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Abstract. We analyse the consequences of specific properties of the
key-setup phase in symmetric encryption schemes for their security. We
find that key-setup routines satisfying IND-CNA and one-wayness allow
to construct schemes which are provably secure against key-recovery at-
tacks. We propose a specific cryptosystem based on a stream cipher with
a one-way IND-CNA key-setup, for which we present a proof, based on
a set of scheme-specific assumptions, that it remains secure even if a
successful key-recovery attack against the underlying cipher is found.
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1 Introduction

There has been a lot of interest in proofs of security for cryptographic schemes
in recent years. A commonly employed approach is reduction and basing the
proof on an assumption or a set of assumptions. This approach allows to prove
the security of a scheme under an assumption that given primitives have certain
properties or – generally – assuming that certain facts are true. An example re-
sult would be to show that a given mode of operation of a block cipher is secure
(i.e. that it satisfies the adopted notion of security under the adopted adversary
model) assuming that the underlying cipher satisfies certain criteria (e.g. that it
is a pseudo-random permutation).

The only known encryption scheme which enjoys unconditionally provable secu-
rity is the One Time Pad, which does not limit its security to the key-space but
to the message-space. However a significant drawback in its practical applica-
tions is the requirement for a secure channel for transmitting a message-unique
key of the same size as that of the message.

Modern symmetric encryption algorithms are much easier to apply than the
OTP but they do not offer provable security. None of the algorithms has also
been proved to require a brute-force search of the key-space, although no better
method of breaking a number of them is publicly known.



In this paper we discuss the properties of the key-setup phase of symmetric
encryption schemes and their consequences for the security of the scheme. We
find that a key-setup routine which is a one-way function of argument key and a
message-unique parameter nonce and which satisfies the IND-CNA property (in-
distinguishability under chosen nonce attack) can ensure conditionally provable
security against key-recovery attacks.

2 Inverting a composition of functions

Let f and g be functions: f : X → Y and g: Y → Z, where g is not the inverse
of f . Let x ∈ X , y ∈ Y , z ∈ Z.

Assume an adversary whose task is to find the value of x. Assume the adversary
knows the value of z = g(f(x)) and that she can easily find the value of y given
the value of z = g(y).

In the described scenario the adversary is unable to accomplish her task un-
less she can recover x from y = f(x).

In other words:

Lemma 1. Even if an adversary can invert g(y), the necessary condition for
inverting g(f(x)) is inverting f(x).

2.1 Implications for symmetric encryption schemes

Let Ct = E(Pt, K) denote a symmetric encryption scheme, where Ct and Pt
represent ciphertext and plaintext data respectively, K denotes a secret key and
E an encryption algorithm. Security of such scheme can be formalised in very
strict terms, like IND-CPA, which gives the adversary a significantly easier task
to accomplish than in the more classical, but also more demanding model –
where she needs to recover the secret key K. We might informally agree that
recovering K is a greater threat to the secrecy of the encrypted data than dis-
tinguishing between two chosen plaintexts by observing their ciphertexts. This
is not to state that schemes only failing to satisfy IND-CPA are secure, but that
those with feasible key-recovery attacks induce a more direct threat to the se-
crecy of Pt.

Using an analogy to Lemma 1 we can modify the model into Ct = E(Pt, f(K)),
where f is a one-way function with a codomain compatible with the input to E.
Any attack recovering the key f(K) would be no threat to the secrecy of K if f
was one-way. The adversary – apart from recovering the encryption key f(K) –
would still need to invert f to find the secret key K.

This however is obviously redundant – the knowledge of f(K) is sufficient for



the adversary to decrypt new messages, as she can input f(K) to the decryption
oracle and the value of K becomes irrelevant.

