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Abstract. Several signcryption schemes proposed in the literature are
known to lack semantic security, and semantically secure signcryption
schemes tend to be more computationally expensive. In fact, devising an
efficient signcryption scheme providing both public verifiability and for-
ward security was until now an open problem. In this paper, we show how
a particular kind of signcryption scheme may become completely insecure
when implemented with certain efficient instantiations of the Tate or Weil
pairing. We also address the drawbacks of the secure schemes by propos-
ing efficient, semantically and forward-secure signcryption schemes, in
both transferable and non-transferable form, that can be realised on top
of any pairing instantiation. As a bonus, we also derive from them a new,
efficient identity-based signature scheme.

1 Introduction

The two fundamental services of public key cryptography (PKC) are encryption
and signing. Encryption provides confidentiality as only the intended recipient
can recover the plaintext from the ciphertext. Digital signatures provide authen-
tication and non-repudiation. Often when we use one of these services we would
like to use also the other, combining the properties of these schemes.

In 1997, Zheng [15] proposed a novel cryptographic primitive which he called
signcryption. The idea behind signcryption is to encrypt and sign data in a single
operation which has a computational cost less than that of doing both opera-
tions sequentially. Proper signcryption schemes provide confidentiality, authen-
tication, and non-repudiation. Non-transferable signcryption (sometimes called
authenticryption) schemes provide confidentiality and authentication, although
it is often possible to extend such systems to attain non-repudiation with the
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recipient’s cooperation, at the cost of revealing the plaintext. Like conventional
encryption, it must be computationally infeasible to recover the plaintext from
the signcrypted message without the recipient’s private key; like conventional
digital signatures, it must be computationally infeasible to forge signcryption
signatures without the sender’s private key.

Identity-based signcryption schemes have been proposed as well. Identity-
based cryptography is an idea originally proposed in 1984 by Shamir [13]. The
idea behind identity-based cryptography is that the senders and receivers in
the system use their online identifiers (combined with certain system-wide in-
formation) as their public keys. This greatly reduces the problems with key
management that have hampered the mass uptake of public key cryptography
on a per individual basis.

Identity-based signcryption algorithms include the schemes proposed by
Boyen [3], Libert and Quisquater [9], Malone-Lee [10], Nalla and Reddy [11],
Sakai and Kasahara [12], Chen and Malone-Lee [5]. Unfortunately, we show that
the Sakai-Kasahara scheme, though being among the fastest of these, is not se-
mantically secure, leaking information about the signcrypted message (formally,
this means that it does not satisfy the indistinguishability against adaptive cho-
sen ciphertext attacks property). Furthermore, we show that it becomes com-
pletely insecure when implemented on top of many popular settings of the Tate
or Weil pairing, particularly those settings where the pairings are most efficiently
computable. Specifically, we show that under those circumstances the recipient of
a signcrypted message can afterward impersonate the sender, and a third party
can do the same if the plaintext of any signcrypted message is compromised.
This weakness is inherent to an algorithmic detail of the Sakai-Kasahara scheme
that could be employed in other schemes, making them equally insecure.

To a lesser extent, semantic insecurity also plagues the Malone-Lee scheme,
and the Libert-Quisquater methods have been proposed to remedy this situa-
tion. Unfortunately, the properties of public verifiability and forward security
are mutually exclusive in the Libert-Quisquater scheme; in fact, Libert and
Quisquater [9] leave it as an open problem the task of devising an efficient
signcryption scheme providing both public verifiability and forward security.

Our contributions in this paper are the following. First, we define the con-
cept of projection attacks, which imposes constraints on the family of groups
on top of which certain pairing-based schemes can be securely defined. Second,
we propose new, efficient, semantically and forward secure signcryption schemes,
in transferable and non-transferable form, that do not impose any a priori re-
striction on the pairing settings. The transferable scheme directly addresses —
and closes — the open problem posed by Libert and Quisquater. And third, we
derive from our signcryption algorithms a new, efficient identity-based signature
scheme.

