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Abstra
t. We present an identity-based sign
ryption s
heme that we

believe is the most eÆ
ient proposed to date. We provide random ora
le

model [5℄ proofs of se
urity under the de�nitions proposed in [7℄.
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1 Introdu
tion

Two of the most important servi
es o�ered by 
ryptography are those of pro-

viding private and authenti
ated 
ommuni
ations. Mu
h resear
h has been done

into 
reating en
ryption s
hemes to meet highly developed notions of priva
y [5,

13℄. Similarly, designing unforgeable signature s
hemes to give authenti
ity and

non-repudiation is also a well studied problem [14, 20℄. It is possible to 
om-

bine en
ryption s
hemes and signature s
hemes, using methods su
h as those

des
ribed in [1℄, to obtain private and authenti
ated 
ommuni
ations.

In 1997 Zheng proposed a primitive that he 
alled sign
ryption [23℄. The idea

of a sign
ryption s
heme is to 
ombine the fun
tionality of an en
ryption s
heme

with that of a signature s
heme. It must provide priva
y; sign
ryptions must be

unforgeable; and there must be a method to settle repudiation disputes. This

must be done in a more eÆ
ient manner than a 
omposition of an en
ryption

s
heme with a signature s
heme. In [23℄ Zheng also proposed a dis
rete loga-

rithm based s
heme. This original paper did not formalise se
urity notions for

sign
ryption. The �rst de�nitions of se
urity appeared in [1, 2℄. These dealt with

priva
y and unforgeability. Se
urity proofs for Zheng's original s
heme were pro-

vided in [2℄. A sign
ryption s
heme based on RSA was proposed in [19℄. This

s
heme has proofs of se
urity under the RSA assumption in a model from [1℄.

The 
on
ept identity-based 
ryptography was proposed by Shamir in 1984 [22℄.

The idea of an identity-based system is that publi
 keys 
an be derived from

arbitrary strings. This means that if a user has a string 
orresponding to its

identity, this string 
an be used to derive the user's publi
 key. For this to



work there is a trusted authority (TA hen
eforth) that generates private keys

using some master key related to the global parameters for the system. In [22℄

Shamir proposed an identity-based signature s
heme but for many years identity-

based en
ryption remained an open problem. The problem was solved nearly two

de
ades after it was originally proposed [6, 10℄. In [10℄ Co
ks proposed a solution

based on quadrati
 residuosity and in [6℄ Boneh and Franklin gave a s
heme

based on bilinear pairings on ellipti
 
urves. It is pairings on ellipti
 
urves that

have subsequently be
ome the most popular building blo
k for identity-based

s
hemes. Many s
hemes have been designed using this primitive, for example

the signature s
hemes of [8, 15℄ and the authenti
ated en
ryption s
heme of [16℄.

The idea of identity-based sign
ryption was �rst proposed in [18℄ along with

a se
urity model. The model of [18℄ dealt with notions of priva
y and unforge-

ability. A weakness in the s
heme from [18℄ was subsequently pointed out in [17℄

where a new s
heme was proposed. The new s
heme 
ame with proofs of se
urity

in the model of [18℄. This model was developed in [7℄. Three new se
urity no-

tions were added: 
iphertext unlinkability, 
iphertext authenti
ation and 
ipher-

text anonymity. We will dis
uss these notions in detail in Se
tion 3. A s
heme

was also proposed in [7℄ and analysed in the enhan
ed model.

We take the model and s
heme from [7℄ as the starting point for this work.

We will des
ribe a modi�
ation of the s
heme from [7℄ that is 
onsiderably more

eÆ
ient. We will also prove that the new s
heme is se
ure in the model of [7℄. Our

s
heme is eÆ
ient sin
e we 
an make use of a variant of the simple Basi
Ident

en
ryption s
heme from [6℄. If this en
ryption s
heme is used alone, it is not

se
ure against an a
tive atta
k. To over
ome this problem a te
hnique proposed

in [11℄ is used in [6℄. This introdu
es a 
omputational overhead. An interesting

observation is that, in our sign
ryption s
heme, the integrity 
he
king ne
essary

for se
urity against adaptive adversaries 
omes dire
tly from the signature.

The paper will pro
eed as follows. In Se
tion 2 we will formally de�ne what

we mean by identity-based sign
ryption. Se
tion 3 re
alls the se
urity model

from [7℄. We will present our s
heme in Se
tion 4 and provide se
urity results in

Se
tion 5. The paper ends with some 
on
luding remarks.

2 Identity-Based Sign
ryption

We follow the approa
h of [7℄ in de�ning what we mean by identity-based sign-


ryption. An identity-based sign
ryption s
heme 
onsists of the following six al-

gorithms: Setup, Extra
t, Sign, En
rypt, De
rypt and Verify. We des
ribe

the fun
tions of ea
h below.

{ Setup: On input of a se
urity parameter 1

k

the TA uses this algorithm to

produ
e a pair (params; s), where params are the global publi
 parameters

for the system and s is the master se
ret key. The publi
 parameters in
lude

a global publi
 key Q

TA

, a des
ription of a �nite message spa
e M, a de-

s
ription of a �nite signature spa
e S and a des
ription of a �nite 
iphertext

spa
e C. We will assume that params are publi
ly known so that we do not

need to expli
itly provide them as input to other algorithms.



{ Extra
t: On input of an identity ID

U

and the master se
ret key s, the TA

uses this algorithm to 
ompute a se
ret key S

U


orresponding to ID

U

.

{ Sign: User A with identity ID

A

and se
ret key S

A

uses this algorithm with

input (m;S

A

) to produ
e a signature � on m valid under the publi
 key

derived from ID

A

. It also produ
es some ephemeral data r.

{ En
rypt: On input of (S

A

; ID

B

;m; �; r), ID

A

uses this algorithm to pro-

du
e a 
iphertext 
. This is the en
ryption of m, and ID

A

's signature on m,

whi
h 
an be de
rypted using the user with identity ID

B

's se
ret key.

{ De
rypt: User B with identity ID

B

and se
ret key S

B

uses this algorithm

with input (
; S

B

) to produ
es (m; ID

A

; �) where m is a message and � is a

purported signature by ID

A

on m.

{ Verify: On input of (m; ID

A

; �), this algorithm outputs > if � is ID

A

's

signature on m and it outputs ? otherwise.

The above algorithms have the following 
onsisten
y requirement. If

(m;�; r)  Sign(m;S

A

),


 En
rypt(S

A

; ID

B

;m; �; r), and

(m̂;

^

ID

A

; �̂) De
rypt(
; S

B

);

then we must have

^

ID

A

= ID

A

, m = m̂ and

>  Verify(m̂;

^

ID

A

; �̂):

Note that in some models for sign
ryption [23℄ and identity-based sign
ryp-

tion [18, 17℄, the Sign and En
rypt algorithms are treated as one \sign
ryption"

algorithm, as are the De
rypt and Verify algorithms. Our s
heme supports a

separation and so we sti
k with the above de�nition as in [7℄. One advantage of

this approa
h, where it is possible, is that it makes non-repudiation a straightfor-

ward 
onsequen
e of unforgeability. This is due to the fa
t that after de
ryption

there is a publi
ly veri�able signature that 
an be forwarded to a third party.

Sign
ryption s
hemes that do not support this separation may have problems

with non-repudiation [23℄.

3 Se
urity Notions

In this se
tion we review the se
urity model for identity-based sign
ryption pro-

posed in [7℄. This model uses the notions of insider se
urity and outsider se
urity

from [1℄. Informally insider se
urity is se
urity against a legitimate user of the

s
heme while outsider se
urity is se
urity against an outside third party. Where

appropriate, this makes insider se
urity a stronger notion. We will make fur-

ther 
omment about the signi�
an
e of the distin
tion at relevant points in this

se
tion.

A se
urity de�nition dubbed 
iphertext unlinkability is des
ribed in [7℄. Infor-

mally this notion means that Ali
e is able to deny having sent a given 
iphertext

to Bob, even if the 
iphertext de
rypts under Bob's se
ret key to a message



bearing Ali
e's signature. This property is demonstrated for the s
heme in [7℄

by showing that given a message signed by Ali
e, Bob is able to 
reate a valid


iphertext addressed to himself for that message. We do not treat this notion ex-

pli
itly here sin
e it is rather unmotivated, suÆ
e it to say that the 
onstru
tion

given in [7℄ is easily modi�ed for our s
heme if ne
essary.

3.1 Ciphertext Authenti
ation

A s
heme o�ering 
iphertext authenti
ation provides the guarantee to the re
ip-

ient of a signed and en
rypted message that the message was en
rypted by the

same person who signed it. This means that the 
iphertext must have been en-


rypted throughout the the transmission and so it 
annot have been the vi
tim

of a su

essful man-in-the-middle atta
k. It also implies that the signer 
hose

the re
ipient for its signature.