However a simple modification to the scheme would actually force the adver-
sary to invert f before she could decrypt a new message. Assume the scheme
is defined as Ct = E(Pt, g(K, N)), where N is a nonce (N has a different non-
secret value for each encrypted message) and g is a function with a codomain
compatible with the input to E such that: (a) recovering K from g(K, N) is
infeasible and (b) g is IND-CNA (indistinguishable under chosen nonce attack),
i.e. an adversary who chooses N1 and N2 and observes G1 = g(K, N1+R) and
G2 = g(K, N2−R), where Prob(R = 0) = Prob(R = 1) = 1/2, is unable to tell
whether G1 = g(K, N1) or G1 = g(K, N2) with probability higher than 1/2.

After the modification an adversary who can perform a key-recovery attack on
Ct1 = E(Pt1, g(K, N1)) and find the value of g(K, N1), has no advantage in
decrypting a new message Ct2 = E(Pt2, g(K, N2)) unless she can invert g and
find the value of K. The value of g(K, N1) is irrelevant to the value of g(K, N2)
as long as the key-setup is IND-CNA.

In other words:

Lemma 2. Let A denote a set of all attacks against the scheme
Ctx = E(Ptx, g(K, Nx)), including an attack recovering the encryption key
g(K, Nx). Even if an adversary can perform a successful A-attack on
Ct1 = E(Pt1, g(K, N1)) and recover g(K, N1), the necessary condition for de-
crypting a new message Ct2 = E(Pt2, g(K, N2)) is either performing another
A-attack on Ct2 or inverting g(K, N1) and recovering the value of K.

Lemma 2 says that a one-way and IND-CNA key-setup delivers an additional
key-setup-based level of resistance against key-recovery attacks. Recovering the
secret key K requires (1) an actual attack recovering the encryption key and
(2) the inverse of the key-setup routine g(K, N). Without the inverse of g a
successful attack recovering the encryption key g(K, N1) on one message gives
the adversary no advantage in decrypting any other message encrypted with K.

3 General description of the VMPC Cryptosystem

The VMPC Cryptosystem specifies a method of transmitting j messages en-
crypted with the same secret key K and with a message-unique nonce Ni be-
tween two parties. The scheme is based on the VMPC Stream Cipher and its
Key Scheduling Algorithm, which were presented at FSE’04 in [8]. The original
KSA was modified here to be a one-way IND-CNA function.



4 VMPC Cryptosystem

Notation:

Plaintexti[m]: m-th byte of i-th message
Ciphertexti[m]: m-th byte of encrypted i-th message

Pi : 256-byte table storing a permutation
s : 8-bit variable
K : c-byte table storing the secret key; 16 ≤ c ≤ 64
Ni : z-byte table storing the nonce of i-th message; 16 ≤ z ≤ 64
+ : addition modulo 256

1. Parties A and B set up the key K, which is known only to A and B
2. Party A transmits j messages to Party B by following steps 3-8:

3. For i from 1 to j execute steps 4-8:

4. Generate a nonce Ni such that Ni 6= Nd for any d 6= i
5. Input K and Ni to VMPC KSA by executing steps 5.1 - 5.4.2

[Pi = KSA(KSA(KSA(P (0), K), Ni), K)]:

5.1. s = 0; for n from 0 to 255: P (0)[n] = n; Pi = P (0)

5.2. for m from 0 to 767: execute steps 5.2.1 - 5.2.2:

5.2.1. s = Pi[s + Pi[m mod 256] + K[m mod c]]

5.2.2. x = Pi[m mod 256]; Pi[m mod 256] = Pi[s]; Pi[s] = x

5.3. for m from 0 to 767: execute steps 5.3.1 - 5.3.2:

5.3.1. s = Pi[s + Pi[m mod 256] + Ni[m mod z]]

5.3.2. x = Pi[m mod 256]; Pi[m mod 256] = Pi[s]; Pi[s] = x

5.4. for m from 0 to 767: execute steps 5.4.1 - 5.4.2:

5.4.1. s = Pi[s + Pi[m mod 256] + K[m mod c]]

5.4.2. x = Pi[m mod 256]; Pi[m mod 256] = Pi[s]; Pi[s] = x

6. Encrypt i-th message with VMPC Stream Cipher by executing steps 6.1-6.1.3:

[Ciphertexti = Plaintexti xor SC(Pi)]

