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Abstrat. We present an identity-based signryption sheme that we

believe is the most eÆient proposed to date. We provide random orale

model [5℄ proofs of seurity under the de�nitions proposed in [7℄.
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1 Introdution

Two of the most important servies o�ered by ryptography are those of pro-

viding private and authentiated ommuniations. Muh researh has been done

into reating enryption shemes to meet highly developed notions of privay [5,

13℄. Similarly, designing unforgeable signature shemes to give authentiity and

non-repudiation is also a well studied problem [14, 20℄. It is possible to om-

bine enryption shemes and signature shemes, using methods suh as those

desribed in [1℄, to obtain private and authentiated ommuniations.

In 1997 Zheng proposed a primitive that he alled signryption [23℄. The idea

of a signryption sheme is to ombine the funtionality of an enryption sheme

with that of a signature sheme. It must provide privay; signryptions must be

unforgeable; and there must be a method to settle repudiation disputes. This

must be done in a more eÆient manner than a omposition of an enryption

sheme with a signature sheme. In [23℄ Zheng also proposed a disrete loga-

rithm based sheme. This original paper did not formalise seurity notions for

signryption. The �rst de�nitions of seurity appeared in [1, 2℄. These dealt with

privay and unforgeability. Seurity proofs for Zheng's original sheme were pro-

vided in [2℄. A signryption sheme based on RSA was proposed in [19℄. This

sheme has proofs of seurity under the RSA assumption in a model from [1℄.

The onept identity-based ryptography was proposed by Shamir in 1984 [22℄.

The idea of an identity-based system is that publi keys an be derived from

arbitrary strings. This means that if a user has a string orresponding to its

identity, this string an be used to derive the user's publi key. For this to



work there is a trusted authority (TA heneforth) that generates private keys

using some master key related to the global parameters for the system. In [22℄

Shamir proposed an identity-based signature sheme but for many years identity-

based enryption remained an open problem. The problem was solved nearly two

deades after it was originally proposed [6, 10℄. In [10℄ Coks proposed a solution

based on quadrati residuosity and in [6℄ Boneh and Franklin gave a sheme

based on bilinear pairings on ellipti urves. It is pairings on ellipti urves that

have subsequently beome the most popular building blok for identity-based

shemes. Many shemes have been designed using this primitive, for example

the signature shemes of [8, 15℄ and the authentiated enryption sheme of [16℄.

The idea of identity-based signryption was �rst proposed in [18℄ along with

a seurity model. The model of [18℄ dealt with notions of privay and unforge-

ability. A weakness in the sheme from [18℄ was subsequently pointed out in [17℄

where a new sheme was proposed. The new sheme ame with proofs of seurity

in the model of [18℄. This model was developed in [7℄. Three new seurity no-

tions were added: iphertext unlinkability, iphertext authentiation and ipher-

text anonymity. We will disuss these notions in detail in Setion 3. A sheme

was also proposed in [7℄ and analysed in the enhaned model.

We take the model and sheme from [7℄ as the starting point for this work.

We will desribe a modi�ation of the sheme from [7℄ that is onsiderably more

eÆient. We will also prove that the new sheme is seure in the model of [7℄. Our

sheme is eÆient sine we an make use of a variant of the simple BasiIdent

enryption sheme from [6℄. If this enryption sheme is used alone, it is not

seure against an ative attak. To overome this problem a tehnique proposed

in [11℄ is used in [6℄. This introdues a omputational overhead. An interesting

observation is that, in our signryption sheme, the integrity heking neessary

for seurity against adaptive adversaries omes diretly from the signature.

The paper will proeed as follows. In Setion 2 we will formally de�ne what

we mean by identity-based signryption. Setion 3 realls the seurity model

from [7℄. We will present our sheme in Setion 4 and provide seurity results in

Setion 5. The paper ends with some onluding remarks.

2 Identity-Based Signryption

We follow the approah of [7℄ in de�ning what we mean by identity-based sign-

ryption. An identity-based signryption sheme onsists of the following six al-

gorithms: Setup, Extrat, Sign, Enrypt, Derypt and Verify. We desribe

the funtions of eah below.

{ Setup: On input of a seurity parameter 1

k

the TA uses this algorithm to

produe a pair (params; s), where params are the global publi parameters

for the system and s is the master seret key. The publi parameters inlude

a global publi key Q

TA

, a desription of a �nite message spae M, a de-

sription of a �nite signature spae S and a desription of a �nite iphertext

spae C. We will assume that params are publily known so that we do not

need to expliitly provide them as input to other algorithms.



{ Extrat: On input of an identity ID

U

and the master seret key s, the TA

uses this algorithm to ompute a seret key S

U

orresponding to ID

U

.

{ Sign: User A with identity ID

A

and seret key S

A

uses this algorithm with

input (m;S

A

) to produe a signature � on m valid under the publi key

derived from ID

A

. It also produes some ephemeral data r.

{ Enrypt: On input of (S

A

; ID

B

;m; �; r), ID

A

uses this algorithm to pro-

due a iphertext . This is the enryption of m, and ID

A

's signature on m,

whih an be derypted using the user with identity ID

B

's seret key.

{ Derypt: User B with identity ID

B

and seret key S

B

uses this algorithm

with input (; S

B

) to produes (m; ID

A

; �) where m is a message and � is a

purported signature by ID

A

on m.

{ Verify: On input of (m; ID

A

; �), this algorithm outputs > if � is ID

A

's

signature on m and it outputs ? otherwise.

The above algorithms have the following onsisteny requirement. If

(m;�; r)  Sign(m;S

A

),

 Enrypt(S

A

; ID

B

;m; �; r), and

(m̂;

^

ID

A

; �̂) Derypt(; S

B

);

then we must have

^

ID

A

= ID

A

, m = m̂ and

>  Verify(m̂;

^

ID

A

; �̂):

Note that in some models for signryption [23℄ and identity-based signryp-

tion [18, 17℄, the Sign and Enrypt algorithms are treated as one \signryption"

algorithm, as are the Derypt and Verify algorithms. Our sheme supports a

separation and so we stik with the above de�nition as in [7℄. One advantage of

this approah, where it is possible, is that it makes non-repudiation a straightfor-

ward onsequene of unforgeability. This is due to the fat that after deryption

there is a publily veri�able signature that an be forwarded to a third party.

Signryption shemes that do not support this separation may have problems

with non-repudiation [23℄.

3 Seurity Notions

In this setion we review the seurity model for identity-based signryption pro-

posed in [7℄. This model uses the notions of insider seurity and outsider seurity

from [1℄. Informally insider seurity is seurity against a legitimate user of the

sheme while outsider seurity is seurity against an outside third party. Where

appropriate, this makes insider seurity a stronger notion. We will make fur-

ther omment about the signi�ane of the distintion at relevant points in this

setion.

A seurity de�nition dubbed iphertext unlinkability is desribed in [7℄. Infor-

mally this notion means that Alie is able to deny having sent a given iphertext

to Bob, even if the iphertext derypts under Bob's seret key to a message



bearing Alie's signature. This property is demonstrated for the sheme in [7℄

by showing that given a message signed by Alie, Bob is able to reate a valid

iphertext addressed to himself for that message. We do not treat this notion ex-

pliitly here sine it is rather unmotivated, suÆe it to say that the onstrution

given in [7℄ is easily modi�ed for our sheme if neessary.

3.1 Ciphertext Authentiation

A sheme o�ering iphertext authentiation provides the guarantee to the reip-

ient of a signed and enrypted message that the message was enrypted by the

same person who signed it. This means that the iphertext must have been en-

rypted throughout the the transmission and so it annot have been the vitim

of a suessful man-in-the-middle attak. It also implies that the signer hose

the reipient for its signature.

We de�ne this notion via a game played by a hallenger and an adversary.

Game

{ Initial: The hallenger runs Setup(1

k

) and gives the resulting params to

the adversary. It keeps s seret.

{ Probing: The hallenger is probed by the adversary who makes the following

queries.

� Sign/Enrypt: The adversary submits a sender identity, a reeiver iden-

tity and a message to the hallenger. The hallenger responds with the

signature of the sender on the message, enrypted under the publi key

of the reeiver.

