DDH-based Group Key Agreement in a Mobile
Environment*

Junghyun Nam, Jinwoo Lee, Seungjoo Kim, and Dongho Won

School of Information and Communication Engineering,
Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon,
Gyeonggi-do 440-746, Korea
jhnam@dosan.skku.ac.kr, jwlee@dosan.skku.ac.kr, skim@ece.skku.ac.kr,
dhwon@simsan.skku.ac.kr

Abstract. A group key agreement protocol is designed to efficiently implement secure mul-
ticast channels for a group of parties communicating over an untrusted, open network by
allowing them to agree on a common secret key. In the past decade many problems related
to group key agreement have been tackled and solved (diminished if not solved), and recently
some constant-round protocols have been proven secure in concrete, realistic setting. However,
all forward-secure protocols so far are still too expensive for small mobile devices. In this paper
we propose a new constant-round protocol well suited for a mobile environment and prove
its security under the Decisional Diffie-Hellman assumption. The protocol meets simplicity,
efficiency, and all the desired security properties.

Keywords: group key agreement, multicast, security model, DDH

1 Introduction

Over the past several years there has been a tremendous surge of interest in mobile comput-
ing. Advances in the power of mobile devices, such as personal digital assistants (PDAs),
smart phones and handheld computers, have opened tempting new opportunities for a broad
range of communities and institutions. With prices reducing and functionality increasing,
it is expected that these network-enabled devices will play major roles in the promotion
of both personal and business productivity. It is clear, thus, that the next generation of
communication networks will include rapid deployments of independent mobile users.

Although mobile devices are of increasing importance in every aspect of our daily lives,
security is still a major gating factor for their full adoption. Despite all the work conducted
over many decades, the implementation of strong protection in a mobile environment is non-
trivial [14]. Security solutions targeted for more traditional networks are often not directly
applicable to wireless networks due to a marked difference in computing resources between
mobile and stationary hosts.

One typical example are protocols for group key agreement, which are designed to
efficiently implement secure multicast channels for a group of parties communicating over
a public network by providing them with a shared secret key called a session key. Although
some constant-round protocols for group key agreement have been proposed [13,23, 7], they
are still too costly to be practical for applications involving mobile devices with limited
computing resources; in these protocols, the computational cost of each group member
increases significantly as group size grows. Other constant-round protocols [6, 11], while they
require only a fixed amount of computation for all but one group member, do not provide

* An updated version of this paper will appear in the Journal of Systems and Software.

2 Junghyun Nam, Jinwoo Lee, Seungjoo Kim, and Dongho Won

perfect forward secrecy [16]. It is this observation that prompted the present work aimed
at designing an efficient group key agreement protocol not only meeting strong notions of
security, but also well suited for a mobile environment.

The mobile computing architecture we visualize is asymmetric in the sense of compu-
tational capabilities of hosts. That is, the protocol participants consist of a stationary host
and a cluster of mobile hosts. The stationary host (also called server) with sufficient compu-
tational power and mobile hosts (also called clients) with limited computational resources
wish to communicate securely with each other by agreeing on a common session key [11,
27].

1.1 Owur Contribution

Our group key agreement protocol is provably secure against a powerful active adversary
who controls all communication flows in the network and even executes an unbounded
number of concurrent instances of the protocol. We provide a rigorous proof of security under
the well-known Decisional Diffie-Hellman (DDH) assumption in a formal security model
which improves that of Bresson et al. [12]. Furthermore, in contrast with other asymmetric
protocols [6, 11] with provable security, our group key agreement protocol provides perfect
forward secrecy; i.e., disclosure of long-term secret keys does not compromise the security
of previously established session keys.

Despite meeting all these strong notions of security, our construction is surprisingly
simple and provides a practical solution for group key agreement in a mobile environment
similar to our setting. In a protocol execution involving mobile hosts, a bottleneck arises
when the number of public-key cryptography operations that need to be performed by a
mobile host increases accordingly as group size grows. It is therefore of prime importance
for a group key agreement protocol to offer a low, fixed amount of computations to its
mobile participants. To this end our protocol shifts much of the computational burden to
the server with sufficient computational power. By allowing this computational asymmetry
among protocol participants (as also can be observed in the previous works [6,11]), the
computational cost of a mobile participant of our protocol is reduced to two modular
exponentiations (plus one signature generation and verification) without respect to the
number of participants.