6.1. For m from 0 to (Length of i-th message)−1 execute steps 6.1.1 - 6.1.3:

6.1.1. s = Pi[s + Pi[m mod 256]]

6.1.2. Ciphertexti[m] = Plaintexti[m] xor Pi[Pi[Pi[s]] + 1]

6.1.3. x = Pi[m mod 256]; Pi[m mod 256] = Pi[s]; Pi[s] = x

7. Prepend Ni to Ciphertexti
8. Transmit Ciphertexti to Party B



5 Conditional proof of security of VMPC Cryptosystem

Note: determining X is used here to denote determining any information about
the value of X with probability higher than expected from a random guess.

Definition 1. Breaking the cryptosystem: Determining Plaintexti given
Ciphertexti and given Ciphertextd and Plaintextd for any values of d 6= i

Definition 2. Attack on the cipher: An algorithm recovering the internal state
Pd from the keystream SC(Pd), where SC(Pd) = Ciphertextd xor Plaintextd

Observation 1. According to theoretical analyses and statistical tests de-
scribed in [8], there is no known method of distinguishing the output of the
VMPC Stream Cipher (SC(Pi)) from a truly random data stream.

Observation 2. According to [8], one phase of the KSA (768 iterations in
steps 5.2 or 5.3 or 5.4) provides an undistinguishable from random diffusion 1 of
changes of one bit or byte of key of size up to 64 bytes onto the generated per-
mutation Pi and onto output generated by the VMPC Cipher (SC(Pi) in step
6.1). The double repetition of the 768 steps of the KSA in steps 5.3 and 5.4 pro-
vides the diffusion effect with an extensive safety margin. From these results we
conjecture that the transformation Pi = KSA(KSA(KSA(P (0), K), Ni), K), as
specified in steps 5.1-5.4, provides the IND-CNA property, defined in Section 2.1.

Assumption 1. Let Adv1 denote the probability that an adversary who has
no information about the value of SC(Pi) finds the value of Plaintexti, where
Plaintexti = Ciphertexti xor SC(Pi).

Adv1 = 2−8×c+1

where c is the size of the secret key K in bytes.

Elucidation. According to Observation 1, the value of SC(Pi) cannot be dis-
tinguished from a truly random value. As a result the value of Ciphertexti =
Plaintexti xor SC(Pi) is also undistinguishable from random, which thwarts the
possibility of deducing any information about Plaintexti directly from Ciphertexti.

Out of the remaining sources of information in the described cryptosystem
SC(Pi) appears to be the only value sufficiently related to Plaintexti to en-
able determining Plaintexti.

1 Relations between P1 = KSA(P (0), K1) and P2 = KSA(P (0), K2) and relations
between SC(P1) and SC(P2), where K1 differs from K2 in one bit or one byte,
are undistinguishable from relations expected between – respectively – two random
permutations or two random data-streams



Assumption 2. Let Adv2 denote the probability that an adversary who has
no information about the value of Pi finds the value of SC(Pi), where SC(Pi)
is the cipher’s output derived in step 6.1.

Adv2 = 2−8×c+1

Elucidation. According to Observation 1, the value of SC(Pi) cannot be dis-
tinguished from a truly random value. As a result the value of Ciphertexti =
Plaintexti xor SC(Pi) is also undistinguishable from random, which thwarts the
possibility of deducing any information about SC(Pi) directly from Ciphertexti.

According to Observation 2, relations between the values of SC(Pi) and SC(Pd)
and between the values of Pi and Pd are undistinguishable from random, which
thwarts the possibility of deducing any information about SC(Pi) from SC(Pd)
for d 6= i.

Out of the remaining sources of information in the described cryptosystem Pi

appears to be the only value sufficiently related to SC(Pi) to enable determining
SC(Pi).

Assumption 3. Let Adv3 denote the probability that an adversary who has
no information about the value of K finds the value of Pi, where
Pi = KSA(KSA(KSA(P (0), K), Ni), K).

