +V1/Z +V0/Z] and Z0 = h0Z, Z1 = h1Z. The formulas for
addition are the same as for projective one’s but we gain some multiplications
in doubling. The complexities we obtained are listed in the following table.

General case type I type II

Affine

Addition 25M + I 25M + I 24M + I

Doubling 27M + I 26M + I 18M + I

Projective (Ia) (Ib)

Mixed Addition 45M 45M 44M 42M

Doubling 45M 44M 41M 31M

Modified Projective

Mixed Addition 45M 45M 44M 42M

Doubling 43M 42M 40M 31M

Weighted Projective

Mixed Addition 42M 42M 41M 40M

Doubling 46M 45M 42M 27M

9



We see we gain at least one multiplication in each system of coordi-
nates for doubling, and of course more for each type of curve. The best
performance was produced using type II.

We also noticed the weighted projective coordinates are only interesting
for additions in the general case and type I. Thus, the use of projective and
modified projective coordinates is more interesting if we use scalar multipli-
cation methods such as sliding window (since it uses much more doubling
than adding). Nevertheless, weighted projective coordinates are still com-
petitive in type II or if one has to use doubling and adding at each step,
for instance to resist against power analysis in restricted environments like
smart cards. It can also be used with algorithms like BGMW, where dou-
blings are pre-computed.
For example in type I, what we gain in addition by using weighted projective
coordinates instead of modified projective, we lose in doubling.

Besides, one has to keep in mind that weighted projective coordinates
uses up more memory, which has to be taken into account by anyone who
wants to implement in restricted environments.

6 Conclusion

We studied genus 2 isomorphism classes of curves in characteristic 2. They
are classified in three types. Type III curves are supersingular. We focused
our effort on type I and type II and found optimal forms for these curves,
just as the short Weierstrass form. For these types of curves we studied the
security and the arithmetic on their jacobian.

In addition, we rewrote and optimized formulas of Lange in characteristic
2, and we introduced a new system of coordinate.

We noticed that both from the arithmetic and the security point of view,
curves of the form

y2 + xy = x5 + f3x
3 + x2 + f0

are the best for cryptographic use.
Hence we recommend this type for future standards.

10



Appendix: formulas for hyperelliptic curves over

F2n of type II: y2 + xy = x5 + f3x
3 + εx2 + f0

Affine case

Affine Doubling with type II:
y2 + xy = x5 + f3x

3 + εx2 + f0 with ε ∈ F2

Input D = [u1, u0, v1, v0]

Output 2D = [u′

1, u
′

0, v
′

1, v
′

0]

Step Operations Cost

1 resultant r:
r = u0

2 compute almost inverse:

1 = inv1, u1 = inv0

3 compute k: 2S, 1M

k1 = u2

1 + f3

k0 = u1k1 + v2

1 + v1 + ε

4 compute s = kinv mod u: Karatsuba is useless now 1M

s1 = k0 + u1k1

s0 = k1u0

for s1 6= 0

5 precomputation 1I, 1S, 5M

t0 = (u0s1)
−1, t1 = u0t0, t2 = s2

1t0, t3 = u0t1, s0 = s0t1

6 compute l 2M

l2 = u1 + s0, l1 = u1s0 + u0, l0 = u0s0

7 compute u′ 2S

u′

0 = s2

0 + t3
u′

1 = t23

8 compute v′ 4M

t0 = u′

1(l2 + u′

1) + u′

0 + l1
v′

1 = t2t0 + v1 + 1
t0 = u′

0(l2 + u′

1) + l0
v′

0 = t2t0 + v0

total 1I, 5S, 13M

11



Projective case

Projective Doubling with type II:
y2 + xy = x5 + f3x

3 + εx2 + f0 with ε ∈ F2

Input D = [U1, U0, V1, V0, Z]

Output 2D = [U ′

1, U
′

0, V
′

1 , V ′

0 , Z′]

Step Operations Cost

1 precomputation and resultant r: 2S, 1M

t0 = Z2, t1 = U2

1

r = U0Z

2 compute almost inverse: useless

inv0 = U1Z, inv1 = Z

3 compute k: 4M

k1 = f3t0 + t1,
k0 = U1k1 + Z(εt0 + V1(Z + V1))