In addition our group key agreement protocol is very efficient in terms of the number of
communication rounds; it requires only three rounds of communication among participants.
Keeping the number of communication rounds constant is critical for efficient and scalable
group key agreement particularly over a wide area network, where the dominant source of
delay is the communication time spent in the network rather than the computational time
needed for cryptographic operations [1,22].

As an additional contribution, we propose a refinement of the standard security model
of Bresson et al. [12], which we believe to be an issue of independent interest. As shown in
Section 5, our refinement greatly simplifies the security proof of the compiler presented by
Katz and Yung [23] even in the presence of a stronger adversary.

1.2 Related Work

The original idea of extending the 2-party Diffie-Hellman scheme [15] to the multi-party
setting dates back to the classical paper of Ingemarsson et al. [19], and is followed by many

DDH-based Group Key Agreement in a Mobile Environment 3

works [25, 13,20, 3,21, 26, 22] offering various levels of complexity. However, research on
provably-secure group key agreement in concrete, realistic setting is fairly new. It is only
recently that Bresson et al. [12, 8, 9] have presented the first group key agreement protocols
proven secure in a well-defined security model which builds on earlier model of Bellare
et al. [4]. The initial work [12] assumes that group membership is static, whereas later
works [8,9] focus on the dynamic case which we do not deal with here. But one drawback
of their scheme is that its round complexity is linear in the number of group members.
Consequently, as group size grows large, this scheme becomes impractical particularly in a
wide area network with high communication latency.

More recently, Katz and Yung [23] have proposed the first constant-round group key
agreement protocol that has been proven secure in the security model of Bresson et al.
[12]. They provide a formal proof of security for the two-round protocol of Burmester and
Desmedt [13], and introduce a one-round compiler that transforms any group key agree-
ment protocol secure against a passive adversary into one that is secure against an active
adversary. In this protocol all group members behave in a completely symmetric manner;
in a group of size n, each member sends one broadcast message per round, and computes
three modular exponentiations, O(n log n) modular multiplications, O(n) signature verifica-
tions, and two signature generations. While this protocol is very efficient in general, the full
symmetry negatively impacts on the overall performance of the protocol in our asymmetric
setting; the computational cost of a mobile host is significant in a large group, due to the
number of modular multiplications and signature verifications.

Most recently, Bresson and Catalano [7] have introduced another fully-symmetric proto-
col which requires two rounds of communication. Interestingly, unlike previous approaches,
they construct the protocol by combining the properties of the ElGamal encryption scheme
[17] with standard secret sharing techniques [24]. However, with increasing number of par-
ticipants, the complexity of the protocol becomes beyond the capabilities of a small mobile
device.

The protocol presented by Boyd and Nieto [6] completes in only a single round of
communication and is provably secure in the random oracle model [5]. But unfortunately,
this protocol does not achieve forward secrecy even if its round complexity is optimal. Thus
it still remains an open problem to find a one-round group key agreement protocol providing
forward secrecy. Another constant-round protocol that does not achieve (perfect) forward
secrecy has been shown in [11]. This protocol runs in two rounds of communication and is
provably secure in the random oracle model. In common with our protocol, these protocols
[6,11] are computationally asymmetric; one distinct member performs O(n) computations
whereas the other members perform only a constant amount of computation.

1.3 Outline

The remainder of this paper is organized as follows. In Section 2, we begin with a description
of our security model for group key agreement protocols. In Section 3, we first define the
security of a group key agreement protocol and then describe the underlying assumptions
on which the security of our protocol rests. Finally, we present a two-round group key agree-
ment protocol secure against a passive adversary and a three-round group key agreement
protocol secure against an active adversary in Section 4 and Section 5, respectively.

4 Junghyun Nam, Jinwoo Lee, Seungjoo Kim, and Dongho Won

2 The Model

In this section we refine the formal security model which has been widely used in the litera-
ture [12,8-10, 23, 6] to analyze group key agreement protocols. In particular, we incorporate
strong corruption [4] into the security model in a different way than the previous approaches
by allowing an adversary to ask one additional query, Dump, and we modify the definition
of freshness according to the refined model. Section 5 shows that our approach leads to
much simpler security proof of the compiler presented by Katz and Yung [23].

Participants. Let U4 = {U1,...,U,} be a set of n users who wish to participate in a
group key agreement protocol P. The number of users, n, is polynomially bounded in the
security parameter k. Users may execute the protocol multiple times concurrently and thus
each user can have many instances called oracles. We use II;] to denote instance s of user
U;. In initialization phase, each user U; € U obtains a long-term public/private key pair
(PK;, SK;) by running a key generation algorithm G(1*). The set of public keys of all users
is assumed to be known a priori to all parties including the adversary A.

