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Abstract. We present an identity-based signcryption scheme that we
believe is the most efficient proposed to date. We provide random oracle
model [5] proofs of security under the definitions proposed in [7].
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1 Introduction

Two of the most important services offered by cryptography are those of pro-
viding private and authenticated communications. Much research has been done
into creating encryption schemes to meet highly developed notions of privacy [5,
13]. Similarly, designing unforgeable signature schemes to give authenticity and
non-repudiation is also a well studied problem [14,20]. It is possible to com-
bine encryption schemes and signature schemes, using methods such as those
described in [1], to obtain private and authenticated communications.

In 1997 Zheng proposed a primitive that he called signcryption [23]. The idea
of a signcryption scheme is to combine the functionality of an encryption scheme
with that of a signature scheme. It must provide privacy; signcryptions must be
unforgeable; and there must be a method to settle repudiation disputes. This
must be done in a more efficient manner than a composition of an encryption
scheme with a signature scheme. In [23] Zheng also proposed a discrete loga-
rithm based scheme. This original paper did not formalise security notions for
signeryption. The first definitions of security appeared in [1,2]. These dealt with
privacy and unforgeability. Security proofs for Zheng’s original scheme were pro-
vided in [2]. A signcryption scheme based on RSA was proposed in [19]. This
scheme has proofs of security under the RSA assumption in a model from [1].

The concept identity-based cryptography was proposed by Shamir in 1984 [22].
The idea of an identity-based system is that public keys can be derived from
arbitrary strings. This means that if a user has a string corresponding to its
identity, this string can be used to derive the user’s public key. For this to



work there is a trusted authority (TA henceforth) that generates private keys
using some master key related to the global parameters for the system. In [22]
Shamir proposed an identity-based signature scheme but for many years identity-
based encryption remained an open problem. The problem was solved nearly two
decades after it was originally proposed [6, 10]. In [10] Cocks proposed a solution
based on quadratic residuosity and in [6] Boneh and Franklin gave a scheme
based on bilinear pairings on elliptic curves. It is pairings on elliptic curves that
have subsequently become the most popular building block for identity-based
schemes. Many schemes have been designed using this primitive, for example
the signature schemes of [8, 15] and the authenticated encryption scheme of [16].

The idea of identity-based signcryption was first proposed in [18] along with
a security model. The model of [18] dealt with notions of privacy and unforge-
ability. A weakness in the scheme from [18] was subsequently pointed out in [17]
where a new scheme was proposed. The new scheme came with proofs of security
in the model of [18]. This model was developed in [7]. Three new security no-
tions were added: ciphertext unlinkability, ciphertext authentication and cipher-
text anonymity. We will discuss these notions in detail in Section 3. A scheme
was also proposed in [7] and analysed in the enhanced model.

We take the model and scheme from [7] as the starting point for this work.
We will describe a modification of the scheme from [7] that is considerably more
efficient. We will also prove that the new scheme is secure in the model of [7]. Our
scheme is efficient since we can make use of a variant of the simple Basicldent
encryption scheme from [6]. If this encryption scheme is used alone, it is not
secure against an active attack. To overcome this problem a technique proposed
in [11] is used in [6]. This introduces a computational overhead. An interesting
observation is that, in our signcryption scheme, the integrity checking necessary
for security against adaptive adversaries comes directly from the signature.

The paper will proceed as follows. In Section 2 we will formally define what
we mean by identity-based signcryption. Section 3 recalls the security model
from [7]. We will present our scheme in Section 4 and provide security results in
Section 5. The paper ends with some concluding remarks.

2 Identity-Based Signcryption

We follow the approach of [7] in defining what we mean by identity-based sign-
cryption. An identity-based signcryption scheme consists of the following six al-
gorithms: Setup, Extract, Sign, Encrypt, Decrypt and Verify. We describe
the functions of each below.

— Setup: On input of a security parameter 1¥ the TA uses this algorithm to
produce a pair (params, s), where params are the global public parameters
for the system and s is the master secret key. The public parameters include
a global public key @14, a description of a finite message space M, a de-
scription of a finite signature space S and a description of a finite ciphertext
space C. We will assume that params are publicly known so that we do not
need to explicitly provide them as input to other algorithms.



— Extract: On input of an identity 7 Dy and the master secret key s, the TA
uses this algorithm to compute a secret key Sy corresponding to I Dy .

— Sign: User A with identity I D4 and secret key S4 uses this algorithm with
input (m,Sa) to produce a signature o on m valid under the public key
derived from ID 4. It also produces some ephemeral data r.

— Encrypt: On input of (Sx,IDg,m,o,r), ID 4 uses this algorithm to pro-
duce a ciphertext ¢. This is the encryption of m, and I D 4’s signature on m,
which can be decrypted using the user with identity IDp’s secret key.

— Decrypt: User B with identity IDp and secret key Sp uses this algorithm
with input (¢, Sg) to produces (m, ID 4, 0) where m is a message and o is a
purported signature by ID 4 on m.

— Verify: On input of (m,ID4,0), this algorithm outputs T if o is ID4’s
signature on m and it outputs L otherwise.

The above algorithms have the following consistency requirement. If

(m,o,r) < Sign(m, Sa),
¢ < Encrypt(Sa,IDg,m,o,r), and
('ﬁ’L, [DAa 6') « Decrypt(c, SB)7

then we must have IﬁA =IDy, m =m and
T « Verify(r, [D 4, 6).

Note that in some models for signcryption [23] and identity-based signcryp-
tion [18,17], the Sign and Encrypt algorithms are treated as one “signcryption”
algorithm, as are the Decrypt and Verify algorithms. Our scheme supports a
separation and so we stick with the above definition as in [7]. One advantage of
this approach, where it is possible, is that it makes non-repudiation a straightfor-
ward consequence of unforgeability. This is due to the fact that after decryption
there is a publicly verifiable signature that can be forwarded to a third party.
Signcryption schemes that do not support this separation may have problems
with non-repudiation [23].

3 Security Notions

In this section we review the security model for identity-based signcryption pro-
posed in [7]. This model uses the notions of insider security and outsider security
from [1]. Informally insider security is security against a legitimate user of the
scheme while outsider security is security against an outside third party. Where
appropriate, this makes insider security a stronger notion. We will make fur-
ther comment about the significance of the distinction at relevant points in this
section.

A security definition dubbed ciphertext unlinkability is described in [7]. Infor-
mally this notion means that Alice is able to deny having sent a given ciphertext
to Bob, even if the ciphertext decrypts under Bob’s secret key to a message



bearing Alice’s signature. This property is demonstrated for the scheme in [7]
by showing that given a message signed by Alice, Bob is able to create a valid
ciphertext addressed to himself for that message. We do not treat this notion ex-
plicitly here since it is rather unmotivated, suffice it to say that the construction
given in [7] is easily modified for our scheme if necessary.

