
Elastic Block Ciphers

Debra L. Cook, Moti Yung, and Angelos D. Keromytis
Department of Computer Science

Columbia University
fdcook,moti,angelosg@cs.columbia.edu

May 30, 2004

Abstract. We introduce the new concept ofelastic block ciphers,symmetric-
key encryption algorithms that (1) for a variable-size input do not expand the
plaintext (i.e.,do not require plaintext padding) and (2) adjust their computational
loadproportionally to the size increase. Contrary to stream ciphers, elastic block
ciphers maintain the diffusion property and non-synchronicity of traditional block
ciphers. Elastic block ciphers are ideal (when combined with encryption modes)
for applications where length-preserving encryption is most beneficial, such as
protecting variable-length database fields or network packets.
We present a general algorithm for converting a traditionalblock cipher, such as
AES, to its elastic version, and analyze the security of the resulting cipher against
key recovery attacks. Our approach allows us to “stretch” the supported block
size of a block cipher up to twice the original length, while increasing the com-
putational load proportionally to the expanded block size.Our approach does not
allow us to use the original cipher as a “black box” (i.e., as an ideal cipher or a
pseudorandom permutation as is used in constructing modes of encryption). Nev-
ertheless, under some reasonable conditions on the cipher’s structure and its key
schedule, we reduce certain key recovery attacks of the elastic version to such
attacks on the fixed-size block cipher. This schema and the security reduction en-
able us to capitalize on secure ciphers and their already established security prop-
erties in developing elastic designs. We note that we are notaware of previous
“reduction type” proofs of security in the area of concrete (i.e.,non “black-box”)
block cipher design. Our work puts forth the notion of elasticity in block cipher
design.

Keywords: Cipher Design, Variable Length Block Cipher, Elastic BlockCiphers,
Encryption Algorithm, Key Recovey Attacks, Security Proofs.

1 Introduction

Block ciphers typically support a small number of block sizes, usually just one. Since
the length of the data to be encrypted is often not a multiple of the block size, plaintext-
padding schemes are necessary. Although widely used in practice, padding imposes
additional computational and space overheads to the encryption process. For example,
most data fields in a database do not interact well with the typical block sizes: integers
are often 32 bits long, doubles are 80 bits and strings are of arbitrary length. Thus,
the amount of space that is “wasted” due to encryption can be significant in a large
database. Similar issues arise when considering network traffic protection,e.g.,in IPsec



[1]. Furthermore, certain applications require that the length of the protected data re-
main the same. A natural alternative, using a stream cipher,is not always attractive
since it sacrifices data and key diffusion, and it further requires synchrony between the
sender and the receiver, which is an unsuitable assumption for many applications. The
ideal solution combines the length-preserving aspects of stream ciphers with the dif-
fusion properties of block ciphers, and uses existing and well analyzed components or
algorithms, to leverage prior work as much as possible.

We introduce the new concept of anelastic block cipher,which allows us to “stretch”
the supported block size of a block cipher up to a length double the original block
size, while increasing the computational load proportionally to the “stretched” block
size. This, together with modes of operation, permit block sizes to be set based on an
application’s requirements, allowing, for example, a non-traditional block size to be
used for all blocks, or a traditional block size to be used forall but the last block in
a given mode of operation. Such a cipher will be very useful indatabase and network
traffic encryption, as well as other applications of encryption.

In this paper, we propose and analyze a general method for creating an elastic block
cipher from an existing block cipher. Our intent is not to design anad-hocnew cipher,
but to systematically build upon existing block ciphers. Weneither modify the round
function of the base block cipher nor decrease the number of rounds applied to each
bit (position), but rather create a method by which bits beyond the supported block size
can be interleaved with bits in the supported block size. Ourmethod takes a novel ap-
proach that permits a reduction to be formed between the elastic and original cipher,
allowing us to relate the security of the elastic version to that of the fixed-size “tradi-
tional” version. We utilize the reduction to evaluate the security of elastic block ciphers
against certain key recovery attacks. We are not aware of existing proof methods that ar-
gue about sub-ciphers in the area of concrete block cipher design when the basic block
cipher is not treated as a black box (due to efficiency requirements in our case). The
importance of such a proof is that it allows one to exploit theestablished and provable
properties of existing ciphers in establishing certain properties of the new design.