Partners. Informally, the partners of oracle II¥ (denoted PID;) is the set of all the instances
that should compute the same session key as II7 in an execution of the protocol. Before
defining PID; formally, we first define the session ID for oracle II7 which we denote by SID;.
In an execution of the protocol, let P; is the set of all oracles with which oracle II} has
exchanged some messages, and M%?f is the concatenation of all messages that oracle II7 has
exchanged with oracle H;. Then we define SID; as

SID; = {M;] | ITj € P}}.

Let ACC} be a variable that is TRUE if II; has computed a session key, and FALSE otherwise.
Then, using the session ID defined above, PID; is defined as follows:

PID{ = {II | SID; NSID} # @ A SIDj NSID% # 0 A
ACC; = ACCy = ACC;- = TRUE, for some I1}'}.

Note that in the above definition of PIDj, it is possible that II7 = II}'. Therefore, the
conjunction simply says that oracle II} is a partner of oracle IT7 if SID] N SID} # () and
ACC; = /—\CC; = TRUE, or they share the same partner. All SIDs and PIDs are public and
hence available to the adversary A.

Adversary. Along with a set of protocol participants, the model also includes the adversary
A who controls all communication flows in the network. The adversary interacts with users
through the following various queries, each of which captures a capability of the adversary.

— Execute(U): This query returns a transcript of an honest protocol execution among
instances of the users in U.

— Send(I17,m): This query sends message m to oracle II7. When oracle II} receives the
message m, it proceeds as specified in the protocol; the oracle updates its state, and
generates and sends out a response message as needed. The response message, if any, is
returned to the adversary A. A query of the form Send(II, “start”) allows adversary
A to initiate an execution of the protocol.

DDH-based Group Key Agreement in a Mobile Environment 5

— Reveal(II?): This query returns the session key K of oracle IT}.

— Corrupt(U;): This query returns the long-term private key SK; of user U;.

— Dump(I17): This query returns all short-term secret values of oracle II}.

— Test(/I7): This query is asked only once when the adversary A wants to attempt to
distinguish the real session key K from a random fake key. To answer the query, one
flips a secret coin b, and returns the real session key K if b = 1, or else a random string
chosen from {0, 1}¢ if b = 0, where £ is the length of the session key to be distributed in
the protocol. This query can be made only if oracle II7 is fresh, the definition of which
will be given below.

Definition 1. Oracle II} is said to be fresh if all of the following conditions hold:

1. ACC$ = TRUE.

2. No one in PID] has been asked for a Reveal query (note that II? € PID;] unless PID] # ().

3. No one in U has been asked for a Corrupt query before the number of partners of II7,
|PID;|, becomes equal to n.

4. No one in P; has been asked for a Dump query.

Definition 2. An adversary is called active if it makes all the queries above, and is called
passive if it makes only five of them: Execute, Reveal, Corrupt, Dump, and Test.

3 Security Definitions

In this section we first define the security of a group key agreement protocol and then
describe the cryptographic assumptions on which the security of our protocol is based.

Group Key Agreement. The security of a group key agreement protocol P is defined in
the following context. The adversary A executes the protocol exploiting as much parallelism
as possible and any queries allowed in the security model. During executions of the protocol,
the adversary A, at any time, asks a Test query to a fresh oracle, gets back an ¢-bit string
as the response to this query, and at some later point, outputs a bit ¥’ as a guess for the
hidden bit b. Let CG (Correct Guess) be the event that b’ = b. Then we define the advantage
of A in attacking protocol P to be

Adv 4 p(k) =2 - Pr[CG] — 1.

We say that protocol P is secure against an adversary A if Advy p(k) is negligible. Fur-
thermore, we say that protocol P is a secure group key agreement protocol if it is secure
against all probabilistic polynomial time adversaries A.

Signature Scheme. A digital signature scheme I" = (G, S, V) is defined by the following
triple of algorithms:

— A probabilistic key generation algorithm G, on input 1¥, outputs a pair of matching
public and private keys (PK, SK).

— A signing algorithm S is a (possibly probabilistic) polynomial time algorithm that, given
a message m and a key pair (PK, SK) as inputs, outputs a signature o of m.