� Derypt/Verify: The adversary submits a iphertext and a reeiver

identity to the hallenger. The hallenger derypts the iphertext under

the seret key of the reeiver. It then veri�es that the resulting deryption

is a valid message/signature pair under the publi key of the derypted

identity. If so the hallenger returns the message, its signature and the

identity of the signer, otherwise it returns ?.

� Extrat: The adversary submits an identity to the hallenger. The hal-

lenger responds with the seret key of that identity.

{ Forge: The adversary returns a reipient identity ID

B

and a iphertext .

Let (m; ID

A

; �) be the result of derypting  under the seret key orrespond-

ing to ID

B

. The adversary wins if ID

A

6= ID

B

; Verify(m; ID

A

; �) = >;

no extration query was made on ID

A

, or ID

B

; and  did not result from a

sign/enrypt query with sender ID

A

and reipient ID

B

.

De�nition 1. Let A denote an adversary that plays the game above. If the

quantity Adv[A℄ = Pr[A wins℄ is negligible we say that the sheme in question

is existentially iphertext-unforgeable against outsider hosen-message attaks,

or AUTH-IBSC-CMA seure.

Here we have an example of outsider seurity sine the adversary is not able to

extrat the seret key orresponding to ID

B

. This models the true adversarial

senario where an attak would be re-enrypting a signed message using a publi

key with unknown seret key.



3.2 Message Con�dentiality

The aepted notion of seurity with respet to on�dentiality for publi key

enryption is indistinguishability of enryptions under adaptive hosen iphertext

attak, as formalised in [21℄. The notion of seurity de�ned in the game below is

a natural adaptation of this notion to the identity-based signryption setting.

Game

{ Initial: The hallenger runs Setup(1

k

) and gives the resulting params to

the adversary. It keeps s seret.

{ Phase 1: The hallenger is probed by the adversary who makes queries as

in the game of Setion 3.1. At the end of Phase 1 the adversary outputs two

identities fID

A

; ID

B

g and two messages fm

0

;m

1

g. The adversary must not

have made an extrat query on ID

B

.

{ Challenge: The hallenger hooses a bit b uniformly at random. It signs m

b

under the seret key orresponding to ID

A

and enrypts the result under the

publi key of ID

B

to produe . The hallenger returns  to the adversary.

{ Phase 2: The adversary ontinues to probe the hallenger with the same

type of queries that it made in Phase 1. It is not allowed to extrat the private

key orresponding to ID

B

and it is not allowed to make a derypt/verify

query for  under ID

B

.

{ Response: The adversary returns a bit b

0

. We say that the adversary wins

if b

0

= b.

De�nition 2. Let A denote an adversary that plays the game above. If the quan-

tity Adv[A℄ = jPr[b

0

= b℄ �

1

2

j is negligible we say that the sheme in question

is semantially seure against adaptive hosen-iphertext attak, or IND-IBSC-

CCA2 seure.

Note that De�nition 2 deals with insider seurity sine the adversary is assumed

to have aess to the private key of the sender of a signrypted message. This

means that on�dentiality is preserved even if a sender's key is ompromised.

Signryption shemes suh as [3, 23℄ do not have this property.

3.3 Signature Non-Repudiation

A signryption sheme o�ering non-repudiation prevents the sender of a sign-

rypted message from disavowing its signature. Note that non-repudiation is not

as straightforward for signryption as it is for digital signature shemes sine we

are dealing with enrypted data. As a onsequene, by default, only the intended

reipient of a signryption an verify.

We de�ne the notion of non-repudiation via the following game played by a

hallenger and an adversary.

Game

{ Initial: The hallenger runs Setup(1

k

) and gives the resulting params to

the adversary. It keeps s seret.



{ Probing: The hallenger is probed by the adversary who makes queries as

in the game of Setion 3.1.

{ Forge: The adversary returns a reipient identity ID

B

and a iphertext .

Let (m; ID

A

; �) be the result of derypting  under the seret key orrespond-

ing to ID

B

. The adversary wins if ID

A

6= ID

B

; Verify(m; ID

A

; �) = >; no

extration query was made on ID

A

; no sign/enrypt query (m; ID

A

; ID

B

0

)

was responded to with a iphertext whose deryption under the private key

of ID

B

0

is (m; ID

A

; �).

This model is a natural adaptation of existential unforgeability (EUF) under

adaptive hosen message attak, the aepted notion of seurity for digital sig-

nature shemes [14, 20℄.

De�nition 3. Let A denote an adversary that plays the game above. If the

quantity Adv[A℄ = Pr[A wins℄ is negligible we say that the sheme in question is

existentially unforgeable against insider hosen-message attaks, or EUF-IBSC-

CMA seure.

In De�nition 3 we allow the adversary aess to the seret key of the reipient

of the forgery. It is this that gives us insider seurity. Also note that the adver-

sary's advantage is with respet to its suess in forging the signature within

the iphertext. This is indeed the orret de�nition for non-repudiation in this

ontext beause it is the signature and not the iphertext that ontains it that

is forwarded to a third party in the ase of a dispute.

3.4 Ciphertext Anonymity

Ciphertext anonymity is the property that iphertexts ontain no third-party

extratable information that helps to identify the sender of the iphertext or the

intended reipient. It is de�ned via the following game.

Game

{ Initial: The hallenger runs Setup(1

k

) and gives the resulting params to

the adversary. It keeps s seret.

{ Phase 1: The hallenger is probed by the adversary who makes queries as

in the game of Setion 3.1. At the end of Phase 1 the adversary outputs a

message m; two sender identities fID

A

0

; ID

A

1

g; and two reipient identities

fID

B

0

; ID

B

1

g. The adversary must not have made an extrat query on either

of fID

B

0

; ID

B

1

g.

{ Challenge: The hallenger hooses two bits (b;

^

b) uniformly at random. It

signs m under the seret key S

A

b

orresponding to ID

A

b

. It then enrypts

the result under the publi key of ID

B

^

b

to produe a iphertext . The

hallenger returns  to the adversary.

{ Phase 2: The adversary ontinues to probe the hallenger with the same

type of queries that it made in Phase 1. It is not allowed to extrat the

private key orresponding to ID

B

0

or ID

B

1

and it is not allowed to make a

derypt/verify query for  under ID

B

0

or under ID

B

1

.



{ Response: The adversary returns two bits (b

0

;

^

b

0

). We say that the adversary

wins if b =

^

b or b

0

=

^

b

0

.

De�nition 4. Let A denote an adversary that plays the game above. If the

quantity Adv[A℄ = jPr[b

0

= b _

^

b

0

=

^

b℄�

3

4

j is negligible we say that the sheme

in question is iphertext-anonymous against insider adaptive hosen-iphertext

attak, or ANON-IBSC-CCA2 seure.

Note that in the equivalent de�nition from [7℄ the adversary only wins if b =

^

b

and b

0

=

^

b

0

. It is stated there that the sheme is ANON-IBSC-CCA2 seure if

the quantity Adv[A℄ = jPr[b

0

= b^

^

b

0

=

^

b℄�

1

4

j is negligible. The two de�nitions

are learly equivalent. We prefer our formulation beause it expliitly states that

the adversary should not be able to guess either of the bits. The intuition is that

it gains no information about the sender of a message or the intended reipient.

De�nition 4 follows from the fat that the adversary is always able to guess at

least one of the bits orretly with probability 3=4.

4 The Sheme

In this setion we desribe how our identity-based signryption sheme works.

We will refer to the sheme as IBSC heneforth.

Before explaining our sheme we must briey summarise the mathematial

primitives neessary for pairing based ryptography. We require two groups G

1

and G

2

of large prime order q. These groups must be suh that there exists a

non-degenerate, eÆiently omputable map ê : G

1

� G

1

! G

2

. This map must

be bilinear i.e. for all P

1

; P

2

2 G

1

and all a; b 2 Z

�

q

we have ê(aP

1

; bP

2

) =

ê(P

1

; P

2

)

ab

. A popular onstrution for suh groups uses supersingular ellipti

urves over �nite �elds. The bilinear map is realised using a modi�ation of the

Tate pairing or the Weil pairing. For details of suh instantiations see [4, 6, 12℄.