3.1 Ciphertext Authentication

A scheme offering ciphertext authentication provides the guarantee to the recip-
ient of a signed and encrypted message that the message was encrypted by the
same person who signed it. This means that the ciphertext must have been en-
crypted throughout the the transmission and so it cannot have been the victim
of a successful man-in-the-middle attack. It also implies that the signer chose
the recipient for its signature.

We define this notion via a game played by a challenger and an adversary.

Game

— Initial: The challenger runs Setup(1*) and gives the resulting params to
the adversary. It keeps s secret.

— Probing: The challenger is probed by the adversary who makes the following
queries.

e Sign/Encrypt: The adversary submits a sender identity, a receiver iden-
tity and a message to the challenger. The challenger responds with the
signature of the sender on the message, encrypted under the public key
of the receiver.

e Decrypt/Verify: The adversary submits a ciphertext and a receiver
identity to the challenger. The challenger decrypts the ciphertext under
the secret key of the receiver. It then verifies that the resulting decryption
is a valid message/signature pair under the public key of the decrypted
identity. If so the challenger returns the message, its signature and the
identity of the signer, otherwise it returns L.

e Extract: The adversary submits an identity to the challenger. The chal-
lenger responds with the secret key of that identity.

— Forge: The adversary returns a recipient identity /Dp and a ciphertext c.
Let (m, ID 4, 0) be the result of decrypting ¢ under the secret key correspond-
ing to IDp. The adversary wins if ID4 # IDp; Verify(m,IDy,0) = T;
no extraction query was made on I D 4, or IDpg; and ¢ did not result from a
sign/encrypt query with sender ID 4 and recipient IDp.

Definition 1. Let A denote an adversary that plays the game above. If the
quantity Adv[A] = Pr[A wins| is negligible we say that the scheme in question
is existentially ciphertext-unforgeable against outsider chosen-message attacks,
or AUTH-IBSC-CMA secure.

Here we have an example of outsider security since the adversary is not able to
extract the secret key corresponding to IDpg. This models the true adversarial
scenario where an attack would be re-encrypting a signed message using a public
key with unknown secret key.



3.2 Message Confidentiality

The accepted notion of security with respect to confidentiality for public key
encryption is indistinguishability of encryptions under adaptive chosen ciphertext
attack, as formalised in [21]. The notion of security defined in the game below is
a natural adaptation of this notion to the identity-based signcryption setting.

Game

— Initial: The challenger runs Setup(1*) and gives the resulting params to
the adversary. It keeps s secret.

— Phase 1: The challenger is probed by the adversary who makes queries as
in the game of Section 3.1. At the end of Phase 1 the adversary outputs two
identities {ID,IDp} and two messages {mg, m1}. The adversary must not
have made an extract query on IDp.

— Challenge: The challenger chooses a bit, b uniformly at random. It signs m,
under the secret key corresponding to 1D 4 and encrypts the result under the
public key of IDp to produce c. The challenger returns ¢ to the adversary.

— Phase 2: The adversary continues to probe the challenger with the same
type of queries that it made in Phase 1. It is not allowed to extract the private
key corresponding to IDp and it is not allowed to make a decrypt/verify
query for ¢ under IDpg.

— Response: The adversary returns a bit . We say that the adversary wins
if b =b.

Definition 2. Let A denote an adversary that plays the game above. If the quan-
tity Adv[A] = [Pr[b) = b] — 1| is negligible we say that the scheme in question
is semantically secure against adaptive chosen-ciphertext attack, or IND-IBSC-
CCA2 secure.

Note that Definition 2 deals with insider security since the adversary is assumed
to have access to the private key of the sender of a signcrypted message. This
means that confidentiality is preserved even if a sender’s key is compromised.
Signcryption schemes such as [3,23] do not have this property.

3.3 Signature Non-Repudiation

A signcryption scheme offering non-repudiation prevents the sender of a sign-
crypted message from disavowing its signature. Note that non-repudiation is not
as straightforward for signcryption as it is for digital signature schemes since we
are dealing with encrypted data. As a consequence, by default, only the intended
recipient of a signcryption can verify.

We define the notion of non-repudiation via the following game played by a
challenger and an adversary.

Game

— Initial: The challenger runs Setup(1*) and gives the resulting params to
the adversary. It keeps s secret.



— Probing: The challenger is probed by the adversary who makes queries as
in the game of Section 3.1.

— Forge: The adversary returns a recipient identity IDpg and a ciphertext c.
Let (m, ID 4,0) be the result of decrypting ¢ under the secret key correspond-
ing to IDg. The adversary wins if ID4 # IDp; Verify(m,ID 4,0) = T; no
extraction query was made on ID 4; no sign/encrypt query (m,IDa,IDp')
was responded to with a ciphertext whose decryption under the private key
of IDg is (m,IDy,0).

This model is a natural adaptation of existential unforgeability (EUF) under
adaptive chosen message attack, the accepted notion of security for digital sig-
nature schemes [14, 20].

Definition 3. Let A denote an adversary that plays the game above. If the
quantity Adv[A] = Pr[A wins| is negligible we say that the scheme in question is
ezistentially unforgeable against insider chosen-message attacks, or EUF-IBSC-
CMA secure.

In Definition 3 we allow the adversary access to the secret key of the recipient
of the forgery. It is this that gives us insider security. Also note that the adver-
sary’s advantage is with respect to its success in forging the signature within
the ciphertext. This is indeed the correct definition for non-repudiation in this
context because it is the signature and not the ciphertext that contains it that
is forwarded to a third party in the case of a dispute.

3.4 Ciphertext Anonymity

Ciphertext anonymity is the property that ciphertexts contain no third-party
extractable information that helps to identify the sender of the ciphertext or the
intended recipient. It is defined via the following game.

Game

— Initial: The challenger runs Setup(1*) and gives the resulting params to
the adversary. It keeps s secret.

— Phase 1: The challenger is probed by the adversary who makes queries as
in the game of Section 3.1. At the end of Phase 1 the adversary outputs a
message m; two sender identities {ID 4,, I D 4, }; and two recipient identities
{IDpg,,IDpg,}. The adversary must not have made an extract query on either
of {IDBOaI-DBl}-

— Challenge: The challenger chooses two bits (b, l;) uniformly at random. It
signs m under the secret key S4, corresponding to IDg4,. It then encrypts
the result under the public key of IDp, to produce a ciphertext c. The
challenger returns c¢ to the adversary.

— Phase 2: The adversary continues to probe the challenger with the same
type of queries that it made in Phase 1. It is not allowed to extract the
private key corresponding to IDp, or IDp, and it is not allowed to make a
decrypt/verify query for ¢ under IDpg, or under IDp, .



— Response: The adversary returns two bits (b, b'). We say that the adversary
winsif b=bor b =¥'.

Definition 4. Let A denote an adversary that plays the game above. If the
quantity Adv[A] = [Pr[bt = bV b =b] — 3| is negligible we say that the scheme
in question is ciphertert-anonymous against insider adaptive chosen-ciphertext
attack, or ANON-IBSC-CCA2 secure.

