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Abstract. A group key agreement protocol is designed to efficiently implement secure mul-
ticast channels for a group of parties communicating over an untrusted, open network by
allowing them to agree on a common secret key. In the past decade many problems related
to group key agreement have been tackled and solved (diminished if not solved), and recently
some constant-round protocols have been proven secure in concrete, realistic setting. However,
all forward-secure protocols so far are still too expensive for small mobile devices. In this paper
we propose a new constant-round protocol well suited for a mobile environment and prove
its security under the Decisional Diffie-Hellman assumption. The protocol meets simplicity,
efficiency, and all the desired security properties.
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1 Introduction

Over the past several years there has been a tremendous surge of interest in mobile comput-
ing. Advances in the power of mobile devices, such as personal digital assistants (PDAs),
smart phones and handheld computers, have opened tempting new opportunities for a broad
range of communities and institutions. With prices reducing and functionality increasing,
it is expected that these network-enabled devices will play major roles in the promotion
of both personal and business productivity. It is clear, thus, that the next generation of
communication networks will include rapid deployments of independent mobile users.

Although mobile devices are of increasing importance in every aspect of our daily lives,
security is still a major gating factor for their full adoption. Despite all the work conducted
over many decades, the implementation of strong protection in a mobile environment is non-
trivial [14]. Security solutions targeted for more traditional networks are often not directly
applicable to wireless networks due to a marked difference in computing resources between
mobile and stationary hosts.

One typical example are protocols for group key agreement, which are designed to
efficiently implement secure multicast channels for a group of parties communicating over
a public network by providing them with a shared secret key called a session key. Although
some constant-round protocols for group key agreement have been proposed [13, 23, 7], they
are still too costly to be practical for applications involving mobile devices with limited
computing resources; in these protocols, the computational cost of each group member
increases significantly as group size grows. Other constant-round protocols [6, 11], while they
require only a fixed amount of computation for all but one group member, do not provide

⋆ An updated version of this paper will appear in the Journal of Systems and Software.
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perfect forward secrecy [16]. It is this observation that prompted the present work aimed
at designing an efficient group key agreement protocol not only meeting strong notions of
security, but also well suited for a mobile environment.

The mobile computing architecture we visualize is asymmetric in the sense of compu-
tational capabilities of hosts. That is, the protocol participants consist of a stationary host
and a cluster of mobile hosts. The stationary host (also called server) with sufficient compu-
tational power and mobile hosts (also called clients) with limited computational resources
wish to communicate securely with each other by agreeing on a common session key [11,
27].

1.1 Our Contribution

Our group key agreement protocol is provably secure against a powerful active adversary
who controls all communication flows in the network and even executes an unbounded
number of concurrent instances of the protocol. We provide a rigorous proof of security under
the well-known Decisional Diffie-Hellman (DDH) assumption in a formal security model
which improves that of Bresson et al. [12]. Furthermore, in contrast with other asymmetric
protocols [6, 11] with provable security, our group key agreement protocol provides perfect
forward secrecy; i.e., disclosure of long-term secret keys does not compromise the security
of previously established session keys.

Despite meeting all these strong notions of security, our construction is surprisingly
simple and provides a practical solution for group key agreement in a mobile environment
similar to our setting. In a protocol execution involving mobile hosts, a bottleneck arises
when the number of public-key cryptography operations that need to be performed by a
mobile host increases accordingly as group size grows. It is therefore of prime importance
for a group key agreement protocol to offer a low, fixed amount of computations to its
mobile participants. To this end our protocol shifts much of the computational burden to
the server with sufficient computational power. By allowing this computational asymmetry
among protocol participants (as also can be observed in the previous works [6, 11]), the
computational cost of a mobile participant of our protocol is reduced to two modular
exponentiations (plus one signature generation and verification) without respect to the
number of participants.

In addition our group key agreement protocol is very efficient in terms of the number of
communication rounds; it requires only three rounds of communication among participants.
Keeping the number of communication rounds constant is critical for efficient and scalable
group key agreement particularly over a wide area network, where the dominant source of
delay is the communication time spent in the network rather than the computational time
needed for cryptographic operations [1, 22].

As an additional contribution, we propose a refinement of the standard security model
of Bresson et al. [12], which we believe to be an issue of independent interest. As shown in
Section 5, our refinement greatly simplifies the security proof of the compiler presented by
Katz and Yung [23] even in the presence of a stronger adversary.