There has been little previous work on variable-length pseudo-random functions
(PRFs). The focus has been on variable-length inputs with fixed-length outputs as ap-
plicable to MACs and hash functions [2–5] and, more recently, on modes that work
on multiples of the original block length [6, 7]. While therehave been proposals for
variable-length block ciphers in the past, such as [8], we take a different approach in
that we do not wish to design a new cipher but rather provide a mechanism for convert-
ing existing block ciphers into variable-length block ciphers.

A noteworthy proposal for a variable length-block cipher created by converting any
existing block cipher into one that accepts variable size block lengths is [9], which
demonstrates that the problem we deal with has been noticed.The method in [9] in-
volves two applications of the cipher for block lengths between the original length and
less than twice that length. Therefore, the resulting cipher requires twice the work of the
original block cipher per block, regardless of the block size. In comparison, the work-
load in our construction gradually expands to twice that of the original block cipher as
the block length expands (which was one of our design goals).For example, when both
schemes are applied to 128-bit AES, our scheme requires one extra round to encrypt

2



a 136-bit plaintext; whereas, the method in [9] requires tenextra rounds. Unlike our
construction, [9] does not modify the original block cipherbut adds operations around
it, treating the original cipher as a pseudo-random permutation (PRP) and analyzes it as
a black box. In our method, we cannot treat the original cipher as a black box but need
to add to its internals. This is, perhaps, the major methodological difference between
the works. While we do not modify the round function of the original block cipher in
our construction (and thus allow for reduction-type proofs), we alter the inputs to each
round, add whitening steps (when not already present), and extend the key schedule.A
novelty of our methodology is that while modifying the cipher in this fashion, we are
able to maintain a reduction between the original and elastic versions which permits us
to link their security against key recovery attacks.

Our work proposes elasticity of block size as a criterion forcipher design, creating
areas for future work. These areas include the analysis of elastic versions of concrete
ciphers and their security against cryptanalytic techniques not addressed here (since
security of block ciphers need to consider various types of specific attacks).

The remainder of the paper is organized as follows. Section 2explains our approach
for constructing elastic block ciphers from existing blockciphers. Section 3 presents a
security analysis for our scheme. To this end, we introduce the concept of a reduction
between ciphers to relate the security of the elastic and original versions of a cipher.
Section 4 concludes the paper.

2 Elastic Block Cipher Construction

2.1 Algorithm

We begin with a description of the algorithm for modifying the encryption and decryp-
tion functions of existing block ciphers to accept blocks ofsizeb to 2b� 1 bits, where
b is the block size of the original block cipher. (The resulting block cipher can accept
blocks of length2b, but the original block cipher can be applied to two blocks without
padding in that case.) We neither modify the round function of the block cipher nor de-
crease the number of rounds applied to each bit; instead, we create a method by which
bits beyond the supported block size can be interleaved withbits in the supported block
size. We explain the reasoning behind the specific steps in Section 2.2.

We assume that the appropriate amount of key material is available. The exact key
expansion algorithm will depend on the specific block cipher, so we skip that discussion
for now; we describe its properties later on. In this paper, we focus on the basic algo-
rithm independent of the original block cipher. Subtletiesspecific to particular types of
block ciphers, such as those using Feistel networks, are noted and are left for subse-
quent work. Figure 1 illustrates the resulting cipher when the modifications are applied
to the version of AES [10] that accepts128-bit inputs.

The following notation and terms will be used in the description and analysis of the
elastic block cipher:
Notation:

– G denotes any existing block cipher that is structured as a sequence of rounds.
– r denotes the number of rounds inG.

3



– b denotes the block length of the input toG in bits.
– P denotes a single block of plaintext.
– C denotes a single block of ciphertext.
– y is an integer in the range[0; b� 1℄.
– G

0 denotes the modifiedG with b+ y bit input for any valid value ofy.G 0 will be
referred to as the elastic version ofG.

– G

0

b+y

denotesG 0 for a specific value ofy.
– r

0 denotes the number of rounds inG 0.
– k denotes a key.
– rk denotes a set of round keys resulting from the key expansion.
– G

k

andG
rk

will refer to G with the round keys resulting from expanding keyk,
and toG with the round keysrk, respectively.

Terminology:

– A bit (position) input to a block cipher is calledactivein a round if the bit is input
to the round function. For example, in DES [11], half of the bits are active in each
round, while in AES all bits are active in each round.

– The round function will refer to one entire round ofG. For example, ifG is a
Feistel network, the round function ofG will be viewed as consisting of one entire
round of the Feistel network as opposed to just the function used within the Feistel
network.