We de�ne this notion via a game played by a 
hallenger and an adversary.

Game

{ Initial: The 
hallenger runs Setup(1

k

) and gives the resulting params to

the adversary. It keeps s se
ret.

{ Probing: The 
hallenger is probed by the adversary who makes the following

queries.

� Sign/En
rypt: The adversary submits a sender identity, a re
eiver iden-

tity and a message to the 
hallenger. The 
hallenger responds with the

signature of the sender on the message, en
rypted under the publi
 key

of the re
eiver.

� De
rypt/Verify: The adversary submits a 
iphertext and a re
eiver

identity to the 
hallenger. The 
hallenger de
rypts the 
iphertext under

the se
ret key of the re
eiver. It then veri�es that the resulting de
ryption

is a valid message/signature pair under the publi
 key of the de
rypted

identity. If so the 
hallenger returns the message, its signature and the

identity of the signer, otherwise it returns ?.

� Extra
t: The adversary submits an identity to the 
hallenger. The 
hal-

lenger responds with the se
ret key of that identity.

{ Forge: The adversary returns a re
ipient identity ID

B

and a 
iphertext 
.

Let (m; ID

A

; �) be the result of de
rypting 
 under the se
ret key 
orrespond-

ing to ID

B

. The adversary wins if ID

A

6= ID

B

; Verify(m; ID

A

; �) = >;

no extra
tion query was made on ID

A

, or ID

B

; and 
 did not result from a

sign/en
rypt query with sender ID

A

and re
ipient ID

B

.

De�nition 1. Let A denote an adversary that plays the game above. If the

quantity Adv[A℄ = Pr[A wins℄ is negligible we say that the s
heme in question

is existentially 
iphertext-unforgeable against outsider 
hosen-message atta
ks,

or AUTH-IBSC-CMA se
ure.

Here we have an example of outsider se
urity sin
e the adversary is not able to

extra
t the se
ret key 
orresponding to ID

B

. This models the true adversarial

s
enario where an atta
k would be re-en
rypting a signed message using a publi


key with unknown se
ret key.



3.2 Message Con�dentiality

The a

epted notion of se
urity with respe
t to 
on�dentiality for publi
 key

en
ryption is indistinguishability of en
ryptions under adaptive 
hosen 
iphertext

atta
k, as formalised in [21℄. The notion of se
urity de�ned in the game below is

a natural adaptation of this notion to the identity-based sign
ryption setting.

Game

{ Initial: The 
hallenger runs Setup(1

k

) and gives the resulting params to

the adversary. It keeps s se
ret.

{ Phase 1: The 
hallenger is probed by the adversary who makes queries as

in the game of Se
tion 3.1. At the end of Phase 1 the adversary outputs two

identities fID

A

; ID

B

g and two messages fm

0

;m

1

g. The adversary must not

have made an extra
t query on ID

B

.

{ Challenge: The 
hallenger 
hooses a bit b uniformly at random. It signs m

b

under the se
ret key 
orresponding to ID

A

and en
rypts the result under the

publi
 key of ID

B

to produ
e 
. The 
hallenger returns 
 to the adversary.

{ Phase 2: The adversary 
ontinues to probe the 
hallenger with the same

type of queries that it made in Phase 1. It is not allowed to extra
t the private

key 
orresponding to ID

B

and it is not allowed to make a de
rypt/verify

query for 
 under ID

B

.

{ Response: The adversary returns a bit b

0

. We say that the adversary wins

if b

0

= b.

De�nition 2. Let A denote an adversary that plays the game above. If the quan-

tity Adv[A℄ = jPr[b

0

= b℄ �

1

2

j is negligible we say that the s
heme in question

is semanti
ally se
ure against adaptive 
hosen-
iphertext atta
k, or IND-IBSC-

CCA2 se
ure.

Note that De�nition 2 deals with insider se
urity sin
e the adversary is assumed

to have a

ess to the private key of the sender of a sign
rypted message. This

means that 
on�dentiality is preserved even if a sender's key is 
ompromised.

Sign
ryption s
hemes su
h as [3, 23℄ do not have this property.

3.3 Signature Non-Repudiation

A sign
ryption s
heme o�ering non-repudiation prevents the sender of a sign-


rypted message from disavowing its signature. Note that non-repudiation is not

as straightforward for sign
ryption as it is for digital signature s
hemes sin
e we

are dealing with en
rypted data. As a 
onsequen
e, by default, only the intended

re
ipient of a sign
ryption 
an verify.

We de�ne the notion of non-repudiation via the following game played by a


hallenger and an adversary.

Game

{ Initial: The 
hallenger runs Setup(1

k

) and gives the resulting params to

the adversary. It keeps s se
ret.



{ Probing: The 
hallenger is probed by the adversary who makes queries as

in the game of Se
tion 3.1.

{ Forge: The adversary returns a re
ipient identity ID

B

and a 
iphertext 
.

Let (m; ID

A

; �) be the result of de
rypting 
 under the se
ret key 
orrespond-

ing to ID

B

. The adversary wins if ID

A

6= ID

B

; Verify(m; ID

A

; �) = >; no

extra
tion query was made on ID

A

; no sign/en
rypt query (m; ID

A

; ID

B

0

)

was responded to with a 
iphertext whose de
ryption under the private key

of ID

B

0

is (m; ID

A

; �).

This model is a natural adaptation of existential unforgeability (EUF) under

adaptive 
hosen message atta
k, the a

epted notion of se
urity for digital sig-

nature s
hemes [14, 20℄.

De�nition 3. Let A denote an adversary that plays the game above. If the

quantity Adv[A℄ = Pr[A wins℄ is negligible we say that the s
heme in question is

existentially unforgeable against insider 
hosen-message atta
ks, or EUF-IBSC-

CMA se
ure.

In De�nition 3 we allow the adversary a

ess to the se
ret key of the re
ipient

of the forgery. It is this that gives us insider se
urity. Also note that the adver-

sary's advantage is with respe
t to its su

ess in forging the signature within

the 
iphertext. This is indeed the 
orre
t de�nition for non-repudiation in this


ontext be
ause it is the signature and not the 
iphertext that 
ontains it that

is forwarded to a third party in the 
ase of a dispute.

3.4 Ciphertext Anonymity

Ciphertext anonymity is the property that 
iphertexts 
ontain no third-party

extra
table information that helps to identify the sender of the 
iphertext or the

intended re
ipient. It is de�ned via the following game.

Game

{ Initial: The 
hallenger runs Setup(1

k

) and gives the resulting params to

the adversary. It keeps s se
ret.

{ Phase 1: The 
hallenger is probed by the adversary who makes queries as

in the game of Se
tion 3.1. At the end of Phase 1 the adversary outputs a

message m; two sender identities fID

A

0

; ID

A

1

g; and two re
ipient identities

fID

B

0

; ID

B

1

g. The adversary must not have made an extra
t query on either

of fID

B

0

; ID

B

1

g.

{ Challenge: The 
hallenger 
hooses two bits (b;

^

b) uniformly at random. It

signs m under the se
ret key S

A

b


orresponding to ID

A

b

. It then en
rypts

the result under the publi
 key of ID

B

^

b

to produ
e a 
iphertext 
. The


hallenger returns 
 to the adversary.

{ Phase 2: The adversary 
ontinues to probe the 
hallenger with the same

type of queries that it made in Phase 1. It is not allowed to extra
t the

private key 
orresponding to ID

B

0

or ID

B

1

and it is not allowed to make a

de
rypt/verify query for 
 under ID

B

0

or under ID

B

1

.



{ Response: The adversary returns two bits (b

0

;

^

b

0

). We say that the adversary

wins if b =

^

b or b

0

=

^

b

0

.

De�nition 4. Let A denote an adversary that plays the game above. If the

quantity Adv[A℄ = jPr[b

0

= b _

^

b

0

=

^

b℄�

3

4

j is negligible we say that the s
heme

in question is 
iphertext-anonymous against insider adaptive 
hosen-
iphertext

atta
k, or ANON-IBSC-CCA2 se
ure.

Note that in the equivalent de�nition from [7℄ the adversary only wins if b =

^

b

and b

0

=

^

b

0

. It is stated there that the s
heme is ANON-IBSC-CCA2 se
ure if

the quantity Adv[A℄ = jPr[b

0

= b^

^

b

0

=

^

b℄�

1

4

j is negligible. The two de�nitions

are 
learly equivalent. We prefer our formulation be
ause it expli
itly states that

the adversary should not be able to guess either of the bits. The intuition is that

it gains no information about the sender of a message or the intended re
ipient.