This paper is organised as follows. In section 2 we give the security definition
for signcryption schemes. We review the Sakai-Kasahara scheme in section 3, and
assess its security deficiencies in section 4. We then describe our new schemes
in section 5, both in non-transferable (authenticryption) and transferable forms.
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We propose a new identity-based signature scheme in section 6, compare the
efficiency of the various schemes in section 7, and draw our conclusions in sec-
tion 8. We also discuss a curious security properties of the Nalla-Reddy scheme
in the appendix.

2 Security Definitions for Signcryption Schemes

We use as our security model the now de facto standard for identity-based sys-
tems, as defined by Malone-Lee [10]. This is a two-part definition in which he
looks at the encryption and unforgeability properties of the signcryption scheme
separately. This security model for encryption is called indistinguishability of
identity-based signcryptions under chosen ciphertext attack (IND-IDSC-CCA)
and is a natural adaptation of the de facto standard for public key encryption
schemes: indistinguishability of encryptions under chosen ciphertext attack [10].

Definition 1. We say that an identity-based signcryption scheme (IDSC) has
the indistinguishability against adaptive chosen ciphertext attacks property (IND-
IDSC-CCA) if no polynomially bounded adversary A has a non-negligible advan-
tage in the following game.

– The challenger C runs the Setup algorithm with a security parameter k and
sends the system parameters to the adversary A.

– Phase 1: A performs a polynomially bounded number of the following
queries (A can present its requests adaptively – every request may depend
on the answer to the previous ones):

• Signcryption query: A produces two identities A (sender) and B (re-
ceiver), and a plaintext m. C computes Pa = Keygen(A) and then
Signcrypt(m,Pa, B) and sends the resulting ciphertext to A.
• Unsigncryption query: A produces two identities A (sender) and
B (receiver), and a ciphertext σ. C generates the private key Pb =
Keygen(B) and sends the result of Unsigncrypt(σ, Pb, A) to A (this
result can be the ⊥ symbol if σ is an invalid ciphertext).
• Key Extraction query: A produces an identity A and receives the

extracted private key Pa = Keygen(A).

– A chooses two plaintexts m0 and m1, and two identities A and B on which
he wishes to be challenged. He cannot have asked the private key (Key
Extraction query) corresponding to A or B in the first stage.

– C takes a random bit b, computes σ∗ = Signcrypt(mb, Pa, B), and sends σ∗

to A.
– Phase 2: A can again perform a polynomially bounded number of queries

as in phase 1. This time, A cannot make a key extraction query on A nor
B, nor ask the query Unsigncrypt(A,B, σ∗).

– Finally, A produces a bit b′ and wins the game if b′ = b.

The adversary’s advantage is defined to be Adv(A) = |Prob(b′ = b)− 1/2|.

3



Definition 2. An identity-based signcryption scheme (IDSC) is said to be se-
cure against an existential forgery for adaptive chosen messages attacks (EF-
IDSC-ACMA) if no polynomially bounded adversary has a non-negligible advan-
tage in the following game.

– The challenger C runs the Setup algorithm with a security parameter k and
gives the system parameters to the adversary A.

– The adversary performs a polynomially bounded number of requests as in
the definition above — Key Extraction queries, Signcryption queries and
Unsigncryption queries.

– Finally, A produces a new triple (σ,A,B) (i.e. a triple that was not produced
by the signcryption oracle), and the private key of A was not asked. A wins
the game if the result of Unsigncrypt(σ, Pa, B) is not the symbol ⊥. This
is the definition of success in the above game.

In this definition, the adversary is allowed to ask for the private key corre-
sponding to the identity B for which the ciphertext he produces must be valid.
This condition is necessary to obtain the non-repudiation property and to pre-
vent a dishonest recipient from sending a ciphertext to himself on Alice’s behalf
and trying to convince a third party that Alice was the sender.

The adversary’s advantage is Adv(A) = |Prob(success)|.