GivenG and a plaintextP of lengthb+ y bits, make the following modifications to
G’s encryption function to create the encryption function ofG

0:

1. Set the number of rounds,r0, such that each of theb+ y bits is input to and active
in the same number of rounds inG 0 as each of theb bits is inG. r0 = r + dyr=be.

2. XOR all b + y bits with key material as the first step. IfG includes whitening
as the first step prior to the first round, the step is modified toincludeb + y bits
(the originalb-bits “inner block” whitening for the leftmost bits, as wellas “side
whitening” of the extray bits). If G does not have an initial whitening step, this
step is added toG 0. In either case, additional bits of expanded key material are
required beyond the amount needed forG (for the side whitening and perhaps the
added inner-block whitening).

3. (Optional) Add a simple key-dependent mixing step that permutes or mixes the bits
in a manner that any individual bit is not guaranteed to be in the rightmosty bits
with a probability of 1. This will be referred to as the mixingstep and is viewed as
the identity function if it is omitted. Similarly, a key dependent mixing step may be
added at the end of the last round.

4. Use the leftmostb-bits that are output from the mixing step as the input to the round
function.

5. If the round function includes XORing with key material atthe end of the round
and/or as a final step in the algorithm, the whitening should be performed on all
b+y bits (inner-block as well as side whitening). IfG does not contain end-of-round
whitening and/or whitening as the last step in the algorithm, add these whitening
steps and apply them to ally + b bits. In either case, additional bits of expanded
key material are required beyond the amount required byG.

4



128 bits y bits

AddRoundKey

Plaintext 128+y bits,  0 ≤ y < 128 bits

S-Box

Shiftrows

MixColumns

AddRoundKey

⊕

AES round, except last

Addition to round to swap y bits.

XOR y bits left out of round with

y bits that were in the round, and

swap the two segments 

Total # of rounds  = ! 10(128+y)/128"

S-Box

Shiftrows

AddRoundKey

128+y  bit ciphertext

last round

Key Dependent Mixing

Key Dependent MixingOptional

Optional

Fig. 1. Elastic Version of AES

6. Alternate whichy bits are left out of the round by XORing they bits left out of the
previous round withy bits from the round’s output, then swap the result with they

bits left out of the previous round. Specifically:
(a) LetY denote they bits that were left out of the round.
(b) LetX denote some subset ofy bits from the round’s output ofb bits. A different

set ofX bits (in terms of position) is selected in each round. How to best
selectX is dependent on the specific block cipher. We discuss this further in
Section 2.2.

(c) SetY  X � Y .
(d) SwapX andY to form the input to the next round.
This step will be referred to as “swapping” or the “swap step,” and may be added to
the last round if we require that all rounds be identical. However, having the swap
in the last round does not provide additional security.

The result,G 0, is a permutation onb + y bits. Its inverse, the decryption function,
consists of the same steps with the round keys applied in the reverse order and the round
function replaced by its inverse.

5



2.2 Explanation of Algorithm

The method was designed forG 0 to be equivalent toG (with the possible addition of
whitening and the optional key-dependent mixing steps) when the data is an integral
number ofb-bit blocks, while accommodating a range ofb to 2b � 1-bit blocks. The
following is an explanation of why specific steps are included in the construction.

Step 1:Each bit position of the input is required to be active in the same number of
rounds inG 0 as the number of rounds in which each bit is active inG. This requirement
allows the computational workload to increase proportionately to the block size while
avoiding a reduced round attack onG from being applied toG 0. Consider what happens
if y = b � 1 and no rounds were added toG when creatingG 0: b � 1 bits would be
active in only 1

2

of the rounds in which a bit is normally active inG. As y increases,
the number of rounds increases gradually fromr + 1 when0 < d ry

b

e � 1 to 2r when
r � 1 < d

ry

b

e � r:

Step 2:The initial whitening is performed on allb + y bits in order to prevent an
adversary from learningy input bits to the second round in a known-plaintext attack.

Step 3:A key-dependent permutation or mixing of bytes prior to the first round in-
creases the extent to which the first round contributes to preventing a differential attack.
The mixing step will need to take less time than a single round; otherwise, an additional
round can be added instead to decrease the probability of a specific differential occur-
ring. A trivial mixing that prevents the attacker from knowing with probability 1 which
y bits are excluded from the first round is a key-dependent rotation. This guarantees
any particular bit is within they bits with probability< 1

2

. Similarly, a key-dependent
mixing step after the last round will prevent a single round differential from occurring
with a probability of 1 in the first round of decryption.