We also require three hash funtions H

0

: f0; 1g

k

1

! G

1

, H

1

: f0; 1g

k

0

+n

!

Z

�

q

and H

2

: G

2

! f0; 1g

k

0

+k

1

+n

. Here k

0

is the number of bits required to

represent an element of G

1

; k

1

is the number of bits required to represent an

identity; and n is the number of bits of a message to be signed and enrypted.

Setup

{ Establish parameters G

1

, G

2

, q, ê, H

0

: f0; 1g

k

1

! G

1

, H

1

: f0; 1g

k

0

+n

! Z

�

q

and H

2

: G

2

! f0; 1g

k

0

+k

1

+n

as desribed above.

{ Choose P suh that hP i = G

1

i.e. P is a generator for the yli group G

1

.

{ Choose s uniformly from Z

�

q

and ompute the global publi key Q

TA

 sP .

Extrat

To extrat the private key for user U with ID

U

2 f0; 1g

k

1

.

{ Compute the publi key Q

U

 H

0

(ID

U

) and the seret key S

U

 sQ

U

.

Sign

For user A with identity ID

A

to sign m 2 f0; 1g

n

with private key S

A

orre-

sponding to publi key Q

A

 H

0

(ID

A

).



{ Choose r uniformly at random from Z

�

q

and ompute X  rQ

A

.

{ Compute h

1

 H

1

(X jjm) and Z  (r + h

1

)S

A

.

{ Return the signature (X;Z) and forward (m; r;X;Z) to Enrypt.

Enrypt

For user A with identity ID

A

to enrypt m using r;X; Z output by Sign for

reeiver ID

B

.

{ Compute Q

B

 H

0

(ID

B

) and w  ê(rS

A

; Q

B

).

{ Compute y  H

2

(w) � (ZjjID

A

jjm) and return iphertext (X; y).

Derypt

For user B with identity ID

B

to derypt (X; y) using S

B

= sH

0

(ID

B

).

{ Compute w  ê(X;S

B

) and ZjjID

A

jjm y �H

2

(w).

{ Forward message m, signature (X;Z) and purported sender ID

A

to Verify.

Verify

To verify user A's signature (X;Z) on message m where A has identity ID

A

.

{ Compute Q

A

 H

0

(ID

A

) and h

1

 H

1

(X jjm).

{ If ê(Z; P ) = ê(Q

TA

; X + h

1

Q

A

), return >. Else, return ?.

Note that, as was the ase in [7℄, the signing algorithm that our sheme uses

is the sheme proposed in [8℄. Also, the enryption is done in a manner similar

to the BasiIdent sheme from [6℄. The integrity heking neessary for seurity

against adaptive adversaries omes from the signature in our ase.

Setion 5 below ontains proofs that our sheme o�ers the same seurity

properties as those o�ered by the sheme of [7℄. In Table 1 and Table 2 below

we ompare the eÆieny of our sheme, denoted IBSC, with that of [7℄, de-

noted MIBS. We only ompare the omputational e�ort for the shemes sine

the bandwidth requirements are idential. We use mls., exps. ps. and invs. as

abbreviations for multipliations, exponentiations, omputations and inversions

respetively. The parameters n, k

0

and k

1

are those de�ned above. We use F

�

q

to denote the multipliative group of the �eld of q elements.

Sheme Sign/Enrypt Derypt/Verify

G

1

mls. G

2

exps. ê ps. G

1

mls. ê ps. F

�

q

invs.

MIBS 3 1 1 2 4 1

IBSC 3 0 1 1 3 0

Table 1. A omparison between the dominant operations required for IBSC and MIBS

We obtained timings for an instantiation of G

1

, G

2

and ê using the supersingular

urve E : y

2

= x

3

+x de�ned over F

p

where p is a 512-bit prime. This urve has

p+ 1 points and the value of p was hosen suh that p + 1 has a 160-bit prime

fator q. In this ase the group G

1

is the subgroup of order q in E(F

p

) and G

2



is q-th roots of unity in F

�

p

2

. The implementation was done in C on a 667MHz

G4 PowerPC. A point multipliation in G

1

took 28.2 ms, an exponentiation in

G

2

took 5.1 ms, it took 32 ms to ompute ê (the Tate pairing) and the ost of

an inversion in F

�

q

was negligible. These �gures give us Table 2.

Sheme Sign/Enrypt Derypt/Verify

MIBS 121.7 ms 184.4 ms

IBSC 116.6 ms 124.2 ms

Table 2. A omparison between timings of dominant operations in IBSC and MIBS

5 Seurity Results

In this setion we will state the seurity results for the IBSC sheme under the

de�nitions of Setion 3. The orresponding proofs are given in the appendix.

All our seurity results are relative to the bilinear DiÆe-Hellman (BDH)

problem. Informally, using the notation of Setion 4, this is the problem of om-

puting ê(P; P )

ab

from (P; aP; bP; P ) where a; b;  are hosen at random from

Z

�

q

and P generates G

1

. For further details see [6℄.

Our results are all in the random orale model [5℄ i.e. we will assume that the

hash funtions H

0

, H

1

and H

2

that the IBSC sheme uses are random orales.

In eah of the results below we assume that the adversary makes q

i

queries to

H

i

for i = 0; 1; 2. The number of sign/enrypt and derypt/verify queries made

by the adversary are denoted q

s

and q

d

respetively.

5.1 Ciphertext Authentiation

Theorem 1. If there is an AUTH-IBSC-CMA adversary A of IBSC that su-

eeds with probability �, then there is a simulator B running in polynomial time

that solves the BDH problem with probability at least

� �

�

1�

q

s

(q

1

+ q

2

+ 2q

s

)

q

�

�

1

q

0

(q

0

� 1)(q

s

+ q

d

)(q

2

+ q

s

)

:

5.2 Message Con�dentiality

Theorem 2. If there is an IND-IBSC-CCA2 adversary A of IBSC that sueeds

with probability �, then there is a simulator B running in polynomial time that

solves the BDH problem with probability at least

� �

�

1�

q

s

(q

1

+ q

s

)

q

�

�

1

q

0

q

2

:



5.3 Signature Non-Repudiation

Theorem 3. If there is an EUF-IBSC-CMA adversary A of IBSC that sueeds

with probability �, then there is a simulator B running in polynomial time that

solves the BDH problem with probability at least

� �

�

1�

q

s

(q

1

+ q

s

)

q

�

2

�

1

4q

2

0

(q

1

+ q

s

)

2

:

5.4 Ciphertext Anonymity

Theorem 4. If there is an ANON-IBSC-CCA2 adversary A of IBSC that su-

eeds with probability �, then there is a simulator B running in polynomial time

that solves the BDH problem with probability at least

� �

�

1�

q

s

(q

1

+ q

2

+ 2q

s

)

q

�

�

1

q

0

(q

0

� 1)(2 + q

s

)(q

2

+ q

s

)

:

6 Conlusions

We have proposed an identity-based signryption sheme that is the most eÆ-

ient to date. This sheme makes use of a simple enryption algorithm that alone

is not seure against adaptive attak. We ahieve seurity against adaptive ad-

versaries using the integrity hek o�ered by a signature sheme. We have also

provided a omplete seurity analysis for our sheme in the model of [7℄.
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Appendix

Proof of Theorem 1

We will show how an AUTH-IBSC-CMA adversary A of IBSC may be used to

onstrut a simulator B that solves the BDH problem. Let (P; aP; bP; P ) be the

instane of the BDH problem that we wish to solve.

We now desribe the onstrution of the simulator B. The simulator runs A

with trusted third party publi key Q

TA

 P . It also reates algorithms to re-

spond to queries made by A during its attak. To maintain onsisteny between

queries made by A, the simulator keeps the following lists: L

i

for i = 0; 1; 2 of

data for query/response pairs to random oraleH

i

; L

s

of signryptions generated

by the simulator; and L

d

of some of the queries made by A to the derypt/verify

orale. We will see in the onstrution of the sign/enrypt simulator that the list

L

s

stores other information that will be useful to B. Its use will beome apparent

in the subsequent analysis as will the use of L

d

.