6 Junghyun Nam, Jinwoo Lee, Seungjoo Kim, and Dongho Won

— A verification algorithm V is a (usually deterministic) polynomial time algorithm that
on input (m, o, PK), outputs 1 if o is a valid signature of the message m with respect
to PK, and 0 otherwise.

We denote by Succ4 (k) the probability of an adversary A succeeding with an existential
forgery under adaptive chosen message attack [18]. We say that a signature scheme I is
secure if Succy (k) is negligible for any probabilistic polynomial time adversary A. We
denote by Succp(t) the maximum value of Succy (k) over all adversaries A running in
time at most .

DDH Assumption. Let G = (g) be any finite cyclic group of prime order ¢ and let z,y, z
be randomly chosen elements in Z,. Informally, the DDH assumption is that it is difficult
to distinguish between the distributions of (g%, ¢¥,¢*¥) and (g%, ¢¥, ¢%). More formally, if
we define Advaih(A) as

AdvE"(A) = Pr[A(g, 9", 9", g™) = 1] — Pr[A(g, 9", ¢",9°) = 1],

we say that the DDH assumption holds in G if Advﬁédh(A) is negligible for any probabilistic
polynomial time adversary A. We denote by Advid"(¢) the maximum value of Advid"(A)
over all adversaries A running in time at most .

4 A Two-Round Group Key Agreement Protocol

We now present a group key agreement protocol P; secure against a passive adversary under
the DDH assumption. The public parameters G and g, as defined in Section 3, are assumed
to be known in advance to all parties. Then the protocol P; runs in two rounds, one with
n — 1 unicasts and the other with a single broadcast, as follows:

1. Each user (mobile host or client) U; # U,, chooses a random r; € Z,, computes z; = g,
and sends m; = (U, z;) to the stationary host (or the server) U,,, who chooses random
7,7y € Zg and computes z = ¢g" and z, = g'™.

2. Having computed X = [];cpy ,y @i and the set ¥ = {y; | 1 < <n — 1}, where z; = 2]
and y; = X - xi_l, the server U, broadcasts m, = (U, z,Y) to the entire group.

3. Upon receiving the broadcast, each U; # U, computes X = y;-z"*. All users in Y compute
their session key as K = H(Y, X), where H is a one-way hash function modelled as a
random oracle in the security proof.

Suppose, for example, that U = {Uy, Uy, Us, Uy }. Then the server Uy receives {g", ¢g"2,
g™} from clients, and broadcasts ¢" and Y = {g"(r2trstra) - gr(mtrstra) - gr(rtratra)y = AQl
users in U compute the same key: K = H(Y, X), where X = g"(ntratrstra),

Note that in the protocol above, the server does not need to wait for the last message
from clients before it can start to perform the computation. Furthermore, if precomputations
are possible, all the exponentiations in the first round can be performed off-line and thus,
only 1 exponentiation per client is required to be done on-line.

Theorem 1. Let A be a passive adversary attacking protocol Py, running in time t and
making qe; Execute queries. Then we have

Adv g p, (k) < 2qer - AdvE"(2),

where t' =t + O(NGegterp) and teyy is the time required to compute an exponentiation in G.

DDH-based Group Key Agreement in a Mobile Environment 7

Proof. Assume that A can guess the hidden bit b correctly with probability 1/2 4+ €. Then
we construct from A a distinguisher D that solves the DDH problem in G with probability
€/ ex-

Before describing the construction of D, let us first define the following two distributions:

T1,-w sTn,T €R Lg;
z=g". . am=g"z2=4"
Real = ¢ (T, K) |m1*g’"“,...,xn:g”’l; ,

X=ur
_ —1 _ —1
=Xz, .., yp1=X 1,

TlyevosTnyTy 81, .-+, 8y ER Lg;
— T — T — T.
zl—gl,...jzn—g”,Z—g,

Rand: (T7K) |"L’1 :g317...,xn:g5n;
X =1 a
y1=X a7ty = X a

where T'= (2,21, -+, Zn—1,Y1,- - -, Yn—1) and K = H(y1,...,yn—1,X)-

Lemma 1. Let A" be an algorithm that, given (T, K) coming from one of the two distribu-
tions Real and Rand, runs in time t and outputs O or 1. Then we have:

|Pr[A'(T,K) =1| (T, K) « Real]—
Pr[A(T,K) = 1| (T, K) < Rand]|
< AV (¢ 4 (4n — 6)terp).