Step 5:Including all b + y bits in the whitening performed at the end of a round
prevents an adversary from learning any of the output bits ofthe next-to-last round.
Suppose the additionaly bits were not included in the whitening; then the ciphertext,
C, for the block would include they bits that were excluded from the last round. Since
no bit is excluded from 2 consecutive rounds, an adversary would be provided withy
bits of output from the next to last round, potentially aiding in cryptanalysis.

Step 6:X�Y is performed instead of merely swappingX andY in order to increase
the rate of diffusion. IfG does not have complete diffusion in one round, then at the
end of the first round there is some subsetS of bits output from the round that have
not been impacted by some of the bits inX . While the bits inY may impactS in the
second round, swappingX andY would result in the bits inX having no impact in the
second round; whereas, swappingX with X � Y will allow the bits inX to impact
the second round. The selection ofX depends on the round function of the specific
block cipher. The bit positions selected forX should vary amongst the rounds to ensure
that all bit positions are involved in both theb-bit andy-bit components, as opposed
to always selecting the samey positions for use inX . If all input bits to the round are
utilized in the same manner, the bit positions chosen forX can be rotated across the
rounds. For example, in AES all bytes are processed by the same functions within the
round. In that case, it is sufficient to selectX to be consecutive bits starting at position
a

1

+ a

2

� i(mod b) in roundi for some constantsa
1

anda
2

. If the input bits are treated
differently in the round (for example, in RC6 the input consists of4 words of which

6



one pair is operated-on differently than the other pair), then swap the bits such that each
bit participates in each pair the same number of times. Another benefit of the XOR is a
reduction in the ability to specify ay-bit differential in the input to the second round. If
the optional key-dependent mixing step is omitted, then without the XOR a differential
in the second round’s input ofy bits can be obtained with probability100% regardless of
the round function, by choosing the rightmosty bits of the original input appropriately.

An issue that is left to subsequent work is how to select the bits to be swapped (or
adding the swap step less often) when the original cipher’s round function is structured
such that only a subset of theb bits are processed by the round function in each round
or subsets of theb bits are processed differently by the round function.

Decryption:The inverse of the round function, if it is not its own inverse, must be
used for decryption. While the structure is similar to an unbalanced Feistel network,
it is not a Feistel network due to bits output from the round function in theith round
becoming the bits omitted from thei+1

st round. In constrast, in an (unbalanced) Feistel
network bits input to the round function in theith round become the bits omitted from
the round function in thei+ 1

st round.1 Thus, it is not possible to perform decryption
by simply running the ciphertext through the encryption function ofG 0 with the round
keys used in reverse order. Designing the elastic cipher in this manner increases the
diffusion rate compared to that of an unbalanced Feistel network.

2.3 Key Schedule

Our obvious options in creating the key schedule forG

0 include modifying the key
schedule ofG to produce additional bytes, or increasing the original keylength and
running the key schedule multiple times. A third, less obvious option is to use an ex-
isting efficient stream cipher that is considered secure in practice, to generate all or
part of the key schedule, independent of the choice ofG. The stream cipher can either
serve as the entire key schedule, replacing that ofG, or provide only the additional key
bits needed for whitening and the mixing step, while using the original key schedule
of G for all other expanded key bits. Using a stream cipher may result in the expanded
key being more (pseudo-)random than the output of the key schedule ofG and the key
schedule forG 0 (as a schema) need not be changed for new choices ofG.

We make the following assumption regarding the expanded keys used for the elastic
version of the cipher. In our analysis, we embed a copy ofG inside a prefix ofG 0 and
assume the round keys bits used outside the embeddedG are independent of (do not
give any information about) the round key bits used inside the embedded copy ofG.
We call this independence property needed for the analysis,“proper expansion” of the
key schedule of the elastic cipher. Given the lack of any reduction proofs in the area of
concrete block cipher design, and given that such idealization of the key schedule can
be achieved by certain scheduling methods that can be adopted (e.g.,use a stream cipher
to get the “independent” portion of the expanded key bits, and model them in the proof

1 Within the context of our work, the term unbalanced Feistel network refers to a Feistel network
in which the left and right parts are not of equal length as defined in [12]. The term “unbalanced
Feistel network” has been used in at least one other context to refer to Feistel networks in which
the input and output are of different lengths.

7



as partial round keys that can be known/ controlled without affecting the security of
the other round keys), we feel that this is reasonable assumption for initiating analytic
methods that validate the security of a design against givenattacks via “reduction-type”
proofs in this area. (We note that we can embedG in a place different from the prefix of
G

0 and obtain the same relationship between the security ofG

0 andG, but our analysis
in Section 3 concentrates on one embedding ofG within the prefix ofG 0.)