Note that in the equivalent definition from [7] the adversary only wins if b = b
and b = b'. Tt is stated there that the scheme is ANON-IBSC-CCA?2 secure if
the quantity Adv[A] = |Pr[t' = bAD =b] — 1] is negligible. The two definitions
are clearly equivalent. We prefer our formulation because it explicitly states that
the adversary should not be able to guess either of the bits. The intuition is that
it gains no information about the sender of a message or the intended recipient.
Definition 4 follows from the fact that the adversary is always able to guess at
least one of the bits correctly with probability 3/4.

4 The Scheme

In this section we describe how our identity-based signcryption scheme works.
We will refer to the scheme as IBSC henceforth.

Before explaining our scheme we must briefly summarise the mathematical
primitives necessary for pairing based cryptography. We require two groups G
and Gy of large prime order g. These groups must be such that there exists a
non-degenerate, efficiently computable map é : G; X Gy — Gz. This map must
be bilinear i.e. for all P;,P» € G; and all a,b € Zj we have é(aPy,bP) =
é(Py, P,)?. A popular construction for such groups uses supersingular elliptic
curves over finite fields. The bilinear map is realised using a modification of the
Tate pairing or the Weil pairing. For details of such instantiations see [4,6,12].

We also require three hash functions Hy : {0,1}*1 — Gy, Hy : {0,1}kotn —
Z; and Hy : Gy — {0,1}kotki+n Here kg is the number of bits required to
represent an element of Gy; ky is the number of bits required to represent an
identity; and n is the number of bits of a message to be signed and encrypted.

Setup

— Establish parameters G, , Gz, q, é, Ho : {0,1}* — Gy, Hy : {0, 1}Fot7 — Z,
and Hy : Gy — {0, 1}*o+tk1+n a5 described above.

— Choose P such that (P) = Gy i.e. P is a generator for the cyclic group G .

— Choose s uniformly from Zj and compute the global public key Q14 < sP.

Extract
To extract the private key for user U with I Dy € {0,1}%,

— Compute the public key Qu < Ho(IDy) and the secret key Sy + sQu .

Sign
For user A with identity ID4 to sign m € {0,1}"™ with private key S4 corre-
sponding to public key Q4 < Ho(ID 4).



— Choose r uniformly at random from Zj and compute X « r@Q 4.
— Compute hy + Hi(X||m) and Z + (r + h1)Sa.
— Return the signature (X, Z) and forward (m,r, X, Z) to Encrypt.

Encrypt
For user A with identity ID4 to encrypt m using r, X, Z output by Sign for
receiver IDp.

— Compute Qp < Ho(IDg) and w < é(rSa,QB).
— Compute y < Hy(w) ® (Z||ID 4]|m) and return ciphertext (X, y).

Decrypt
For user B with identity IDpg to decrypt (X,y) using Sg = sHo(IDpg).

— Compute w + é(X,Sgp) and Z||[IDs||m + y ® Ha(w).
— Forward message m, signature (X, Z) and purported sender ID 4 to Verify.

Verify
To verify user A’s signature (X, Z) on message m where A has identity ID 4.

— Compute Q4 < Ho(IDy) and hy < Hi(X||m).
— Ifé(Z,P)=¢é(Qra, X +h1Qa), return T. Else, return L.

Note that, as was the case in [7], the signing algorithm that our scheme uses
is the scheme proposed in [8]. Also, the encryption is done in a manner similar
to the Basicldent scheme from [6]. The integrity checking necessary for security
against adaptive adversaries comes from the signature in our case.

Section 5 below contains proofs that our scheme offers the same security
properties as those offered by the scheme of [7]. In Table 1 and Table 2 below
we compare the efficiency of our scheme, denoted IBSC, with that of [7], de-
noted MIBS. We only compare the computational effort for the schemes since
the bandwidth requirements are identical. We use mls., exps. cps. and invs. as
abbreviations for multiplications, exponentiations, computations and inversions
respectively. The parameters n, ko and k; are those defined above. We use I}
to denote the multiplicative group of the field of ¢ elements.

Scheme Sign/Encrypt Decrypt/Verify

G1 mls. | Gz exps. | é cps. | Gy mls. | é cps. | ]F; invs.
MIBS 3 1 1 2 4 1
IBSC 3 0 1 1 3 0

Table 1. A comparison between the dominant operations required for IBSC and MIBS

We obtained timings for an instantiation of G;, Gy and é using the supersingular
curve E : y? = 23 + z defined over F, where p is a 512-bit prime. This curve has
p + 1 points and the value of p was chosen such that p + 1 has a 160-bit prime
factor ¢. In this case the group G; is the subgroup of order ¢ in E(F,) and G



is g-th roots of unity in IE‘;g. The implementation was done in C on a 667MHz
G4 PowerPC. A point multiplication in G; took 28.2 ms, an exponentiation in
Gy took 5.1 ms, it took 32 ms to compute é (the Tate pairing) and the cost of
an inversion in F was negligible. These figures give us Table 2.

|Scheme]| Sign/Encrypt | Decrypt/Verify |
MIBS 121.7 ms 184.4 ms
IBSC 116.6 ms 124.2 ms

Table 2. A comparison between timings of dominant operations in IBSC and MIBS

5 Security Results

In this section we will state the security results for the IBSC scheme under the
definitions of Section 3. The corresponding proofs are given in the appendix.

All our security results are relative to the bilinear Diffie-Hellman (BDH)
problem. Informally, using the notation of Section 4, this is the problem of com-
puting é(P, P)**¢ from (P,aP,bP,cP) where a,b,c are chosen at random from
Zy and P generates G, . For further details see [6].

Our results are all in the random oracle model [5] i.e. we will assume that the
hash functions Hy, H; and H> that the IBSC scheme uses are random oracles.
In each of the results below we assume that the adversary makes ¢; queries to
H; for i =0,1,2. The number of sign/encrypt and decrypt/verify queries made
by the adversary are denoted gs and gq respectively.

5.1 Ciphertext Authentication

Theorem 1. If there is an AUTH-IBSC-CMA adversary A of IBSC that suc-
ceeds with probability €, then there is a simulator B running in polynomial time
that solves the BDH problem with probability at least

< gs(q1 + q2 + 2qs)> 1
e-(1— . .
q q0(q0 — 1)(¢s + ¢a)(¢2 + ¢5)

5.2 Message Confidentiality

Theorem 2. If there is an IND-IBSC-CCAZ2 adversary A of IBSC that succeeds
with probability €, then there is a simulator B running in polynomial time that
solves the BDH problem with probability at least

€.<1_M> L

q Qg2



5.3 Signature Non-Repudiation

Theorem 3. If there is an EUF-IBSC-CMA adversary A of IBSC that succeeds
with probability €, then there is a simulator B running in polynomial time that
solves the BDH problem with probability at least

6_<1_qs(Q1+QS)>2_ 1
q 463 (q1 + qs)?