Proof. We prove the lemma by using the random self-reducibility of the DDH problem.
Consider the following distribution, which is constructed from the triple (¢", g"2, grlm) c G3:

71,03, 33, .., Qn, Bn €R Ly;

zn1=9"22=9",

25 = gT1a3+T2ﬁ3’ e Zp = ngan+T25n’ z2=gq";
Dist = < (T, K) ‘ z1 =g, zg = g""2, ,

Ty = grrloés-&-?“"mﬂs7 e gTTlﬂén-l-T'mﬁn;

X =x1- T

ylzX-xl_l,...,yn_lzX-x;il J

where T and K are as defined above. If (¢”, "2, ¢"'"?) is a Diffie-Hellman triple (i.e., r = 1),

we have Dist = Real since x; = 2] for all i € [1,n]. If instead (g",¢"2,¢""?) is a random
triple, it is clear that Dist = Rand. O

Lemma 2. For any (computationally unbounded) adversary A, we have:

Pr[A(T, K) = b | (T, K1) < Rand; Ko < {0,1}%b — {0,1}] = 1/2.

8 Junghyun Nam, Jinwoo Lee, Seungjoo Kim, and Dongho Won

Proof. In experiment Rand, the transcript T' constrains the values s; by the following n — 1
equations:

n
log,y1 = —s1+ Y _ si,
i=1

n
logg Y2 = —S2 + Zsi7
i=1

n
log, Yn—1 = —8p—1 + Z 54.
=1

Since T' does not constrain the values s; any further and since the equation log, X = Yo si
is not expressible as a linear combination of the n — 1 equations above, we have that the
value of X is independent of T'. This implies that

Pr[A(T, Xy) =b | (T, X1) < Rand; Xg < G;b «— {0,1}] = 1/2.
Then, since H is a random oracle, the statement of Lemma 2 immediately follows. O

Armed with the two lemmas above, we now give the details of the construction of the
distinguisher D. Assume without loss of generality that 4 makes its Test query to an oracle
activated by the 6" Execute query. The distinguisher D begins by choosing a random d €
{1,...,qes} as a guess for the value of . D then invokes A and simulates the queries of A. D
answers all the queries from A in the obvious way, following the protocol exactly as specified,
except if a query is the d"" Execute query. In this latter case, D slightly deviates from the
protocol, by embedding the DDH problem instance given as input into the transcript as
follows.

Given a triple (¢", ¢"2, g’"/”) € G?, D generates (T, K) according to the the distribution
Dist and answers the d*" Execute query of A with T'. The distinguisher D aborts and outputs
a random bit if d # §. Otherwise, D answers the Test query of A with K. At some later
point, when A terminates and outputs its guess b’, D outputs 1 if b = b, and 0 otherwise.
By Lemma 1 and 2, and since Pr[d = §] = 1/¢¢, and

PrlA(T,Ky) = b | (T, K1) — Real; Ko — {0,1}*;b — {0,1}] = 1/2 + ¢,

we obtain

Advg}dh(p) = 6/‘]61‘7

which immediately yields the statement of Theorem 1. O

5 A Three-Round Group Key Agreement Protocol

In this section we propose a group key agreement protocol P, secure against an active
adversary. We transform protocol P; to the protocol P by applying a variant of the compiler
presented in [23]. The protocol P, proceeds as follows:

DDH-based Group Key Agreement in a Mobile Environment 9

1. Each user U; chooses an instance identifier (IID) ¢; € {0, 1}* and broadcasts {U;, ¢;}.
Having received all the n — 1 IIDs from other users, each U; sets @; = {{U;,¢;} | 1 <
i <mn}.

2. The users in U now proceed as specified in the protocol Py, except that: (1) each user
U; sends m) = (m;, 0;) instead of m;, where o; is the signature of m;||®;, and (2) upon
receiving message m}; = (mj, 0;) from user U, U; verifies that Vp, (m;[|®;,05) = 1. All
users in U compute their session key as in P;.

Theorem 2. Let As be an active adversary attacking protocol P, running in time t and
making qe, Execute queries and qse Send queries. Let Advp, (', qes + qu) be the maximum
advantage in attacking protocol Py, where the maximum is over all passive adversaries that

run in time t' and make g, + %2 Execute queries. Then we have

QS€

2
Adv.4,,p, (k) < Advp, (¥, gex + o) Succp(t") + Tse T GexGse

2k ’

where t' = t + O(NGegtesp + NGsetezp), 1 = t + O(NGeatexp + Gsetexp), and teyp is as in
Theorem 1.