3 Security ofG 0

3.1 Overview

For any concrete block cipher used in practice (and not treated as a pseudorandom
permutation or a member of a family of functions), the ciphercannot be proven secure
in a theoretical sense but rather is proven secure against known types of attacks. Thus,
we can only do the same for the elastic version of such a cipher. In order to provide
a general understanding of the security of our construction, we provide a method for
reducing the security of the elastic version to that of the original version, showing that a
security weakness inG 0 implies a weakness inG. Our security analysis ofG 0 exploits
the relationship betweenG 0 andG and the proper expansion assumption on the key
schedule. Specifically, we exploit the fact that an instanceof G is embedded inG 0.

We concentrate on key-recovery attacks. We show how to reduce G

0 to G in a
manner that allows an attack that finds the round keys ofG

0 to find the round keys
for G. Security against key-recovery attacks does not by itself imply security (e.g.,the
identity function which ignores the key is insecure while key recovery is imposible).
However, all concrete attacks against real ciphers (differential, linear,etc.) attempt key
recovery and thus practical block ciphers should be secure against such attacks.

In order to focus on the core components of the algorithm for creatingG 0 from
G, we considerG without the optional key-dependent mixing steps describedin step 3
of the algorithm. If present, these intuitively only serve to increase the security ofG0

since they prevent an attacker from knowing with probability 1 which bits are omitted
from the first application of the round function. Furthermore, since the mixing steps are
added steps (as opposed to modifications to components ofG) using key material that
is independent of the round and whitening key material (by our assumption on the key
schedule), they do not impact our analysis which is entirelydependent on the fact that
G

0 contains an instance ofG in a manner that permits a reduction fromG 0 toG.

3.2 Round Key Recovery Attack

As mentioned above, we use the fact that an instance ofG is embedded inG 0 to create
a reduction fromG 0 toG. As a result of this reduction, an attack againstG

0 that allows
an attacker to determine some of the round keys implies an attack againstG itself which
is polynomially related (with a concrete polynomial) in resources to the attack onG 0.
Assuming thatG itself is resistant to such attacks, we conclude thatG

0 does not reveal
round-key bits to the attacker. The reduction requires a setof (plaintext, ciphertext)
pairs. This is not considered a limiting factor because in most types of attacks, whether

8



they are known plaintext, chosen plaintext, adaptive plaintext, chosen ciphertextetc.,the
attacker acquires a set of such pairs. We also assume thatG has end-of-round whitening
and that the key scheduling and expansion method is input-independent. Again, these
assumptions apply to many ciphers, or versions of ciphers that contain whitening and
expand the key.

⊕

b bits 1 bit

round  function

⊕ key  bits ⊕ key  bit

⊕

round  function

⊕ key  bits ⊕ key  bit

⊕

round  function

⊕ key  bits ⊕ key  bit

round  function

⊕ key  bits ⊕ key  bit

r-3 rounds

Round 1

Round 2

Round r

Round r+1

b bits

round  function

⊕ key  bits

X ⊕=

round  function

⊕ key  bits

round  function

⊕ key  bits

r-3 rounds

Round 1

Round 2

Round r

Input after initial whitening

Input after initial whitening

X

X

Fig. 2.G within G

0

Before we formally claim the security, we first draw attention to the fact that the
operations performed inG 0 in its prefix until the leftmostb bit positions go through as
many rounds as inG, can be shown to be an application ofG, as depicted intuitively
in Figure 2. This relationship can be used to convert an attack which finds the round
keys forG 0 to an attack which finds the round keys forG. Recall thatG

rk

denotes
G using round keysrk. Specifically, ifG

k

0

(p k x) =  k z, a set of round keys,
rk, for G such thatG

rk

(p) =  can be formed from the round keys and the round

9



outputs inG 0 by collapsing the end-of-round whitening and swapping steps in G

0

into a whitening step. The leftmostb bits of the round key for the initial whitening are
unchanged, and the rightmosty bits are dropped. While the resulting round keys provide
good whitening to the rounds of the copy ofG (due to the proper expansion property),
they will vary in rounds1 to r per (plaintext, ciphertext) pair due to the previous round’s
output impacting the end-of-round whitening step. However, it is possible to use these
keys to solve for the round keys ofG as will be argued below.