Simulator: H

0

(ID

U

)

At the beginning of the simulation hoose i

a

; i

b

uniformly at random from

f1; : : : ; q

0

g (subjet to i

a

6= i

b

). We show how to respond to the i-th query

made by A below. Note that we assume A does not make repeat queries.

{ If i = i

a

then respond with H

0

(ID

U

) aP and set ID

A

 ID

U

.

{ If i = i

b

then respond with H

0

(ID

U

) bP and set ID

B

 ID

U

.

{ Else hoose x uniformly at random from Z

�

q

; ompute Q

U

 xP ; ompute

S

U

 xQ

TA

; store (ID

U

; Q

U

; S

U

; x) in L

0

and respond with Q

U

.

Simulator: H

1

(X jjm)

{ If (X jjm;h

1

) 2 L

1

for some h

1

, return h

1

.

{ Else hoose h

1

uniformly at random from Z

�

q

; add (X jjm;h

1

) to L

1

and

return h

1

.

Simulator: H

2

(w)

{ If (w; h

2

) 2 L

2

for some h

2

, return h

2

.

{ Else hoose h

2

uniformly at random from f0; 1g

k

0

+k

1

+n

; add (w; h

2

) to L

2

and return h

2

.

Simulator: Extrat(ID

U

)

We will assume that A makes the query H

0

(ID

U

) before it makes the extration

query for ID

U

.

{ If ID

U

= ID

A

or ID

U

= ID

B

, abort the simulation.

{ Else searh L

0

for the entry (ID

U

; Q

U

; S

U

; x) orresponding to ID

U

and

return S

U

.

Simulator: Sign/Enrypt(m; ID

1

; ID

2

)

We will assume that A makes the queries H

0

(ID

1

) and H

0

(ID

2

) before it makes

a sign/enrypt query using these identities. We have the following �ve ases to



onsider.

Case 1: ID

1

6= ID

A

and ID

1

6= ID

B

{ Find the entry (ID

1

; Q

1

; S

1

; x) in L

0

.

{ Choose r uniformly at random from Z

�

q

and ompute X  rQ

1

.

{ Compute h

1

 H

1

(X jjm) (where H

1

is the simulator above).

{ Compute Z  (r + h

1

)S

1

.

{ Compute Q

2

 H

0

(ID

2

) (where H

0

is the simulator above).

{ Compute w  ê(rS

1

; Q

2

).

{ Compute y  H

2

(w) � (ZjjID

1

jjm) (where H

2

is the simulator above).

{ Return (X; y).

Case 2: ID

1

= ID

A

, ID

2

6= ID

A

and ID

2

6= ID

B

{ Choose r; h

1

uniformly at random from Z

�

q

.

{ Compute X  rP � h

1

Q

A

and Z  rQ

TA

.

{ Add (X jjm;h

1

) to L

1

.

{ Find the entry (ID

2

; Q

2

; S

2

; x) in L

0

.

{ Compute w  ê(X;S

2

).

{ Compute y  H

2

(w) � (ZjjID

A

jjm) (where H

2

is the simulator above).

{ Return (X; y).

Case 3: ID

1

= ID

B

, ID

2

6= ID

A

and ID

2

6= ID

B

Use the simulation of Case 2 replaing (ID

A

; Q

A

) with (ID

B

; Q

B

)

Case 4: ID

1

= ID

A

and ID

2

= ID

B

{ Follow the �rst four steps of Case 2.

{ Choose h

2

 f0; 1g

k

0

+k

1

+n

uniformly at random.

{ Compute y  h

2

� ZjjID

A

jjm.

{ Add (ID

A

; ID

B

; X; y; Z;m; r; h

1

; h

2

) to L

s

.

{ Return (X; y).

Case 5: ID

1

= ID

B

and ID

2

= ID

A

Use the simulation of Case 4 swapping (ID

A

; Q

A

; ID

B

) with (ID

B

; Q

B

; ID

A

).

Derypt/Verify:(X; y); ID

2

We assume that A makes the query H

0

(ID

2

) before making a deryption query

for ID

2

. We have the following three ases to onsider.

Case 1: ID

2

6= ID

A

and ID

2

6= ID

B

{ Find the entry (ID

2

; Q

2

; S

2

; x) in L

0

.

{ Compute w = ê(X;S

2

).

{ Initialize b 1.

{ If w 2 L

2

, ompute ZjjID

1

jjm y �H

2

(w), else b 0 .

{ If b = 1 and ID

1

2 L

0

, let Q

1

 H

0

(ID

1

), else b 0.

{ If b = 1 and X jjm 2 L

1

, let h

1

 H

1

(X jjm), else b 0.



{ If b = 1 and ê(Z; P ) = ê(Q

TA

; X + h

1

Q

1

), return m, (X;Z) and ID

1

, else

step through the list L

s

as follows.

� If the urrent entry has the form (ID

A

; ID

B

; X

0

; y; Z;m

0

; r; h

0

1

; h

2

) then

test if ê(X

0

; Q

B

) = ê(X; xP ). If so ontinue, else move on to the next

element of L

s

and begin again.

� Else if the urrent entry has the form (ID

B

; ID

A

; X

0

; y; Z;m

0

; r; h

0

1

; h

2

)

then test ê(X

0

; Q

A

) = ê(X; xP ). If so ontinue, else move on to the next

element of L

s

and begin again.

� Compute ZjjID

1

jjm y � h

2

.

� If ID

1

= ID

2

move to the next element in L

s

and begin again.

� If ID

1

2 L

0

let Q

1

 H

0

(ID

1

), else move to the next element in L

s

.

� If X jjm 2 L

1

let h

1

 H

1

(X jjm), else move to the next element in L

s

.

� Chek that ê(Z; P ) = ê(Q

TA

; X+h

1

Q

1

), if so returnm, (X;Z) and ID

1

,

if not move on to the next element in L

s

and begin again.

{ If no message has been returned, return ?.

Case 2: ID

2

= ID

B

{ If (ID

A

; ID

B

; X; y; Z;m; r; h

1

; h

2

) 2 L

s

for some m, return m, (X;Z), ID

A

.

{ Else, add (X; y); ID

B

to L

d

and step through the list L

2

with entries (w; h

2

)

as follows.

� Compute ZjjID

1

jjm y � h

2

.

� If ID

1

= ID

A

or ID

1

= ID

B

, move to the next element in L

2

and begin

again.

� If ID

1

2 L

0

let Q

1

 H

0

(ID

1

) and �nd S

1

in L

0

, else move to the next

element in L

2

and begin again.

� If X jjm 2 L

1

let h

1

 H

1

(X jjm), else move on to the next element in

L

2

and begin again.

� Chek that w = ê(Z�h

1

S

1

; Q

B

) and if not move on to the next element

in L

2

and begin again.

� Chek that ê(Z; P ) = ê(Q

TA

; X+h

1

Q

1

), if so returnm, (X;Z) and ID

1

,

else move on to the next element in L

2

and begin again.

{ If no message has been returned after stepping through the list L

2

, step

through the list L

s

as follows.

� If the urrent entry has the form (ID

A

; ID

B

; X

0

; y; Z;m

0

; r; h

0

1

; h

2

) then

hek that X

0

= X . If so ontinue, else move on to the next element of

L

s

and begin again.

� Else if the urrent entry has the form (ID

B

; ID

A

; X

0

; y; Z;m

0

; r; h

0

1

; h

2

)

then hek that ê(X

0

; Q

A

) = ê(X;Q

B

). If so ontinue, if not move on to

the next element of L

s

and begin again.

� Compute ZjjID

1

jjm y � h

2

.

� If ID

1

= ID

B

, move to the next element in L

s

and begin again.

� If ID

1

2 L

0

let Q

1

 H

0

(ID

1

), else move to the next element in L

s

.

� If X jjm 2 L

1

let h

1

 H

1

(X jjm), else move to the next element in L

s

.