De�nition 4 follows from the fa
t that the adversary is always able to guess at

least one of the bits 
orre
tly with probability 3=4.

4 The S
heme

In this se
tion we des
ribe how our identity-based sign
ryption s
heme works.

We will refer to the s
heme as IBSC hen
eforth.

Before explaining our s
heme we must brie
y summarise the mathemati
al

primitives ne
essary for pairing based 
ryptography. We require two groups G

1

and G

2

of large prime order q. These groups must be su
h that there exists a

non-degenerate, eÆ
iently 
omputable map ê : G

1

� G

1

! G

2

. This map must

be bilinear i.e. for all P

1

; P

2

2 G

1

and all a; b 2 Z

�

q

we have ê(aP

1

; bP

2

) =

ê(P

1

; P

2

)

ab

. A popular 
onstru
tion for su
h groups uses supersingular ellipti



urves over �nite �elds. The bilinear map is realised using a modi�
ation of the

Tate pairing or the Weil pairing. For details of su
h instantiations see [4, 6, 12℄.

We also require three hash fun
tions H

0

: f0; 1g

k

1

! G

1

, H

1

: f0; 1g

k

0

+n

!

Z

�

q

and H

2

: G

2

! f0; 1g

k

0

+k

1

+n

. Here k

0

is the number of bits required to

represent an element of G

1

; k

1

is the number of bits required to represent an

identity; and n is the number of bits of a message to be signed and en
rypted.

Setup

{ Establish parameters G

1

, G

2

, q, ê, H

0

: f0; 1g

k

1

! G

1

, H

1

: f0; 1g

k

0

+n

! Z

�

q

and H

2

: G

2

! f0; 1g

k

0

+k

1

+n

as des
ribed above.

{ Choose P su
h that hP i = G

1

i.e. P is a generator for the 
y
li
 group G

1

.

{ Choose s uniformly from Z

�

q

and 
ompute the global publi
 key Q

TA

 sP .

Extra
t

To extra
t the private key for user U with ID

U

2 f0; 1g

k

1

.

{ Compute the publi
 key Q

U

 H

0

(ID

U

) and the se
ret key S

U

 sQ

U

.

Sign

For user A with identity ID

A

to sign m 2 f0; 1g

n

with private key S

A


orre-

sponding to publi
 key Q

A

 H

0

(ID

A

).



{ Choose r uniformly at random from Z

�

q

and 
ompute X  rQ

A

.

{ Compute h

1

 H

1

(X jjm) and Z  (r + h

1

)S

A

.

{ Return the signature (X;Z) and forward (m; r;X;Z) to En
rypt.

En
rypt

For user A with identity ID

A

to en
rypt m using r;X; Z output by Sign for

re
eiver ID

B

.

{ Compute Q

B

 H

0

(ID

B

) and w  ê(rS

A

; Q

B

).

{ Compute y  H

2

(w) � (ZjjID

A

jjm) and return 
iphertext (X; y).

De
rypt

For user B with identity ID

B

to de
rypt (X; y) using S

B

= sH

0

(ID

B

).

{ Compute w  ê(X;S

B

) and ZjjID

A

jjm y �H

2

(w).

{ Forward message m, signature (X;Z) and purported sender ID

A

to Verify.

Verify

To verify user A's signature (X;Z) on message m where A has identity ID

A

.

{ Compute Q

A

 H

0

(ID

A

) and h

1

 H

1

(X jjm).

{ If ê(Z; P ) = ê(Q

TA

; X + h

1

Q

A

), return >. Else, return ?.

Note that, as was the 
ase in [7℄, the signing algorithm that our s
heme uses

is the s
heme proposed in [8℄. Also, the en
ryption is done in a manner similar

to the Basi
Ident s
heme from [6℄. The integrity 
he
king ne
essary for se
urity

against adaptive adversaries 
omes from the signature in our 
ase.

Se
tion 5 below 
ontains proofs that our s
heme o�ers the same se
urity

properties as those o�ered by the s
heme of [7℄. In Table 1 and Table 2 below

we 
ompare the eÆ
ien
y of our s
heme, denoted IBSC, with that of [7℄, de-

noted MIBS. We only 
ompare the 
omputational e�ort for the s
hemes sin
e

the bandwidth requirements are identi
al. We use mls., exps. 
ps. and invs. as

abbreviations for multipli
ations, exponentiations, 
omputations and inversions

respe
tively. The parameters n, k

0

and k

1

are those de�ned above. We use F

�

q

to denote the multipli
ative group of the �eld of q elements.

S
heme Sign/En
rypt De
rypt/Verify

G

1

mls. G

2

exps. ê 
ps. G

1

mls. ê 
ps. F

�

q

invs.

MIBS 3 1 1 2 4 1

IBSC 3 0 1 1 3 0

Table 1. A 
omparison between the dominant operations required for IBSC and MIBS

We obtained timings for an instantiation of G

1

, G

2

and ê using the supersingular


urve E : y

2

= x

3

+x de�ned over F

p

where p is a 512-bit prime. This 
urve has

p+ 1 points and the value of p was 
hosen su
h that p + 1 has a 160-bit prime

fa
tor q. In this 
ase the group G

1

is the subgroup of order q in E(F

p

) and G

2



is q-th roots of unity in F

�

p

2

. The implementation was done in C on a 667MHz

G4 PowerPC. A point multipli
ation in G

1

took 28.2 ms, an exponentiation in

G

2

took 5.1 ms, it took 32 ms to 
ompute ê (the Tate pairing) and the 
ost of

an inversion in F

�

q

was negligible. These �gures give us Table 2.

S
heme Sign/En
rypt De
rypt/Verify

MIBS 121.7 ms 184.4 ms

IBSC 116.6 ms 124.2 ms

Table 2. A 
omparison between timings of dominant operations in IBSC and MIBS

5 Se
urity Results

In this se
tion we will state the se
urity results for the IBSC s
heme under the

de�nitions of Se
tion 3. The 
orresponding proofs are given in the appendix.

All our se
urity results are relative to the bilinear DiÆe-Hellman (BDH)

problem. Informally, using the notation of Se
tion 4, this is the problem of 
om-

puting ê(P; P )

ab


from (P; aP; bP; 
P ) where a; b; 
 are 
hosen at random from

Z

�

q

and P generates G

1

. For further details see [6℄.

Our results are all in the random ora
le model [5℄ i.e. we will assume that the

hash fun
tions H

0

, H

1

and H

2

that the IBSC s
heme uses are random ora
les.

In ea
h of the results below we assume that the adversary makes q

i

queries to

H

i

for i = 0; 1; 2. The number of sign/en
rypt and de
rypt/verify queries made

by the adversary are denoted q

s

and q

d

respe
tively.

5.1 Ciphertext Authenti
ation

Theorem 1. If there is an AUTH-IBSC-CMA adversary A of IBSC that su
-


eeds with probability �, then there is a simulator B running in polynomial time

that solves the BDH problem with probability at least

� �

�

1�

q

s

(q

1

+ q

2

+ 2q

s

)

q

�

�

1

q

0

(q

0

� 1)(q

s

+ q

d

)(q

2

+ q

s

)

:

5.2 Message Con�dentiality

Theorem 2. If there is an IND-IBSC-CCA2 adversary A of IBSC that su

eeds

with probability �, then there is a simulator B running in polynomial time that

solves the BDH problem with probability at least

� �

�

1�

q

s

(q

1

+ q

s

)

q

�

�

1

q

0

q

2

:



5.3 Signature Non-Repudiation

Theorem 3. If there is an EUF-IBSC-CMA adversary A of IBSC that su

eeds

with probability �, then there is a simulator B running in polynomial time that

solves the BDH problem with probability at least

� �

�

1�

q

s

(q

1

+ q

s

)

q

�

2

�

1

4q

2

0

(q

1

+ q

s

)

2

:

5.4 Ciphertext Anonymity

Theorem 4. If there is an ANON-IBSC-CCA2 adversary A of IBSC that su
-


eeds with probability �, then there is a simulator B running in polynomial time

that solves the BDH problem with probability at least

� �

�

1�

q

s

(q

1

+ q

2

+ 2q

s

)

q

�

�

1

q

0

(q

0

� 1)(2 + q

s

)(q

2

+ q

s

)

:

6 Con
lusions

We have proposed an identity-based sign
ryption s
heme that is the most eÆ-


ient to date. This s
heme makes use of a simple en
ryption algorithm that alone

is not se
ure against adaptive atta
k. We a
hieve se
urity against adaptive ad-

versaries using the integrity 
he
k o�ered by a signature s
heme. We have also

provided a 
omplete se
urity analysis for our s
heme in the model of [7℄.
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Appendix

Proof of Theorem 1

We will show how an AUTH-IBSC-CMA adversary A of IBSC may be used to


onstru
t a simulator B that solves the BDH problem. Let (P; aP; bP; 
P ) be the

instan
e of the BDH problem that we wish to solve.