Theorem I: If there exists an attack onG 0 that allows the round keys to be determined
for the firstr rounds, then there exists a polynomially related attack onG with r rounds,
assuming:

– G contains end-of-round whitening.
– No message-related round keys. Namely, if there are expanded key bits utilized in
G aside from the initial and end-of-round whitening steps, these expanded key bits
depend only on the key and do not vary across inputs.

– The expanded key bits are done via proper expansion (defined in Section 2.3).

With respect to the first condition placed onG in Theorem I,the condition may be
removed if the attack onG 0 involves solving for the round-key bits directly and allows
the bits used in the whitening steps to be set to0 for bit positions not swapped and to
0 or 1, as necessary, for bit positions swapped, to ensure the whitening on the leftmost
b bits is equivalent to XORing with0; which is the same as having no whitening inG.
If the attack onG 0 finds all possible keys or sets of round keys, the attack must find
the key(s) or set(s) of round keys corresponding to round keys that are equivalent to
XORing with0:

In proving the theorem, we will describe two methods of utilizing the attack onG 0

to attackG. Before beginning, we prove a claim which will assist the reader in under-
standing the linkage betweenG andG 0. The claim shows that for any set of (plaintext,
ciphertext) pairs encrypted under some set of round keys inG

0, there exists a corre-
sponding set of (plaintext, ciphertext) pairs forG where the round keys used inG 0 for
the round function and the leftmostb bits of each whitening step are the same as those
used inG, the plaintexts used inG are the leftmostb bits of the plaintexts used inG 0,
and the ciphertexts forG are the same as the leftmostb bits of output of therth round
of G 0 prior to the swap step.

Claim I: Let f(pi; i)g denote a set ofn (plaintext, ciphertext) pairs and letjwj =
jvij = y. If G

k

(pi) = i, then there existn sets of round keys for the firstr rounds
of G0 that are consistent with inputspi k w producingi k vi as the output of the
r

th round prior to the swap at the end of therth round, fori = 1 to n, such that the
following condition applies:

Condition I:The leftmostb bits used for whitening in each round are identical across
then sets and any bits used internal to the round function are identical across then
sets.

Furthermore,y may be any valid value. The bits invi are not used and thus no restric-
tions are placed on their values.

Proof: Let rk = frk

j

for j = 0 to rg be the set of round keys corresponding to key
k for G. rk

0

denotes the key bits used for initial whitening. For(pi; i), form a set of

10



Round

Function 

IN (b bits) Y (y bits)

B = b whitening

key bits
y whitening

key bits = Y

XOR y bits

of OUT’ with

Y’

Y’ = 0

OUT

OUT’

OUT’ y bits from OUT’

Converted round key for G = (B with y bits replaced by their XOR with Y’) = B

Fig. 3. Converted Key Unchanged in Leftb Bits

the firstr round keys forG 0 as follows: Pick a constant string,w, of y bits, such as a
string of00s. Let pi k w be the input toG 0. Let rki0 = frki0

j

for j = 0 to rg denote
the round keys forG 0 through therth round for the pair(pi; i). Set any bits inrki0

j

used internal to the round function to be the same as the corresponding bits inrk
j

. Set
the leftmostb bits used for whitening inrki0

j

to theb bits used for whitening inrk
j

:

Set the rightmosty bits used for whitening inrki0
j

to be the same as they bits left out
of the round function in roundj of G 0. This is illustrated by Figure 3. Notice that the
leftmostb bits used for whitening in each round are identical across then sets, and any
bits used internal to the round function are identical across then sets; specifically, they
correspond tork in each case, and the rightmosty bits used in each whitening step
differ based on(pi; i) across then sets.

The operations ofG 0 on the leftmostb bits through roundr, prior to the last swap,
are identical to the operations inG

k

(pi) because the swap step inG 0 results in XORing
y bits of a round function’s output withy 00s. Therefore, the leftmostb bits output from
therth round prior to the swap in therth round isi: Therefore, fori = 1 to n there
exists a set of round keys,rki0 for G0

rki

0

such thatG 0

(pi) producesi as the leftmostb
bits in therth round prior to the swap step and Condition I holds, thus proving Claim I.