3 The Sakai-Kasahara scheme

As a general setting, we use co-gap notation with the conventional Tate pairing
e : 〈P 〉×〈Q〉 → µr, where 〈P 〉 ⊆ E(Fq)[r], 〈Q〉 ⊆ E(Fqk), µr ⊆ F∗

qk is the set of r-

th roots of unity in Fqk , gcd(k, r) = 1, and P and Q are linearly independent. As
a consequence, in this notation each user has two key pairs, corresponding to the
two groups 〈P 〉 and 〈Q〉. If a distortion map ψ : 〈P 〉 → 〈Q〉 is available, as is the
case for supersingular curves and certain classes of ordinary curves [7], one might
consider collapsing the groups 〈P 〉 and 〈Q〉 by using the modified Tate pairing
ê : 〈P 〉 × 〈P 〉 → µr given by ê(U, V ) = e(U,ψ(V )). However, contrary to other
methods the Sakai-Kasahara algorithm depends essentially on the availability of
a pairing e : G×G→ µr where G contains two distinct subgroups 〈P 〉 and 〈Q〉.

In the following we use an assortment of publicly known random oracles:

– HP : {0, 1}∗ → 〈P 〉,

– HQ : {0, 1}∗ → 〈Q〉,

– H0 : {0, 1}∗ → Z
∗

r ,

– H1 : µr → {0, 1}
∗,

– H2 : µr × {0, 1}
∗ → Z∗

r ,

– H′

2 : 〈P 〉 × {0, 1}∗ → Z∗

r ,

– H3 : 〈P 〉 × µr × {0, 1}
∗ → Z∗

r .

– H′

3 : 〈P 〉 × 〈P 〉 × {0, 1}∗ → Z∗

r ,
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Furthermore, all existing identity-based signcryption schemes depend on the
existence of a Key Generation Centre (KGC) responsible for issuing private keys
corresponding to public identities. Assuming that a KGC is available, the Saka-
Kasahara scheme works as follows.

– Setup: The KGC generates a random secret polynomial s(x) =
∑d

i=0
six

i ∈
Zr[x] which acts as its private master key. The simplest choice is d = 1,
s1 = 1, so the secret key reduces to the single Z∗

r value s0. The KGC publishes
the points P , Q, g = e(P,Q), and siQ for i = 0, . . . , d.

– Keygen: A user identity is a public element u ∈ Z∗

r . The KGC computes a
user’s private key as Pu = s(u)−1P , where the inverse is computed modulo
r. The corresponding public key can be (publicly) computed from u and the

points siQ as Qu =
∑d

i=0
ui(siQ) = s(u)Q. Let Alice’s identity be a and

Bob’s identity be b.
– Signcrypt: To signcrypt a message m to Bob, Alice generates a random

integer x ∈ Z∗

r and computes:

R← gx

h← H0(m)

c← H1(R
1+h)⊕m

S ← x(hPsa +Qb)

The signcrypted message is (c, S).
– Unsigncrypt: Upon reception of the above pair, Bob computes:

R← e(Pb, S)

W ← e(S,Qsa)

m← H1(RW )⊕ c

h← H0(m)

Bob then verifies that W = Rh.

Other identity-based signcryption and authenticryption schemes have been
proposed in the literature. We include a summary of the associated computa-
tional costs in section 7, covering the above scheme plus those of Boyen [3],
Libert-Quisquater [9], Malone-Lee [10], Nalla-Reddy [11], and Chen-Malone-
Lee [5].