We now des
ribe the 
onstru
tion of the simulator B. The simulator runs A

with trusted third party publi
 key Q

TA

 
P . It also 
reates algorithms to re-

spond to queries made by A during its atta
k. To maintain 
onsisten
y between

queries made by A, the simulator keeps the following lists: L

i

for i = 0; 1; 2 of

data for query/response pairs to random ora
leH

i

; L

s

of sign
ryptions generated

by the simulator; and L

d

of some of the queries made by A to the de
rypt/verify

ora
le. We will see in the 
onstru
tion of the sign/en
rypt simulator that the list

L

s

stores other information that will be useful to B. Its use will be
ome apparent

in the subsequent analysis as will the use of L

d

.

Simulator: H

0

(ID

U

)

At the beginning of the simulation 
hoose i

a

; i

b

uniformly at random from

f1; : : : ; q

0

g (subje
t to i

a

6= i

b

). We show how to respond to the i-th query

made by A below. Note that we assume A does not make repeat queries.

{ If i = i

a

then respond with H

0

(ID

U

) aP and set ID

A

 ID

U

.

{ If i = i

b

then respond with H

0

(ID

U

) bP and set ID

B

 ID

U

.

{ Else 
hoose x uniformly at random from Z

�

q

; 
ompute Q

U

 xP ; 
ompute

S

U

 xQ

TA

; store (ID

U

; Q

U

; S

U

; x) in L

0

and respond with Q

U

.

Simulator: H

1

(X jjm)

{ If (X jjm;h

1

) 2 L

1

for some h

1

, return h

1

.

{ Else 
hoose h

1

uniformly at random from Z

�

q

; add (X jjm;h

1

) to L

1

and

return h

1

.

Simulator: H

2

(w)

{ If (w; h

2

) 2 L

2

for some h

2

, return h

2

.

{ Else 
hoose h

2

uniformly at random from f0; 1g

k

0

+k

1

+n

; add (w; h

2

) to L

2

and return h

2

.

Simulator: Extra
t(ID

U

)

We will assume that A makes the query H

0

(ID

U

) before it makes the extra
tion

query for ID

U

.

{ If ID

U

= ID

A

or ID

U

= ID

B

, abort the simulation.

{ Else sear
h L

0

for the entry (ID

U

; Q

U

; S

U

; x) 
orresponding to ID

U

and

return S

U

.

Simulator: Sign/En
rypt(m; ID

1

; ID

2

)

We will assume that A makes the queries H

0

(ID

1

) and H

0

(ID

2

) before it makes

a sign/en
rypt query using these identities. We have the following �ve 
ases to




onsider.

Case 1: ID

1

6= ID

A

and ID

1

6= ID

B

{ Find the entry (ID

1

; Q

1

; S

1

; x) in L

0

.

{ Choose r uniformly at random from Z

�

q

and 
ompute X  rQ

1

.

{ Compute h

1

 H

1

(X jjm) (where H

1

is the simulator above).

{ Compute Z  (r + h

1

)S

1

.

{ Compute Q

2

 H

0

(ID

2

) (where H

0

is the simulator above).

{ Compute w  ê(rS

1

; Q

2

).

{ Compute y  H

2

(w) � (ZjjID

1

jjm) (where H

2

is the simulator above).

{ Return (X; y).

Case 2: ID

1

= ID

A

, ID

2

6= ID

A

and ID

2

6= ID

B

{ Choose r; h

1

uniformly at random from Z

�

q

.

{ Compute X  rP � h

1

Q

A

and Z  rQ

TA

.

{ Add (X jjm;h

1

) to L

1

.

{ Find the entry (ID

2

; Q

2

; S

2

; x) in L

0

.

{ Compute w  ê(X;S

2

).

{ Compute y  H

2

(w) � (ZjjID

A

jjm) (where H

2

is the simulator above).

{ Return (X; y).

Case 3: ID

1

= ID

B

, ID

2

6= ID

A

and ID

2

6= ID

B

Use the simulation of Case 2 repla
ing (ID

A

; Q

A

) with (ID

B

; Q

B

)

Case 4: ID

1

= ID

A

and ID

2

= ID

B

{ Follow the �rst four steps of Case 2.

{ Choose h

2

 f0; 1g

k

0

+k

1

+n

uniformly at random.

{ Compute y  h

2

� ZjjID

A

jjm.

{ Add (ID

A

; ID

B

; X; y; Z;m; r; h

1

; h

2

) to L

s

.

{ Return (X; y).

Case 5: ID

1

= ID

B

and ID

2

= ID

A

Use the simulation of Case 4 swapping (ID

A

; Q

A

; ID

B

) with (ID

B

; Q

B

; ID

A

).

De
rypt/Verify:(X; y); ID

2

We assume that A makes the query H

0

(ID

2

) before making a de
ryption query

for ID

2

. We have the following three 
ases to 
onsider.

Case 1: ID

2

6= ID

A

and ID

2

6= ID

B

{ Find the entry (ID

2

; Q

2

; S

2

; x) in L

0

.

{ Compute w = ê(X;S

2

).

{ Initialize b 1.

{ If w 2 L

2

, 
ompute ZjjID

1

jjm y �H

2

(w), else b 0 .

{ If b = 1 and ID

1

2 L

0

, let Q

1

 H

0

(ID

1

), else b 0.

{ If b = 1 and X jjm 2 L

1

, let h

1

 H

1

(X jjm), else b 0.



{ If b = 1 and ê(Z; P ) = ê(Q

TA

; X + h

1

Q

1

), return m, (X;Z) and ID

1

, else

step through the list L

s

as follows.

� If the 
urrent entry has the form (ID

A

; ID

B

; X

0

; y; Z;m

0

; r; h

0

1

; h

2

) then

test if ê(X

0

; Q

B

) = ê(X; xP ). If so 
ontinue, else move on to the next

element of L

s

and begin again.

� Else if the 
urrent entry has the form (ID

B

; ID

A

; X

0

; y; Z;m

0

; r; h

0

1

; h

2

)

then test ê(X

0

; Q

A

) = ê(X; xP ). If so 
ontinue, else move on to the next

element of L

s

and begin again.

� Compute ZjjID

1

jjm y � h

2

.

� If ID

1

= ID

2

move to the next element in L

s

and begin again.

� If ID

1

2 L

0

let Q

1

 H

0

(ID

1

), else move to the next element in L

s

.

� If X jjm 2 L

1

let h

1

 H

1

(X jjm), else move to the next element in L

s

.

� Che
k that ê(Z; P ) = ê(Q

TA

; X+h

1

Q

1

), if so returnm, (X;Z) and ID

1

,

if not move on to the next element in L

s

and begin again.

{ If no message has been returned, return ?.

Case 2: ID

2

= ID

B

{ If (ID

A

; ID

B

; X; y; Z;m; r; h

1

; h

2

) 2 L

s

for some m, return m, (X;Z), ID

A

.

{ Else, add (X; y); ID

B

to L

d

and step through the list L

2

with entries (w; h

2

)

as follows.

� Compute ZjjID

1

jjm y � h

2

.

� If ID

1

= ID

A

or ID

1

= ID

B

, move to the next element in L

2

and begin

again.

� If ID

1

2 L

0

let Q

1

 H

0

(ID

1

) and �nd S

1

in L

0

, else move to the next

element in L

2

and begin again.

� If X jjm 2 L

1

let h

1

 H

1

(X jjm), else move on to the next element in

L

2

and begin again.

� Che
k that w = ê(Z�h

1

S

1

; Q

B

) and if not move on to the next element

in L

2

and begin again.

� Che
k that ê(Z; P ) = ê(Q

TA

; X+h

1

Q

1

), if so returnm, (X;Z) and ID

1

,

else move on to the next element in L

2

and begin again.

{ If no message has been returned after stepping through the list L

2

, step

through the list L

s

as follows.

� If the 
urrent entry has the form (ID

A

; ID

B

; X

0

; y; Z;m

0

; r; h

0

1

; h

2

) then


he
k that X

0

= X . If so 
ontinue, else move on to the next element of

L

s

and begin again.

� Else if the 
urrent entry has the form (ID

B

; ID

A

; X

0

; y; Z;m

0

; r; h

0

1

; h

2

)

then 
he
k that ê(X

0

; Q

A

) = ê(X;Q

B

). If so 
ontinue, if not move on to

the next element of L

s

and begin again.