Adv3 = 2−8×c+1

Elucidation. According to Observation 2, relations between the values of

P
(2)
i

= KSA(KSA(P (0), K), Ni) and P
(2)
d

= KSA(KSA(P (0), K), Nd) and, as
a result of step 5.4, relations between the values of Pi and Pd are undistinguish-
able from random for Ni 6= Nd, which thwarts the possibility of determining Pi

from Pd for d 6= i.

Out of the remaining sources of information in the described cryptosystem K
appears to be the only value sufficiently related to Pi to enable determining Pi.

Assumption 4. Let Adv4 denote the probability that an adversary who has
no information about the value of Pd finds the value of K, where
Pd = KSA(KSA(KSA(P (0), K), Nd), K) for any value of d ∈ {1, 2, . . . , j}.

Adv4 = 2−8×c+1

Elucidation. In the described cryptosystem K is used nowhere else than for
the computation of the value of Pd = KSA(KSA(KSA(P (0), K), Nd), K) for
d ∈ {1, 2, . . . , j}.



Lemma 3. Even if an adversary performs a successful attack on the cipher and
recovers Pd from SC(Pd), to break the cryptosystem and determine Plaintexti
for i 6= d, she needs to invert Pd = KSA(KSA(KSA(P (0), K), Nd), K) and
recover the value of K, where Nd is a known parameter.

Lemma 3 is true provided that assumptions 1-4 are true. Following Assumption 1,
breaking the cryptosystem cannot be accomplished without determining SC(Pi);
following Assumption 2, SC(Pi) cannot be determined without determining Pi;
following Assumption 3, Pi cannot be determined without determining K; fol-
lowing Assumption 4, K can only be recovered from Pd for d ∈ {1, 2, . . . , j}.
If Pd is known, obviously for d 6= i, which is assumed to be true as a result of
a successful attack, then recovering 2 K from Pd is a necessary condition for
breaking the cryptosystem. ⊓⊔

5.1 The problem of recovering K from Pd

The transformation Pd = KSA(KSA(KSA(P (0), K), Nd), K) performs 2304 op-
erations, each constituting (5.X.1) an update of the s variable through combin-
ing a consecutive byte of K, the previous value of s and two elements of Pd and
(5.X.2) a swap operation of a consecutive-modulo-256 and s-th element of Pd.
As a result each element of Pd undergoes an average number of 18 K-dependant
changes in the course of the transformation. We believe that tracking these op-
erations in the purpose of providing a proof of their uninvertibility is practically
unreachable.

On the other hand the extent of the mixing the transformation performs on
Pd indicates that the transformation might actually be infeasible to invert.

If a 2-phase KSA P ′

d
= KSA(KSA(P (0), K), Nd) was used, inverting it could

be reduced to the problem of recovering KSA(P (0), K). Recovering K would
be redundant because the known values KSA(P (0), K) and Ni would allow to
reconstruct P ′

i
= KSA(KSA(P (0), K), Ni), generate the keystream SC(P ′

i
) and

recover Plaintext′
i

= Ciphertext′
i

xor SC(P ′

i
). This would be possible since

given P ′

d
= KSA(KSA(P (0), K), Nd) and the known value of Nd the operations

performed by the KSA could be backtracked to recover KSA(P (0), K) with the
guess-work factor limited only to the value of s.

However as a result of the third phase of the KSA (step 5.4), the guess-work
required by the backtracking algorithm would be significantly higher than that

because both the value of K and the value of P
(2)
d

= KSA(KSA(P (0), K), Nd)

in Pd = KSA(P
(2)
d

, K) would be unknown. Each iteration of the third phase of

the KSA usually uses one byte of K and 3 elements of the P
(2)
d

permutation, all
of which are unknown, which implies that usually 4 guesses per each iteration

2 recovering rather than determining here – the knowledge of all the bits of K is
necessary in consequence of the KSA diffusion effect described in Observation 2



are required to proceed with the backtracking. This would result in more than
(c + 1) guessed values after c iterations (c denoting the length of K in bytes),
which is not more efficient than searching through all the 28×c possible values
of K.