1.2 Related Work

The original idea of extending the 2-party Diffie-Hellman scheme [15] to the multi-party
setting dates back to the classical paper of Ingemarsson et al. [19], and is followed by many
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works [25, 13, 20, 3, 21, 26, 22] offering various levels of complexity. However, research on
provably-secure group key agreement in concrete, realistic setting is fairly new. It is only
recently that Bresson et al. [12, 8, 9] have presented the first group key agreement protocols
proven secure in a well-defined security model which builds on earlier model of Bellare
et al. [4]. The initial work [12] assumes that group membership is static, whereas later
works [8, 9] focus on the dynamic case which we do not deal with here. But one drawback
of their scheme is that its round complexity is linear in the number of group members.
Consequently, as group size grows large, this scheme becomes impractical particularly in a
wide area network with high communication latency.

More recently, Katz and Yung [23] have proposed the first constant-round group key
agreement protocol that has been proven secure in the security model of Bresson et al.
[12]. They provide a formal proof of security for the two-round protocol of Burmester and
Desmedt [13], and introduce a one-round compiler that transforms any group key agree-
ment protocol secure against a passive adversary into one that is secure against an active
adversary. In this protocol all group members behave in a completely symmetric manner;
in a group of size n, each member sends one broadcast message per round, and computes
three modular exponentiations, O(n log n) modular multiplications, O(n) signature verifica-
tions, and two signature generations. While this protocol is very efficient in general, the full
symmetry negatively impacts on the overall performance of the protocol in our asymmetric
setting; the computational cost of a mobile host is significant in a large group, due to the
number of modular multiplications and signature verifications.

Most recently, Bresson and Catalano [7] have introduced another fully-symmetric proto-
col which requires two rounds of communication. Interestingly, unlike previous approaches,
they construct the protocol by combining the properties of the ElGamal encryption scheme
[17] with standard secret sharing techniques [24]. However, with increasing number of par-
ticipants, the complexity of the protocol becomes beyond the capabilities of a small mobile
device.

The protocol presented by Boyd and Nieto [6] completes in only a single round of
communication and is provably secure in the random oracle model [5]. But unfortunately,
this protocol does not achieve forward secrecy even if its round complexity is optimal. Thus
it still remains an open problem to find a one-round group key agreement protocol providing
forward secrecy. Another constant-round protocol that does not achieve (perfect) forward
secrecy has been shown in [11]. This protocol runs in two rounds of communication and is
provably secure in the random oracle model. In common with our protocol, these protocols
[6, 11] are computationally asymmetric; one distinct member performs O(n) computations
whereas the other members perform only a constant amount of computation.

1.3 Outline

The remainder of this paper is organized as follows. In Section 2, we begin with a description
of our security model for group key agreement protocols. In Section 3, we first define the
security of a group key agreement protocol and then describe the underlying assumptions
on which the security of our protocol rests. Finally, we present a two-round group key agree-
ment protocol secure against a passive adversary and a three-round group key agreement
protocol secure against an active adversary in Section 4 and Section 5, respectively.
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2 The Model

In this section we refine the formal security model which has been widely used in the litera-
ture [12, 8–10, 23, 6] to analyze group key agreement protocols. In particular, we incorporate
strong corruption [4] into the security model in a different way than the previous approaches
by allowing an adversary to ask one additional query, Dump, and we modify the definition
of freshness according to the refined model. Section 5 shows that our approach leads to
much simpler security proof of the compiler presented by Katz and Yung [23].

Participants. Let U = {U1, . . . , Un} be a set of n users who wish to participate in a
group key agreement protocol P . The number of users, n, is polynomially bounded in the
security parameter k. Users may execute the protocol multiple times concurrently and thus
each user can have many instances called oracles. We use Πs

i to denote instance s of user
Ui. In initialization phase, each user Ui ∈ U obtains a long-term public/private key pair
(PKi, SKi) by running a key generation algorithm G(1k). The set of public keys of all users
is assumed to be known a priori to all parties including the adversary A.

Partners. Informally, the partners of oracle Πs
i (denoted PIDs

i ) is the set of all the instances
that should compute the same session key as Πs

i in an execution of the protocol. Before
defining PIDs

i formally, we first define the session ID for oracle Πs
i which we denote by SIDs

i .
In an execution of the protocol, let Ps

i is the set of all oracles with which oracle Πs
i has

exchanged some messages, and M st
ij is the concatenation of all messages that oracle Πs

i has
exchanged with oracle Πt

j . Then we define SIDs
i as

SIDs
i = {M st

ij | Π
t
j ∈ P

s
i }.