� Compute ZjjID

1

jjm y � h

2

.

� If ID

1

= ID

B

, move to the next element in L

s

and begin again.

� If ID

1

2 L

0

let Q

1

 H

0

(ID

1

), else move to the next element in L

s

.

� If X jjm 2 L

1

let h

1

 H

1

(X jjm), else move to the next element in L

s

.

� Che
k that ê(Z; P ) = ê(Q

TA

; X+h

1

Q

1

), if so returnm, (X;Z) and ID

1

,

else move on to the next element in L

s

and begin again.

{ If no message has been returned, return ?.



Case 3: ID

2

= ID

A

Use the simulation of Case 2 repla
ing (ID

B

; Q

B

; ID

A

) with (ID

A

; Q

A

; ID

B

).

On
e A has been run, B does one of two things.

1. With probability q

s

=(q

s

+q

d

) 
hoose a random element from L

s

and a random

element (w; h

2

) from L

2

. We 
all this event Ch

1

in the analysis below (Ch

for 
hoi
e). The signi�
an
e of the probability will be
ome apparent in the

subsequent analysis we only mention here that we are assuming jL

s

j = q

s

at

the end of our simulation. This is the worst 
ase s
enario.

{ If the 
hosen element has form (ID

A

; ID

B

; X; y; Z;m; r; h

1

; h

2

), 
ompute

B =

�

w=ê(rbP; 
P )

�

�1=h

1

:

{ If the 
hosen element has form (ID

B

; ID

A

; X; y; Z;m; r; h

1

; h

2

), 
ompute

B =

�

w=ê(raP; 
P )

�

�1=h

1

:

2. With probability q

d

=(q

s

+ q

d

) 
hoose a random element from L

d

and a ran-

dom element (w; h

2

) from L

2

. We 
all this event Ch

2

in the analysis below.

Again, the signi�
an
e this probability will be
ome apparent in the sub-

sequent analysis. As above, we are assuming jL

d

j = q

d

at the end of our

simulation. This is the worst 
ase s
enario.

{ If the 
hosen element from L

d

has the form (X; y); ID

B


ompute y�h

2

.

If y � h

2

has the form ZjjID

A

jjm for some Z;m, 
ompute

B =

�

w=ê(Z; bP )

�

�1=h

1

:

If y � h

2

does not have this form B has failed.

{ If the 
hosen element from L

d

has the form (X; y); ID

A


ompute y�h

2

.

If y � h

2

has the form ZjjID

B

jjm for some Z;m, 
ompute

B =

�

w=ê(Z; aP )

�

�1=h

1

:

If y � h

2

does not have this form B has failed.

The rational for these probabilities and 
omputations will be
ome apparent in

the dis
ussion of equations (1), (2), (4) and (5) below.

Let us now analyze our simulation. The simulations for the random ora-


les and the extra
tion queries are trivial. The simulation of the sign/en
rypt

queries uses standard te
hniques. We make some remarks about the simulation

of the de
rypt/verify queries sin
e this is less obvious. We will treat ea
h 
ase

separately.

Case 1: In this 
ase the simulator B knows the se
ret key of the re
eiver and so

it is able to 
ompute the 
orre
t ephemeral en
ryption key. The �rst six steps in

this 
ase are therefore those that would be followed in genuine de
ryption and

veri�
ation. The reason that it does not stop at this point is that the sign/en
rypt



simulator impli
itly de�nes H

2

(w) for values of w that are unknown to the sim-

ulator. It must 
he
k that the ephemeral en
ryption key w that it has 
omputed

is not one of these values. For example, suppose that there is an entry of the

form (ID

A

; ID

B

; X

0

; y; Z;m; r; h

0

1

; h

2

) in L

s

. Referring ba
k to the 
onstru
tion

of the sign/en
rypt simulator, it needs to know if

ê(X

0

; S

B

) = ê(X;S

2

):

The simulator knows that S

2

= xQ

TA

= x
P and it know S

B

= bQ

TA

= b
P =


Q

B

so this test be
omes

ê(X

0

; Q

B

) = ê(X; xP ):

Case 2: In this 
ase the simulator B does not know the se
ret key of the re
eiver

and so it is unable to 
ompute the ephemeral en
ryption key ê(X;S

B

). The

�rst loop, through the list L

2

, determines whether or not the H

2

value of the

ephemeral en
ryption key is in L

2

itself i.e. for ea
h w in L

2

it wants to know if

w = ê(X;S

B

). Sin
e by 
onstru
tionQ

TA

= 
P this test be
omes w = ê(
X;Q

B

)

and, under the assumption that the 
iphertext is 
orre
tly formed, it be
omes

ê(Z�h

1

S

1

; Q

B

). Note that if the 
iphertext is not 
orre
tly formed the simulator

does not 
are whether or not the value of H

2

(w) is de�ned sin
e it is 
orre
t to

reje
t. The �nal test in this loop is just the standard test for veri�
ation.

The se
ond loop, through L

s

, determines whether or not the value of H

2

(w)

that B is looking for has been determined by the sign/en
rypt simulator. If it

is sear
hing L

s

for an entry of form (ID

A

; ID

B

; X

0

; y; Z;m; r; h

0

1

; h

2

) then the

re
eivers identities are the same in this entry and in the de
rypt/verify query

that we are trying to respond to. The 
he
k is then simply on the values of X

and X

0

.

If B is looking at an entry of L

s

of the form (ID

B

; ID

A

; X

0

; y; Z;m; r; h

0

1

; h

2

)

then the re
eivers identities are not the same in this entry and in the de-


rypt/verify query that it is trying to respond to. The 
he
k that it wishes

to perform is ê(X

0

; S

A

) = ê(X;S

B

). This is 
learly equivalent to the 
he
k

ê(X

0

; Q

A

) = ê(X;Q

B

).

Case 3: The analysis is identi
al to that of Case 2 with A and B reversed.

Let us now 
onsider how our simulation 
ould fail i.e. des
ribe events that


ould 
ause A's view to di�er when run by B from its view in a real atta
k. We


all su
h an event an error and denote it ER.

It is 
lear that the simulations for H

0

and H

1

are indistinguishable from real

random ora
les. Let us now 
onsider the H

2

simulator. The important point here

is that H

2

is not only de�ned at points where the H

2

simulator is 
alled by A

or by the simulator itself. It is also de�ned at 
ertain points impli
itly by the

sign/en
rypt simulator. For example, suppose that the sign/en
rypt simulator re-

sponds to a querym; ID

A

; ID

B

. In this 
ase it adds an entry (ID

A

; ID

B

; X; y; Z;

m; r; h

1

; h

2

) to L

s

. This impli
itly de�nes H

2

(ê(X;S

B

)) = h

2

although it is not

a
tually able to 
ompute ê(X;S

B

). If the H

2

simulator is subsequently 
alled



with w = ê(X;S

B

) it will not re
ognise it and so it will not return h

2

. We denote

su
h events H-ER. However, if su
h an event o

urs we have

w = ê(X;S

B

) = ê(rP � h

1

Q

A

; S

B

)

from whi
h it is possible to 
ompute

ê(P; P )

ab


= ê(Q

A

; S

B

) =

�

w=ê(rQ

B

; Q

TA

)

�

�1=h

1

=

�

w=ê(rbP; 
P )

�

�1=h

1

: (1)

Similarly if the H

2

simulator is 
alled with w that is impli
itly de�ned by an

entry (ID

B

; ID

A

; X; y; Z;m; r; h

1

; h

2

) 2 L

s

we 
an 
ompute.

ê(P; P )

ab


= ê(Q

B

; S

A

) =

�

w=ê(rQ

A

; Q

TA

)

�

�1=h

1

=

�

w=ê(raP; 
P )

�

�1=h

1

: (2)

Let us now 
onsider how the simulation for sign/en
rypt 
ould fail. We denote

su
h an event S-ER. The most likely failure will be 
aused by the sign/en
rypt

simulator responding to a query of the form Case 4 or Case 5 (see simulator).

Sin
e we do not know how often ea
h 
ase will o

ur we will be 
onservative

and assume that ea
h query will be one of these, 4 say. The only possibilities for

introdu
ing an error here are de�ning H

1

(X jjm) when it is already de�ned or

de�ning H

2

(ê(X;S

B

))=H

2

(ê(X;S

A

)) when it is already de�ned. Sin
e X takes

its value uniformly at random in hP i, the 
han
e of one of these events o

urring

is at most (q

1

+ q

2

+ 2q

s

)=q for ea
h query. The 2q

s


omes from the fa
t that

the signing simulator adds elements to L

1

and L

2

. Therefore, over the whole

simulation, the 
han
e of an error introdu
ed in this way is at most

q

s

(q

1

+ q

2

+ 2q

s

)=q: (3)

We now turn our attention to the de
rypt/verify simulator. An error in this

simulator is denoted D-ER. It is 
lear that this simulator never a

epts an invalid

en
ryption. What we have to worry about is the possibility that it reje
ts a valid

one. This 
an only o

ur with non-negligible probability in Case 2 or Case 3.