5.4 Ciphertext Anonymity

Theorem 4. If there is an ANON-IBSC-CCA2 adversary A of IBSC that suc-
ceeds with probability €, then there is a simulator B running in polynomial time
that solves the BDH problem with probability at least

€_<1_QS(Q1+Q2+2(1S)>_ 1
q qo(go — 1)(2+ q5)(q2 + gs)

6 Conclusions

We have proposed an identity-based signcryption scheme that is the most effi-
cient to date. This scheme makes use of a simple encryption algorithm that alone
is not secure against adaptive attack. We achieve security against adaptive ad-
versaries using the integrity check offered by a signature scheme. We have also
provided a complete security analysis for our scheme in the model of [7].
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Appendix
Proof of Theorem 1

We will show how an AUTH-IBSC-CMA adversary A of IBSC may be used to
construct a simulator B that solves the BDH problem. Let (P, aP, bP,cP) be the
instance of the BDH problem that we wish to solve.

We now describe the construction of the simulator B. The simulator runs A
with trusted third party public key Q74 < ¢P. It also creates algorithms to re-
spond to queries made by A during its attack. To maintain consistency between
queries made by A, the simulator keeps the following lists: L; for ¢ = 0,1,2 of
data for query /response pairs to random oracle H;; L of signcryptions generated
by the simulator; and Ly of some of the queries made by A to the decrypt/verify
oracle. We will see in the construction of the sign/encrypt simulator that the list
L stores other information that will be useful to B. Its use will become apparent,
in the subsequent analysis as will the use of L.

Simulator: Hy(IDy)

At the beginning of the simulation choose i,,i, uniformly at random from
{1,...,q0} (subject to i, # ip). We show how to respond to the i-th query
made by A below. Note that we assume A does not make repeat queries.

— If i = i, then respond with Ho(IDy) ¢ aP and set ID4 < IDy.
— If i = ip then respond with Hy(IDyy) < bP and set IDp < IDy;.
— Else choose z uniformly at random from Zj; compute Qu < zP; compute
Sy  xQra4; store (IDy, Qu, Sy, x) in Ly and respond with Q.

Simulator: Hy(X||m)

— If (X||m, hy) € Ly for some hy, return h.
— Else choose h; uniformly at random from Zj; add (X||m,hy) to L; and
return hq.

Simulator: Hy(w)

— If (w, ha) € Ly for some hs, return ho.
— Else choose hs uniformly at random from {0, 1}*ot*1+7: add (w, ha) to Lo
and return hs.

Simulator: Extract(IDy;)
We will assume that A makes the query Hy(I Dy) before it makes the extraction
query for I Dy.

— If IDy =IDy4 or IDy = IDpg, abort the simulation.
— Else search Lg for the entry (IDy,Qu,Sy,z) corresponding to IDy and
return Sy .

Simulator: Sign/Encrypt(m, [D;,1D,)
We will assume that A makes the queries Hyo(I D) and Ho(ID5) before it makes
a sign/encrypt query using these identities. We have the following five cases to



consider.

Case 1: IDy #ID4 and IDy # IDp

Find the entry (ID1,Q1,S1,z) in Lo.

— Choose r uniformly at random from Zj and compute X < rQ;.

— Compute hy < Hi(X||m) (where H; is the simulator above).

Compute Z < (r + h1)S.

— Compute Q5 < Ho(ID3) (where Hy is the simulator above).

Compute w < é(rS1, Q2)-

Compute y + Ha(w) & (Z||ID1||m) (where H> is the simulator above).
— Return (X, y).

Case 2: IDy =IDy,ID> # 1D 4 and ID» # IDp

Choose r, hy uniformly at random from Z;.

— Compute X + rP —h1Q4 and Z < rQr4.

— Add (X||m,h1) to Ll.

Find the entry (I D2, @2, S2,z) in Lg.

— Compute w + é(X, Ss).

Compute y  Ha(w) & (Z||ID allm) (where H, is the simulator above).
Return (X,y).

Case 3: ID, =IDg,IDy #ID4 and IDs # IDpg
Use the simulation of Case 2 replacing (ID4,Q ) with (IDg,QB)

Case 4: IDy =1D4 and ID> = IDp

— Follow the first four steps of Case 2.

— Choose hy + {0, 1}Fotki+n yniformly at random.
— Compute y < hy ® Z||ID 4||m.

— Add (IDA,IDB,X,y, Z,m,r, hl,hg) to Ls.
Return (X,y).

Case 5: ID1 =IDpg and IDy = ID 4
Use the simulation of Case 4 swapping (ID4,Qa,IDg) with (IDg,Qp,ID4).

Decrypt/Verify:(X,y), I D-
We assume that 4 makes the query Hy(ID-) before making a decryption query
for ID,. We have the following three cases to consider.

Case 1: IDy #ID4 and IDy # IDp

— Find the entry (IDs, @2, So, ) in L.

— Compute w = é(X, Ss).

Initialize b « 1.

— If w € Ly, compute Z||IDy||m < y ® Ha(w), else b+ 0 .
Ifb=1and ID| € Ly, let Q1 Ho(IDl), else b «+ 0.

If b=1and X||lm € Ly, let hy + H{(X||m), else b « 0.



—Ifb=1and é(Z,P) = é(Qra,X + h1Q1), return m, (X, Z) and 1Dy, else
step through the list L, as follows.

If the current entry has the form (ID4,IDg, X', y, Z,m',r, h, h2) then
test if é(X',@Qp) = é(X,zP). If so continue, else move on to the next
element of Lg and begin again.

Else if the current entry has the form (IDg,IDa, X'y, Z,m',r, b, ho)
then test é(X',Q4) = é(X, zP). If so continue, else move on to the next
element of Lg and begin again.

Compute Z||IDy||m < y @ hs.

If IDy; = I Dy move to the next element in Ls and begin again.

If ID; € Lo let Q1 < Ho(ID1), else move to the next element in L.

If X||m € Ly let hy < Hy(X||m), else move to the next element in L.
Check that é(Z, P) = é(QTa, X +h1Q1), if so return m, (X, Z) and 1Dy,
if not move on to the next element in Ly and begin again.

— If no message has been returned, return L.

Case 2:

IDy, =1Dp

— If (IDa,IDg,X,y,Z,m,r,h1,hs) € Lg for some m, return m, (X, Z), ID 4.
— Else, add (X,y),IDpg to Ly and step through the list L, with entries (w, h2)
as follows.

Compute Z||IDy||m < y @ hs.

IfIDy =1IDj or IDy = IDp, move to the next element in Ly and begin
again.

If IDy € Ly let Q1 <+ Ho(ID;) and find Sy in Ly , else move to the next
element in Ly and begin again.

If X||m € Ly let hy + H;(X||m), else move on to the next element in
Ly and begin again.

Check that w = é(Z — h1S1, @) and if not move on to the next element
in Ls and begin again.

Check that é(Z, P) = é(Qra, X +h1Q1), if so return m, (X, Z) and I Dy,
else move on to the next element in Ly and begin again.

— If no message has been returned after stepping through the list Lo, step
through the list L, as follows.

If the current entry has the form (ID4,IDp, X', y, Z,m',r,h, he) then
check that X' = X. If so continue, else move on to the next element of
Ls and begin again.