4 Security problems in the Sakai-Kasahara scheme

4.1 Information leak

The Sakai-Kasahara scheme makes it possible to distinguish between a number
of possible plaintexts given only the ciphertext, the public identity of the sender,
and the KGC’s public key. This also happens in Malone-Lee’s scheme, as pointed
out by Libert and Quisquater [9].
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The attack we now describe against Sakai-Kasahara is a modification of the
Libert-Quisquater attack against Malone-Lee’s scheme and proceeds as follows.
The ciphertext is (c, S). We assume that Carol knows that the plaintext Alice
sent to Bob is one of the messages in a set {mi | i = 1, . . . , n}. Carol computes
W ← e(S,Qa) and then, for each i = 1, . . . , n:

hi ← H0(mi)

Ri ← Wh
−1

i
mod r

until one value of i is found that makes H1(RiW ) ⊕ mi = c actually hold.
Therefore, the Sakai-Kasahara does not satisfy the IND-IDSC-CCA property.

4.2 Projection attacks

The original description of the Sakai-Kasahara scheme does not impose any
restriction upon the groups over which it is defined, assuming only the existence
of a bilinear, non-degenerate, efficiently computable pairing on those groups.

As it turns out, the group choice seriously affects the security of the Sakai-
Kasahara scheme, in the sense that the scheme structure implicitly uses the
relationship between 〈P 〉 and 〈Q〉 for the security purpose of concealing the
signer’s private key. In particular, when implemented on a large class of groups
where the Tate or Weil pairing is especially efficient, it allows the recipient of a
signcrypted message to obtain sufficient information to impersonate the sender,
as we show next.

Definition 3. The Frobenius endomorphism is the mapping Φ : E(Fqk) →
E(Fqk), (X,Y ) 7→ (Xq, Y q).

Definition 4. The trace map is the mapping tr : E(Fqk) → E(Fq) defined as

tr(P ) = P + Φ(P ) + Φ2(P ) + · · ·+ Φk−1(P ).

We see that tr(Φ(P )) = Φ(tr(P )) = tr(P ) for any P ∈ E(Fqk); this shows that
the range of the trace map is indeed E(Fq).

Definition 5. The trace-zero subgroup or trace kernel is the subgroup T =
{Q ∈ E(Fqk) | tr(Q) = O}.

The following maps:

π0 : E(Fqk)→ T , π0(Q) = Q− k−1 tr(Q),

π1 : E(Fqk)→ E(Fq), π1(P ) = k−1 tr(P ),

where k−1 is computed modulo r, satisfy π0(Q) = Q for any Q ∈ T and π1(P ) =
P for any P ∈ E(Fq)[r]. Notice that any point R ∈ E(Fqk)[r] can be written
R = π0(R) + π1(R).

With these tools, we can mount a forgery attack against the Sakai-Kasahara
scheme. The crucial assumption is that the KGC chooses a point Q ∈ T . This
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is the case if the implementation is based on certain supersingular curves as
described in [1, 6, 7] (such as curves of form y2 = x3 + ax over Fp with p ≡ 3
(mod 4), or curves of form y2 = x3 +ax+b over F3m), or ordinary curves as sug-
gested in [2]. These are popular choices, as they favour efficient implementation
of the Tate or Weil pairing as well as other arithmetic operations.

The basic attack allows the legitimate receiver of a signcrypted message to
fake other signcryptions from the same sender. This attack proceeds as follows.
Bob unsigncrypts the received message (c, S), obtaining R and h. Let m′ be the
message he wants to pretend was sent by Alice. He computes:

U ← h−1 π1(S) [= xPa]

V ← π0(S) [= xQb]

h′ ← H0(m
′)

c′ ← H1(R
1+h′

)⊕m′

S′ ← h′U + V

Now Bob can use the pair (c′, S′) as evidence that Alice sent him m′ rather
than m. He can even further disguise his ruse by using a different x, say x′ = αx.
All he has to do is to set R′ ← Rα, U ′ ← αU , and V ′ ← αV and use these values
instead.

This attack is especially annoying because, if the plaintext of any signcrypted
message m from Alice to Bob is compromised, then a third party, Carol, can
impersonate Alice and forge new signcrypted messages to Bob. Carol simply
computes h← H0(m), R = e(h−1S,Qa), and proceeds as above. We see that, in
fact, Carol needs only h, not m itself.