� Chek that ê(Z; P ) = ê(Q

TA

; X+h

1

Q

1

), if so returnm, (X;Z) and ID

1

,

else move on to the next element in L

s

and begin again.

{ If no message has been returned, return ?.



Case 3: ID

2

= ID

A

Use the simulation of Case 2 replaing (ID

B

; Q

B

; ID

A

) with (ID

A

; Q

A

; ID

B

).

One A has been run, B does one of two things.

1. With probability q

s

=(q

s

+q

d

) hoose a random element from L

s

and a random

element (w; h

2

) from L

2

. We all this event Ch

1

in the analysis below (Ch

for hoie). The signi�ane of the probability will beome apparent in the

subsequent analysis we only mention here that we are assuming jL

s

j = q

s

at

the end of our simulation. This is the worst ase senario.

{ If the hosen element has form (ID

A

; ID

B

; X; y; Z;m; r; h

1

; h

2

), ompute

B =

�

w=ê(rbP; P )

�

�1=h

1

:

{ If the hosen element has form (ID

B

; ID

A

; X; y; Z;m; r; h

1

; h

2

), ompute

B =

�

w=ê(raP; P )

�

�1=h

1

:

2. With probability q

d

=(q

s

+ q

d

) hoose a random element from L

d

and a ran-

dom element (w; h

2

) from L

2

. We all this event Ch

2

in the analysis below.

Again, the signi�ane this probability will beome apparent in the sub-

sequent analysis. As above, we are assuming jL

d

j = q

d

at the end of our

simulation. This is the worst ase senario.

{ If the hosen element from L

d

has the form (X; y); ID

B

ompute y�h

2

.

If y � h

2

has the form ZjjID

A

jjm for some Z;m, ompute

B =

�

w=ê(Z; bP )

�

�1=h

1

:

If y � h

2

does not have this form B has failed.

{ If the hosen element from L

d

has the form (X; y); ID

A

ompute y�h

2

.

If y � h

2

has the form ZjjID

B

jjm for some Z;m, ompute

B =

�

w=ê(Z; aP )

�

�1=h

1

:

If y � h

2

does not have this form B has failed.

The rational for these probabilities and omputations will beome apparent in

the disussion of equations (1), (2), (4) and (5) below.

Let us now analyze our simulation. The simulations for the random ora-

les and the extration queries are trivial. The simulation of the sign/enrypt

queries uses standard tehniques. We make some remarks about the simulation

of the derypt/verify queries sine this is less obvious. We will treat eah ase

separately.

Case 1: In this ase the simulator B knows the seret key of the reeiver and so

it is able to ompute the orret ephemeral enryption key. The �rst six steps in

this ase are therefore those that would be followed in genuine deryption and

veri�ation. The reason that it does not stop at this point is that the sign/enrypt



simulator impliitly de�nes H

2

(w) for values of w that are unknown to the sim-

ulator. It must hek that the ephemeral enryption key w that it has omputed

is not one of these values. For example, suppose that there is an entry of the

form (ID

A

; ID

B

; X

0

; y; Z;m; r; h

0

1

; h

2

) in L

s

. Referring bak to the onstrution

of the sign/enrypt simulator, it needs to know if

ê(X

0

; S

B

) = ê(X;S

2

):

The simulator knows that S

2

= xQ

TA

= xP and it know S

B

= bQ

TA

= bP =

Q

B

so this test beomes

ê(X

0

; Q

B

) = ê(X; xP ):

Case 2: In this ase the simulator B does not know the seret key of the reeiver

and so it is unable to ompute the ephemeral enryption key ê(X;S

B

). The

�rst loop, through the list L

2

, determines whether or not the H

2

value of the

ephemeral enryption key is in L

2

itself i.e. for eah w in L

2

it wants to know if

w = ê(X;S

B

). Sine by onstrutionQ

TA

= P this test beomes w = ê(X;Q

B

)

and, under the assumption that the iphertext is orretly formed, it beomes

ê(Z�h

1

S

1

; Q

B

). Note that if the iphertext is not orretly formed the simulator

does not are whether or not the value of H

2

(w) is de�ned sine it is orret to

rejet. The �nal test in this loop is just the standard test for veri�ation.

The seond loop, through L

s

, determines whether or not the value of H

2

(w)

that B is looking for has been determined by the sign/enrypt simulator. If it

is searhing L

s

for an entry of form (ID

A

; ID

B

; X

0

; y; Z;m; r; h

0

1

; h

2

) then the

reeivers identities are the same in this entry and in the derypt/verify query

that we are trying to respond to. The hek is then simply on the values of X

and X

0

.

If B is looking at an entry of L

s

of the form (ID

B

; ID

A

; X

0

; y; Z;m; r; h

0

1

; h

2

)

then the reeivers identities are not the same in this entry and in the de-

rypt/verify query that it is trying to respond to. The hek that it wishes

to perform is ê(X

0

; S

A

) = ê(X;S

B

). This is learly equivalent to the hek

ê(X

0

; Q

A

) = ê(X;Q

B

).

Case 3: The analysis is idential to that of Case 2 with A and B reversed.

Let us now onsider how our simulation ould fail i.e. desribe events that

ould ause A's view to di�er when run by B from its view in a real attak. We

all suh an event an error and denote it ER.

It is lear that the simulations for H

0

and H

1

are indistinguishable from real

random orales. Let us now onsider the H

2

simulator. The important point here

is that H

2

is not only de�ned at points where the H

2

simulator is alled by A

or by the simulator itself. It is also de�ned at ertain points impliitly by the

sign/enrypt simulator. For example, suppose that the sign/enrypt simulator re-

sponds to a querym; ID

A

; ID

B

. In this ase it adds an entry (ID

A

; ID

B

; X; y; Z;

m; r; h

1

; h

2

) to L

s

. This impliitly de�nes H

2

(ê(X;S

B

)) = h

2

although it is not

atually able to ompute ê(X;S

B

). If the H

2

simulator is subsequently alled



with w = ê(X;S

B

) it will not reognise it and so it will not return h

2

. We denote

suh events H-ER. However, if suh an event ours we have

w = ê(X;S

B

) = ê(rP � h

1

Q

A

; S

B

)

from whih it is possible to ompute

ê(P; P )

ab

= ê(Q

A

; S

B

) =

�

w=ê(rQ

B

; Q

TA

)

�

�1=h

1

=

�

w=ê(rbP; P )

�

�1=h

1

: (1)

Similarly if the H

2

simulator is alled with w that is impliitly de�ned by an

entry (ID

B

; ID

A

; X; y; Z;m; r; h

1

; h

2

) 2 L

s

we an ompute.

ê(P; P )

ab

= ê(Q

B

; S

A

) =

�

w=ê(rQ

A

; Q

TA

)

�

�1=h

1

=

�

w=ê(raP; P )

�

�1=h

1

: (2)

Let us now onsider how the simulation for sign/enrypt ould fail. We denote

suh an event S-ER. The most likely failure will be aused by the sign/enrypt

simulator responding to a query of the form Case 4 or Case 5 (see simulator).

Sine we do not know how often eah ase will our we will be onservative

and assume that eah query will be one of these, 4 say. The only possibilities for

introduing an error here are de�ning H

1

(X jjm) when it is already de�ned or

de�ning H

2

(ê(X;S

B

))=H

2

(ê(X;S

A

)) when it is already de�ned. Sine X takes

its value uniformly at random in hP i, the hane of one of these events ourring

is at most (q

1

+ q

2

+ 2q

s

)=q for eah query. The 2q

s

omes from the fat that

the signing simulator adds elements to L

1

and L

2

. Therefore, over the whole

simulation, the hane of an error introdued in this way is at most

q

s

(q

1

+ q

2

+ 2q

s

)=q: (3)

We now turn our attention to the derypt/verify simulator. An error in this

simulator is denoted D-ER. It is lear that this simulator never aepts an invalid

enryption. What we have to worry about is the possibility that it rejets a valid

one. This an only our with non-negligible probability in Case 2 or Case 3.