Else if the current entry has the form (IDg,ID4, X', y, Z,m',r, b, ho)
then check that é(X’,Q4) = é(X,Qp). If so continue, if not move on to
the next element of L and begin again.

Compute Z||IDy||m < y @ hs.

If ID; = IDp, move to the next element in L, and begin again.

If IDy € Lo let Q1 < Ho(ID1), else move to the next element in L.

If X||m € Ly let hy < Hy(X||m), else move to the next element in L.

Check that é(Z, P) = é(Qra, X +h1Q1), if so return m, (X, Z) and I Dy,
else move on to the next element in L, and begin again.

— If no message has been returned, return L.



Case 3: IDy = ID g4
Use the simulation of Case 2 replacing (IDg,Qp,ID4) with (IDa,Qa,IDg).

Once A has been run, B does one of two things.

1. With probability ¢s/(gs+qa) choose a random element from Lg and a random
element (w, hs) from Ly. We call this event Chy in the analysis below (Ch
for choice). The significance of the probability will become apparent in the
subsequent analysis we only mention here that we are assuming |Ls| = ¢ at
the end of our simulation. This is the worst case scenario.

— If the chosen element has form (ID4,IDg, X, y, Z,m,r, h1, ha), compute
B = (w/é(rbP, cP))_l/hl.

— If the chosen element has form (IDg,IDa, X,y, Z,m,r, hy, ha), compute
B = (w/é(raP, cP))_l/hl.

2. With probability g4/(¢s + ga) choose a random element from L, and a ran-
dom element (w, hs) from Lo. We call this event Chy in the analysis below.
Again, the significance this probability will become apparent in the sub-
sequent analysis. As above, we are assuming |L4| = gq at the end of our
simulation. This is the worst case scenario.

— If the chosen element from L, has the form (X,y), [Dp compute y @ hs.
If y ® hy has the form Z||ID 4||m for some Z, m, compute
B = (w/é(Z,bP)) /™.
If y ® ha does not have this form B has failed.

— If the chosen element from L, has the form (X,y), ID 4 compute y @ ho.

If y ® he has the form Z||IDg||m for some Z, m, compute

B = (w/é(Z,aP))” /"

If y ® ho does not have this form B has failed.

The rational for these probabilities and computations will become apparent in
the discussion of equations (1), (2), (4) and (5) below.

Let us now analyze our simulation. The simulations for the random ora-
cles and the extraction queries are trivial. The simulation of the sign/encrypt
queries uses standard techniques. We make some remarks about the simulation
of the decrypt/verify queries since this is less obvious. We will treat each case
separately.

Case 1: In this case the simulator B knows the secret key of the receiver and so
it is able to compute the correct ephemeral encryption key. The first six steps in
this case are therefore those that would be followed in genuine decryption and
verification. The reason that it does not stop at this point is that the sign/encrypt



simulator implicitly defines Hs(w) for values of w that are unknown to the sim-
ulator. It must check that the ephemeral encryption key w that it has computed
is not one of these values. For example, suppose that there is an entry of the
form (ID4,IDg, X'y, Z,m,r, h}, hy) in Ls. Referring back to the construction
of the sign/encrypt simulator, it needs to know if

é(X,aSB) = é(Xa 52)

The simulator knows that Ss = Q14 = zcP and it know Sg = bQ714 = bcP =
c@ g so this test becomes

é(X',Qp) = é(X,zP).

Case 2: In this case the simulator B does not know the secret key of the receiver
and so it is unable to compute the ephemeral encryption key é(X,Sg). The
first loop, through the list Ly, determines whether or not the Hs value of the
ephemeral encryption key is in Ls itself i.e. for each w in Ly it wants to know if
w = é(X, Sg). Since by construction Q74 = cP this test becomes w = é(cX,Qp)
and, under the assumption that the ciphertext is correctly formed, it becomes
é(Z—h1S1,QB). Note that if the ciphertext is not correctly formed the simulator
does not care whether or not the value of Ho(w) is defined since it is correct to
reject. The final test in this loop is just the standard test for verification.

The second loop, through L, determines whether or not the value of Hs(w)
that B is looking for has been determined by the sign/encrypt simulator. If it
is searching Ls for an entry of form (ID4,IDg, X', y,Z,m,r, hi, ha) then the
receivers identities are the same in this entry and in the decrypt/verify query
that we are trying to respond to. The check is then simply on the values of X
and X'.

If B is looking at an entry of L, of the form (IDp,ID, X', y, Z,m,r,h}, hs)
then the receivers identities are not the same in this entry and in the de-
crypt/verify query that it is trying to respond to. The check that it wishes
to perform is é(X',S4) = é(X,Sp). This is clearly equivalent to the check

é(X,a QA) = é(Xa QB)
Case 3: The analysis is identical to that of Case 2 with A and B reversed.

Let us now consider how our simulation could fail i.e. describe events that
could cause A’s view to differ when run by B from its view in a real attack. We
call such an event an error and denote it ER.

It is clear that the simulations for Hy and H; are indistinguishable from real
random oracles. Let us now consider the H> simulator. The important point here
is that Hs is not only defined at points where the Hsy simulator is called by A
or by the simulator itself. It is also defined at certain points implicitly by the
sign/encrypt simulator. For example, suppose that the sign/encrypt simulator re-
sponds to a query m, ID 4, IDp. In this case it adds an entry (ID4,IDg, X,y, Z,
m,r,hy,ha) to Ls. This implicitly defines Ho(é(X, Sg)) = ho although it is not
actually able to compute é(X,Sg). If the H> simulator is subsequently called



with w = é(X, Sp) it will not recognise it and so it will not return hy. We denote
such events H-ER. However, if such an event occurs we have

w = ¢é(X,Sp) = é(rP — hi1Qa, Sg)

from which it is possible to compute

“h (w/é(rbP, cP))_l/hl. (1)

é(P,P)™* = ¢(Qa,Sp) = (w/é(rQp,Qr4))
Similarly if the Hy simulator is called with w that is implicitly defined by an
entry (IDp,IDs,X,y,Z,m,r, h1, hy) € Ls we can compute.