5 The proposed schemes

The security of our schemes is based on the intractability of not only the Bi-
linear Diffie-Hellman Problem (BDHP) and the Computational Diffie-Hellman
Problem (CDHP), but also the Inverse Computational Diffie-Hellman Problem
(Inv-CDHP), namely, given P and a−1P , compute a. However, the Inv-CDHP
is polynomial-time equivalent to the CDHP [14].

5.1 A forward-secure authenticryption scheme

This scheme is based on Sakai-Kasahara, with additional techniques suggested
in [14]. It is non-transferable, in the sense that Alice’s signature can only be
publicly verified with Bob’s cooperation, at the cost of implicitly revealing the
plaintext.

– Setup: The KGC generates a random secret polynomial s(x) =
∑d

i=0
six

i ∈
Zr[x] which acts as its private master key. The simplest choice is d = 1,
s1 = 1, so the secret key reduces to the single Z∗

r value s0. The KGC publishes
the points P , Q, g = e(P,Q), siP , and siQ for i = 0, . . . , d.
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– Keygen: A users identity is hashed using a random oracle to a public ele-
ment u ∈ Z∗

r . The KGC computes this user’s private keys as Psu = s(u)−1P
and Qsu = s(u)−1Q, where the inverse is computed modulo r. The cor-
responding public keys can be (publicly) computed from u and the points

siP , siQ as Pu =
∑d

i=0
ui(siP ) = s(u)P and Qu =

∑d

i=0
ui(siQ) = s(u)Q,

respectively. Let Alice’s identity be a and Bob’s identity be b.
– Signcrypt: To signcrypt a message m ∈ {0, 1}∗ to Bob, Alice generates a

random integer x ∈ Z∗

r and computes:

R← gx

c← H1(R)⊕m

h← H2(R, c)

S ← (x+ h)Psa

T ← xPb

The signcrypted message that Alice sends to Bob is (c, S, T ).
– Unsigncrypt: Upon reception of the above triple, Bob computes:

R← e(T,Qsb)

h← H2(R, c)

m← H1(R)⊕ c

V ← e(S,Qa)

Bob then verifies that V = Rgh.

This scheme works by the following reasoning. If the triple is correct,
then e(T,Qsb) = e(xs(b)P, s(b)−1Q) = R. Besides, e(S,Qa) = e((x +
h)s(a)−1P, s(a)Q) = e(P,Q)x+h = Rgh as expected.

Contrary to the Sakai-Kasahara scheme, the relationship between 〈P 〉 and
〈Q〉 is not used here for security purposes beyond the fact that the pairing
must be non-degenerate on these groups, thus making the projection attack not
applicable.

5.2 A forward-secure transferable signcryption scheme

The previous scheme is not publicly verifiable because the signature tag com-
putation depends on R, which can only be recovered by the legitimate receiver.
Libert and Quisquater [9] propose as an open problem the task of devising an
efficient signcryption scheme providing both public verifiability and forward se-
curity. We now describe such a scheme, thereby closing that gap.

Usually one conceives a signcryption scheme as an algorithm more efficient
than the encrypt-then-sign paradigm; it turns out as a surprise that our scheme,
which ranks among the latter type, becomes faster than any of the previously
known signcryption methods in certain settings (see table 1).
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– Setup: The KGC generates a random secret polynomial s(x) =
∑d

i=0
six

i ∈
Zr[x] which acts as its private master key. The simplest choice is d = 1,
s1 = 1, so the secret key reduces to the single Z

∗

r value s0. The KGC publishes
the points P , Q, g = e(P,Q), and siP for i = 0, . . . , d.

