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Abstract. We clarify a relation between the XL algorithm and Gröbner
bases algorithms. The XL algorithm was proposed to be a more efficient
algorithm to solve a system of equations with a special assumption with-
out trying to calculate a whole Gröbner basis. But in our result, it is
shown that the XL algorithm is also a Gröbner bases algorithm which
can be represented as a redundant version of a Gröbner bases algorithm
F4 under the assumption in XL.
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1 Introduction

In this paper we examine a relation between the XL algorithm used in an alge-
braic attack and Gröbner bases algorithms as a problem of solving systems of
multivariate polynomial equations. Algebraic attack is one of the most efficient
algorithm for public key cryptosystems, block ciphers and stream ciphers. Al-
gebraic attack was first applied to Matsumoto-Imai Public Key Scheme in [3]
by Jacques Patarin and a similar attack was also applied in [4]. In [5], the XL
algorithm was first introduced and applied to HFE which is an improved version
of Matsumoto-Imai Public Key Scheme. This attack was improved in [7] and the
complexity of the XL algorithm was evaluated in detail in [6]. Algebraic attack
was also applied to block ciphers in [8], where the complexity for attacking AES
and Serpent was evaluated. Moreover, the algebraic attack was applied to stream
cipher in [9], [10], [11] and improved in [12].

F4 and F5 algorithm were introduced by Jean-Charles Faugère in [13] and
[14], respectively. These algorithms are the fastest previously known. Using these



algorithms, 80-bit HFE were first cryptanalyzed in [15], whereas the XL algo-
rithm was not applicable to 80-bit HFE.

In [6], it is noted that the most efficient variant of this algorithm which we
are aware of is due to Jean-Charles Faugère, and its complexity in the case of
m = n quadratic equations is:

- If K is big, the complexity is proved to be O(23n) and is O(22.7n) in practice.
- When K = GF(2), the complexity is about O(22n) (which is worse than the
O(22n) complexity of exhaustive search).

XL algorithm was proposed as a technique which can be viewed as a combi-
nation of bounded degree Gröbner bases and linearization. The basic idea of
this technique is to generate from each polynomial equation a large number of
higher degree variants by multiplying it with all the possible monomials of some
bounded degree, and then to linearize the expanded system. In [6], the time
complexity of the XL technique was analyzed and it was proposed that they had
provided a strong theoretical and practical evidence that the expected running
time of this technique is:

- Polynomial when the number m of (random) equations is at least εn2, and
this for all ε > 0

- Subexponential if m exceeds n even by a small number.

which is much better than that of F4 algorithms.
In this report, we clarify relations between the XL algorithm and Gröbner

base algorithms. In our result, the XL algorithm is proved to be also a Gröbner
bases algorithm which can be expressed as a redundant version of a Gröbner
bases algorithm F4. The XL algorithm was proposed to be a more efficient algo-
rithm to solve a system of equations with a special assumption without trying to
calculate a whole Gröbner basis. But our result implies that the XL algorithm is
not so efficient as it was expected. Moreover, we also treat XSL and show that
the ”T ′ method” in XSL can be interpreted in terms of Buchberger’s algorithm
by using ”Toy Example” in [8].

The rest of this report is as follows. In Section 2, we recall the description of
XL algorithm. In Section 3 and Section 4, we give an overview of the theory of
Gröbner bases and F4 algorithm, respectively. In Section 5, we clarify a relation
between the XL algorithm and the F4 algorithm. In Section 6, we conclude this
report and in Appendix, we consider a relation between XSL and Buchberger’s
algorithm.

2 Description of XL algorithm

Here we recall the description of XL algorithm introduced in [6].
Let k be a finite field, and let A be a system of multivariate equations lj =

0(1 ≤ j ≤ m) where each lj is the multivariate polynomial fj(x1, · · · , xn) − bj

for fj ∈ k[x] := k[x1, . . . , xn] and bj ∈ k. We assume that a system of equation
A has a unique solution (x1, . . . , xn) = (a1, . . . , an) ∈ kn.



We say that the equations of the form
∏r

j=1 xij
∗ lj = 0 are of type xrl, and

we call xrl the set of all these equations. We also denote by xr the set of all
monomials of degree exactly r,

∏r
j=1 xij

.
Let N be the set of positive integers and D ∈ N. We consider all the poly-

nomials
∏

j xij lj of total degree ≤ D and let ID be the linear space spanned
by these polynomials. Then, ID is the linear space spanned by all the xrl with
0 ≤ r ≤ D − 1 and total degree ≤ D. Moreover ID ⊂ I, where I is the ideal
generated by li’s.