~th (w/é(raP, cP))_l/hl. (2)

é(P,P)* = ¢(Qp,Sa) = (w/é(rQa,Qra))
Let us now consider how the simulation for sign/encrypt could fail. We denote
such an event S-ER. The most likely failure will be caused by the sign/encrypt
simulator responding to a query of the form Case 4 or Case 5 (see simulator).
Since we do not know how often each case will occur we will be conservative
and assume that each query will be one of these, 4 say. The only possibilities for
introducing an error here are defining H;(X||m) when it is already defined or
defining H»(é(X, Sp))/H2(é(X,S4)) when it is already defined. Since X takes
its value uniformly at random in (P}, the chance of one of these events occurring
is at most (g1 + g2 + 2¢s)/q for each query. The 2¢; comes from the fact that
the signing simulator adds elements to L; and Lo. Therefore, over the whole
simulation, the chance of an error introduced in this way is at most

as(q1 + a2 +2q5)/q- (3)

We now turn our attention to the decrypt/verify simulator. An error in this
simulator is denoted D-ER. It is clear that this simulator never accepts an invalid
encryption. What we have to worry about is the possibility that it rejects a valid
one. This can only occur with non-negligible probability in Case 2 or Case 3.
Suppose that we are trying to decrypt (X,y),[Dp (i.e. Case 2). An error will
only occur if while stepping through Lo there is an entry (w,hs) such that
Z||ID4|lm < y & hs and (X,y) is a valid encryption of m from ID4 to IDp.
In this case we must have

w=¢e(Z—-MSa@p) =e(Z,Qp) - é(~h1Sa,Qp) = é(Z,bP) - é(=hiacP,bP),
where hy = H{(X||m). From the above we can compute

é(P, P)™ = (w/é(z,bP)) /" (4)
Suppose now that we are trying to decrypt (X,y),ID4 (i-e. Case 3). An error
will only occur if while stepping through L, there is an entry (w, ha) such that
Z||[IDg|lm + y @ he and (X,y) is a valid encryption of m from IDpg to ID 4.
In this case we must have

w=&(Z —Sp,Qa) = (Z,Qn) - é(=h1Sp, Q) = é(Z,aP) - é(~hbeP, aP),



from which we can compute

&(P, P) = (w/e(Z,aP)) ™.

(5)
The final simulator is the extract simulator. Note that the adversary will only
succeed in its task with non-negligible probability if it queries Hy with the two
identities under which the encrypted and signed message it produces is supposed
to be valid. Looking at the H, simulator we see that it chooses two Hj queries
made by the adversary and responds to these with group elements from the BDH
instance that it is trying to solve. The simulator hopes that these will be the
identities for the adversary’s encrypted and signed message. This will be the case
with probability at least

1/go(q0 — 1). (6)

If this is not the case we say that an error has occurred in the extract simulator
because, if the adversary tried to extract the private key for these identities, the
simulator would abort. An error in the extract simulator is denoted E-ER.

Once A has been run by the simulator B, there are two courses of action:
Chy and Chy (as described above). If Chy has been chosen, we denote the event
that B selects the correct elements to solve the BDH problem from Ly and Hs
by CG; (under the assumption that there are such correct elements in the lists
at the end of the simulation). Likewise if Chs has been chosen, we denote the
event that B selects the correct elements from L; and Hs by CGs.

With the events described above we have

Adv[B] > Pr[-E-ER A H-ER A =S-ER A Ch; A CGy]
+ Pr[D-ER A =E-ER A =H-ER A =S-ER A Chy A CGy]  (7)

We have

Pr[-E-ER A H-ER A =S-ER A Ch; A CGy]
= Pr[-E-ER A =S-ER] - Pr[Ch; A CG;] - Pr[H-ER] (by independence). (8)
Also,

PI‘[D—ER A =E-ER A =H-ER A =S-ER A Chy A CGQ]
= Pr[D-ER] - Pr[-E-ER A =H-ER A =S-ER] - Pr[Chs A CG;] (by independence).
(9)

Note that, in the event —~E-ER A =H-ER A =S-ER, the adversary A is run by B in
exactly the same way that it would be run in a real attack until the event D-ER
occurs. Moreover, in the event ~E-ER A =H-ER A =S-ER, A winning and D-ER
are equivalent. This means that (9) becomes

PI‘[D—ER A =E-ER A =H-ER A =S-ER A Chy A CGQ]
— ¢ Pr[=E-ER A ~S-ER] - Pr[Chy A CGy] - Pr[~H-ER]. (10)



From the definitions of Ch;, CGy, Chy and CGs above it is clear that

qs 1 1
Pr(Ch; ACG{] = . = and 11
(Chs ! s+ 90 qs(@2+as) (g5 +qa)(@2 + qs) ()
Pr[Chy A CGy] = — X LI L (12)

s+ a0 qa(ee+a) (6 +aa)(e+a)

Note that we are assuming a worst case scenario here i.e. |Ls| = g5 and |Lg| = gq.
We will make this assumption throughout the remaining analysis without further
comment. From, the fact that Pr[H-ER] + Pr[-H-ER] = 1, (7), (8), (10), (11)
and (12) we have

Adv[B] > (Pr[H-ER] + ¢ - Pr[-H-ER]) - Pr[~E-ER A =S-ER] - T qd)l(q2 s
1
> ¢ (Pr[H-ER] + Pr[-H-ER]) - Pr[-E-ER A -S-ER] - (@ + a2) (0> + 45)

1

=€- PI‘[—|E—ER/\ —|S—ER] . (q n qd)(q2 tq )

(13)

Finally, by the independence of E-ER and S-ER, using (3), (6) and (13) we have

gs( + ¢ + 2qs)> _ 1
q q0(q0 — 1)(gs + qa) (g2 + ¢s)

Adv[B] >e- (1 - (14)

as required.

Proof of Theorem 2

We will show how an IND-IBSC-CCA2 adversary A of IBSC may be used to
construct a simulator B that solves the BDH problem. Let (P, aP, bP,cP) be the
instance of the BDH problem that we wish to solve.

The simulator runs A with Q14 < bP. It keeps lists as in the proof of The-
orem 1. We describe how B runs Phase 1 of A’s attack below.

Simulator: Hy(IDy)

At the beginning of the simulation choose ig uniformly at random from {1,...,qo}.
We show how to respond to the i-th query made by A below. Note that we as-
sume A does not make repeat queries.

— If i = ig then respond with Ho(IDy) < aP and set IDg < IDy.
— Else choose = uniformly at random from Z7; compute Qu « zP; compute
Su « xQra4; store (IDy, Qu, Sy, x) in Ly and respond with Q.

Simulator: H; (X||m) and Hy(w) as in the proof of Theorem 1.
Simulator: Extract(IDy;)

We will assume that A makes the query Hy (I Dyr) before it makes the extraction
query for I Dy.



— If IDy = IDg, abort the simulation.
— Else search Lg for the entry (IDy,Qu,Sy,z) corresponding to IDy and
return Sy .

Simulator: Sign/Encrypt(m,ID;,1D>)
We will assume that A makes the queries Hyo(I D) and Ho(ID5) before it makes
a sign/encrypt query using these identities. We have two cases to consider.

Case 1: IDy # IDg
Use the simulator from Case 1 of sign/encrypt in the proof of Theorem 1.

Case 2: ID; =1Dg
Use the simulator from Case 2 of sign/encrypt in the proof of Theorem 1 replac-
ing ID 4 with I Dg and replacing Q4 with aP.

Decrypt/Verify:(X,y), I Dy

We assume that A makes the query Hy(ID2) before making a decryption query
for ID-. We have the following three cases to consider.

Case 1: IDy # IDg

Find the entry (ID2, @2, S2,z) in Lo.

Compute w = é(X, S3).

— If w ¢ Lo, return L. Else Z||ID;||m < y ® Ha(w).