Suppose that we are trying to derypt (X; y); ID

B

(i.e. Case 2). An error will

only our if while stepping through L

2

there is an entry (w; h

2

) suh that

ZjjID

A

jjm  y � h

2

and (X; y) is a valid enryption of m from ID

A

to ID

B

.

In this ase we must have

w = ê(Z � h

1

S

A

; Q

B

) = ê(Z;Q

B

) � ê(�h

1

S

A

; Q

B

) = ê(Z; bP ) � ê(�h

1

aP; bP );

where h

1

= H

1

(X jjm). From the above we an ompute

ê(P; P )

ab

=

�

w=ê(Z; bP )

�

�1=h

1

: (4)

Suppose now that we are trying to derypt (X; y); ID

A

(i.e. Case 3). An error

will only our if while stepping through L

2

there is an entry (w; h

2

) suh that

ZjjID

B

jjm  y � h

2

and (X; y) is a valid enryption of m from ID

B

to ID

A

.

In this ase we must have

w = ê(Z � h

1

S

B

; Q

A

) = ê(Z;Q

A

) � ê(�h

1

S

B

; Q

A

) = ê(Z; aP ) � ê(�h

1

bP; aP );



from whih we an ompute

ê(P; P )

ab

=

�

w=ê(Z; aP )

�

�1=h

1

: (5)

The �nal simulator is the extrat simulator. Note that the adversary will only

sueed in its task with non-negligible probability if it queries H

0

with the two

identities under whih the enrypted and signed message it produes is supposed

to be valid. Looking at the H

0

simulator we see that it hooses two H

0

queries

made by the adversary and responds to these with group elements from the BDH

instane that it is trying to solve. The simulator hopes that these will be the

identities for the adversary's enrypted and signed message. This will be the ase

with probability at least

1=q

0

(q

0

� 1): (6)

If this is not the ase we say that an error has ourred in the extrat simulator

beause, if the adversary tried to extrat the private key for these identities, the

simulator would abort. An error in the extrat simulator is denoted E-ER.

One A has been run by the simulator B, there are two ourses of ation:

Ch

1

and Ch

2

(as desribed above). If Ch

1

has been hosen, we denote the event

that B selets the orret elements to solve the BDH problem from L

s

and H

2

by CG

1

(under the assumption that there are suh orret elements in the lists

at the end of the simulation). Likewise if Ch

2

has been hosen, we denote the

event that B selets the orret elements from L

d

and H

2

by CG

2

.

With the events desribed above we have

Adv[B℄ � Pr[:E-ER ^ H-ER ^ :S-ER ^ Ch

1

^ CG

1

℄

+Pr[D-ER ^ :E-ER ^ :H-ER ^ :S-ER ^ Ch

2

^ CG

2

℄ (7)

We have

Pr[:E-ER ^ H-ER ^ :S-ER ^ Ch

1

^ CG

1

℄

= Pr[:E-ER ^ :S-ER℄ �Pr[Ch

1

^ CG

1

℄ �Pr[H-ER℄ (by independene). (8)

Also,

Pr[D-ER ^ :E-ER ^ :H-ER ^ :S-ER ^ Ch

2

^ CG

2

℄

= Pr[D-ER℄ �Pr[:E-ER ^ :H-ER ^ :S-ER℄ �Pr[Ch

2

^ CG

2

℄ (by independene).

(9)

Note that, in the event :E-ER^:H-ER^:S-ER, the adversary A is run by B in

exatly the same way that it would be run in a real attak until the event D-ER

ours. Moreover, in the event :E-ER ^ :H-ER ^ :S-ER, A winning and D-ER

are equivalent. This means that (9) beomes

Pr[D-ER ^ :E-ER ^ :H-ER ^ :S-ER ^ Ch

2

^ CG

2

℄

= � �Pr[:E-ER ^ :S-ER℄ �Pr[Ch

2

^ CG

2

℄ �Pr[:H-ER℄: (10)



From the de�nitions of Ch

1

, CG

1

, Ch

2

and CG

2

above it is lear that

Pr[Ch

1

^ CG

1

℄ =

q

s

q

s

+ q

d

�

1

q

s

(q

2

+ q

s

)

=

1

(q

s

+ q

d

)(q

2

+ q

s

)

and (11)

Pr[Ch

2

^ CG

2

℄ =

q

d

q

s

+ q

d

�

1

q

d

(q

2

+ q

s

)

=

1

(q

s

+ q

d

)(q

2

+ q

s

)

: (12)

Note that we are assuming a worst ase senario here i.e. jL

s

j = q

s

and jL

d

j = q

d

.

We will make this assumption throughout the remaining analysis without further

omment. From, the fat that Pr[H-ER℄ + Pr[:H-ER℄ = 1, (7), (8), (10), (11)

and (12) we have

Adv[B℄ � (Pr[H-ER℄ + � �Pr[:H-ER℄) �Pr[:E-ER ^ :S-ER℄ �

1

(q

s

+ q

d

)(q

2

+ q

s

)

� � � (Pr[H-ER℄ +Pr[:H-ER℄) �Pr[:E-ER ^ :S-ER℄ �

1

(q

s

+ q

d

)(q

2

+ q

s

)

= � �Pr[:E-ER ^ :S-ER℄ �

1

(q

s

+ q

d

)(q

2

+ q

s

)

: (13)

Finally, by the independene of E-ER and S-ER, using (3), (6) and (13) we have

Adv[B℄ � � �

�

1�

q

s

(q

1

+ q

2

+ 2q

s

)

q

�

�

1

q

0

(q

0

� 1)(q

s

+ q

d

)(q

2

+ q

s

)

(14)

as required.

Proof of Theorem 2

We will show how an IND-IBSC-CCA2 adversary A of IBSC may be used to

onstrut a simulator B that solves the BDH problem. Let (P; aP; bP; P ) be the

instane of the BDH problem that we wish to solve.

The simulator runs A with Q

TA

 bP . It keeps lists as in the proof of The-

orem 1. We desribe how B runs Phase 1 of A's attak below.

Simulator: H

0

(ID

U

)

At the beginning of the simulation hoose i

�

uniformly at random from f1; : : : ; q

0

g.

We show how to respond to the i-th query made by A below. Note that we as-

sume A does not make repeat queries.

{ If i = i

�

then respond with H

0

(ID

U

) aP and set ID

�

 ID

U

.

{ Else hoose x uniformly at random from Z

�

q

; ompute Q

U

 xP ; ompute

S

U

 xQ

TA

; store (ID

U

; Q

U

; S

U

; x) in L

0

and respond with Q

U

.

Simulator: H

1

(X jjm) and H

2

(w) as in the proof of Theorem 1.

Simulator: Extrat(ID

U

)

We will assume that A makes the query H

0

(ID

U

) before it makes the extration

query for ID

U

.



{ If ID

U

= ID

�

, abort the simulation.

{ Else searh L

0

for the entry (ID

U

; Q

U

; S

U

; x) orresponding to ID

U

and

return S

U

.

Simulator: Sign/Enrypt(m; ID

1

; ID

2

)

We will assume that A makes the queries H

0

(ID

1

) and H

0

(ID

2

) before it makes

a sign/enrypt query using these identities. We have two ases to onsider.

Case 1: ID

1

6= ID

�

Use the simulator from Case 1 of sign/enrypt in the proof of Theorem 1.

Case 2: ID

1

= ID

�

Use the simulator from Case 2 of sign/enrypt in the proof of Theorem 1 repla-

ing ID

A

with ID

�

and replaing Q

A

with aP .

Derypt/Verify:(X; y); ID

2

We assume that A makes the query H

0

(ID

2

) before making a deryption query

for ID

2

. We have the following three ases to onsider.

Case 1: ID

2

6= ID

�

{ Find the entry (ID

2

; Q

2

; S

2

; x) in L

0

.

{ Compute w = ê(X;S

2

).

{ If w =2 L

2

, return ?. Else ZjjID

1

jjm y �H

2

(w).

{ If ID

1

= ID

2

or ID

1

=2 L

0

, return ?. Else Q

1

 H

0

(ID

1

).

