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Abstract. We present a new two-party identity-based key agreement
that is more efficient than previously proposed schemes. It is inspired
on a new identity-based key pair derivation algorithm first proposed by
Sakai and Kasahara. We show how this key agreement can be used in
either escrowed or escrowless mode. We also describe conditions under
which users of different Key Generation Centres can agree on a shared
secret key. We give an overview of existing two-party key agreement
protocols, and compare our new scheme with existing ones in terms of
computational cost and storage requirements.
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1 Introduction

In this paper we propose a new two-party authenticated identity-based key agree-
ment from bilinear maps. The basic idea behind an identity-based cryptosystem
is that end users can choose an arbitrary string, for example email addresses or
other online identifiers, as their public key. This eliminates much of the overhead
associated with key management. In traditional PKI settings, key agreement
protocols relies on the parties obtaining each other’s certificates, extracting each
other’s public keys, checking certificate chains (which may involve many sig-
nature verifications) and finally generating a shared secret. The technique of
identity-based encryption (IBE) greatly simplifies this process. This idea was
first proposed by Shamir [20] in 1984, made viable by Cocks [9] and Boneh and
Franklin [4] in 2001, further streamlined by Sakai and Kasahara [17] in 2003,
and is currently an area of very active research (see e.g. [10] for a survey).
? This author wishes to thank Enterprise Ireland for their support with this research
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There are many key agreement protocols based on bilinear maps, and most
have subsequently been broken. One of the first applications of pairing based
cryptography was a tripartite key agreement protocol by Joux [13]. Although
this key agreement does not authenticate the users, and thus is susceptible to
the man-in-the-middle attack, it was a significant step in the development of pair-
ing based cryptography. This original scheme was not identity-based. Many key
agreements from bilinear maps have been since proposed. Scott [18], Smart [25],
and Chen and Kudla [6] have proposed two-party key agreement protocols, none
of which have been broken. All of these schemes require that all parties involved
in the key agreement are clients of the same Key Generation Centre (KGC).
Nalla proposes a tripartite identity-based key agreement in [14], and Nalla and
Reddy propose a scheme in [15], but both have been broken [7, 22]. Shim presents
two key agreements [24, 23], but both these schemes have been broken by Sun
and Hsieh [26]. Another authenticated tripartite key agreement proposed by
Al-Riyami and Patterson [1] was broken by Shim [21].

Most identity-based key agreement protocols have the property of key escrow :
the trusted authority that issues private keys can recover the agreed session key.
This feature is either acceptable, unacceptable, or desired depending on the cir-
cumstances. For example, escrow is essential in situations where confidentiality
as well as an audit trail is a legal requirement, as in confidential communica-
tion in the health care profession. There are other examples, such as personal
communications, where it would be advantageous to turn escrow off.

The two-party key agreements proposed by Smart and by Chen and Kudla are
escrowed schemes by default. A modification suggested by Chen and Kudla [6] to
remove escrow can also be applied to Smart’s scheme. However, this modification
creates additional computational overhead. Scott’s scheme does not allow escrow,
and there seems no obvious way to introduce this feature — bar one party to
the protocol sending a third party a copy of the agreed key.

Chen and Kudla also suggest a modification that allows two parties that
have their public keys generated by two different Key Generation Centre’s to
communicate. We say that these parties are members of different domains. Most
key agreements require both parties to be from the same domain. This, for
example, might mean that two workers from the same company would be able
to generate a shared secret, however employees from two different companies
would not be able to generate such a shared secret. We suggest a protocol that,
without pairing precomputation, is twice as efficient as the scheme suggested
in [6].

We suggest key agreement between domains is an important property of this
scheme as, from a commercial viewpoint, identity-based cryptography (IBC)
seems particularly well suited to encrypted telephony and encrypted VoIP. For
encrypted VoIP to work on a global scale there simply must be compatibility
between networks, and therefore key agreement between different networks is
important.