- If IDl = ID2 or IDl ¢ Lo, return L. Else Ql — Ho(IDl)

— If X||m € Ly, return L. Else hy < Hi(X||m).

— Ifé(Z,P) # é(Qra, X + h1Q1), return L. Else return m, (X, Z), ID;.

Case 2: IDy =1Dg

— Step through the list Ly with entries (w, hs) as follows.
e Compute Z||ID:||m + y @ hs.
e If ID; = IDg, move to the next element in Ly and begin again.
e If IDy € Lo let Q1 < Ho(ID;) and find Sy in Lo , else move to the next
element in Ly and begin again.
o If X||m € L; let hy < H;(X||m), else move to the next element in L.
e Check that w = é(Z — h1S1,aP) and if not move on to the next element
in Ls and begin again.
e Check that é(Z, P) = é(Qra, X +h1Q1), if so return m, (X, Z) and I Dy,
else move on to the next element in Ls.
— If no message has been returned after stepping through Lo, return L.

At the end of Phase 1 the adversary outputs two identities {ID4,IDg} and
two messages {mo,m1}. If IDp # IDg, B aborts the simulation. Otherwise
it chooses y* « {0,1}Fo+ki+n and sets X* < cP. It returns the challenge
ciphertext o* < (X*,y*) to A. The queries made by A in Phase 2 are responded
to in the same way as those made by A in Phase 1.



At the end of Phase 2, A outputs a bit b. The simulator ignores this bit. Tt
searches Lo for the entry (IDa,Qa,S4,x,), it chooses some w at random from

L> and returns w%—l (15)

as its guess at the solution to the BDH problem for (P, aP,bP, cP).

Let us now consider how our simulation could fail when it executes Phase 1
of A’s attack i.e. what events could cause A’s view to differ when run by B from
its view in a real attack. We call such an event an error and denote it ER.

It is clear that the simulations for Hy and H; are indistinguishable from
genuine random oracles. Also, unlike the proof of Theorem 1, the simulation of
H, is always sound since now it is only defined at points where the Hs simulator
is called by A or by the simulator B.

Let us now consider how the simulation for sign/encrypt could fail. The only
possibility for introducing an error here is defining H; (X ||m) when it is already
defined. Since X takes its value uniformly at random in (P), the chance of one
of these events occurring is at most (g1 + ¢s)/q for each query. The ¢s; comes
from the fact that the signing simulator adds elements to L;. Therefore, over
the whole simulation, the chance of an error introduced in this way is at most

QS(Q1 + QS)/Q' (16)

It is easy to see that the possibility for error in the decrypt/verify simulator for
Theorem 1 are removed in our simulation here. The final simulator to consider
is the extract simulator.

The final simulator is the extract simulator. Looking at the Hy simulator
we see that it chooses one Hy query made by the adversary and responds to
this with group elements from the BDH instance that it is trying to solve. The
simulator hopes that this will be the identity chosen by A for the recipient in
the challenge. This will be the case with probability at least

1/qo. (17)

If this is not the case we say that an error has occurred in the extract simulator
because, if the adversary tried to extract the private key for this identity, the
simulator would abort.

Let us now consider what errors there could be when B executes Phase 2 of A.
All the same errors are possible, in addition the simulator will fail if the adversary
makes the Hy query w = é(P, P)®=%%¢. However, if A has any advantage it must
make this query, and once it has done so we have trapped it into leaving enough
information in L, to solve the BDH problem with probability 1/g¢s.

From the above remark combined with (16) and (17) we conclude that B
succeeds with probability at least

B B ]'

6.<1_M>.__ (18)
q qdoq2

Proof of Theorem 3

We are going to use the ”forking lemma” technique of Pointcheval and Stern [20]
to prove our result. We will in fact reduce the standard Diffie-Hellman problem



to the problem of forging. Since a black box for the Diffie-Hellman problem is
sufficient to solve the bilinear Diffie-Hellman problem the result will follow. We
will now show how an EUF-IBSC-CMA adversary A of IBSC may be used to
construct a simulator B that solves the Diffie-Hellman problem. Let (P, aP,bP)
be the instance of the Diffie-Hellman problem that we wish to solve. The simu-
lator B runs in three stages: By, B> and Bs.

The simulator B; runs A with trusted third party public key Q74 < bP. It
also creates algorithms to respond to queries made by A during its attack. To
maintain consistency between queries made by A, the simulator keeps lists as in
the proof of Theorem 1.

Simulator: Hy(IDy)

At the beginning of the simulation choose i, uniformly at random from {1,...,qo}.
We show how to respond to the i-th query made by A below. Note that we as-
sume A does not make repeat queries.

— If ¢ = i, then respond with Ho(IDy) ¢ aP and set ID 4 < IDy.

— Else choose z uniformly at random from Z7; compute Qu « zP; compute

Su « xQra; store (IDy, Qu, Sy, x) in Ly and respond with Qp .

Simulator: H; (X||m) and Hs(w) as in the proof of Theorem 1.

Simulator: Extract(IDyr)
We will agssume that A makes the query Hy (I Dy) before it makes the extraction
query for IDy.

— If IDy = 1Dy, abort the simulation.
— Else search Lg for the entry (IDy,Qu,Su,x) corresponding to IDy and
return Sy .

Simulator: Sign/Encrypt(m,ID;,ID>)
We will assume that A makes the queries Hyo(I D) and Hoy(ID5) before it makes
a sign/encrypt query using these identities. We have the following two cases.

Case 1: IDy #1Dy4
Use the simulator from Case 1 of sign/encrypt in the proof of Theorem 1.

Case 2: ID; =1IDy4
Use the simulator from Case 2 of sign/encrypt in the proof of Theorem 1.

Simulator: Decrypt/Verify(X,y), D>
We assume that 4 makes the query Hy(ID-) before making a decryption query
for ID,. We have the following three cases to consider.

Case 1: IDy #1D4
Use the simulator from Case 1 of decrypt/verify in the proof of Theorem 2.



Case 2: IDy = IDy4
Use the simulator from Case 2 of decrypt/verify in the proof of Theorem 2 re-
placing I Dg with ID 4 and replacing aP with @ 4.

Let us now consider how our simulation could fail i.e. what events could cause
A’s view to differ when run by B; from its view in a real attack. We call such
an event an error and denote it ER.

Clearly the simulations for Hy and H; are indistinguishable from real random
oracles. Also, unlike the proof of Theorem 1, the simulation of H> is always sound
since now it is only defined at points where the Hs simulator is called by A or
by the simulator.

Let us now consider how the simulation for sign/encrypt could fail. The
analysis of this case is identical to the equivalent case in Theorem 2. An error is
therefore introduced with probability at most

as(q +qs)/q. (19)

It is easy to see that the possibility for error in the decrypt/verify simulator for
Theorem 1 are removed in our simulation here. The final simulator to consider
is the extract simulator.