Suppose that we are trying to de
rypt (X; y); ID

B

(i.e. Case 2). An error will

only o

ur if while stepping through L

2

there is an entry (w; h

2

) su
h that

ZjjID

A

jjm  y � h

2

and (X; y) is a valid en
ryption of m from ID

A

to ID

B

.

In this 
ase we must have

w = ê(Z � h

1

S

A

; Q

B

) = ê(Z;Q

B

) � ê(�h

1

S

A

; Q

B

) = ê(Z; bP ) � ê(�h

1

a
P; bP );

where h

1

= H

1

(X jjm). From the above we 
an 
ompute

ê(P; P )

ab


=

�

w=ê(Z; bP )

�

�1=h

1

: (4)

Suppose now that we are trying to de
rypt (X; y); ID

A

(i.e. Case 3). An error

will only o

ur if while stepping through L

2

there is an entry (w; h

2

) su
h that

ZjjID

B

jjm  y � h

2

and (X; y) is a valid en
ryption of m from ID

B

to ID

A

.

In this 
ase we must have

w = ê(Z � h

1

S

B

; Q

A

) = ê(Z;Q

A

) � ê(�h

1

S

B

; Q

A

) = ê(Z; aP ) � ê(�h

1

b
P; aP );



from whi
h we 
an 
ompute

ê(P; P )

ab


=

�

w=ê(Z; aP )

�

�1=h

1

: (5)

The �nal simulator is the extra
t simulator. Note that the adversary will only

su

eed in its task with non-negligible probability if it queries H

0

with the two

identities under whi
h the en
rypted and signed message it produ
es is supposed

to be valid. Looking at the H

0

simulator we see that it 
hooses two H

0

queries

made by the adversary and responds to these with group elements from the BDH

instan
e that it is trying to solve. The simulator hopes that these will be the

identities for the adversary's en
rypted and signed message. This will be the 
ase

with probability at least

1=q

0

(q

0

� 1): (6)

If this is not the 
ase we say that an error has o

urred in the extra
t simulator

be
ause, if the adversary tried to extra
t the private key for these identities, the

simulator would abort. An error in the extra
t simulator is denoted E-ER.

On
e A has been run by the simulator B, there are two 
ourses of a
tion:

Ch

1

and Ch

2

(as des
ribed above). If Ch

1

has been 
hosen, we denote the event

that B sele
ts the 
orre
t elements to solve the BDH problem from L

s

and H

2

by CG

1

(under the assumption that there are su
h 
orre
t elements in the lists

at the end of the simulation). Likewise if Ch

2

has been 
hosen, we denote the

event that B sele
ts the 
orre
t elements from L

d

and H

2

by CG

2

.

With the events des
ribed above we have

Adv[B℄ � Pr[:E-ER ^ H-ER ^ :S-ER ^ Ch

1

^ CG

1

℄

+Pr[D-ER ^ :E-ER ^ :H-ER ^ :S-ER ^ Ch

2

^ CG

2

℄ (7)

We have

Pr[:E-ER ^ H-ER ^ :S-ER ^ Ch

1

^ CG

1

℄

= Pr[:E-ER ^ :S-ER℄ �Pr[Ch

1

^ CG

1

℄ �Pr[H-ER℄ (by independen
e). (8)

Also,

Pr[D-ER ^ :E-ER ^ :H-ER ^ :S-ER ^ Ch

2

^ CG

2

℄

= Pr[D-ER℄ �Pr[:E-ER ^ :H-ER ^ :S-ER℄ �Pr[Ch

2

^ CG

2

℄ (by independen
e).

(9)

Note that, in the event :E-ER^:H-ER^:S-ER, the adversary A is run by B in

exa
tly the same way that it would be run in a real atta
k until the event D-ER

o

urs. Moreover, in the event :E-ER ^ :H-ER ^ :S-ER, A winning and D-ER

are equivalent. This means that (9) be
omes

Pr[D-ER ^ :E-ER ^ :H-ER ^ :S-ER ^ Ch

2

^ CG

2

℄

= � �Pr[:E-ER ^ :S-ER℄ �Pr[Ch

2

^ CG

2

℄ �Pr[:H-ER℄: (10)



From the de�nitions of Ch

1

, CG

1

, Ch

2

and CG

2

above it is 
lear that

Pr[Ch

1

^ CG

1

℄ =

q

s

q

s

+ q

d

�

1

q

s

(q

2

+ q

s

)

=

1

(q

s

+ q

d

)(q

2

+ q

s

)

and (11)

Pr[Ch

2

^ CG

2

℄ =

q

d

q

s

+ q

d

�

1

q

d

(q

2

+ q

s

)

=

1

(q

s

+ q

d

)(q

2

+ q

s

)

: (12)

Note that we are assuming a worst 
ase s
enario here i.e. jL

s

j = q

s

and jL

d

j = q

d

.

We will make this assumption throughout the remaining analysis without further


omment. From, the fa
t that Pr[H-ER℄ + Pr[:H-ER℄ = 1, (7), (8), (10), (11)

and (12) we have

Adv[B℄ � (Pr[H-ER℄ + � �Pr[:H-ER℄) �Pr[:E-ER ^ :S-ER℄ �

1

(q

s

+ q

d

)(q

2

+ q

s

)

� � � (Pr[H-ER℄ +Pr[:H-ER℄) �Pr[:E-ER ^ :S-ER℄ �

1

(q

s

+ q

d

)(q

2

+ q

s

)

= � �Pr[:E-ER ^ :S-ER℄ �

1

(q

s

+ q

d

)(q

2

+ q

s

)

: (13)

Finally, by the independen
e of E-ER and S-ER, using (3), (6) and (13) we have

Adv[B℄ � � �

�

1�

q

s

(q

1

+ q

2

+ 2q

s

)

q

�

�

1

q

0

(q

0

� 1)(q

s

+ q

d

)(q

2

+ q

s

)

(14)

as required.

Proof of Theorem 2

We will show how an IND-IBSC-CCA2 adversary A of IBSC may be used to


onstru
t a simulator B that solves the BDH problem. Let (P; aP; bP; 
P ) be the

instan
e of the BDH problem that we wish to solve.

The simulator runs A with Q

TA

 bP . It keeps lists as in the proof of The-

orem 1. We des
ribe how B runs Phase 1 of A's atta
k below.

Simulator: H

0

(ID

U

)

At the beginning of the simulation 
hoose i

�

uniformly at random from f1; : : : ; q

0

g.

We show how to respond to the i-th query made by A below. Note that we as-

sume A does not make repeat queries.

{ If i = i

�

then respond with H

0

(ID

U

) aP and set ID

�

 ID

U

.

{ Else 
hoose x uniformly at random from Z

�

q

; 
ompute Q

U

 xP ; 
ompute

S

U

 xQ

TA

; store (ID

U

; Q

U

; S

U

; x) in L

0

and respond with Q

U

.

Simulator: H

1

(X jjm) and H

2

(w) as in the proof of Theorem 1.

Simulator: Extra
t(ID

U

)

We will assume that A makes the query H

0

(ID

U

) before it makes the extra
tion

query for ID

U

.



{ If ID

U

= ID

�

, abort the simulation.

{ Else sear
h L

0

for the entry (ID

U

; Q

U

; S

U

; x) 
orresponding to ID

U

and

return S

U

.

Simulator: Sign/En
rypt(m; ID

1

; ID

2

)

We will assume that A makes the queries H

0

(ID

1

) and H

0

(ID

2

) before it makes

a sign/en
rypt query using these identities. We have two 
ases to 
onsider.

Case 1: ID

1

6= ID

�

Use the simulator from Case 1 of sign/en
rypt in the proof of Theorem 1.

Case 2: ID

1

= ID

�

Use the simulator from Case 2 of sign/en
rypt in the proof of Theorem 1 repla
-

ing ID

A

with ID

�

and repla
ing Q

A

with aP .

De
rypt/Verify:(X; y); ID

2

We assume that A makes the query H

0

(ID

2

) before making a de
ryption query

for ID

2

. We have the following three 
ases to 
onsider.

Case 1: ID

2

6= ID

�

{ Find the entry (ID

2

; Q

2

; S

2

; x) in L

0

.

{ Compute w = ê(X;S

2

).