Proof. The proof of the theorem proceeds by constructing from As a passive adversary A;
attacking protocol P;. Before describing the details of the construction, we first bound the
probability of the event, Forge, that Ay outputs a valid forgery with respect to the public
key PK; of some user U; € U before making the query Corrupt(U;).

Lemma 3. Pr[Forge] < n-Succp(t"), where t” is as in Theorem 2.

Proof. We build from Ay a signature forger F against the signature scheme I'. The goal of
the forger F, given as input a public key PK and access to a signing oracle associated with
this key, is to output a valid forgery (m, o) with respect to PK, i.e., Vpg(m,o) = 1 such
that o was not previously output by the signing oracle as a signature on the message m.
The forger F begins by choosing at random a user Uy € U, and setting PKy to PK. For all
other users, F honestly generates a public/private key pair by running the key generation
algorithm G(1¥). F then have Ay run, simulating the queries from Ay as follows:

— Execute(U)/Reveal(II})/Dump(II})/Test(1I?): These queries are answered in the obvious
way.

— Send(IIf,m): If i # f, F knows the private signing key of U;, and hence can answer
the queries following the protocol exactly as specified. If instead ¢ = f, then F does
not have the private signing key of U;. Nevertheless, F can obtain signatures of any
messages it wants by accessing the signing oracle associated with PK.

— Corrupt(U;): If @ # f, F simply hands the private key SK; which was generated by F
itself. If instead Ay corrupts U; = Uy, then F halts and outputs “fail”.

The simulation provided above is perfectly indistinguishable from the real execution
unless adversary Az makes the query Corrupt(Uy). Throughout this simulation, 7 monitors
each Send query from As, and checks if it includes a valid message/signature pair (m, o)
with respect to PK. If no such query is made until Ay stops, then F halts and outputs
“fail”. Otherwise, F outputs (m,o) as a valid forgery with respect to PK. Lemma 3
directly follows from the fact that this latter case occurs with probability Pr[Forge]/n. O

10 Junghyun Nam, Jinwoo Lee, Seungjoo Kim, and Dongho Won

We now describe the construction of the passive adversary A; in detail. After generating
a public/private key pair (PK;, SK;) for each U; € U, the adversary A; invokes Ay and
simulates the queries of As as follows.

Execute(U): A; issues its own Execute query to get a transcript 7} of an execution of P;.
A; then generates a transcript T of an execution of P, by choosing random ¢1,...,¢, €
{0,1}*, signing the messages in T}, and prepending & = {{U;,¢;} | 1 < i < n} to this
signed transcript. Finally, A; returns T5 as the answer to the Execute query of A3 and adds
(®,T1) into a list £ which is maintained by A; to link a simulated execution of P, to an
execution of P;j.

Send(II7, m): If some user in U has been asked for a Corrupt query before this query, then
A1 handles the query in the obvious way following the protocol P» exactly as specified.
Otherwise, A; simulates the query as follows, using the similar way as it did for Execute
queries:

If m = “start”, A; chooses a random ¢ € {0,1}* and returns {U;, ¢f} to Az. After
receiving all the expected IIDs in the first round, A; defines @] as per protocol specification.
If A; needs to return the message m/ in response to this Send query, A; first checks the list
L to see if there exists an entry of the form (&7, T7). If so, then A; generates the message
m), from the message m; in T} and returns it to adversary As. Otherwise, A; obtains a
transcript T of an execution of P; by making an Execute query, adds the pair (®7,77) to
the list £, and then proceeds as in the former case.

Dump(Z1?): Let T be the transcript such that (@7,77) € £. Then, A; makes a Dump query
to the U;’s instance activated by the Execute query that resulted in the transcript 77, and
simply forwards the random secret exponent(s) obtained from this Dump query.

Reveal(/1?): As can be seen from the way A; handles Execute and Send queries of As, the
session key of II7 is unavailable to A; unless some Dump queries or Corrupt queries have
been asked by As. However, this Reveal query can be answered as follows:

1. Suppose that no one in ¢/ has been asked for a Corrupt query before II7 receives its last
incoming message. Let T} be the transcript such that (@,77) € L. Then, A; asks a
Reveal query to the U;’s instance activated by the Execute query that resulted in the
transcript 77, and forwards the result of this Reveal query to adversary As.