Let ACCs
i be a variable that is TRUE if Πs

i has computed a session key, and FALSE otherwise.
Then, using the session ID defined above, PIDs

i is defined as follows:

PIDs
i = {Πt

j | SIDs
i ∩ SIDu

k 6= ∅ ∧ SIDu
k ∩ SIDt

j 6= ∅ ∧

ACCs
i = ACCu

k = ACCt
j = TRUE, for some Πu

k }.

Note that in the above definition of PIDs
i , it is possible that Πs

i = Πu
k . Therefore, the

conjunction simply says that oracle Πt
j is a partner of oracle Πs

i if SIDs
i ∩ SIDt

j 6= ∅ and

ACCs
i = ACCt

j = TRUE, or they share the same partner. All SIDs and PIDs are public and
hence available to the adversary A.

Adversary. Along with a set of protocol participants, the model also includes the adversary
A who controls all communication flows in the network. The adversary interacts with users
through the following various queries, each of which captures a capability of the adversary.

– Execute(U): This query returns a transcript of an honest protocol execution among
instances of the users in U .

– Send(Πs
i , m): This query sends message m to oracle Πs

i . When oracle Πs
i receives the

message m, it proceeds as specified in the protocol; the oracle updates its state, and
generates and sends out a response message as needed. The response message, if any, is
returned to the adversary A. A query of the form Send(Πs

i , “start”) allows adversary
A to initiate an execution of the protocol.



DDH-based Group Key Agreement in a Mobile Environment 5

– Reveal(Πs
i ): This query returns the session key K of oracle Πs

i .

– Corrupt(Ui): This query returns the long-term private key SKi of user Ui.

– Dump(Πs
i ): This query returns all short-term secret values of oracle Πs

i .

– Test(Πs
i ): This query is asked only once when the adversary A wants to attempt to

distinguish the real session key K from a random fake key. To answer the query, one
flips a secret coin b, and returns the real session key K if b = 1, or else a random string
chosen from {0, 1}ℓ if b = 0, where ℓ is the length of the session key to be distributed in
the protocol. This query can be made only if oracle Πs

i is fresh, the definition of which
will be given below.

Definition 1. Oracle Πs
i is said to be fresh if all of the following conditions hold:

1. ACCs
i = TRUE.

2. No one in PIDs
i has been asked for a Reveal query (note that Πs

i ∈ PIDs
i unless PIDs

i 6= ∅).
3. No one in U has been asked for a Corrupt query before the number of partners of Πs

i ,
|PIDs

i |, becomes equal to n.

4. No one in Ps
i has been asked for a Dump query.

Definition 2. An adversary is called active if it makes all the queries above, and is called
passive if it makes only five of them: Execute, Reveal, Corrupt, Dump, and Test.

3 Security Definitions

In this section we first define the security of a group key agreement protocol and then
describe the cryptographic assumptions on which the security of our protocol is based.

Group Key Agreement. The security of a group key agreement protocol P is defined in
the following context. The adversary A executes the protocol exploiting as much parallelism
as possible and any queries allowed in the security model. During executions of the protocol,
the adversary A, at any time, asks a Test query to a fresh oracle, gets back an ℓ-bit string
as the response to this query, and at some later point, outputs a bit b′ as a guess for the
hidden bit b. Let CG (Correct Guess) be the event that b′ = b. Then we define the advantage
of A in attacking protocol P to be

AdvA,P (k) = 2 · Pr[CG]− 1.

We say that protocol P is secure against an adversary A if AdvA,P (k) is negligible. Fur-
thermore, we say that protocol P is a secure group key agreement protocol if it is secure
against all probabilistic polynomial time adversaries A.

Signature Scheme. A digital signature scheme Γ = (G,S,V) is defined by the following
triple of algorithms:

– A probabilistic key generation algorithm G, on input 1k, outputs a pair of matching
public and private keys (PK, SK).

– A signing algorithm S is a (possibly probabilistic) polynomial time algorithm that, given
a message m and a key pair (PK, SK) as inputs, outputs a signature σ of m.
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– A verification algorithm V is a (usually deterministic) polynomial time algorithm that
on input (m, σ, PK), outputs 1 if σ is a valid signature of the message m with respect
to PK, and 0 otherwise.