{ If w =2 L

2

, return ?. Else ZjjID

1

jjm y �H

2

(w).

{ If ID

1

= ID

2

or ID

1

=2 L

0

, return ?. Else Q

1

 H

0

(ID

1

).

{ If X jjm 2 L

1

, return ?. Else h

1

 H

1

(X jjm).

{ If ê(Z; P ) 6= ê(Q

TA

; X + h

1

Q

1

), return ?. Else return m, (X;Z), ID

1

.

Case 2: ID

2

= ID

�

{ Step through the list L

2

with entries (w; h

2

) as follows.

� Compute ZjjID

1

jjm y � h

2

.

� If ID

1

= ID

�

, move to the next element in L

2

and begin again.

� If ID

1

2 L

0

let Q

1

 H

0

(ID

1

) and �nd S

1

in L

0

, else move to the next

element in L

2

and begin again.

� If X jjm 2 L

1

let h

1

 H

1

(X jjm), else move to the next element in L

2

.

� Che
k that w = ê(Z�h

1

S

1

; aP ) and if not move on to the next element

in L

2

and begin again.

� Che
k that ê(Z; P ) = ê(Q

TA

; X+h

1

Q

1

), if so returnm, (X;Z) and ID

1

,

else move on to the next element in L

2

.

{ If no message has been returned after stepping through L

2

, return ?.

At the end of Phase 1 the adversary outputs two identities fID

A

; ID

B

g and

two messages fm

0

;m

1

g. If ID

B

6= ID

�

, B aborts the simulation. Otherwise

it 
hooses y

�

 f0; 1g

k

0

+k

1

+n

and sets X

�

 
P . It returns the 
hallenge


iphertext �

�

 (X

�

; y

�

) to A. The queries made by A in Phase 2 are responded

to in the same way as those made by A in Phase 1.



At the end of Phase 2, A outputs a bit b. The simulator ignores this bit. It

sear
hes L

0

for the entry (ID

A

; Q

A

; S

A

; x

a

), it 
hooses some w at random from

L

2

and returns

w

x

a

�1

(15)

as its guess at the solution to the BDH problem for (P; aP; bP; 
P ).

Let us now 
onsider how our simulation 
ould fail when it exe
utes Phase 1

of A's atta
k i.e. what events 
ould 
ause A's view to di�er when run by B from

its view in a real atta
k. We 
all su
h an event an error and denote it ER.

It is 
lear that the simulations for H

0

and H

1

are indistinguishable from

genuine random ora
les. Also, unlike the proof of Theorem 1, the simulation of

H

2

is always sound sin
e now it is only de�ned at points where the H

2

simulator

is 
alled by A or by the simulator B.

Let us now 
onsider how the simulation for sign/en
rypt 
ould fail. The only

possibility for introdu
ing an error here is de�ning H

1

(X jjm) when it is already

de�ned. Sin
e X takes its value uniformly at random in hP i, the 
han
e of one

of these events o

urring is at most (q

1

+ q

s

)=q for ea
h query. The q

s


omes

from the fa
t that the signing simulator adds elements to L

1

. Therefore, over

the whole simulation, the 
han
e of an error introdu
ed in this way is at most

q

s

(q

1

+ q

s

)=q: (16)

It is easy to see that the possibility for error in the de
rypt/verify simulator for

Theorem 1 are removed in our simulation here. The �nal simulator to 
onsider

is the extra
t simulator.

The �nal simulator is the extra
t simulator. Looking at the H

0

simulator

we see that it 
hooses one H

0

query made by the adversary and responds to

this with group elements from the BDH instan
e that it is trying to solve. The

simulator hopes that this will be the identity 
hosen by A for the re
ipient in

the 
hallenge. This will be the 
ase with probability at least

1=q

0

: (17)

If this is not the 
ase we say that an error has o

urred in the extra
t simulator

be
ause, if the adversary tried to extra
t the private key for this identity, the

simulator would abort.

Let us now 
onsider what errors there 
ould be when B exe
utes Phase 2 of A.

All the same errors are possible, in addition the simulator will fail if the adversary

makes the H

2

query w = ê(P; P )

x

a

ab


. However, if A has any advantage it must

make this query, and on
e it has done so we have trapped it into leaving enough

information in L

2

to solve the BDH problem with probability 1=q

2

.

From the above remark 
ombined with (16) and (17) we 
on
lude that B

su

eeds with probability at least

� �

�

1�

q

s

(q

1

+ q

s

)

q

�

�

1

q

0

q

2

: (18)

Proof of Theorem 3

We are going to use the "forking lemma" te
hnique of Point
heval and Stern [20℄

to prove our result. We will in fa
t redu
e the standard DiÆe-Hellman problem



to the problem of forging. Sin
e a bla
k box for the DiÆe-Hellman problem is

suÆ
ient to solve the bilinear DiÆe-Hellman problem the result will follow. We

will now show how an EUF-IBSC-CMA adversary A of IBSC may be used to


onstru
t a simulator B that solves the DiÆe-Hellman problem. Let (P; aP; bP )

be the instan
e of the DiÆe-Hellman problem that we wish to solve. The simu-

lator B runs in three stages: B

1

;B

2

and B

3

.

The simulator B

1

runs A with trusted third party publi
 key Q

TA

 bP . It

also 
reates algorithms to respond to queries made by A during its atta
k. To

maintain 
onsisten
y between queries made by A, the simulator keeps lists as in

the proof of Theorem 1.

Simulator: H

0

(ID

U

)

At the beginning of the simulation 
hoose i

a

uniformly at random from f1; : : : ; q

0

g.

We show how to respond to the i-th query made by A below. Note that we as-

sume A does not make repeat queries.

{ If i = i

a

then respond with H

0

(ID

U

) aP and set ID

A

 ID

U

.

{ Else 
hoose x uniformly at random from Z

�

q

; 
ompute Q

U

 xP ; 
ompute

S

U

 xQ

TA

; store (ID

U

; Q

U

; S

U

; x) in L

0

and respond with Q

U

.

Simulator: H

1

(X jjm) and H

2

(w) as in the proof of Theorem 1.

Simulator: Extra
t(ID

U

)

We will assume that A makes the query H

0

(ID

U

) before it makes the extra
tion

query for ID

U

.

{ If ID

U

= ID

A

, abort the simulation.

{ Else sear
h L

0

for the entry (ID

U

; Q

U

; S

U

; x) 
orresponding to ID

U

and

return S

U

.

Simulator: Sign/En
rypt(m; ID

1

; ID

2

)

We will assume that A makes the queries H

0

(ID

1

) and H

0

(ID

2

) before it makes

a sign/en
rypt query using these identities. We have the following two 
ases.

Case 1: ID

1

6= ID

A

Use the simulator from Case 1 of sign/en
rypt in the proof of Theorem 1.

Case 2: ID

1

= ID

A

Use the simulator from Case 2 of sign/en
rypt in the proof of Theorem 1.

Simulator: De
rypt/Verify(X; y); ID

2

We assume that A makes the query H

0

(ID

2

) before making a de
ryption query

for ID

2

. We have the following three 
ases to 
onsider.

Case 1: ID

2

6= ID

A

Use the simulator from Case 1 of de
rypt/verify in the proof of Theorem 2.



Case 2: ID

2

= ID

A

Use the simulator from Case 2 of de
rypt/verify in the proof of Theorem 2 re-

pla
ing ID

�

with ID

A

and repla
ing aP with Q

A

.

Let us now 
onsider how our simulation 
ould fail i.e. what events 
ould 
ause

A's view to di�er when run by B

1

from its view in a real atta
k. We 
all su
h

an event an error and denote it ER.

Clearly the simulations forH

0

and H

1

are indistinguishable from real random

ora
les. Also, unlike the proof of Theorem 1, the simulation ofH

2

is always sound

sin
e now it is only de�ned at points where the H

2

simulator is 
alled by A or

by the simulator.

Let us now 
onsider how the simulation for sign/en
rypt 
ould fail. The

analysis of this 
ase is identi
al to the equivalent 
ase in Theorem 2. An error is

therefore introdu
ed with probability at most

q

s

(q

1

+ q

s

)=q: (19)

It is easy to see that the possibility for error in the de
rypt/verify simulator for

Theorem 1 are removed in our simulation here. The �nal simulator to 
onsider

is the extra
t simulator.

The �nal simulator is the extra
t simulator. Note that the adversary will

only su

eed in its task with non-negligible probability if it queries H

0

with the

identity under whi
h the message 
ontained in the 
iphertext it returns is signed.