Our contributions in this paper are:
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– An efficient identity-based authenticated key agreement protocol that can be
instantiated in either escrowed or escrowless mode without imposing extra
computational steps.

– An efficient key agreement that allows users who have their private keys
generated by distinct Key Generation Centres to establish a shared secret
without additional overhead, provided standardised curve parameters are
used.

This paper is organised as follows. Section 2 introduces basic mathematical
concepts. Section 3 describes our proposed authenticated key agreement with
escrow, and section 4 introduces our proposed escrowless scheme. In section 5
we present a key agreement protocol for members of distinct key generation
domains. We discuss efficiency issues in section 6 and security issues in section 7.
Finally, we draw our conclusions in section 8.

2 Mathematical Preliminaries

An elliptic curve E(Fqk) is the set of solutions (x, y) over the field Fqk to an equa-
tion of the form y2 = x3 +Ax+B, together with an additional point at infinity,
denoted O. There exists an Abelian group law on E, with explicit formulas for
computing the coordinates of a point P3 = P1 + P2 from the coordinates of P1

and P2. Scalar multiplication of a point is defined as the repeated addition of a
point to itself n, e.g. 3P1 = P1 + P1 + P1. O is the identity element.

The number of points of an elliptic curve E(Fqk) is called the order of the
curve over the field Fqk . A point P has order r if rP = O for the smallest possible
r > 0. The set of r-torsion points on E is the set E[r] = {P ∈ E | rP = O}. The
order of a point always divides the curve order. There is an operation on a point
in the extension field that will reduce that point to a point in the base field; this
is called the trace map, and is denoted as Tr(P ). One of these cyclic subgroups
is called the trace zero subgroup, T = {P ∈ E | Tr(P ) = O}. A subgroup G of
an elliptic curve is said to have embedding degree k if its order r divides qk − 1
for the smallest possible k. We assume k > 1. We let G0 be the group of order r
defined over Fq and G1 be the trace zero group, again of order r. The results of
Weil and Tate pairing operations equate to one of the r-th roots of unity. Again
this is a group of order r, we call this group G2 [12].

The modified Tate pairing over supersingular curves [5] denoted t̂(P,Q) is
t(P,ψ(P )) where t : G0 × G1 → G2 is the Tate pairing and ψ : G0 → G1 is an
efficiently computable distortion map [12]. It is an example of a bilinear map of
the form t̂ : G0 ×G0 → G2 where G0 and G2 are groups of order r.

The possibility of exploiting differences between the pairings t̂(P, P ) and
t(P,Q) to implement protocols with different properties has occurred to other
authors [11, 18]. We use the modified Tate pairing in the escrowed system, and
the Tate pairing in the escrowless system.
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3 An Authenticated Key Agreement With Escrow

As with all other identity-based cryptosystems we assume the existence of a
trusted Key Generation Centre (KGC) that is responsible for the creation and
secure distribution of users private keys. This agreement algorithm can be im-
plemented using the modified Tate pairing.

Setup: The KGC inputs a security parameter κ into a BDH parameter gen-
erator Bmt which returns two groups G0 and G2, both of prime order r, a
suitable bilinear map t̂ : G0 × G0 → G2 (which can be implemented as the
modified Tate pairing), a generator element P such that 〈P 〉 = G0, and a
random oracle H : {0, 1}∗ → Z∗

r . The KGC randomly generates a master
secret s ∈R Z∗

r , and calculates a master public key sP . The parameters and
master public key are distributed to the users of the system through a secure
authenticated channel. We assume that the number of users is polynomial
in κ.

Extract: The KGC checks that a user has a claim to a particular online iden-
tifier. If they do, the KGC generates their private key and communicates it
privately to them. Let Alice’s online identifier map to a ∈ Z∗

r by means of
the random oracle H. Alice’s public key is (a+ s)P , which can be computed
as aP + sP . The KGC computes Alice’s private key as Apri = (a + s)−1P .
While it may be argued that this key pair derivation is not as elegant as
that in the Boneh-Franklin IBE [4], since the public key no longer relies on
the user’s identity alone, most key agreements, except Scott’s and Ryu et
al.’s [16], also use the KGC’s master secret in the key agreement stage.