We denote by SuccA,Γ (k) the probability of an adversary A succeeding with an existential
forgery under adaptive chosen message attack [18]. We say that a signature scheme Γ is
secure if SuccA,Γ (k) is negligible for any probabilistic polynomial time adversary A. We
denote by SuccΓ (t) the maximum value of SuccA,Γ (k) over all adversaries A running in
time at most t.

DDH Assumption. Let G = 〈g〉 be any finite cyclic group of prime order q and let x, y, z
be randomly chosen elements in Zq. Informally, the DDH assumption is that it is difficult
to distinguish between the distributions of (gx, gy, gxy) and (gx, gy, gz). More formally, if
we define Advddh

G (A) as

Advddh

G (A) =
∣

∣

∣
Pr[A(g, gx, gy, gxy) = 1]− Pr[A(g, gx, gy, gz) = 1]

∣

∣

∣
,

we say that the DDH assumption holds in G if Advddh

G (A) is negligible for any probabilistic
polynomial time adversary A. We denote by Advddh

G (t) the maximum value of Advddh

G (A)
over all adversaries A running in time at most t.

4 A Two-Round Group Key Agreement Protocol

We now present a group key agreement protocol P1 secure against a passive adversary under
the DDH assumption. The public parameters G and g, as defined in Section 3, are assumed
to be known in advance to all parties. Then the protocol P1 runs in two rounds, one with
n− 1 unicasts and the other with a single broadcast, as follows:

1. Each user (mobile host or client) Ui 6= Un chooses a random ri ∈ Zq, computes zi = gri ,
and sends mi = (Ui, zi) to the stationary host (or the server) Un, who chooses random
r, rn ∈ Zq and computes z = gr and zn = grn .

2. Having computed X =
∏

i∈[1,n] xi and the set Y = {yi | 1 ≤ i ≤ n − 1}, where xi = zr
i

and yi = X · x−1
i , the server Un broadcasts mn = (Un, z, Y ) to the entire group.

3. Upon receiving the broadcast, each Ui 6= Un computes X = yi·z
ri . All users in U compute

their session key as K = H(Y, X), where H is a one-way hash function modelled as a
random oracle in the security proof.

Suppose, for example, that U = {U1, U2, U3, U4}. Then the server U4 receives {gr1 , gr2 ,
gr3} from clients, and broadcasts gr and Y = {gr(r2+r3+r4), gr(r1+r3+r4), gr(r1+r2+r4)}. All
users in U compute the same key: K = H(Y, X), where X = gr(r1+r2+r3+r4).

Note that in the protocol above, the server does not need to wait for the last message
from clients before it can start to perform the computation. Furthermore, if precomputations
are possible, all the exponentiations in the first round can be performed off-line and thus,
only 1 exponentiation per client is required to be done on-line.

Theorem 1. Let A be a passive adversary attacking protocol P1, running in time t and
making qex Execute queries. Then we have

AdvA,P1
(k) ≤ 2qex · Advddh

G (t′),

where t′ = t+O(nqextexp) and texp is the time required to compute an exponentiation in G.
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Proof. Assume that A can guess the hidden bit b correctly with probability 1/2 + ǫ. Then
we construct from A a distinguisher D that solves the DDH problem in G with probability
ǫ/qex.

Before describing the construction of D, let us first define the following two distributions:

Real =























r1, . . . , rn, r ∈R Zq;
z1 = gr1 , . . . , zn = grn , z = gr;

(T, K)
∣

∣ x1 = grr1 , . . . , xn = grrn ;
X = x1 · · ·xn;

y1 = X · x−1
1 , . . . , yn−1 = X · x−1

n−1























,

Rand =























r1, . . . , rn, r, s1, . . . , sn ∈R Zq;
z1 = gr1 , . . . , zn = grn , z = gr;

(T, K)
∣

∣ x1 = gs1 , . . . , xn = gsn ;
X = x1 · · ·xn;

y1 = X · x−1
1 , . . . , yn−1 = X · x−1

n−1























,

where T = (z, z1, . . . , zn−1, y1, . . . , yn−1) and K = H(y1, . . . , yn−1, X).