The final simulator is the extract simulator. Note that the adversary will
only succeed in its task with non-negligible probability if it queries Hy with the
identity under which the message contained in the ciphertext it returns is signed.
Looking at the Hj simulator we see that it chooses one Hy query made by the
adversary and responds to this with group elements from the BDH instance that
it is trying to solve. The simulator hopes that this will be the signer identity for
the ciphertext that it returns. This will be the case with probability at least

1/qo. (20)

If this is not the case we say that an error has occurred in the extract simulator
because, if the adversary tried to extract the private key for this identity, the
simulator would abort.

Now, from (19) and (20), it is clear that with probability greater or equal to

- (1_(1s(q1+QS)> _l, (2]_)
q do

the simulator obtains from the adversary a recipient identity I Dp and a cipher-
text ¢ such that, if (m,ID4,0) is the result of decrypting ¢ under the secret
key corresponding to IDg, Verify(m,ID4,0) = T. Note that, since we are
assuming that .4 has been successful, IDp # ID4 and so we can use the de-
cryption process of the simulator. Also, if o = (X, Z) then, except with negligible
probability, the H; query X||m must have been made at some point during the
simulation. We call this query the critical query.

Let @, ¥ be the random tapes for random oracle H; and simulator B; respec-
tively. That is to say ¥ is the random tape for all functions of By except random
oracle H;. The random oracle H; is called 1/(q1 + ¢5) times. The second step in



the process of solving the Diffie-Hellman problem is to choose j < {1,...,¢1+¢s}
at random. We now split @ into ¢; and $, where ¢, contains the random re-
sponses for queries 1,...,7 —1 and @, contains the random responses for queries
Jy--+,q1 + gqs- The next step of the simulation, Bs, is to run a simulation similar
to By with the same ¥ and &, but a new &,, say $»'. With probability

1/ (a1 +gs) (22)

the value of j that we chose corresponds to the critical query.
Our proof now uses the following lemma from [20].

Lemma 1 (The Splitting Lemma). Let E C © x T be such that Pr[E] > v.
Define
F={(0,v) €@ xT:Prycrl[(f,v) € E] >v/2}.

We have the following

1. Y(0,v) € F,Prycr[(0,v") € E] > v/2.
2. Pr[F|E] > 1/2.

Now, from (21), (22) and Lemma 1 applied with © = ¥ U &, and T = ¥,, with
probability greater or equal to

2
(4 gs) 1
62-<1—Q(q1 ) : 23

q 4q8(q1 + gs)? (23)

the two simulated runs of A give us two signatures (X,Z) and (X,Z’) on m
with the following properties. After the first run of the simulation there is an
hi € L; and after the second run there is an h{* € L; (the responses to the
critical queries) such that

Z = (r+h})abP and Z' = (r + hi*)abP (24)

where X = raP. Assuming that B; and Bs are successful, it is easy to see from
(24) that the third stage of the simulation, B3, can compute

abP = (ki —h{*)""(Z - Z'). (25)

The result follows from (23) and (25).
Proof of Theorem 4

We assume that we have an instance (P,aP,bP,cP) of the BDH problem that
we wish to solve. We will show how an ANON-IBSC-CCA2 adversary A may be
used to do this. Up until the end of Phase 1 of A’s attack, B runs A in exactly
the same way as the latter was run by the simulator in Theorem 1. Here we will
change notation and refer to ID4 as IDg, and IDp as IDg,.

At the end of Phase 1 the adversary A outputs a message m; two sender iden-
tities {ID 4,,ID 4, }; and two recipient identities {IDp,,IDp, }. If {IDpg,,IDp, }
# {IDg,,IDg,} the simulator B aborts. Note that we are assuming that Hy has



already been queried at IDp, and IDp, by A. If this is not the case we can
define Hy at these points as we wish i.e. as aP or bP.
The challenge is generated by choosing v at random from 77 and choosing y at

random from {0, 1}*o+*1+7_ The challenge ciphertext returned to the adversary
is (vaP,y). The simulator B stores v for use later in the simulation.
Once A has finished its simulated execution B does one of three things.

1. With probability ¢s/(2+¢s) choose a random element from L, and a random
element (w, ha) from Lo. We call this event Ch; in the analysis below.
— If the chosen element has form (IDg,,IDg,,X,y, m,r, hy, h2), compute

B = (w/é(rbP, cP))_l/hl.

— If the chosen element has form (IDg,,IDg,, X,y, m,r, hy, h2), compute
B = (w/é(raP, cP))fl/hl.

2. With probability gs/(2+¢s) choose a random element from Ly and a random
element (w, ha) from Lo. We call this event Chy in the analysis below.
— If the chosen element from Ly has the form (X,y),IDg, compute y P ho.
If y @ ho has the form Z||IDg,||m for some Z,m, compute
B = (w/é(Z,bP)) /™.
If y ® ho does not have this form B has failed.
— If the chosen element from L, has the form (X,y), ID 4 compute y @ ho.
If y ® hy has the form Z||IDg,||m for some Z, m, compute
B = (w/e(Z,aP)) /™.
If y ® ho does not have this form B has failed.
3. With probability 2/(2 + ¢5) choose a random element (w, hy) from Ly and
compute B =w'/?
We call this event Chs in the analysis below.

We define the events D-ER, E-ER, H-ER and S-ER as in the proof of Theorem 1.
We will assume that the events E-ER and S-ER do not occur by removing a factor

qs(q1 + g2 + 2q5) 1 _
(1 - q ) “dolao—1) ’ (26)

from our success probability as in the proof of Theorem 1.

We define the event ER = S-ER A D-ER. In the events Chy, Chy and Chs
we denote the event that B selects the correct elements (assuming they exist)
to solve the BDH problem by CG;, Chy and CGgs respectively. Note that, in the
event —ER, A can have no advantage until it makes one of the queries é(vaP, bcP)
or é(vaP,acP) to Hs, since the identities are perfectly masked until this point.



Only the former is useful to B but A will make them with equal probability.
Using these definitions and observations, and assuming g; = q5, we can infer

Adv[B] > 6(Pr[Ch1 A CG1|S-ER].Pr[S-ER] 4+ Pr[Chy A CG2|D-ER].Pr[D-ER]
1
+ 5 - Pr[A wins|<ER] - Pr[Ch; A CGg] - Pr[—|ER]). (27)
Examining the size of the relevant lists we see that

PI’[Chl A CGl] = PI’[Ch2 A CGQ] = (28)

(2 + QS) qs + q2)

PI’[Chg A CGg] =

DN ]| =

(29)

(2 + QS) qs + q2)

Also, by definition we have Pr[A wins|-ER] = e. Using this observation with
(28), (29) and independence of events, (27) becomes

Adv[B] >

Pr[S-ER] + Pr[D-ER]) + ) -Pr[—|ER]>.

€
(2 + qs)(Qs + @2

1
Sl — — .
<(2 +¢s)(gs + g2) (
(30)
By independence we have Pr[S-ER] + Pr[D-ER] = Pr[S-ER VvV D-ER] = Pr[ER]
and also Pr[ER] + Pr[—ER] = 1. Using this and (30) we obtain

Adv[B]>e€-0- (31)

(2+a:)(¢s +¢2)°
The result follows from (26) and (31).