Key Agreement: Assume that Alice and Bob have private keys issued by the
same KGC, respectively Apri and Bpri. Alice and Bob each generate one
unique random nonce xa, xb ∈R Z∗

r , respectively.

Alice Bob
AKA = xa(bP + sP ) � BKA = xb(aP + sP )
keya = t̂(BKA, Apri)xa keyb = t̂(AKA, Bpri)xb

This scheme is consistent because:

keya = t̂(BKA, Apri)xa

= t̂(P, P )xaxb

= t̂(AKA, Bpri)xb

= keyb.

The escrow property derives from the KGC’s ability to recover the shared
session key by computing:

xaP = (s+ b)−1AKA,

xbP = (s+ a)−1BKA,

key = t̂(xaP, xbP ).

Our scheme is role symmetric, with each party performing the same opera-
tions and thus incurring the same computational cost.
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4 An Authenticated Key Agreement Without Escrow

The key agreement without escrow differs only slightly from the algorithm given
in section 3. Again there are three algorithms, Setup, Extract and Key Agree-
ment. This key agreement protocol can be implemented using the conventional
Tate pairing, not the modified Tate pairing as in the escrowed scheme.

Setup: The KGC inputs a security parameter κ into a BDH parameter gener-
ator Bt which returns three groups G0,G1 and G2, G0 and G2 being groups
of prime order r, a suitable bilinear map t : G0 × G1 → G2 (which can be
implemented as the Tate pairing), two generator elements P and Q such
that 〈P 〉 = G0 and 〈Q〉 = G1, and a random oracle H : {0, 1}∗ → Z∗

r . It
is important that the discrete logarithm between ψ(P ) and Q is unknown3.
This can be achieved by obtaining P and Q as the output of random oracles
H0 : {0, 1}∗ → G0 and H1 : {0, 1}∗ → G1 evaluated on publicly known
constant strings cs0 and cs1 (cs0 and cs1 may be the same string). The
KGC randomly generates a master secret s ∈R Z∗

r , and calculates a master
public key sP . The parameters, master public key and the constant strings
used in the derivation of P and Q are distributed to the users of the system
through a secure authenticated channel. We assume that the number of users
is polynomial in κ.

Extract: The KGC checks that a user has a claim to a particular online iden-
tifier. If they do, the KGC generates their private key and communicates it
privately to them. Let Alice’s online identifier map to a ∈ Z∗

r by means of
the random oracle H. Alice’s public key is Apub = (a + s)P , which can be
computed as aP +sP . Alice’s private key is generated as Apri = (a+s)−1Q.
End user Alice is encouraged to check that the KGC has used the correct Q
in the construction of her private key by checking the following:

P ← H0(cs0)
Q← H1(cs1)

t(Apub, Apri)
?= t(P,Q)

Key Agreement: Assume that Alice and Bob have private keys issued by the
same KGC, respectively Apri and Bpri. Alice and Bob each generate one
unique random nonce xa, xb ∈ Z∗

r , respectively.

Alice Bob
AKA = xa(bP + sP ) � BKA = xb(aP + sP )
keya = t(BKA, Apri)xa keyb = t(AKA, Bpri)xb

3 If the KGC knows λ such that ψ (P ) = λQ, it can use the distortion map to get
a representation in 〈Q〉 of AKA or BKA and then recover the session key using the
technique outlined in the previous section. On non-supersingular curves no efficiently
computable distortion map exists [27] and this attack does not apply.
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This scheme is consistent because

keya = t(BKA, Apri)xa

= t(P,Q)xaxb

= t(AKA, Bpri)xb

= keyb.