Proof of Theorem I:We now describe the reduction and two attacks. The attacks are
presented in terms of solving for the round keys from round0 to r, but may also be
performed by working from roundr back to the initial whitening. The first method’s
efficiency is dependent ony; jkj; andr; and may be the least useful of the two. We
present it first in order to illustrate the method by which round keys forG 0 can be
converted into round keys forG:

First method:

11



This method produces an attack onG that runs in time polynomial in the attack on
G

0 andr. It is more efficient than an exhaustive key search wheny <

jkj

r�2

. The attack
works as follows: Assume there exists a known (plaintext, ciphertext) pair attack onG0

which produces the round keys either by finding the original key and then expanding it,
or by finding the round keys directly. Using round keys for rounds 0 tor of G 0, convert
the round keys into round keys forG one round at a time. For each round, extract the
largest set of (plaintext, ciphertext) pairs used in the attack onG 0 that have the same
converted round key. Each round may reduce the size of the setof pairs by2y. The end
result is a set of round keys forG that are consistent with a set ofn

2

y(r�2)

b-bit (plaintext,
ciphertext) pairs forG. We then describe how to take a set of (plaintext, ciphertext) pairs
for G, convert them into a set of (plaintext, ciphertext) pairs for G 0 in order to run the
attack onG 0 to find the round keys forG. Finally, we discuss the bounds ony for which
this attack is more efficient than an exhaustive key search.

Let f(P;C)g = f(pi k xi; i k zi)g (for i = 1 to n) denote a set ofn known
b+ y-bit (plaintext, ciphertext) pairs forG 0

; wherejpij = jij = b andjxij = jzij = y:

Assume the existence of an algorithmA
G

0 that finds all possible keys,fk
j

g, corre-
sponding tof(P;C)g in time less than a exhaustive search for the key. Letm denote the
number of keys found. Without loss of generality, it is assumed the keys are available in
expanded form. The key bits for the initial whitening will bereferred to as “round key
0:”

Let S = fek

j

g for j = 1 to m be the set of expanded keys used for whitening for
whichek

j

is from the expansion of keyk
j

andG 0

k

j

(pi k xi) = i k zi for i = 1 to n.
Let R

int

denote any key material utilized within the round function.The values
found for such key bits will be the same for the solutions derived by the attack forG 0

andG.
Let f(P;U)g = f(pijjxi; uijjvi)g such thatuijjvi is the output of therth round of

G

0, wherejuij = b andjvij = y.
Let S0

= fek

0

j

jek

0

j

= bits of ek
j

2 S corresponding to rounds0 to r used for
whiteningg be the set of expanded key bits used for whitening in rounds0 to r of G 0.

For eachek
j

2 S

0 and each(pi k xi; ui k vi) 2 f(P;U)g, convert the round keys
to round keys forG. Let ek0

ij

be the converted key corresponding to thei

th element of
f(P;U)g and thejth element ofS0. The part ofek0

ij

corresponding to round0 will be
identical across all elements. When the round keys are converted, at mosty bits change
in the leftmostb bits. Thus, the resulting round keys for roundq, 0 < q � r can be
divided for each of they impacted bits into those that have a0 in the affected bit and
those that have a1 in the affected bit. Forq = 1 to r, defineS0

rnd

q

as the maximum-
sized set ofek0

ij

s from S

rnd

q�1

that have identical round key(s) for roundq, where
S

0

rnd

0

= S

0. Letf(P;U)
rnd

q

g be the corresponding elements off(P;U)g. When form-
ing f(P;U)

rnd

q

g, at least2�y

jf(P;U)

rnd

q�1

gj of the elements fromf(P;U)
rnd

q�1

g

are included.
To illustrate how the setsS0

rnd

q

andf(P;U)
rnd

q

g are created, consider the example
shown in Figure 4 whereb = 4, y = 2, and the leftmost2 bits are swapped with
they bits in the swap step. The round number isq andf(P;U)

rnd

q�1

g contains three
(plaintext, ciphertext) pairs. Suppose the outputs of the round function in theqth of G 0

are100101; 110011and111111 and the whitening bits in theqth round are011010. The

12



converted round keys corresponding to the three cases are0110; 1110 and1110. Since
1110 occurs in the majority of the cases, set theq

th round key ofG to 1110. S0

rnd

q

contains the round keys for rounds 0 toq�1 fromS

0

rnd

q�1

and0010, andf(P;U)
rnd

q

g

contains the second and third (plaintext, ciphertext) pairs fromf(P;U)
rnd

q�1

g.