{ If X jjm 2 L

1

, return ?. Else h

1

 H

1

(X jjm).

{ If ê(Z; P ) 6= ê(Q

TA

; X + h

1

Q

1

), return ?. Else return m, (X;Z), ID

1

.

Case 2: ID

2

= ID

�

{ Step through the list L

2

with entries (w; h

2

) as follows.

� Compute ZjjID

1

jjm y � h

2

.

� If ID

1

= ID

�

, move to the next element in L

2

and begin again.

� If ID

1

2 L

0

let Q

1

 H

0

(ID

1

) and �nd S

1

in L

0

, else move to the next

element in L

2

and begin again.

� If X jjm 2 L

1

let h

1

 H

1

(X jjm), else move to the next element in L

2

.

� Chek that w = ê(Z�h

1

S

1

; aP ) and if not move on to the next element

in L

2

and begin again.

� Chek that ê(Z; P ) = ê(Q

TA

; X+h

1

Q

1

), if so returnm, (X;Z) and ID

1

,

else move on to the next element in L

2

.

{ If no message has been returned after stepping through L

2

, return ?.

At the end of Phase 1 the adversary outputs two identities fID

A

; ID

B

g and

two messages fm

0

;m

1

g. If ID

B

6= ID

�

, B aborts the simulation. Otherwise

it hooses y

�

 f0; 1g

k

0

+k

1

+n

and sets X

�

 P . It returns the hallenge

iphertext �

�

 (X

�

; y

�

) to A. The queries made by A in Phase 2 are responded

to in the same way as those made by A in Phase 1.



At the end of Phase 2, A outputs a bit b. The simulator ignores this bit. It

searhes L

0

for the entry (ID

A

; Q

A

; S

A

; x

a

), it hooses some w at random from

L

2

and returns

w

x

a

�1

(15)

as its guess at the solution to the BDH problem for (P; aP; bP; P ).

Let us now onsider how our simulation ould fail when it exeutes Phase 1

of A's attak i.e. what events ould ause A's view to di�er when run by B from

its view in a real attak. We all suh an event an error and denote it ER.

It is lear that the simulations for H

0

and H

1

are indistinguishable from

genuine random orales. Also, unlike the proof of Theorem 1, the simulation of

H

2

is always sound sine now it is only de�ned at points where the H

2

simulator

is alled by A or by the simulator B.

Let us now onsider how the simulation for sign/enrypt ould fail. The only

possibility for introduing an error here is de�ning H

1

(X jjm) when it is already

de�ned. Sine X takes its value uniformly at random in hP i, the hane of one

of these events ourring is at most (q

1

+ q

s

)=q for eah query. The q

s

omes

from the fat that the signing simulator adds elements to L

1

. Therefore, over

the whole simulation, the hane of an error introdued in this way is at most

q

s

(q

1

+ q

s

)=q: (16)

It is easy to see that the possibility for error in the derypt/verify simulator for

Theorem 1 are removed in our simulation here. The �nal simulator to onsider

is the extrat simulator.

The �nal simulator is the extrat simulator. Looking at the H

0

simulator

we see that it hooses one H

0

query made by the adversary and responds to

this with group elements from the BDH instane that it is trying to solve. The

simulator hopes that this will be the identity hosen by A for the reipient in

the hallenge. This will be the ase with probability at least

1=q

0

: (17)

If this is not the ase we say that an error has ourred in the extrat simulator

beause, if the adversary tried to extrat the private key for this identity, the

simulator would abort.

Let us now onsider what errors there ould be when B exeutes Phase 2 of A.

All the same errors are possible, in addition the simulator will fail if the adversary

makes the H

2

query w = ê(P; P )

x

a

ab

. However, if A has any advantage it must

make this query, and one it has done so we have trapped it into leaving enough

information in L

2

to solve the BDH problem with probability 1=q

2

.

From the above remark ombined with (16) and (17) we onlude that B

sueeds with probability at least

� �

�

1�

q

s

(q

1

+ q

s

)

q

�

�

1

q

0

q

2

: (18)

Proof of Theorem 3

We are going to use the "forking lemma" tehnique of Pointheval and Stern [20℄

to prove our result. We will in fat redue the standard DiÆe-Hellman problem



to the problem of forging. Sine a blak box for the DiÆe-Hellman problem is

suÆient to solve the bilinear DiÆe-Hellman problem the result will follow. We

will now show how an EUF-IBSC-CMA adversary A of IBSC may be used to

onstrut a simulator B that solves the DiÆe-Hellman problem. Let (P; aP; bP )

be the instane of the DiÆe-Hellman problem that we wish to solve. The simu-

lator B runs in three stages: B

1

;B

2

and B

3

.

The simulator B

1

runs A with trusted third party publi key Q

TA

 bP . It

also reates algorithms to respond to queries made by A during its attak. To

maintain onsisteny between queries made by A, the simulator keeps lists as in

the proof of Theorem 1.

Simulator: H

0

(ID

U

)

At the beginning of the simulation hoose i

a

uniformly at random from f1; : : : ; q

0

g.

We show how to respond to the i-th query made by A below. Note that we as-

sume A does not make repeat queries.

{ If i = i

a

then respond with H

0

(ID

U

) aP and set ID

A

 ID

U

.

{ Else hoose x uniformly at random from Z

�

q

; ompute Q

U

 xP ; ompute

S

U

 xQ

TA

; store (ID

U

; Q

U

; S

U

; x) in L

0

and respond with Q

U

.

Simulator: H

1

(X jjm) and H

2

(w) as in the proof of Theorem 1.

Simulator: Extrat(ID

U

)

We will assume that A makes the query H

0

(ID

U

) before it makes the extration

query for ID

U

.

{ If ID

U

= ID

A

, abort the simulation.

{ Else searh L

0

for the entry (ID

U

; Q

U

; S

U

; x) orresponding to ID

U

and

return S

U

.

Simulator: Sign/Enrypt(m; ID

1

; ID

2

)

We will assume that A makes the queries H

0

(ID

1

) and H

0

(ID

2

) before it makes

a sign/enrypt query using these identities. We have the following two ases.

Case 1: ID

1

6= ID

A

Use the simulator from Case 1 of sign/enrypt in the proof of Theorem 1.

Case 2: ID

1

= ID

A

Use the simulator from Case 2 of sign/enrypt in the proof of Theorem 1.

Simulator: Derypt/Verify(X; y); ID

2

We assume that A makes the query H

0

(ID

2

) before making a deryption query

for ID

2

. We have the following three ases to onsider.

Case 1: ID

2

6= ID

A

Use the simulator from Case 1 of derypt/verify in the proof of Theorem 2.



Case 2: ID

2

= ID

A

Use the simulator from Case 2 of derypt/verify in the proof of Theorem 2 re-

plaing ID

�

with ID

A

and replaing aP with Q

A

.

Let us now onsider how our simulation ould fail i.e. what events ould ause

A's view to di�er when run by B

1

from its view in a real attak. We all suh

an event an error and denote it ER.

Clearly the simulations forH

0

and H

1

are indistinguishable from real random

orales. Also, unlike the proof of Theorem 1, the simulation ofH

2

is always sound

sine now it is only de�ned at points where the H

2

simulator is alled by A or

by the simulator.

Let us now onsider how the simulation for sign/enrypt ould fail. The

analysis of this ase is idential to the equivalent ase in Theorem 2. An error is

therefore introdued with probability at most

q

s

(q

1

+ q

s

)=q: (19)

It is easy to see that the possibility for error in the derypt/verify simulator for

Theorem 1 are removed in our simulation here. The �nal simulator to onsider

is the extrat simulator.

The �nal simulator is the extrat simulator. Note that the adversary will

only sueed in its task with non-negligible probability if it queries H

0

with the

identity under whih the message ontained in the iphertext it returns is signed.

Looking at the H

0

simulator we see that it hooses one H

0

query made by the

adversary and responds to this with group elements from the BDH instane that

it is trying to solve. The simulator hopes that this will be the signer identity for

the iphertext that it returns. This will be the ase with probability at least

1=q

0

: (20)

If this is not the ase we say that an error has ourred in the extrat simulator

beause, if the adversary tried to extrat the private key for this identity, the

simulator would abort.