XL algorithm is given as an algorithm which solves systems of quadratic
equations having the unique solution in kn. It is described as follows [6]:

Definition 1. XL algorithm is described as follows.

1. multiply: Generate all the products
∏r

j=1 xij
∗ li ∈ ID with r ≤ D − 2 and

total degree ≤ D.
2. Linearize: Consider each monomial in the xi of degree ≤ D as a new

variable and perform Gaussian elimination on the equations obtained in 1.
The ordering on the monomials must be such that all the terms containing
one variable (say x1) are eliminated last.

3. Solve: Assume that step 2 yields at least one univariate equation in the
powers of x1. Solve this equation over the finite fields (e.g., with Berlekamp’s
algorithm).

4. Repeat: Simplify the equations and repeat the process to find the values of
the other variables.

In the original definition of XL in [6], only quadratic equations are treated.
There is no reason to restrict our interest to a system of quadratic equations.
But to deal a system of equations including a non-quadratic equation, we have
to replace D − 2 to D − 1 in the above description. In our discussion hereafter,
we change the value D − 2 to D − 1 in order to work in general case. Note that
this change does not contradict to the original XL setting when a system of
equations consists of quadratic equations.

3 Gröbner basis and Gröbner bases algorithm

In this section, we recall the basic notion of Gröbner basis and Buchberger’s
algorithm which calculates a Gröbner basis.

3.1 Basic notations and definitions[2]

Let k[x] = k[x1, . . . , xn] be a polynomial ring with variables x1, . . . , xn over a
field k.

A monomial in x1, . . . , xn is a product of the form xα1
1 · · ·xαn

n for nonneg-
ative integers α1, . . . , αn. For the simplicity of the notation, we write xα =
xα1

1 · · ·xαn
n for an n-tuple α = (α1, . . . , αn). For a monomial xα = xα1

1 · · ·xαn
n ,

|α| := ∑n
i=1 αi is called the total degree of this monomial. In the following, the set



of all monomials in variables x1, . . . , xn is denoted by M(x1, · · · , xn), or simply
by M . In the theory of Gröbner bases, we need to consider a monomial ordering
(cf. [2]). One of such ordering is the lexicographic order defined as follows:

Definition 2. For α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn
≥0, We say xα >lex

xβ if the left-most nonzero entry of the vector α− β ∈ Zn is positive.

Another one is the graded lexicographic order:

Definition 3. For α, β ∈ Zn
≥0, We say xα >glex xβ if |α| =

∑n
i=1 αi > |β| =∑n

i=1 βi, or |α| = |β| and α >lex β.

There are many monomial orderings. We choose one of such orderings on T and
write it as <.

A nonzero polynomial f in k[x] is written as f =
∑

α cαxα where each cα is a
nonzero element of k. Here cαxα is called a term of f . For f =

∑
α cαxα ∈ k[x],

we use the following notations:
T (f) = {c(α1, · · · , αn)xα1

1 · · ·xαn
n | c(α1, · · · , αn) 6= 0} : the set of terms of f

M(f) = {xα1
1 · · ·xαn

n | c(α1, · · · , αn) 6= 0} : the set of monomials of f
Then for f =

∑
α cαxα, we define the total degree deg(f), the multidegree

multdeg(f), the leading monomial LM(f), the leading coefficient LC(f) and the
leading term LT(f) of f with respect to < as follows: deg(f) := max{|α| =∑n

i=1 αi | cα 6= 0}, multdeg(f) := max{α ∈ Zn
≥0|cα 6= 0}, LM(f) := max(M(f)),

LC(f) := the coefficient of LT(f), LT(f) := max(T (f)) = LC(f) · LM(f) And
for a finite subset F of k[x], we define LT(F ) = {LT(f)|f ∈ F}, LM(F ) =
{LM(f)|f ∈ F} and M(F ) = {M(f)|f ∈ F}.

The ideal in k[x] generated by a subset F is denoted by 〈F 〉. We also denote
by 〈I1, . . . , In〉 the minimal ideal containing ideals I1, . . . , In.

3.2 Definition of Gröbner basis

In the theory of Gröbner bases, we need a notion of a division of a polynomial
by a finite set of polynomials.