We also note that, although the KGC has the ability to generate the private
keys of both users in the protocol, it is not able to obtain the shared session
key for any particular run of the protocol. The KGC can, in this instance, eas-
ily compute t(P,Q)xa and t(P,Q)xb , but calculating the key from these values
involves solving the Computational Diffie-Hellman Problem (CDHP) over the
group G2 [29].

5 Key Agreement Between Members of Distinct Domains

We now look at key agreements between members of separate domains. This
idea was first suggested in [6]. We suggest a scheme that is twice as efficient as
their scheme without precomputation, whilst being similar with precomputation.
Again this protocol can be instantiated in escrowed or escrowless mode.

For key agreement to be possible between members of different groups all
that is needed is for the points P , Q in the case of the escrowless system, or
just P in the case of the escrowed system, and the curve description to be
the same (standardised). Elliptic curves, suitable group generator points and
other cryptographic tools have been standardised for non-IBE applications, for
example in the NIST FIPS standards. It is reasonable, therefore, to assume the
availability of standard pairing-friendly curves as well.

Once these group generator points and curves have been agreed upon, each
KGC can generate their own random master secret.

Alice’s private key is generated by KGC1 with a master secret s1. Bob’s
private key is generated by KGC2 with a master secret s2. Alice’s public key
is (a + s1)P and her private key is Apri = (a + s1)−1P . Likewise, Bob’s public
key is (b + s2)P and his private key is Bpri = (b + s2)−1P . Notice that now
Alice must obtain s2P (the master public key of Bob’s KGC) and vice-versa; it
is critical that the master public keys are obtained in an authenticated manner,
as with any IBC scheme.

Alice and Bob now perform the authenticated key agreement:

Alice Bob
AKA = xa(bP + s2P ) � BKA = xb(aP + s1P )
keya = t̂(BKA, Apri)xa keyb = t̂(AKA, Bpri)xb
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This scheme is consistent because

keya = t̂(BKA, Apri)xa

= t̂(P, P )xaxb

= t̂(AKA, Bpri)xb

= keyb.

6 Efficiency

Smart’s protocol [25] requires each party to perform 2 point scalar multiplications
and 2 pairing evaluations. One of these pairings can be partially precomputed,
reducing the cost to 1 point scalar multiplication, 1 pairing evaluation and 1
pairing exponentiation per party at an additional storage cost of one pairing per
recipient. Our new scheme achieves the same efficiency without incurring the
extra storage requirements.

The Chen-Kudla authenticated key agreement protocol [6] requires 2 elliptic
curve point scalar multiplications, 1 point addition and 1 pairing evaluation.

Scott’s key agreement [18], using the pairing as a SPEKE generator, only
requires two pairing exponentiations when precomputation is used. Again it
restricts all users to having private keys generated by the same KGC.

The scheme proposed here requires 1 point scalar multiplication, 1 pairing
exponentiation and one 1 pairing evaluation. We note that a pairing exponenti-
ation is quicker than a point scalar multiplication.

We also note that the method of generating public keys from identities —
namely, by mapping identities to integer coefficients and performing a scalar
multiplication — is faster than the technique used in Boneh-Franklin key pair
generation. Their technique involves mapping the identifier to a coordinate, solv-
ing the curve equation and then multiplying by a large cofactor to generate a
point of order r. Public keys in our system will always be points of order r.

In Smart’s protocol the recipient’s public key is used either explicitly or
implicitly (if pairings are precomputed) to complete the protocol. In our scheme,
public keys of form uP + sP may be stored to save one scalar multiplication,
with the advantage that such values require a much smaller storage space than
pairing values, namely, a fraction4 1/k where k is the embedding degree of the
curve E(Fq).

We leave public key generation out of the following complexity analysis as
it is only slightly faster for our system — and can be precomputed in all IBE
systems. We also leave out E(Fqk) multiplication, point addition and hashing as
they are fast to compute compared to the other principle operations.

key: p = pairing evaluation, e = E(Fqk) (pairing) exponentiation, m = scalar
multiplication, n = number of recipients, s = storage space per pairing eval-
uation, rac = requires additional computation (two point multiplications).