– Keygen: A users identity is hashed using a random oracle to a public ele-
ment u ∈ Z∗

r . The KGC computes a user’s private key as Qsu = s(u)−1Q,
where the inverse is computed modulo r. The corresponding public key can
be (publicly) computed from u and the points siP as Pu =

∑d

i=0
ui(siP ) =

s(u)P . Let Alice’s identity be a and Bob’s identity be b.
– Signcrypt: To signcrypt a message m ∈ {0, 1}∗ to Bob, Alice generates a

random integer x ∈ Z
∗

r and computes:

N ← gx−1

R← xPa

S ← x−1Pb

c← H1(N)⊕m

h← H′

3(R,S, c)

T ← (x + h)−1Qsa

The signcrypted message that Alice sends to Bob is (c, R, S, T ).
– Unsigncrypt: Upon reception of the above quadruple, Bob computes:

h← H′

3(R,S, c)

V ← e(R+ hPa, T )

N ← e(S,Qsb)

m← H1(N)⊕ c

Bob then verifies that V = g.

This scheme works by the following reasoning. If the quadruple is correct,
then h is correct and e(R + hPa) = e(xs(a)P + hs(a)P, (x + h)−1s(a)−1Q) =

e(P,Q) = g. Besides, e(S,Qb) = e(x−1s(b)P, s(b)−1Q) = e(P,Q)x−1

, which is
the original N as expected.

The signcryption is transferable (publicly verifiable) because V does not de-
pend on any private information. It is also forward-secure, in the sense that only
Bob (and the KGC) can recover m: knowledge of Alice’s private keys Pa and Qa

alone is insufficient to compute N (or, equivalently, x−1P , x−1Q, or x−1 itself).
Notice that one could generalise the scheme by substituting H(x) for x−1, where
H is a suitable random oracle.

6 A new identity-based signature scheme

We can derive an efficient identity-based signature scheme from the non-
transferable signcryption scheme in section 5.2. Actually this scheme is the
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identity-based analogue of the signature scheme proposed by Zhang, Safavi-
Naini and Susilo [14]. Existing identity-based signature methods include the Heß
scheme [8] and the Cha-Cheon [4] scheme; we compare their relative efficiency
in section 7.

– Setup: The KGC generates a random secret polynomial s(x) =
∑d

i=0
six

i ∈
Zr[x] which acts as its private master key. The simplest choice is d = 1,
s1 = 1, so the secret key reduces to the single Z∗

r value s0. The KGC publishes
the points P , Q, g = e(P,Q), and siP for i = 0, . . . , d.

– Keygen: A users identity is hashed using a random oracle to a public ele-
ment u ∈ Z∗

r . The KGC computes this user’s private key as Qsu = s(u)−1Q,
where the inverse is computed modulo r. The corresponding public key can
be (publicly) computed from u and the points siP as Pu =

∑d

i=0
ui(siP ) =

s(u)P . Let Alice’s identity be a.
– Signing: To sign a message m ∈ {0, 1}∗, Alice generates a random integer
x ∈ Z∗

r and computes:

R← xPa

h← H′

2(R,m)

S ← (x + h)−1Qsa

The signature attached to m is the pair (R,S).
– Verification: Upon reception of the above pair, Bob computes h ←
H′

2(R,m) and checks that e(R+ hPa, S) = g.

7 Computational cost comparison

We now briefly assess the comparative efficiency of several identity-based sign-
cryption schemes, implemented according to their original descriptions.

Table 1 compares the processing times of our schemes with other identity-
based signcryption and signature schemes, for the underlying base finite field
F397 and a supersingular curve of embedding degree k = 6. Table 2 does the
same for an underlying finite field Fq with lg q = 512 bits and an ordinary curve
with k = 2. All implementations were written in C++ and run on an Athlon
XP 1.6 GHz.

We see from these results that our proposed algorithms rank among the
fastest schemes.

8 Conclusion

We have pointed out semantic security problems in existing signcryption
schemes, and showed that the choice of the bilinear pairing may impair schemes
otherwise arguably secure.