4 compute s = kinv mod u: Karatsuba is useless now 3M

t2 = k0U1

s1 = k0Z

s0 = k1r + t2
for s1 6= 0

5 precomputation and compute l 7M

t0 = t0r, r = t0s1, t1 = s1k0, t3 = U0k0

l2 = s1t2, l0 = s0t3, l1 = (t2 + t3)(s0 + s1) + l2 + l0

6 compute U ′ 2S

U ′

0 = s2

0 + r

U ′

1 = t20

7 precomputation: 1S, 6M

l2 = l2 + s0s1 + U ′

1, s1 = s2

1, t2 = rt1
t0 = U ′

0l2 + l0s1, t1 = U ′

1l2 + s1(U
′

0 + l1)

8 adjust: 3M

Z′ = s1r, U ′

1 = U ′

1r, U ′

0 = U ′

0r

9 compute V ′ 2M

V ′

0 = t0 + t2V0

V ′

1 = t1 + t2V1 + Z′

total 5S, 26M

Modified projective coordinates, are obviously useless in this case.

12



Weighted projective case

Weighted projective Mixed Addition with type II:
y2 + xy = x5 + f3x

3 + εx2 + f0 with ε ∈ F2

Input D1 = [u11, u10, v11, v10], D2 = [U21, U20, V21, V20, Z20, Z21, z20, z21, z22, z23]

Output D1 + D2 = [U ′

1, U
′

0, V
′

1 , V ′

0 , Z′

0, Z
′

1, z
′

0, z
′

1, z
′

2, z
′

3]

Step Operations Cost

1 precomputation and resultant r: 1S, 7M

t1 = u11z20 + U21, t2 = u10z20 + U20, t0 = u11t1 + t2
r = u10t

2

1 + t2t0, t3 = rz22, Z′

1 = t3Z20

2 compute almost inverse: nothing to do

t1 = inv1, t0 = inv0

3 compute almost s: 7M

t4 = V10z23 + V20, t5 = V11z23 + V21,
s0 = (t2t0) + u10(t3t1)
s1 = (t0 + t1)(t4 + t5) + (t2t0) + (t3t1)(1 + u11)
for s1 6= 0

4 precomputation: 4S, 6M

Z′

0 = s1Z20, t0 = rs1, t3 = t23, t4 = s0Z20, s0 = s0s1, s1 = s2

1,

z′

0 = Z′

0

2
, z′

1 = Z′

1

2
, z′

2 = Z′

0Z
′

1, z′

3 = z′

0z
′

2

5 compute l 3M

l2 = s1u21, l0 = s0u20, l1 = (s0 + s1)(u21 + u20) + l0 + l2

6 compute U ′ 1S, 3M

t5 = t1s1

U ′

0 = t24 + u11t5 + s1t2 + z′

2 + t1t3
U ′

1 = t5 + z′

1

7 compute V ′ 8M

t1 = l2 + Z′

0t4 + U ′

1, t2 = t1U
′

0, t3 = t1U
′

1

V ′

1 = t3 + z′

0(l1 + t0V21 + U ′

0 + z′

2)
V ′

0 = t2 + z′

0(l1 + t0V20)

total 6S, 34M

13



Weighted projective Doubling with type II:
y2 + xy = x5 + f3x

3 + εx2 + f0 with ε ∈ F2

Input D = [U1, U0, V1, V0, Z0, Z1, z0, z1, z2, z3]

Output 2D = [U ′

1, U
′

0, V
′

1 , V ′

0 , Z′

0, Z
′

1, z
′

0, z
′

1, z
′

2, z
′

3]