Lemma 1. Let A′ be an algorithm that, given (T, K) coming from one of the two distribu-
tions Real and Rand, runs in time t and outputs 0 or 1. Then we have:

∣

∣Pr[A′(T, K) = 1 | (T, K)← Real]−

Pr[A′(T, K) = 1 | (T, K)← Rand]
∣

∣

≤ Advddh

G (t + (4n− 6)texp).

Proof. We prove the lemma by using the random self-reducibility of the DDH problem.
Consider the following distribution, which is constructed from the triple (gr, gr2 , gr′r2) ∈ G

3:

Dist =







































r1, α3, β3, . . . , αn, βn ∈R Zq;
z1 = gr1 , z2 = gr2 ,
z3 = gr1α3+r2β3 , . . . , zn = gr1αn+r2βn , z = gr;

(T, K)
∣

∣ x1 = grr1 , x2 = gr′r2 ,

x3 = grr1α3+r′r2β3 , . . . , xn = grr1αn+r′r2βn ;
X = x1 · · ·xn;

y1 = X · x−1
1 , . . . , yn−1 = X · x−1

n−1







































,

where T and K are as defined above. If (gr, gr2 , gr′r2) is a Diffie-Hellman triple (i.e., r = r′),
we have Dist ≡ Real since xi = zr

i for all i ∈ [1, n]. If instead (gr, gr2 , gr′r2) is a random
triple, it is clear that Dist ≡ Rand. ⊓⊔

Lemma 2. For any (computationally unbounded) adversary A, we have:

Pr[A(T, Kb) = b | (T, K1)← Rand; K0 ← {0, 1}ℓ; b← {0, 1}] = 1/2.
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Proof. In experiment Rand, the transcript T constrains the values si by the following n− 1
equations:

logg y1 = −s1 +

n
∑

i=1

si,

logg y2 = −s2 +
n

∑

i=1

si,

...

logg yn−1 = −sn−1 +

n
∑

i=1

si.

Since T does not constrain the values si any further and since the equation logg X =
∑n

i=1 si

is not expressible as a linear combination of the n − 1 equations above, we have that the
value of X is independent of T . This implies that

Pr[A(T, Xb) = b | (T, X1)← Rand; X0 ← G; b← {0, 1}] = 1/2.

Then, since H is a random oracle, the statement of Lemma 2 immediately follows. ⊓⊔

Armed with the two lemmas above, we now give the details of the construction of the
distinguisher D. Assume without loss of generality that A makes its Test query to an oracle
activated by the δth Execute query. The distinguisher D begins by choosing a random d ∈
{1, . . . , qex} as a guess for the value of δ. D then invokes A and simulates the queries of A. D
answers all the queries fromA in the obvious way, following the protocol exactly as specified,
except if a query is the dth Execute query. In this latter case, D slightly deviates from the
protocol, by embedding the DDH problem instance given as input into the transcript as
follows.

Given a triple (gr, gr2 , gr′r2) ∈ G
3, D generates (T, K) according to the the distribution

Dist and answers the dth Execute query of A with T . The distinguisher D aborts and outputs
a random bit if d 6= δ. Otherwise, D answers the Test query of A with K. At some later
point, when A terminates and outputs its guess b′, D outputs 1 if b = b′, and 0 otherwise.
By Lemma 1 and 2, and since Pr[d = δ] = 1/qex and

Pr[A(T, Kb) = b | (T, K1)← Real; K0 ← {0, 1}ℓ; b← {0, 1}] = 1/2 + ǫ,

we obtain

Advddh

G (D) = ǫ/qex,

which immediately yields the statement of Theorem 1. ⊓⊔

5 A Three-Round Group Key Agreement Protocol

In this section we propose a group key agreement protocol P2 secure against an active
adversary. We transform protocol P1 to the protocol P2 by applying a variant of the compiler
presented in [23]. The protocol P2 proceeds as follows:
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1. Each user Ui chooses an instance identifier (IID) φi ∈R {0, 1}k and broadcasts {Ui, φi}.
Having received all the n − 1 IIDs from other users, each Ui sets Φi = {{Ui, φi} | 1 ≤
i ≤ n}.

2. The users in U now proceed as specified in the protocol P1, except that: (1) each user
Ui sends m′

i = (mi, σi) instead of mi, where σi is the signature of mi‖Φi, and (2) upon
receiving message m′

j = (mj , σj) from user Uj , Ui verifies that Vpkj
(mj‖Φi, σj) = 1. All

users in U compute their session key as in P1.