We have also proposed efficient signcryption schemes that are semantically
and forward secure, in both transferable and non-transferable form. Our schemes
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Table 1. Efficiency comparison, k = 6

non-transferable scheme signcryption (ms) unsigncryption (ms)

Malone-Lee 18.2 40.6
Boyen 25.5 55.2

Chen-Malone-Lee 18.2 40.6
Libert-Quisquater 18.2 27.6

Nalla-Reddy 24.0 46.8
Sakai-Kasahara 19.3 33.8

ours 10.9 33.8

transferable scheme signcryption (ms) unsigncryption (ms)

Libert-Quisquater 29.7 53.7
ours 13.0 27.6

signature scheme signing (ms) verification (ms)

Heß 11.4 33.8
Cha-Cheon 3.7 27.6

ours 3.7 14.6

Table 2. Efficiency comparison, k = 2

non-transferable scheme signcryption (ms) unsigncryption (ms)

Malone-Lee 106.8 70.8
Boyen 44.8 99.5

Chen-Malone-Lee 42.7 70.8
Libert-Quisquater 42.7 49.5

Nalla-Reddy 37.5 66.1
Sakai-Kasahara 18.8 44.8

ours 16.1 44.8

transferable scheme signcryption (ms) unsigncryption (ms)

Libert-Quisquater 56.8 89.6
ours 23.4 49.5

signature scheme signing (ms) verification (ms)

Heß 16.2 44.8
Cha-Cheon 14.1 49.5

ours 14.1 28.7
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can be implemented with any secure pairing instantiation, including those that
use the trace-zero group. Our transferable scheme answers an open problem
posed by Libert and Quisquater in [9], and also gives rise to a new, efficient
identity-based signature scheme.
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A Strict non-transferability of the Nalla-Reddy scheme

The Nalla-Reddy scheme was proposed in [11]. We now show that, contrary to
all other identity-based signcryption schemes we are aware of, it is inherently
non-transferable, in the sense that a recipient cannot under any circumstance
use the signcrypted message to convince a third party about the identity of the
sender. In other words, if Alice signcrypts and sends a message to Bob, he can
thereafter easily forge other messages to himself as if they had been signcrypted
by Alice; as a consequence, Bob cannot convince anyone that a message has
really been sent by Alice.

Interestingly, deciding if this is a weakness or rather a useful property depends
on the application where the scheme is to be employed.

Setup: The KGC generates a random master secret s ∈ Z∗

r and publishes P ,
Q, Ps ≡ sP , and Qs ≡ sQ. One can (and should) verify that this set is
consistent by checking that e(P,Qs) = e(Ps, Q).

Keygen: A user identity is an element u ∈ {0, 1}∗, to which there correspond
public points Pu = HP (u) and Qu = HQ(u). The KGC calculates this user’s
private keys as Psu = sPu and Qsu = sQu. Let Alice’s identity be a and
Bob’s identity be b.

Signcrypt: To signcrypt a message m ∈ {0, 1}∗ to Bob, Alice generates a
number integer x ∈ Z∗

r and computes:

R← xPsa

Y ← e(Psa, Qb)

h← H3(R, Y,m)

S ← xhPa

N ← Y xh

c← H1(N)⊕m

The signcrypted message that Alice sends to Bob is (c, R, S).
Unsigncrypt: Upon receiving the above triple, Bob computes:

N ← e(S,Qsb)

m← H1(N)⊕ c

Y ← e(Pa, Qsb)

h← H3(R, Y,m)

Bob then verifies that N = e(R,Qb)
h.

The Nalla-Reddy protocol is non-transferable and so does not allow the dig-
ital signature service of non-repudiation. Bob can manipulate a valid ciphertext
and claim to a third party that Alice signcrypted a different message to him.
Say Bob received from Alice the valid triple (c, R, S) and he wishes to replace
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m by the forged message m′. He computes:

h′ ← H3(R, e(Pa, Qsb),m
′)

S′ ← h−1h′S

N ′ ← Nh−1h′

c′ ← H1(N
′)⊕m′

The forged ciphertext on m′ is (c′, R, S′). Therefore, the Nalla-Reddy scheme is
inherently non-transferable.
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