Step Operations Cost

1 resultant r: 3M
r = z0U0, t0 = rz2, Z′

1 = t0z2

2 compute almost inverse: useless

z0 = inv1, z0U1 = inv0

3 compute k: 2S, 4M

t0 = (
√

f3z0 + U1)
2 with precomputation of

√
f3

k1 = t0z1

k0 = U1k1 + V1(V1 + z3) + εz2

3

4 compute s = kinv mod u: Karatsuba is useless now 2M

s1 = k0

s0 = s1U1 + k1r

for s1 6= 0

5 precomputation 3S, 4M

Z′

0 = s1, t0 = t1Z
′

0, r = s2

0, s0 = s0Z
′

0

z′

0 = Z′

0

2
, z′

1 = Z′

1

2
, z′

2 = Z′

0Z
′

1, z′

3 = z′

0z
′

2

6 compute l 3M

l2 = U1z
′

0, l0 = U0s0, l1 = (s0 + z′

0)(U1 + U0) + l0 + l2
l2 = l2 + s0

7 compute U ′

U ′

0 = r + z′

2

U ′

1 = z′

1

8 compute V ′ 6M

t1 = (l2 + U ′

1)U
′

0

V ′

0 = t1 + z′

0(l0 + t0V0)
t1 = (l2 + U ′

1)U
′

1

V ′

1 = t1 + z′

0(l1 + t0V1 + U ′

0) + z′

3

total 5S, 22M

Remark: for the general case we choose the following form:

y
2 + (h2x

2 + h1x + h0)y = x
5 + f4x

4 + f3x
3 + f2x

2 + f1x + f0 with h2, f4, f3, f2 ∈ F2

as for type I, there is no f2 or f3 and f4 ∈ F2, and for type II f2 ∈ F2, there is no f4 and

following the remark of theorem 2 we can also erase f3.

The formulas are mostly the same of T. Lange [9], [10], [11], but can be found in the web

page of the author.

14



References

[1] D.G. Cantor. Computing on the Jacobian of a hyperelliptic curve Math.
Comp., vol. 48, pp. 95-101, 1987.

[2] Y. Choie and D. Yun. Isomorphism classes of hyperelliptic curves of

genus 2 over Fq, in ACISP 2002. LNCS, vol. 2384, pp. 190-202, 2002.

[3] G. Frey and H. Rück. A remark concerning m-divisibility and the dicrete

logarithm in the divisor class group of curves, Math. Comp., vol. 62,
pp. 865-874, 1994.

[4] S. Galbraith. Supersingular curves in cryptography, in Advances in
Cryptology Asiacrypt 2001, LNCS, vol. 2248, pp. 495-513, 2001.

[5] R. Harley. Fast arithmetic on genus 2 curves. available at
http://cristal.inria.fr/ harley/hyper, 2000.

[6] N. Koblitz. Elliptic Curves cryptosystem Math. Comp., vol. 48, pp.
203-209, 1987.

[7] N. Koblitz. Hyperelliptic cryptosystem J. Crypto, vol. 1, pp. 139-150,
1989.

[8] N. Koblitz. Algebraic aspects of cryptosystem Springer, 1998.

[9] T. Lange. Efficient Arithmetic on Genus 2 Hyperelliptic Curves over

Finite Fields via Explicit Formulae. Cryptology ePrint Archive, Report
2002/121, 2002. http://eprint.iacr.org/

[10] T. Lange. Inversion-Free Arithmetic on Genus 2 Hyperelliptic Curves.

Cryptology ePrint Archive, Report 2002/147, 2002.

[11] T. Lange. Weighted Coordinates on Genus 2 Hyperelliptic Curves.

Cryptology ePrint Archive, Report 2002/153, 2002.

[12] P. Lockhart. On the discriminant of a hyperelliptic curve, Trans. Ame.
Math. Soc. 342, pp. 729-752, 1994.

[13] V. Miller. Uses of Elliptic Curves in cryptography, in Advances in Cryp-
tology CRYPTO’85, LNCS, vol. 218, pp. 417-426, 1986.

[14] H.G. Rück. On the discrete logarithms in the divisor of class group of

curves, Math. Comp., vol. 68, pp. 805-806, 1999.

15



[15] F. Vercauteren. Computing Zeta Functions of Hyperelliptic Curves

over Finite Fields of Characteristic 2, in Advances in Cryptology
CRYPTO’02, LNCS, vol. 2248, pp. 369-384, 2002.

[16] F. Zhang, S. Liu and K. Kim. Compact representation of domain pa-

rameters of hyperelliptic curve cryptosystems, in ACISP 2002. LNCS,
vol. 2384, pp. 203-213, 2002.

16