Now, from (19) and (20), it is lear that with probability greater or equal to

� �

�

1�

q

s

(q

1

+ q

s

)

q

�

�

1

q

0

; (21)

the simulator obtains from the adversary a reipient identity ID

B

and a ipher-

text  suh that, if (m; ID

A

; �) is the result of derypting  under the seret

key orresponding to ID

B

, Verify(m; ID

A

; �) = >. Note that, sine we are

assuming that A has been suessful, ID

B

6= ID

A

and so we an use the de-

ryption proess of the simulator. Also, if � = (X;Z) then, exept with negligible

probability, the H

1

query X jjm must have been made at some point during the

simulation. We all this query the ritial query.

Let �, 	 be the random tapes for random orale H

1

and simulator B

1

respe-

tively. That is to say 	 is the random tape for all funtions of B

1

exept random

orale H

1

. The random orale H

1

is alled 1=(q

1

+ q

s

) times. The seond step in



the proess of solving the DiÆe-Hellman problem is to hoose j  f1; : : : ; q

1

+q

s

g

at random. We now split � into �

1

and �

2

where �

1

ontains the random re-

sponses for queries 1; : : : ; j�1 and �

2

ontains the random responses for queries

j; : : : ; q

1

+ q

s

. The next step of the simulation, B

2

, is to run a simulation similar

to B

1

with the same 	 and �

1

but a new �

2

, say �

2

0

. With probability

1=(q

1

+ q

s

) (22)

the value of j that we hose orresponds to the ritial query.

Our proof now uses the following lemma from [20℄.

Lemma 1 (The Splitting Lemma). Let E � � � � be suh that Pr[E℄ � �.

De�ne

F = f(�; �) 2 � � � : Pr

�

0

2�

[(�; �

0

) 2 E℄ � �=2g :

We have the following

1. 8(�; �) 2 F;Pr

�

0

2�

[(�; �

0

) 2 E℄ � �=2:

2. Pr[F jE℄ � 1=2:

Now, from (21), (22) and Lemma 1 applied with � = 	 [ �

1

and � = 	

2

, with

probability greater or equal to

�

2

�

�

1�

q

s

(q

1

+ q

s

)

q

�

2

�

1

4q

2

0

(q

1

+ q

s

)

2

(23)

the two simulated runs of A give us two signatures (X;Z) and (X;Z

0

) on m

with the following properties. After the �rst run of the simulation there is an

h

�

1

2 L

1

and after the seond run there is an h

��

1

2 L

1

(the responses to the

ritial queries) suh that

Z = (r + h

�

1

)abP and Z

0

= (r + h

��

1

)abP (24)

where X = raP . Assuming that B

1

and B

2

are suessful, it is easy to see from

(24) that the third stage of the simulation, B

3

, an ompute

abP = (h

�

1

� h

��

1

)

�1

�

Z � Z

0

�

: (25)

The result follows from (23) and (25).

Proof of Theorem 4

We assume that we have an instane (P; aP; bP; P ) of the BDH problem that

we wish to solve. We will show how an ANON-IBSC-CCA2 adversary A may be

used to do this. Up until the end of Phase 1 of A's attak, B runs A in exatly

the same way as the latter was run by the simulator in Theorem 1. Here we will

hange notation and refer to ID

A

as ID

�

0

and ID

B

as ID

�

1

.

At the end of Phase 1 the adversaryA outputs a messagem; two sender iden-

tities fID

A

0

; ID

A

1

g; and two reipient identities fID

B

0

; ID

B

1

g. If fID

B

0

; ID

B

1

g

6= fID

�

0

; ID

�

1

g the simulator B aborts. Note that we are assuming that H

0

has



already been queried at ID

B

0

and ID

B

1

by A. If this is not the ase we an

de�ne H

0

at these points as we wish i.e. as aP or bP .

The hallenge is generated by hoosing v at random fromZ

�

q

and hoosing y at

random from f0; 1g

k

0

+k

1

+n

. The hallenge iphertext returned to the adversary

is (vaP; y). The simulator B stores v for use later in the simulation.

One A has �nished its simulated exeution B does one of three things.

1. With probability q

s

=(2+q

s

) hoose a random element from L

s

and a random

element (w; h

2

) from L

2

. We all this event Ch

1

in the analysis below.

{ If the hosen element has form (ID

�

0

; ID

�

1

; X; y;m; r; h

1

; h

2

), ompute

B =

�

w=ê(rbP; P )

�

�1=h

1

:

{ If the hosen element has form (ID

�

1

; ID

�

0

; X; y;m; r; h

1

; h

2

), ompute

B =

�

w=ê(raP; P )

�

�1=h

1

:

2. With probability q

s

=(2+q

s

) hoose a random element from L

d

and a random

element (w; h

2

) from L

2

. We all this event Ch

2

in the analysis below.

{ If the hosen element from L

d

has the form (X; y); ID

�

1

ompute y�h

2

.

If y � h

2

has the form ZjjID

�

0

jjm for some Z;m, ompute

B =

�

w=ê(Z; bP )

�

�1=h

1

:

If y � h

2

does not have this form B has failed.

{ If the hosen element from L

d

has the form (X; y); ID

A

ompute y�h

2

.

If y � h

2

has the form ZjjID

�

1

jjm for some Z;m, ompute

B =

�

w=ê(Z; aP )

�

�1=h

1

:

If y � h

2

does not have this form B has failed.

3. With probability 2=(2 + q

s

) hoose a random element (w; h

2

) from L

2

and

ompute

B = w

1=v

:

We all this event Ch

3

in the analysis below.

We de�ne the events D-ER, E-ER, H-ER and S-ER as in the proof of Theorem 1.

We will assume that the events E-ER and S-ER do not our by removing a fator

�

1�

q

s

(q

1

+ q

2

+ 2q

s

)

q

�

�

1

q

0

(q

0

� 1)

= Æ (26)

from our suess probability as in the proof of Theorem 1.

We de�ne the event ER = S-ER ^ D-ER. In the events Ch

1

, Ch

2

and Ch

3

we denote the event that B selets the orret elements (assuming they exist)

to solve the BDH problem by CG

1

, Ch

2

and CG

3

respetively. Note that, in the

event :ER, A an have no advantage until it makes one of the queries ê(vaP; bP )

or ê(vaP; aP ) to H

2

, sine the identities are perfetly masked until this point.



Only the former is useful to B but A will make them with equal probability.

Using these de�nitions and observations, and assuming q

d

= q

s

, we an infer

Adv[B℄ � Æ

�

Pr[Ch

1

^ CG

1

jS-ER℄:Pr[S-ER℄ +Pr[Ch

2

^ CG

2

jD-ER℄:Pr[D-ER℄

+

1

2

�Pr[A winsj:ER℄ �Pr[Ch

3

^ CG

3

℄ �Pr[:ER℄

�

: (27)

Examining the size of the relevant lists we see that

Pr[Ch

1

^ CG

1

℄ = Pr[Ch

2

^ CG

2

℄ =

1

(2 + q

s

)(q

s

+ q

2

)

(28)

Pr[Ch

3

^ CG

3

℄ =

2

(2 + q

s

)(q

s

+ q

2

)

(29)

Also, by de�nition we have Pr[A winsj:ER℄ = �. Using this observation with

(28), (29) and independene of events, (27) beomes

Adv[B℄ �

Æ

 

1

(2 + q

s

)(q

s

+ q

2

)

�

�

Pr[S-ER℄ +Pr[D-ER℄

�

+

�

(2 + q

s

)(q

s

+ q

2

)

�Pr[:ER℄

!

:

(30)

By independene we have Pr[S-ER℄ + Pr[D-ER℄ = Pr[S-ER _ D-ER℄ = Pr[ER℄

and also Pr[ER℄ +Pr[:ER℄ = 1. Using this and (30) we obtain

Adv[B℄ � � � Æ �

1

(2 + q

s

)(q

s

+ q

2

)

: (31)

The result follows from (26) and (31).