Theorem 2. Let A2 be an active adversary attacking protocol P2, running in time t and
making qex Execute queries and qse Send queries. Let AdvP1

(t′, qex + qse

n
) be the maximum

advantage in attacking protocol P1, where the maximum is over all passive adversaries that
run in time t′ and make qex + qse

n
Execute queries. Then we have

AdvA2,P2
(k) ≤ AdvP1

(t′, qex +
qse

n
) + n · SuccΓ (t′′) +

q2
se + qexqse

2k
,

where t′ = t + O(nqextexp + nqsetexp), t′′ = t + O(nqextexp + qsetexp), and texp is as in
Theorem 1.

Proof. The proof of the theorem proceeds by constructing from A2 a passive adversary A1

attacking protocol P1. Before describing the details of the construction, we first bound the
probability of the event, Forge, that A2 outputs a valid forgery with respect to the public
key PKi of some user Ui ∈ U before making the query Corrupt(Ui).

Lemma 3. Pr[Forge] ≤ n · SuccΓ (t′′), where t′′ is as in Theorem 2.

Proof. We build from A2 a signature forger F against the signature scheme Γ . The goal of
the forger F , given as input a public key PK and access to a signing oracle associated with
this key, is to output a valid forgery (m, σ) with respect to PK, i.e., VPK(m, σ) = 1 such
that σ was not previously output by the signing oracle as a signature on the message m.
The forger F begins by choosing at random a user Uf ∈ U , and setting PKf to PK. For all
other users, F honestly generates a public/private key pair by running the key generation
algorithm G(1k). F then have A2 run, simulating the queries from A2 as follows:

– Execute(U)/Reveal(Πs
i )/Dump(Πs

i )/Test(Πs
i ): These queries are answered in the obvious

way.
– Send(Πs

i , m): If i 6= f , F knows the private signing key of Ui, and hence can answer
the queries following the protocol exactly as specified. If instead i = f , then F does
not have the private signing key of Ui. Nevertheless, F can obtain signatures of any
messages it wants by accessing the signing oracle associated with PK.

– Corrupt(Ui): If i 6= f , F simply hands the private key SKi which was generated by F
itself. If instead A2 corrupts Ui = Uf , then F halts and outputs “fail”.

The simulation provided above is perfectly indistinguishable from the real execution
unless adversary A2 makes the query Corrupt(Uf ). Throughout this simulation, F monitors
each Send query from A2, and checks if it includes a valid message/signature pair (m, σ)
with respect to PK. If no such query is made until A2 stops, then F halts and outputs
“fail”. Otherwise, F outputs (m, σ) as a valid forgery with respect to PK. Lemma 3
directly follows from the fact that this latter case occurs with probability Pr[Forge]/n. ⊓⊔
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We now describe the construction of the passive adversary A1 in detail. After generating
a public/private key pair (PKi, SKi) for each Ui ∈ U , the adversary A1 invokes A2 and
simulates the queries of A2 as follows.

Execute(U): A1 issues its own Execute query to get a transcript T1 of an execution of P1.
A1 then generates a transcript T2 of an execution of P2, by choosing random φ1, . . . , φn ∈
{0, 1}k, signing the messages in T1, and prepending Φ = {{Ui, φi} | 1 ≤ i ≤ n} to this
signed transcript. Finally, A1 returns T2 as the answer to the Execute query of A2 and adds
(Φ, T1) into a list L which is maintained by A1 to link a simulated execution of P2 to an
execution of P1.

Send(Πs
i , m): If some user in U has been asked for a Corrupt query before this query, then

A1 handles the query in the obvious way following the protocol P2 exactly as specified.
Otherwise, A1 simulates the query as follows, using the similar way as it did for Execute
queries:

If m = “start”, A1 chooses a random φs
i ∈ {0, 1}k and returns {Ui, φ

s
i} to A2. After

receiving all the expected IIDs in the first round, A1 defines Φs
i as per protocol specification.

If A1 needs to return the message m′
i in response to this Send query, A1 first checks the list

L to see if there exists an entry of the form (Φs
i , T1). If so, then A1 generates the message

m′
i from the message mi in T1 and returns it to adversary A2. Otherwise, A1 obtains a

transcript T1 of an execution of P1 by making an Execute query, adds the pair (Φs
i , T1) to

the list L, and then proceeds as in the former case.