Definition 4. Fix an order for M(x) = M(x1, . . . , xn) and let F = (f1, . . . , fm)
be an ordered set of polynomials in k[x]. Then any f ∈ k[x] can be written as
f = a1f1 + · · · + amfm + r where ai, r ∈ k[x] such that no non-zero term of r
is divisible by any of LM(f1), . . . LM(fm). We call this r a remainder of f on
division by F and write it as f

F
.

We should note that f
F

is not unique. Now we define a Gröbner basis:

Definition 5. Let M be the set of all monomial of k[x] and > a fixed order of
M . A finite subset G = {g1, . . . , gm} of an ideal I is called a Gröbner basis if

〈LT(g1), . . . , LT(gm)〉 = 〈LT(I)〉.
For a given ideal I, its Gröbner basis is not unique. But the reduced Gröbner
basis, which is defined as follows, is uniquely determined.



Definition 6. A Gröbner basis G = {f1, . . . fm} of an ideal I is called reduced
Gröbner basis if for all i, LC(fi) = 1 and LM(fi) is not divisible by any element
of LM(G\fi).

3.3 Buchberger’s algorithm

An algorithm which calculates a Gröbner basis is called a Gröbner bases algo-
rithm. The Buchberger’s algorithm is one of them. It is based on the Buchberger’s
criterion for when a basis of an ideal is a Gröbner basis. We begin with the fol-
lowing definition:

Definition 7. Let f, g ∈ k[x] be nonzero polynomials. The S-polynomial of f
and g is the combination

S(f, g) := LC(g)
lcm(LM(f), LM(g))

LM(f)
f − LC(f)

lcm(LM(f), LM(g))
LM(g)

g.

The Buchberger’s criterion is as follows:

Theorem 1. A basis G = {g1, . . . gm} of an ideal I in k[x] is a Gröbner basis

if and only if for all pairs i 6= j, S(gi, gj)
G

= 0.

As a result of Theorem 1, we have the following algorithm which calculates a
Gröbner basis of a given ideal in k[x], called the Buchberger’s algorithm:

Buchberger’s algorithm
Input: an ordered set F = (f1, . . . , fm) in k[x]
Output: a Gröbner basis G = (g1, . . . , gs) for I = 〈f1, . . . , fm〉 with
F ⊂ G
G := F
Repeat

H := G
For each pair (p, q), p 6= q in H,

If S := S(p, q)
H 6= 0, Then G := G ∪ {S}

Until H:=G

We remark that the reduced Gröbner basis is calculated by finitely many steps
from a Gröbner basis.

4 F4 algorithm [13]

In this section, we recall a Gröbner bases algorithm F4 given by Faugère [13]. The
F4 algorithm uses linear algebra in an efficient way. So we begin with a matrix
representation of a given list of polynomials. In the following, by convention, for
an s ×m matrix A, the jth element of the ith row of A is denoted by Aij and
the ith row of a matrix A is denoted by row(A, i). For a matrix A or a vector v,
the transpose of each is denoted by tA, tv respectively.



Any finite list of polynomials in k[x] is represented by a pair of a matrix
and an ordered subset of T as follows. For a given finite list L = (f1, . . . , fs),
let ML = [t1, . . . , tm] be an ordered set of monomials of all polynomials in
L. Note that as a set, ML = M(L). Put Aij as the coefficient of tj in fi for
i = 1, . . . , s, j = 1, . . . ,m and construct an s ×m matrix A = (Aij). Then L is
represented by (A,ML) as

tL = A tML.

The matrix A in the above is called the coefficient matrix of L with respect to
ML and denoted by A(L,ML). Conversely for any pair (A,X) of an s×m matrix
A and an ordered subset X of M with m elements, we define

Rows(A, X) := X tÂ

where Â is the matrix obtained from A by removing rows whose all elements are
zero. Note that Rows(A,X) = {row(A, i) tX | row(A, i) 6= 0} as sets.

By using the above matrix representation, we define the row echelon basis of
a given finite subset of k[x]: For the coefficient matrix A = A(L,ML) of L with
respect to ML, let Ã be the row echelon form of A obtained by using elementary
row operations in a standard linear algebra4. Then we say that L̃ = Rows(Ã, ML)
is the row echelon basis of L. When L = Sort({M(f)|f ∈ F}, <) for a given finite
subset F of k[x] and an ordering <, F̃ := L̃ is called the row echelon basis of F
with respect to <. When we take the reduced row echelon form of L, we say L̃
the reduced row echelon basis of L (In [13], this is called the row echelon basis).