2. Now suppose that some user in I/ has been asked for a Corrupt query before II; receives
its last incoming message. Note that in this case, Ay may have signed and sent arbi-
trary messages of its choice to II7. We further separate this case into the following two
subcases:

— Consider the case that i # n and A has made a Corrupt query to U, after II? has
sent the message m, and before IT? has received the message m,,. In this case A;
first obtains the random secret exponent by making its own Dump query in the same
way as it did for Dump queries of As. A; then computes the session key of II7 using
this random exponent and returns the result to adversary As.

— For other cases, A; has already the random secret exponent(s) for II7 which were
chosen by A; itself, and thus can answer the query following the protocol exactly as
specified.

DDH-based Group Key Agreement in a Mobile Environment 11
Corrupt(U;): Ay simply returns the long-term private key SK; of U;.

Test(117): A finds a pair (@7,77) € L, asks a Test query to one of the oracles activated by
the Execute query that resulted in 77, and returns the £-bit string received as the response
to its Test query.

Before quantifying the advantage of A; in attacking the protocol P;, we first need to
define the event Same. Let Same be the event that a same IID is used by a user to identify
two different instances, one activated by a Send query and the other activated by either an
Execute or a Send query. Then, a straightforward calculation shows that

2
Pr[Same] < qg# (1)

During the simulation above, A; simply aborts and outputs a random bit if Same or
Forge occurs. Otherwise, A; outputs whatever Ay does. Note that as long as neither Same
nor Forge occur, the simulation provided by A; is perfectly indistinguishable from a real
execution of P, and in a particular session, Ay is limited to send messages generated by
A1 from one same transcript of an execution of P;. This implies that

- —— 1
Pr4,.p, [CG] = Pra, p,[CG A Forge A Same] + §Pr[Forge V Same]. (2)

Using Eq. (2), a simple probability calculation shows that

Adv g, p,(k) =2-Prg, p,[CG] —1
=2-Pra, p,[CG A Forge] + 2 - Pr, p,[CG A Forge] — 1
< 2. Pr[Forge] + 2 - Pr4, p,[CG A Forge] — 1
= 2. Pr[Forge] + 2 - Pr 4, p,[CG A Forge A Same]
+ 2 Pry, p,[CG A Forge A Same| — 1
= 2 - Pr[Forge] + 2 - Pr4, p,[CG A Forge A Same]
— Pr[Forge V Same] + 2 - Pr4, p, [CG] — 1.

Since Pr[Forge V Same| > Pr[Forge| + Pr[CG A Forge A Same], it follows that

Adv 4, p, (k) < Adva,, p (k) + Pr[Forge] + Pr4, p,[CG A Forge A Same]
< Advp, (t') + Pr[Forge] + Pr[Same].

Combined with Lemma 3 and Eq. (1), this immediately yields the desired result. O

6 Conclusion

In this paper we have proposed an efficient, asymmetric group key agreement protocol well
suited for groups consisting of a cluster of mobile hosts with limited computational resources
and a stationary host with sufficient computational power. The protocol achieves perfect
forward secrecy and has been proven secure against an active adversary in the random
oracle model under the Decisional Diffie-Hellman assumption.

12 Junghyun Nam, Jinwoo Lee, Seungjoo Kim, and Dongho Won
References
1. Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik: On the Performance of Group Key Agreement

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Protocols, in: Proceedings of 22nd IEEE International Conference on Distributed Computing Systems,
pp. 463-464, 2002. Full version available at http://www.cnds.jhu.edu/publications/.

. G. Ateniese, M. Steiner, and G. Tsudik: New multiparty authentication services and key agreement

protocols, IEEE Journal on Selected Areas in Communications, vol.18, no.4, pp. 628-639, April 2000.
K. Becker, and U. Wille: Communication complexity of group key distribution, in: Proceedings of 1st
ACM Conference on Computer and Communications Security (CCS’98), pp. 1-6, 1998.

M. Bellare, D. Pointcheval, and P. Rogaway: Authenticated key exchange secure against dictionary
attacks, in: Advances in Cryptology — Eurocrypt’00, LNCS 1807, pp. 139155, 2000.

M. Bellare and P. Rogaway: Random oracles are practical: A paradigm for designing efficient protocols,
in: Proceedings of 1st ACM Conference on Computer and Communications Security (CCS’93), pp.
62-73, 1993.

C. Boyd and J.M.G. Nieto: Round-optimal contributory conference key agreement, in: Proceedings of
6th International Workshop on Practice and Theory in Public Key Cryptography (PKC’03), LNCS
2567, pp. 161-174, 2003.