From the above observations we conjecture Assumption 5:

Assumption 5. The most efficient method of recovering K from

Pd = KSA(P
(2)
d

, K) = KSA(KSA(KSA(P (0), K), Nd), K) is searching through
the 28×c possible values of K until one of them conforms to
Pd = KSA(KSA(KSA(P (0), K), Nd), K), where Pd is assumed to be known as
a result of a successful attack and Nd is a known parameter.

Provided that Assumption 5 is true, we can formulate a lemma:

Lemma 4. Searching through the possible 28×c values of K is a necessary con-
dition for breaking the cryptosystem.

Lemma 4 is a direct consequence of Lemma 3, saying that recovering K from
Pd = KSA(KSA(KSA(P (0), K), Nd), K) is a necessary condition for breaking
the cryptosystem, and Assumption 5, which says that recovering K from Pd

requires a brute-force search for the correct value of K. ⊓⊔

6 Consequences of the proof for the cryptosystem

The key component of the cryptosystem is the third phase of the Key Schedul-
ing Algorithm (step 5.4) without which the cryptosystem has a standard level
of security, where determining a new plaintext is easily possible if a practical
algorithm recovering the internal state from the keystream is found.

In the proposed cryptosystem it is assumed that the adversary can recover the
cipher’s internal state Pd for one message, but still – because of the third K-
dependant phase of the KSA and under the specified assumptions – the scheme
can be proved secure since the internal state Pi used to encrypt any other message
with the same key is pseudorandomly different from Pd, following the IND-CNA
property, and the KSA transformation is a one-way function.

In consequence the cryptosystem offers what might be viewed as a two-layer level
of security, where the additional layer is derived strictly from the properties of the
one-way IND-CNA key-setup: recovering the internal state Pd from the cipher’s
output SC(Pd) is still believed to require an average computational effort of
about 2900 operations, as estimated in [8], but even if this is overcome, breaking
the cryptosystem would additionally require a feasible algorithm recovering the
secret key K from the internal state Pd = KSA(KSA(KSA(P (0), K), Nd), K).



7 VMPC Cryptosystem test vectors

Table 1 gives 16 test output-bytes generated by the VMPC Cryptosystem for a
given 16-byte key K and a given 16-byte nonce N :

Table 1. Test-outputs of the VMPC Cryptosystem

K [hex] 96, 61, 41, 0A, B7, 97, D8, A9, EB, 76, 7C, 21, 17, 2D, F6, C7

N [hex] 4B, 5C, 2F, 00, 3E, 67, F3, 95, 57, A8, D2, 6F, 3D, A2, B1, 55

Output-byte position [dec] 0 1 2 3 252 253 254 255

Output-byte value [hex] B6 EB AE FE 48 17 24 73

Output-byte position [dec] 1020 1021 1022 1023 102396 102397 102398 102399

Output-byte value [hex] 1D AE C3 5A 1D A7 E1 DC

8 Conclusions

We analysed the role of the properties of the key-setup phase in symmetric en-
cryption schemes and their consequences for the security of the scheme against
attacks recovering the encryption key. We found that designing one-way key-
setup procedures satisfying the IND-CNA property for nonce-based cryptosys-
tems can provide a noticeable improvement in security against key-recovery at-
tacks.

We presented a proof of security of a specific cryptosystem based on both the
properties of the one-way IND-CNA key-setup and on a set of scheme-specific
assumptions. Although the assumptions relate to many components of the cryp-
tosystem they were intended to be relatively acceptable in practice as not to
significantly diminish at least the practical value of the conditional proof.

Most of all the paper was intended to illustrate that a nonce-based key-setup
routine meeting certain criteria allows to build symmetric encryption schemes
with an additional key-setup-based layer of resistance against the general class
of key-recovery attacks.
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