Note that, by the definition, the ideal generated by Rows(Ã, ML) is the same
ideal generated by L, that is,

〈Rows(Ã, L)〉 = 〈L〉.
Example 1. The following example illustrates the relation between L = M<(F ),
A(L,ML) and the row echelon basis of F .

Let f1 = x3 − x2y − 3y2 + x, f2 = x3 + y2 + x, f3 = x3 + x2y + 3y2 + x
and L = (f1, f2, f3). When we choose the graded lexicographic order, ML =
(x3, x2y, y2, x).





f1 = x3 − x2y − 3y2 + x

f2 = x3 + y2 + x

f3 = x3 + x2y + 3y2 + x

←→



1 −1 −1 1
1 0 1 1
1 1 3 1




↓ Gaussian elimination



g1 = x3 − x2y − 3y2 + x

g2 = x2 + 2y2

g3 = 0
←→




1 −1 −1 1
0 1 2 0
0 0 0 0




Hence we have the row echelon basis L̃ = (g1, g2, g3). If we take the reduced row
echelon form of the coefficient matrix of L, we have the reduced row echelon
basis (x3 − y2 + x, x2 + 2y2) of L.
4 This procedure is so-called the Gaussian elimination.



The following proposition, which directly comes from elementary properties
of row echelon forms, shows the importance of row echelon bases.

Proposition 1. [13, Corollary 2.1] Let F be a finite subset of k[x], < an or-
dering and F̃ the row echelon basis of F with respect to <. We define

F̃+ = {g ∈ F̃ |LM(g) 6∈ LM(F )}.
For all subset F− of F such that size(F−) = size(LM(F )) and LM(F−) =
LM(F ), then G = F̃+ ∪ F− is a triangular basis of the k-module VF gener-
ated by F . For all f ∈ VF there exist (λj)j elements of k and (gj)j elements of
G such that f =

∑
j λjgj, LM(g1) = LM(f) and LM(gj) > LM(gj+1).

To describe the F4 algorithm, we need the following definition.

Definition 8. (1) A critical pair of two polynomials (fi, fj) is an element of
M2 × k[x]×M × k[x], Pair(fi, fj) := (lcmij , ti, fi, tj , fj) such that

lcm(Pair(fi, fj)) = lcmij = LM(tifi) = LM(tjfj) = lcm(LM(fi), LM(fj)).

(2) For a critical pair pij = Pair(fi, fj), lcmij is called the degree of pij and
denoted by deg(pij). We define the two projections Left(pij) := (ti, fi) and
Right(pij) = (tj , fj). For a set P of critical pairs, we write Left(P ) =

⋃
pij∈P Left(pij)

and Right(P ) =
⋃

pij∈P Right(pij).
(3) For f ∈ k[x] and a finite set G in k[x], we say that f is top reducible modulo
G if there exist g ∈ G and q, r ∈ k[x] such that f = qg + r and LM(r) < LM(f).

Now we describe the F4 algorithm [13].
Algorithm F4

Input:
{

F : a finite subset of k[x]
Sel : a function List(Pairs) → List(Pairs)

Output: a finite subset of k[x].
G := F , F̃+

0 := F and d := 0
P := {Pair(f, g)|f, g ∈ G with f 6= g}
While P 6= φ Do

d := d + 1
Pd := Sel(P )
P := P \ Pd

Ld := Left(Pd) ∪ Right(Pd)
F̃+

d := Reduction(Ld, G)
For h ∈ F̃+

d Do
P := P ∪ {Pair(h, g)|g ∈ G}
G := G ∪ {h}

Return G

Reduction

Input:
{

L : a finite subset of M × k[x]
G : a finite subset of k[x]



Output: a finite subset of k[x] (possibly an empty set).
F := Symbolic Preprocessing(L,G)
F̃ := Reduction to Row Echelon Basis of F w.r.t. <
F̃+ := {f ∈ F̃ |LM(f) 6∈ LM(F )}

Return F̃+

Symbolic Preprocessing

Input:
{

L : a finite subset of M × k[x]
G : a finite subset of k[x]

Output: a finite subset of k[x]
F := {t ∗ f |(t, f) ∈ L}
Done := LM(F )
While M(F ) 6= Done Do

Done := Done ∪ {m} where m ∈ M(F )\Done
If m is top reducible modulo G Then

m = m′ ∗ LM(f) for some f ∈ G and some m′ ∈ M
F := F ∪ {m′ ∗ f}

Return F

In [13], Faugère proved the following theorem.