Dump(Πs
i ): Let T1 be the transcript such that (Φs

i , T1) ∈ L. Then, A1 makes a Dump query
to the Ui’s instance activated by the Execute query that resulted in the transcript T1, and
simply forwards the random secret exponent(s) obtained from this Dump query.

Reveal(Πs
i ): As can be seen from the way A1 handles Execute and Send queries of A2, the

session key of Πs
i is unavailable to A1 unless some Dump queries or Corrupt queries have

been asked by A2. However, this Reveal query can be answered as follows:

1. Suppose that no one in U has been asked for a Corrupt query before Πs
i receives its last

incoming message. Let T1 be the transcript such that (Φs
i , T1) ∈ L. Then, A1 asks a

Reveal query to the Ui’s instance activated by the Execute query that resulted in the
transcript T1, and forwards the result of this Reveal query to adversary A2.

2. Now suppose that some user in U has been asked for a Corrupt query before Πs
i receives

its last incoming message. Note that in this case, A2 may have signed and sent arbi-
trary messages of its choice to Πs

i . We further separate this case into the following two
subcases:

– Consider the case that i 6= n and A2 has made a Corrupt query to Un after Πs
i has

sent the message m′
i and before Πs

i has received the message m′
n. In this case A1

first obtains the random secret exponent by making its own Dump query in the same
way as it did for Dump queries of A2. A1 then computes the session key of Πs

i using
this random exponent and returns the result to adversary A2.

– For other cases, A1 has already the random secret exponent(s) for Πs
i which were

chosen by A1 itself, and thus can answer the query following the protocol exactly as
specified.
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Corrupt(Ui): A1 simply returns the long-term private key SKi of Ui.

Test(Πs
i ): A1 finds a pair (Φs

i , T1) ∈ L, asks a Test query to one of the oracles activated by
the Execute query that resulted in T1, and returns the ℓ-bit string received as the response
to its Test query.

Before quantifying the advantage of A1 in attacking the protocol P1, we first need to
define the event Same. Let Same be the event that a same IID is used by a user to identify
two different instances, one activated by a Send query and the other activated by either an
Execute or a Send query. Then, a straightforward calculation shows that

Pr[Same] ≤
q2
se + qseqex

2k
. (1)

During the simulation above, A1 simply aborts and outputs a random bit if Same or
Forge occurs. Otherwise, A1 outputs whatever A2 does. Note that as long as neither Same
nor Forge occur, the simulation provided by A1 is perfectly indistinguishable from a real
execution of P2, and in a particular session, A2 is limited to send messages generated by
A1 from one same transcript of an execution of P1. This implies that

PrA1,P1
[CG] = PrA2,P2

[CG ∧ Forge ∧ Same] +
1

2
Pr[Forge ∨ Same]. (2)

Using Eq. (2), a simple probability calculation shows that

AdvA2,P2
(k) = 2 · PrA2,P2

[CG]− 1

= 2 · PrA2,P2
[CG ∧ Forge] + 2 · PrA2,P2

[CG ∧ Forge]− 1

≤ 2 · Pr[Forge] + 2 · PrA2,P2
[CG ∧ Forge]− 1

= 2 · Pr[Forge] + 2 · PrA2,P2
[CG ∧ Forge ∧ Same]

+ 2 · PrA2,P2
[CG ∧ Forge ∧ Same]− 1

= 2 · Pr[Forge] + 2 · PrA2,P2
[CG ∧ Forge ∧ Same]

− Pr[Forge ∨ Same] + 2 · PrA1,P1
[CG]− 1.

Since Pr[Forge ∨ Same] ≥ Pr[Forge] + Pr[CG ∧ Forge ∧ Same], it follows that

AdvA2,P2
(k) ≤ AdvA1,P1

(k) + Pr[Forge] + PrA2,P2
[CG ∧ Forge ∧ Same]

≤ AdvP1
(t′) + Pr[Forge] + Pr[Same].

Combined with Lemma 3 and Eq. (1), this immediately yields the desired result. ⊓⊔

6 Conclusion

In this paper we have proposed an efficient, asymmetric group key agreement protocol well
suited for groups consisting of a cluster of mobile hosts with limited computational resources
and a stationary host with sufficient computational power. The protocol achieves perfect
forward secrecy and has been proven secure against an active adversary in the random
oracle model under the Decisional Diffie-Hellman assumption.
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