E. Bresson and D. Catalano: Constant round authenticated group key agreement via distributed com-
putation, in: Proceedings of 7th International Workshop on Practice and Theory in Public Key Cryp-
tography (PKC’04), LNCS 2947, pp. 115-129, 2004.

. E. Bresson, O. Chevassut, and D. Pointcheval: Provably authenticated group Diffie-Hellman key ex-

change — the dynamic case, in: Advances in Cryptology — Asiacrypt’01, LNCS 2248, pp. 290-309,
2001.

E. Bresson, O. Chevassut, and D. Pointcheval: Dynamic group Diffie-Hellman key exchange under
standard assumptions, in: Advances in Cryptology — Eurocrypt’02, LNCS 2332, pp. 321-336, 2002.

E. Bresson, O. Chevassut, and D. Pointcheval: Group Diffie-Hellman key exchange secure against dic-
tionary attacks, in: Advances in Cryptology — Asiacrypt’02, LNCS 2501, pp. 497-514, 2002.

E. Bresson, O. Chevassut, A. Essiari and D. Pointcheval: Mutual authentication and group key agree-
ment for low-power mobile devices, in: Proceedings of the 5th IFIP-TC6 International Conference on
Mobile and Wireless Communications Networks (MWCN’03), pp. 59-62, 2003.

E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater: Provably authenticated group Diffie-
Hellman key exchange, in: Proceedings of 1st ACM Conference on Computer and Communications
Security (CCS’01), pp. 255-264, 2001.

M. Burmester and Y. Desmedt: A secure and efficient conference key distribution system, in: Advances
in Cryptology — Eurocrypt’94, LNCS 950, pp. 275-286, 1994.

N. Borisov, I. Goldberg, and D. Wagner: Intercepting mobile communications: The insecurity of 802.11,
in: Proceedings of the 7th International Conference on Mobile Computing And Networking (Mobi-
Com’01), July, 2001.

W. Diffie and M.E. Hellman: New Directions in cryptography. IEEE Transactions on Information The-
ory, vol.22, pp. 644-654, 1976.

W. Diffie, P. van Oorschot, and M. Wiener: Authentication and authenticated key exchanges, Designs,
Codes, and Cryptography, vol. 2, (Kluwer Academic Publishers) pp. 107-125, 1992.

T. ElGamal: A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE
Transactions on Information Theory, vol.31, no.4, pp. 469-472, 1985.

S. Goldwasser, S. Micali, and R. Rivest: A digital signature scheme secure against adaptive chosen-
message attacks, SIAM Journal of Computing, vol.17, no.2, pp. 281-308, 1988.

I. Ingemarsson, D. Tang, and C. Wong: A conference key distribution system, IEEE Transactions on
Information Theory, vol.28, no.5, pp. 714-720, 1982.

M. Just and S. Vaudenay: Authenticated multi-party key agreement, in: Advances in Cryptology —
Asiacrypt’96, LNCS 1163, pp. 36-49, 1996.

Y. Kim, A. Perrig, and G. Tsudik: Simple and fault-tolerant key agreement for dynamic collaborative
groups, in: Proceedings of 1st ACM Conference on Computer and Communications Security (CCS’00),
pp. 235-244, 2000.

Y. Kim, A. Perrig, and G. Tsudik: Communication-efficient group key agreement, in: Proceedings of
International Federation for Information Processing (IFIP SEC’01), pp. 229-244, 2001.

J. Katz and M. Yung: Scalable protocols for authenticated group key exchange, in: Advances in Cryp-
tology — Crypto’03, LNCS 2729, pp. 110-125, 2003.

A. Shamir: How to share a secret, Communications of the ACM, vol.22, no.11, pp. 612—-613, 1979.

DDH-based Group Key Agreement in a Mobile Environment 13

25. D.G. Steer, L. Strawczynski, W. Diffie, and M. Wiener: A secure audio teleconference system, in: Ad-
vances in Cryptology — Crypto’88, LNCS 403, pp. 520-528, 1988.

26. M. Steiner, G. Tsudik, and M. Waidner: Key agreement in dynamic peer groups, IEEE Transactions on
Parallel and Distributed Systems, vol.11, no.8, pp. 769-780, August 2000.

27. H.-T. Yeh and H.-M. Sun: Password-based user authentication and key distribution protocols for client-
server applications, The Journal of Systems and Software, vol.72, no.1, pp. 97-103, 2004.