Theorem 2. [13] For a finitely generated ideal I = 〈F 〉 in k[x], The algorithm
F4 computes a Gröbner basis G of I such that F ⊆ G and 〈G〉 = 〈F 〉.

If we take the reduced row echelon basis in Reduction process, we have the
reduced Gröbner basis.

In the F4 algorithm, a choice of Sel is very important. The best function
proposed in [13] is to take all the critical pairs with a minimal total degree: For
a list P of critical pairs of a given set,

Sel(P ) := {p ∈ P |deg(lcm(p)) = d}
where d := min{deg(lcm(p)), p ∈ P}.

In [13], the strategy of P derived from the above Sel is called the normal
strategy for F4. The F4 algorithm gives a rapid Gröbner bases algorithm.

5 Relation between XL algorithm and F4 algorithm

In this section, we show our main results.

5.1 Pre-assumption of XL algorithm

Here we consider the assumption on systems of equations treated in XL.
Let k = Fq be a finite field with q elements and let A be a system of multi-

variate equations lj = 0(1 ≤ j ≤ m) where each lj is the multivariate polynomial
fj(x1, · · · , xn)− bj whose coefficients are all in k.

Pre-assumption for XL algorithm to work is described implicitly in Introduc-
tion of [6] as follows:



Condition 1 The number of the given equations A is large enough to determine
the values of x1, · · · , xn as a1, · · · , an ∈ k, respectively.

In other words, Condition 1 says that A has the unique solution in kn. Since
equations are defined over a finite field k = Fq, the ideal we have to consider
is generated by lj ∈ A and xq

i − xi’s. Thus, Condition 1 is equivalent to the
following condition, in terms of Gröbner basis because of the uniqueness of the
reduced Gröbner basis.

Condition 2 The reduced Gröbner basis of the ideal generated by all equations
in A and xq

i − xi, i = 1, 2, . . . , n, is {x1 − a1, · · · , xn − an}.

Proposition 2. Let A be a system of multivariate equations in k[x1, . . . , xn]
with k = Fq. Let IA the ideal generated by all equation in A and xq

i − xi for
i = 1, 2, . . . , n. Then A can determine the value (x1, · · · , xn) = (a1, · · · , an) ∈ kn

if and only if {x1 − a1, · · · , xn − an} is the reduced Gröbner basis of IA.

Proof. This statement immediately follows from the uniqueness of the reduced
Gröbner bases. ut

As we show in the next subsection, XL algorithm is also a Gröbner bases
algorithm. Therefore, the problem to solve A defined over k = Fq under the
Condition 1 coincides with the problem to yield the reduced Gröbner bases of
the ideal generated by A and field equation xq

i −xi under the Condition 2, which
is not a new problem.

5.2 Expression of the XL algorithm as a Gröbner bases algorithm

We use the same notation as in (3.1). For XL algorithm, we can give an F4-like
description whose strategy is given as a trivial strategy, that is, Sel(P ) := P .

Definition 9. Let P be a list of pairs of polynomials. For p = (f, g) ∈ P and
d ∈ N, we define two functions XLLeft(p, d) = {(t, f)|t ∈ M, deg(t ∗ f) ≤ d},
and XLRight(p, d) = {(t, g)|t ∈ M, deg(t ∗ g) ≤ d}. We write XLLeft(P, d) =⋃

p∈P XLLeft(p, d) and XLRight(P, d) =
⋃

p∈P XLRight(p, d).

Now we give an F4-like description of the XL algorithm.
XL Algorithm

Input:
{

F : a finite subset of k[x]
(a function Sel is fixed as Sel(P ) = P here!)

Output: a finite subset of k[x].
G := F , F̃+

0 := F and d := 0
P := {Pair(f, g)|f, g ∈ G with f 6= g}
While P 6= φ Do

d := d + 1
Pd := Sel(P )
P := P \ Pd



Ld := XLLeft(Pd, d) ∪XLRight(Pd, d)
F̃+

d := Reduction(Ld, G)
For h ∈ F̃+

d Do
P := P ∪ {Pair(h, g)|g ∈ G}
G := G ∪ {h}

Return G

Remark 1. In the original description of XL, it seems that the bound D is taken
globally at once. However, to implement XL, there seems to be the following
four ways to realize the process determining the optimal value of D. Let A be a
system of equations you want to solve. Then each way is described as follows.