4 If pairing compression techniques as described in [19] are used, the fraction is 2/k
in general or 3/k in a special case.
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Proposed Smart Chen-Kudla Scott
No Precomp 1p+1e+1m 2p+1m 1p+2m 1p+2e
Precomp 1p+1e+1m 1p+1e+1m+ns 1p+1e+1m+ns 2e
Escrow Yes / No Yes / No (rac) Yes / No (rac) No
Between Domains Yes No No No

7 Security of the proposed scheme

The proof of security of the above algorithm relies on the conjectured intractabil-
ity of a problem which Zhang et al. [30] call the Bilinear Inverse Diffie-
Hellman Problem: For α, β ∈ Z∗

r , given P , αP , βP , compute v = t̂(P, P )α−1β .

7.1 The security of the authentication mechanism

Assuming that the BIDHP is hard (with respect to the security parameter κ),
we now show the security of the above protocols.

We adopt the security model proposed by Bellare and Rogaway [2], modified
by Blake-Wilson et al. [3], and used in proving the security of the key agreement
protocol introduced in [6] and others.

The model includes a set of parties, each modelled by an oracle. We use the
notation

∏n
i,j , meaning a participant/oracle i believing that it is participating

in the n-th run of the protocol with j. Oracles keep transcripts of all communi-
cations in which they have been involved. Each oracle has a secret private key,
issued by a KGC, which has run a BDH parameter generator B and published
groups G0 and G2, a bilinear map of the form e : G0 × G0 → G2, a group
generator P of G0, and a master public key sP .

The model contains and adversary E which has access to all message flows in
the system. E is not a user or KGC. All oracles only communicate with each other
via E. E can replay, modify, delay, interleave or delete messages. E is benign if it
acts like a wire and does not modify communication between oracles. From [2],
if two oracles receive, via the adversary, property formatted messages that have
been generated exclusively by the other oracle, and both oracles accept, we say
that these two oracles have had a matching conversation.

The adversary at any time can make the following queries:

Create E sets up a new oracle in the system that has public key ID, of E’s choosing.
E has access to the identity / public key of the oracle. The private key is
obtained from the KGC.

Send E sends a message of his choice to an oracle i,
∏n

i,j , in which case i assumed
that the message came from j. E can also instruct the actual oracle j to
start a new run of the protocol with i by sending a λ. Using the terminology
of [6] an oracle is an initiator oracle if the first message that it receives is a
λ, otherwise it is a responder oracle.

Reveal E receives the session key that is currently being held by a particular oracle.
Corrupt E receives the long term asymmetric private key being held by a particular

oracle.
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Test E receives either the session key or a random value from a particular oracle.
Specifically, to answer the query the oracle flips a fair coin c ∈ {0, 1}; if the
answer is 0 it outputs the agreed session key, and if the answer is 1 it outputs
a random element of G2. E then must decide whether c is 0 or 1; call this
prediction c′. E’s advantage in distinguishing the actual session key held by
an uncorrupted party from a key sampled at random from G2 in this game,
with respect to the security parameter κ, is given by:

AdvantageE(κ) = |Pr[c′ = c]− 1/2|

The Test query can be performed only once, against an oracle that is in
the Accepted state (see below), and which has not previously been asked a
Reveal or Corrupt query.

An oracle may be in one of the following states (it cannot be in more than
one state).

Accepted If the oracle decides to accept a session key, after receipt of properly formated
messages.

Rejected If the oracle decides to not to accept and aborts the run of the protocol.
* If the oracle has yet to decide whether to accept to reject for this run of the

protocol. We assume that there is some time out on this state.
Opened If a Reveal query has been performed against this oracle for its last run of

the protocol (its current session key is revealed).
Corrupted If a Corrupt query has ever been performed against this oracle.