Looking at the H

0

simulator we see that it 
hooses one H

0

query made by the

adversary and responds to this with group elements from the BDH instan
e that

it is trying to solve. The simulator hopes that this will be the signer identity for

the 
iphertext that it returns. This will be the 
ase with probability at least

1=q

0

: (20)

If this is not the 
ase we say that an error has o

urred in the extra
t simulator

be
ause, if the adversary tried to extra
t the private key for this identity, the

simulator would abort.

Now, from (19) and (20), it is 
lear that with probability greater or equal to

� �

�

1�

q

s

(q

1

+ q

s

)

q

�

�

1

q

0

; (21)

the simulator obtains from the adversary a re
ipient identity ID

B

and a 
ipher-

text 
 su
h that, if (m; ID

A

; �) is the result of de
rypting 
 under the se
ret

key 
orresponding to ID

B

, Verify(m; ID

A

; �) = >. Note that, sin
e we are

assuming that A has been su

essful, ID

B

6= ID

A

and so we 
an use the de-


ryption pro
ess of the simulator. Also, if � = (X;Z) then, ex
ept with negligible

probability, the H

1

query X jjm must have been made at some point during the

simulation. We 
all this query the 
riti
al query.

Let �, 	 be the random tapes for random ora
le H

1

and simulator B

1

respe
-

tively. That is to say 	 is the random tape for all fun
tions of B

1

ex
ept random

ora
le H

1

. The random ora
le H

1

is 
alled 1=(q

1

+ q

s

) times. The se
ond step in



the pro
ess of solving the DiÆe-Hellman problem is to 
hoose j  f1; : : : ; q

1

+q

s

g

at random. We now split � into �

1

and �

2

where �

1


ontains the random re-

sponses for queries 1; : : : ; j�1 and �

2


ontains the random responses for queries

j; : : : ; q

1

+ q

s

. The next step of the simulation, B

2

, is to run a simulation similar

to B

1

with the same 	 and �

1

but a new �

2

, say �

2

0

. With probability

1=(q

1

+ q

s

) (22)

the value of j that we 
hose 
orresponds to the 
riti
al query.

Our proof now uses the following lemma from [20℄.

Lemma 1 (The Splitting Lemma). Let E � � � � be su
h that Pr[E℄ � �.

De�ne

F = f(�; �) 2 � � � : Pr

�

0

2�

[(�; �

0

) 2 E℄ � �=2g :

We have the following

1. 8(�; �) 2 F;Pr

�

0

2�

[(�; �

0

) 2 E℄ � �=2:

2. Pr[F jE℄ � 1=2:

Now, from (21), (22) and Lemma 1 applied with � = 	 [ �

1

and � = 	

2

, with

probability greater or equal to

�

2

�

�

1�

q

s

(q

1

+ q

s

)

q

�

2

�

1

4q

2

0

(q

1

+ q

s

)

2

(23)

the two simulated runs of A give us two signatures (X;Z) and (X;Z

0

) on m

with the following properties. After the �rst run of the simulation there is an

h

�

1

2 L

1

and after the se
ond run there is an h

��

1

2 L

1

(the responses to the


riti
al queries) su
h that

Z = (r + h

�

1

)abP and Z

0

= (r + h

��

1

)abP (24)

where X = raP . Assuming that B

1

and B

2

are su

essful, it is easy to see from

(24) that the third stage of the simulation, B

3

, 
an 
ompute

abP = (h

�

1

� h

��

1

)

�1

�

Z � Z

0

�

: (25)

The result follows from (23) and (25).

Proof of Theorem 4

We assume that we have an instan
e (P; aP; bP; 
P ) of the BDH problem that

we wish to solve. We will show how an ANON-IBSC-CCA2 adversary A may be

used to do this. Up until the end of Phase 1 of A's atta
k, B runs A in exa
tly

the same way as the latter was run by the simulator in Theorem 1. Here we will


hange notation and refer to ID

A

as ID

�

0

and ID

B

as ID

�

1

.

At the end of Phase 1 the adversaryA outputs a messagem; two sender iden-

tities fID

A

0

; ID

A

1

g; and two re
ipient identities fID

B

0

; ID

B

1

g. If fID

B

0

; ID

B

1

g

6= fID

�

0

; ID

�

1

g the simulator B aborts. Note that we are assuming that H

0

has



already been queried at ID

B

0

and ID

B

1

by A. If this is not the 
ase we 
an

de�ne H

0

at these points as we wish i.e. as aP or bP .

The 
hallenge is generated by 
hoosing v at random fromZ

�

q

and 
hoosing y at

random from f0; 1g

k

0

+k

1

+n

. The 
hallenge 
iphertext returned to the adversary

is (vaP; y). The simulator B stores v for use later in the simulation.

On
e A has �nished its simulated exe
ution B does one of three things.

1. With probability q

s

=(2+q

s

) 
hoose a random element from L

s

and a random

element (w; h

2

) from L

2

. We 
all this event Ch

1

in the analysis below.

{ If the 
hosen element has form (ID

�

0

; ID

�

1

; X; y;m; r; h

1

; h

2

), 
ompute

B =

�

w=ê(rbP; 
P )

�

�1=h

1

:

{ If the 
hosen element has form (ID

�

1

; ID

�

0

; X; y;m; r; h

1

; h

2

), 
ompute

B =

�

w=ê(raP; 
P )

�

�1=h

1

:

2. With probability q

s

=(2+q

s

) 
hoose a random element from L

d

and a random

element (w; h

2

) from L

2

. We 
all this event Ch

2

in the analysis below.

{ If the 
hosen element from L

d

has the form (X; y); ID

�

1


ompute y�h

2

.

If y � h

2

has the form ZjjID

�

0

jjm for some Z;m, 
ompute

B =

�

w=ê(Z; bP )

�

�1=h

1

:

If y � h

2

does not have this form B has failed.

{ If the 
hosen element from L

d

has the form (X; y); ID

A


ompute y�h

2

.

If y � h

2

has the form ZjjID

�

1

jjm for some Z;m, 
ompute

B =

�

w=ê(Z; aP )

�

�1=h

1

:

If y � h

2

does not have this form B has failed.

3. With probability 2=(2 + q

s

) 
hoose a random element (w; h

2

) from L

2

and


ompute

B = w

1=v

:

We 
all this event Ch

3

in the analysis below.

We de�ne the events D-ER, E-ER, H-ER and S-ER as in the proof of Theorem 1.

We will assume that the events E-ER and S-ER do not o

ur by removing a fa
tor

�

1�

q

s

(q

1

+ q

2

+ 2q

s

)

q

�

�

1

q

0

(q

0

� 1)

= Æ (26)

from our su

ess probability as in the proof of Theorem 1.

We de�ne the event ER = S-ER ^ D-ER. In the events Ch

1

, Ch

2

and Ch

3

we denote the event that B sele
ts the 
orre
t elements (assuming they exist)

to solve the BDH problem by CG

1

, Ch

2

and CG

3

respe
tively. Note that, in the

event :ER, A 
an have no advantage until it makes one of the queries ê(vaP; b
P )

or ê(vaP; a
P ) to H

2

, sin
e the identities are perfe
tly masked until this point.



Only the former is useful to B but A will make them with equal probability.

Using these de�nitions and observations, and assuming q

d

= q

s

, we 
an infer

Adv[B℄ � Æ

�

Pr[Ch

1

^ CG

1

jS-ER℄:Pr[S-ER℄ +Pr[Ch

2

^ CG

2

jD-ER℄:Pr[D-ER℄

+

1

2

�Pr[A winsj:ER℄ �Pr[Ch

3

^ CG

3

℄ �Pr[:ER℄

�

: (27)

Examining the size of the relevant lists we see that

Pr[Ch

1

^ CG

1

℄ = Pr[Ch

2

^ CG

2

℄ =

1

(2 + q

s

)(q

s

+ q

2

)

(28)

Pr[Ch

3

^ CG

3

℄ =

2

(2 + q

s

)(q

s

+ q

2

)

(29)

Also, by de�nition we have Pr[A winsj:ER℄ = �. Using this observation with

(28), (29) and independen
e of events, (27) be
omes

Adv[B℄ �

Æ

 

1

(2 + q

s

)(q

s

+ q

2

)

�

�

Pr[S-ER℄ +Pr[D-ER℄

�

+

�

(2 + q

s

)(q

s

+ q

2

)

�Pr[:ER℄

!

:

(30)

By independen
e we have Pr[S-ER℄ + Pr[D-ER℄ = Pr[S-ER _ D-ER℄ = Pr[ER℄

and also Pr[ER℄ +Pr[:ER℄ = 1. Using this and (30) we obtain

Adv[B℄ � � � Æ �

1

(2 + q

s

)(q

s

+ q

2

)

: (31)

The result follows from (26) and (31).