1. Begin with D = 1. Iterate the whole step of XL for A until you get the
solution by increasing D to D + 1.

2. Begin with D = 1 and iterate XL for A. If you can not obtain the solution
for that D, set D := D + 1 and iterate the XL for A from the first step.
Repeat this process until you obtain the solution.

3. Begin with D = 1. Iterate the XL until you get the solution by increasing D
to D + 1, but in each iteration replace A to a system of equations obtained
by XL.

4. Begin with D = 1. Iterate XL for A. If you can not obtain the solution for
that D, then replace A to a system of equations obtained by XL for D and
iterate the XL for the new A with D := D+1. Repeat this process until you
obtain the solution.

In the above description of XL, we take the third one. You may take one of the
other three realizations but the rest of our result holds for all of them.

In the above description of the XL algorithm, we keep some redundancy in
the description to show the similarity to the F4 algorithm. Note that the input F
must be a set which consists of all equations in a given system of equations A and
all field equations xq

i −xi for all variables xi. Moreover, in the above description,
we can omit Symbolic Preprocessing because all the products

∏r
j=1 xij ∗ li ∈ ID

with r ≤ D − 1 and total degree ≤ D generated in ‘multiply’ include all the
polynomials generated in Symbolic Preprocessing.

The above description enable us to prove the following theorem.

Theorem 3. The algorithm XL computes a Gröbner basis G in k[x] such that
F ⊆ G and 〈G〉 = 〈F 〉.

In the proof of this theorem, the following two lemmas are important.

Lemma 1. [13] Let G be a finite subset of k[x], L the image by mult : M ×G 3
(m, f) 7→ m ∗ f ∈ k[x] of a finite subset of M × G and F̃+ = Reduction(L, G).
Then for all h ∈ F̃+, LM (h) 6∈ 〈LM(G)〉.
Lemma 2. [13] Let G be a finite subset of k[x], L the image by mult of a finite
subset of M × G and F̃+ = Reduction(L,G). Then F̃+ is a subset of 〈G〉.
Moreover, for all f in the k-module generated by L, f

G∪F̃+

= 0.

Then the proof of Theorem 3 is almost the same as that of Theorem2 of [13].



6 Conclusion

We clarified relations between XL attack and Gröbner base algorithms. The XL
algorithm can be represented as a redundant version of F4. In [6], it is stated
that XL does not try to calculate a Gröbner basis and therefore it should be
more efficient. But it is not true because XL algorithm calculates a Gröbner
basis for a system of equations with the assumption given in [6].

7 Appendix: Relation between XSL and Groöbner bases
algorithm

Instead of the general technique XL form [6], Courtois and Pieprzyk [8] proposed
a custom-made algorithm that takes the advantage of the specific structure of
equations and of their sparsity, which is called XSL attack. In [8], it is stated
that the security of AES and Serpent probably does not grow exponentially with
the number of rounds, it seems that it could even be polynomial in the number
of rounds of the cipher and it seems also to break Rijndael 256-bits and Serpent
for key length 192 and 256 bits.

Here we show XSL is interpreted in terms of Gröbner bases algorithm by
using the Toy Example for ”T ′ method” in [8]. For the details of the description
of ”T ′ method”, see [8].

In [8], ”Toy Example” is given as follows. Here is a system in which T ′ is
defined with respect to x1:





x3x2 = x1x3 + x2

x3x4 = x1x4 + x1x5 + x5

x3x5 = x1x5 + x4 + 1
x2x4 = x1x3 + x1x5 + 1
x2x5 = x1x3 + x1x2 + x3 + x4

x4x5 = x1x2 + x1x5 + x2 + 1
0 = x1x3 + x1x4 + x1 + x5

1 = x1x4 + x1x5 + x1 + x5

(1)

Let >1 be a graded reverse lexicographic order which satisfies x5 >1 x4 >1

x3 >1 x2 >1 x1. From the definition of a boolean function, x2
i + xi = 0 are

satisfied for any i = 1, 2, 3, 4, 5. In other words, the above system (1) contains
the equations x2

i + xi = 0, i = 1, 2, 3, 4, 5, implicitly.
Rewriting the system by using the order >1, we obtain the following.