Definition 1.
A protocol is an AK protocol if:

– In the presence of the benign adversary on
∏n

i,j and
∏t

j,i, both oracles always
accept holding the same session key, and this key is distributed uniformly at
random on G2; if for every adversary E:

– If uncorrupted oracles
∏n

i,j and
∏t

j,i, have matching conversations then both
oracles accept and hold the same session key;

– AdvantageE(κ) is negligible.

Theorem 1. The proposed key agreement protocol described in section 7.2,
which is resistant to KCI, is a secure AK protocol assuming that the adversary
does not make any reveal queries and that the hash functions used are random
oracles.

Proof. Condition 1 holds as follows: Both oracles accept holding the same session
key as a direct result of the commutativity of exponentiation of members of
the group G2. The session key is distributed uniformly at random by the fact
that both oracles generate truly random x ∈ Z. Therefore the product of these
elements will also be random. Since the exponent is random, and e(P, P ) is a
generator of the group G2, the session key will be uniformly distributed over G2.
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Condition 2 holds by the fact that if they have matching conversations then
the communication was generated entirely by the two oracle’s. Therefore, by the
bilinearity of the pairing and the commutativity of exponentiation they accept
and hold the same session key.

Condition 3 holds as follows: Consider by contradiction that AdvantageE(κ)
is non-negligible. Then we can construct from E an algorithm F that solves the
BIDHP with non-negligible advantage. F is given as input the output of the
BDH generator B. F ’s task is to solve the BIDHP, namely, given P , αP and βP ,
compute v = t̂(P, P )α−1β .

All queries by the adversary E now pass through F .

Create For each oracle F chooses yi ∈R Z∗
p, creates a public key as uiP = (yiP−sP ),

and computes the private key as y−1
i P . Obviously yiP = uiP+sP . However,

for the j-th oracle F answers αP . Since F does not know α, it cannot
calculate α−1P , the correct private key for this oracle.

Corrupt F answers Corrupt queries in the usual way, revealing the private key of the
oracle being queried. However, F does not know the private key for oracle
j; if E asks a Corrupt query on oracle j, F gives up.

Send F answers all send queries in the usual way, except if E asks Send
∏n

i,j ,
F answers βP , for an unknown β, which is, from E’s perspective, indistin-
guishable from xt(αP ) for a random xt ∈R Z∗

q . In response it will get a value
from j, this is set as the value δP — this is a genuine value from j and F
does not influence it.

Test At some point E will ask a single Test query of some oracle, which we assume
is oracle j; if it is not, F aborts. The chance of F picking j is ξ = 1/n where
n is the number of oracles (Create queries). Since it is picked it must have
accepted and it must be holding a session key of the form e(P, P )α−1β+δy−1

i .
However, F cannot compute this key and hence cannot simulate the query,
so it simply outputs a random element of the group G2.

If F does not abort and E does not detect F ’s inconsistency in answer-
ing the Test query then its advantage in predicting the correct session key is
AdvantageE(κ) as before. For this to be non-negligible, E must have some ad-
vantage in calculating e(P, P )α−1β+δy−1

i , given δP as input from j.
If E does not detect any inconsistencies in F ’s responses, then F must

have non-negligible advantage A(κ) in calculating e(P, P )α−1β+δy−1
i , but, F

does not know j’s private key (α−1P ), and the session key was calculated as
e(P, P )α−1β+δy−1

i . Provided that F is able to calculate γ = e(P, P )α−1β+δy−1
i , it

can calculate e(P, P )α−1β since it knows as γ and η = e(P, P )δy−1
i . e(P, P )α−1β =

γ/η.
We assume that there is some timeout τs on the length of a run of the

protocol, including the time spent in the ∗ state. We also assume that some time
τc is allocated to allow the construction of oracles in the Create query, and time
τo allocated for each Corrupt query. We assume that n oracles are needed, and
that m send queries are needed, and o corrupt queries are needed. The expected
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time needed to solve the BIDHP is:

(nτc)(mτs)(oτo)ξ
A(κ)

We note that our protocol is vulnerable to an attack described by Blake-
Wilson et al. [3], namely, that an active adversary can offset the agreed session
key by an exponent ε unbeknownst to Alice or Bob. Most key agreements without
key confirmation are vulnerable to this attack, for example, those by Chen and
Kudla, Smart and Scott. The attack is shown below, with E, being an active
attacker.