x2x3 + x1x3 + x2 = 0
x3x4 + x1x5 + x1x4 + x5 = 0
x3x5 + x1x5 + x4 + 1 = 0
x2x4 + x1x5 + x1x3 + x2 + 1 = 0
x4x5 + x1x5 + x1x2 + x2 + 1 = 0
x1x5 + x1x3 + x5 + x1 = 0
x1x5 + x1x4 + x5 + x1 + 1 = 0

(2)



Put f = x1x5 + x1x3 + x5 + x1 and g = x1x5 + x1x4 + x5 + x1 + 1. Then
multiplying the two equations f = 0 and g = 0 by x1, we obtain the two new
equations, {

x1x3 + x1x4 + x1 + x1x5 = 0
x1x4 = 0 (3)

However, the calculation to obtain the first equation in (3) is interpreted as fol-

lows: Calculate the S-polynomial of f and x2
1+x1 and then take S(f, x2

1 + x1)
{x2

1+x1}
.

That is essentially a part of Buchberger’s algorithm. In fact, S(f, x2
1+x1) reduces

to x1x3 + x1x4 + x1 + x1x5 modulo x2
1 + x1. In the same way, the calculation

to obtain the second equation in (3) is interpreted as follows: Calculate the S-

polynomial of g and x2
1 + x1 and then take S(g, x2

1 + x1)
{x2

1+x1}
.

A discussion when we consider other graded reverse lexicographic orders is
the same. Here is the same system in which T ′ is defined with respect to x2:





x1x3 = x3x2 + x2

x1x4 = x3x2 + x2 + x1 + x5

x1x5 = x2x4 + x3x2 + x2 + 1
x3x5 = x2x4 + x3x2 + x2 + 1 + x4 + 1
x3x4 = x2x4 + x1 + 1
x4x5 = x1x2 + x2x4 + x3x2

0 = x1x2 + x2x5 + x3x2 + x2 + x3 + x4

0 = x2x4

(4)

Let >2 be a graded reverse lexicographic order which satisfies x5 >2 x4 >2 x3 >2

x1 >2 x2. Note that from the definition of a boolean function, x2
i + xi = 0 are

satisfied for any i = 1, 2, 3, 4, 5.
Here we rewrite the systems using the order >2.





x1x3 + x2x3 + x2 = 0
x1x4 + x2x3 + x5 + x1 + x2 = 0
x1x5 + x2x4 + x2x3 + x2 + 1 = 0
x3x5 + x2x4 + x2x3 + x4 + x2 = 0
x3x4 + x2x4 + x1 + 1 = 0
x4x5 + x2x4 + x2x3 + x1x2 = 0
x2x5 + x2x3 + x1x2 + x2 + x3 + x4 = 0
x2x4 = 0

(5)

In the T ′ method, applying the Gaussian elimination to the system consists
of all equations in (5) and (3), we can find the following equations which can be
multiplied by x2.





x1x2 + x2x5 + x3x2 + x2 + x3 + x4 = 0
x2x4 = 0
x2x4 + x3x2 + x5 + x2 + 1 = 0
x3x2 + x2 + x1 + x5 = 0

(6)



The above calculation essentially try to find equations whose terms of degree 2
are all in the form x2xi, i = 1, 3, 4, 5. However, the same equations can be easily
obtained by sorting with the order >2 and the Gaussian elimination. So the above
process trying to find a new equation can be multiplied by x2 is interpreted in
terms of Gröbner bases algorithms as follows: To get new equations which can
be multiplied by x2, sort terms in equations with the order >2 and then execute
the Gaussian elimination.

Then multiplying each equation in (6) by x2, in other words, calculating a
remainder of a division of S-polynomials of each equation and x2

2+x2 by x2
2+x2,

we obtain the following four equations.




x2x5 + x2x4 + x1x2 + x2 = 0
x2x4 = 0
x2x5 + x4x2 + x3x2 = 0
x2x5 + x2x3 + x1x2 + x2 = 0

(7)

As it is pointed out in [8], we can not obtain a new equation from the second
equation in (6) because it is invariant under multiplication by x2. We can explain

the reason in terms of S-polynomials: This is because S(x2x4, x2
2 + x2)

{x2
2+x2}

=
x2x4.

In ”T ′ method” for the above ”Toy Example”, iterating the above process, we
can obtain the system of equations of the maximum rank. So the above argument
shows that ”T ′ method” in XSL can be interpreted in terms of Buchberger’s
algorithm.
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