Alice E Bob
KA = xa(s+ b)P → K′

A = εKA →
← K′

B = εKB ← KB = xb(s+ a)P
key = e(K′

B , Apri)
xa key = e(K′

A, Bpri)
xb

= e(P, P )xaxbε = e(P, P )xaxbε

Table 1. Key offset attack

Although this attack (which exists against many key agreements) is interest-
ing, it should be noted that it does not allow the attacker to gain any knowledge
of the agreed session key.

7.2 Further security considerations

Here we look at the new key agreement using a few security definitions that are
often used to judge key agreements. We only consider the basic protocol given
in section 3.

Known Key Security: If one session key is compromised this does not mean
that any other session keys are compromised. This is from the fact that the
agreed session keys rely on random ephemeral keys. A session key as a result is
distributed uniformly in G2 with no connection to other session keys.

Key-Compromise Impersonation: The above protocol is affected by Key-
Compromise Impersonation as pointed out first in [8] and later in [28]. This
attack proceeds as in table 2, assuming that Bob has a copy of Alice’s private
key Apri = (s+ a)−1P :

However this can be easily solved, with no additional overhead, if the shared
key is calculated as t̂(PP )xa+xb instead. This is achieved as shown in table 3.

Again this scheme requires one point scalar multiplication, one pairing expo-
nentiation and one pairing exponentiation (pairing multiplication in not included
in the efficiency analysis as it is extremely fast). We note however that it does
not seem possible to avoid key escrow in this setting.
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Alice Bob
AKA = xa(bP + sP ) � BKA = xb(bP + sP )
keya = t̂(BKA, Apri)

xa keyb = t̂(AKA, Apri)
xb

keya = t̂(P, P )xaxb(b+s)(a+s)−1
keyb = t̂(P, P )xaxb(b+s)(a+s)−1

Table 2. Key-Compromise Impersonation attack

Alice Bob
AKA = xa(bP + sP ) � BKA = xb(aP + sP )
keya = t̂(P, P )xa · t̂(BKA, Apri) keyb = t̂(AKA, Bpri) · t̂(P, P )xb

keya = t̂(P, P )xa+xb keyb = t̂(P, P )xa+xb

Table 3. A variant of the Key Agreement resistant to Key-Compromise Impersonation

Unknown Key-Share Resilience: Alice cannot be coerced into sharing a key
with Charlie thinking she is sharing a key with Bob. Again, this come from the
fact that Alice explicitly uses Bob’s public key in her contribution to the session
key.

Forward Secrecy: Compromise of either Alice’s private key or Bob’s private
key does not appear to allow an attacker to recover any past session keys. On
the other hand, compromise of the KGC’s master secret in the escrowed scheme
allows all past agreed session keys to be recovered.

Key Control: Because both parties have an input into the key, neither entity
is able to force the full session key to be a preselected value. However, Bob can
set certain bits of the agreed session key by carefully selecting his ephemeral key
xb until be achieves the desired result. It does not appear possible for Bob to
set any substantial number of bits in a reasonable time frame. Again, this key
agreement is no less secure in this respect that most other key agreements. As
with all key agreements a short timeout on a particular run of the protocol may
be advisable.

8 Conclusion

We have presented a new ID-based key agreement protocol inspired on the Sakai-
Kasahara key pair generation algorithm. The proposed scheme improves on the
performance of the Smart and the Chen-Kudla key agreement protocols, can be
instantiated in either escrowed or escrowless mode, and can be carried out by
clients of distinct KGC’s.
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