1001   01 1100   11 1111   11

KB KB

KB = 0110

KY = 01

KBKY KY KY

1111   00 1010   10 1001   10

1111   11 0010   10 0001   10

1001 1100 1111

0110 1110

1111 0010 0001

1110

converted

key bits
converted

key bits

converted

key bits

Fig. 4. Forming S0

rnd

q

Let f(P;C)
G

g = f(pi; i)j(pi k yi; ui k vi) 2 f(P;U)

rnd

r

gg. jf(P;C)
G

gj �

n=2

yr

: f(P;C)

G

g is a set of (plaintext, ciphertext) pairs for whichG
rk

(pi) = i 8

(pi; i) 2 f(P;C)

G

g with the whitening round keys ofrk 2 S

0

rnd

q

and any additional
key material utilized by the rounds is the same as that forG

0, namelyR
int

.
For now, we are only concerned with obtaining a set, and not necessarily the largest,

of (plaintext, ciphertext) pairs corresponding to a commonkey. In order to produce the
largest set of (plaintext, ciphertext) pairs with a common key, every possibleS0

rnd

q

can
be formed for each round, and the iteration for theq + 1

st round applied to each. This
will create a tree of depthr with at most2y children of each node.

Let t
r

denote the time to runr rounds ofG 0, andt
A

denote the time to runA
G

0 .
In the case of obtaining at least one setf(P;U)

rnd

r

g of size� n

2

yr

, the time required
beyondt

A

consists of:nmt

r

time to obtain the outputs of the firstr rounds for each
f(P;U)g, O(nmr) time to perform the conversion of the round keys fromG 0 to round
keys forG andO(nmr) time to form theS0

rnd

r

sets. Thus, the additional time required
to attackG (beyond the time required to attackG 0

b+y

) is nmt

r

+ O(nmr). The only
unknown value ism, the number of keys produced by the attack onG

0

b+1

. If m is

13



large enough, to the extent that it approaches the average number of keys to test in a
brute force attack onG 0, then this contradicts the assumption that an efficient attack
exists onG 0, because the attacker is left with a large set of potential keys for decrypting
additional ciphertexts.

To perform the attack onG when given a set of (plaintext, ciphertext) pairs forG,
convert the pairs into a set of (plaintext, ciphertext) pairs forG 0 and find the round keys
forG 0 then forG as follows: Letrk

r+l

, where1 � l � r

0

�r; denote a set of randomly
chosen round keys for roundsr + 1 to the last round ofG 0 that will be held constant,
and letRF

end

denote the lastr0 � r rounds ofG 0 using these round keys. Given a
setf(P �

; C

�

)g = f(pi

�

; i

�

)g for i = 1 to n known (plaintext, ciphertext) pairs for
G; create the setf(P;C)g of (plaintext, ciphertext) pairs to use in the attack onG

0 by
settingpi k xi = pi

�

k 0 andi k zi = RF

end

(i

�

k 0) for i = 1 to n. This choice of
i k zi corresponds to an output ofi� k 0 in therth round ofG 0. For the set of(P;C)
pairs are created,fP;U)g = f(pi� k 0; i� k 0)g. Apply the attack onG 0 to solve for
the round keys ofG 0 then produce the setsfP;U)

rnd

r

g andS
rnd

r

. The sets of round
keys inS

rnd

r

will be consistent with the (plaintext, ciphertext) pairs in fP;U)
rnd

r

g.
We now discuss how the number of (plaintext, ciphertext) pairs required (i.e., the

number of encryptions required) compares to that of an exhaustive key search. Recall
the size of resulting set of (plaintext, ciphertext) pairs which are consistent with the
round keys is� n

2

yr

. Wheny >

jkj

r

the number of plaintexts encrypted,n, must be
> 2

jkj to guarantee at least one (plaintext, ciphertext) pair is inf(P;C)
G

g, which is
more encryptions than required by an exhaustive key search.Without changing either
r or the length ofk, this bound ony can be slightly increased toy � jkj

r�2

by using
b + y bit plaintexts that are the same in the rightmosty bits, and by defining theui
values representing the ciphertext output ofG in the rth round ofG 0 to be the out-
put of therth round prior to the swapping step. This will result injS0

rnd

1

j = n and
jS

0

rnd

r

j = jS

0

rnd

r�1

j, thus in first andrth rounds the set of (plaintext, ciphertext) pairs
is not reduced. The number of (plaintext, ciphertext) pairsproduced forG that are con-
sistent with the round keys forG is � n

2

y(r�2)

. Notice that increasing the number of
rounds inG increases the number of (plaintext, ciphertext) pairs required to guarantee
f(P;C)

G

g is non-empty and will prevent the attack from being more efficient than an
exhaustive key search. While we prefer to not alterG in this manner, the efficiency of
the attack being based on the number of rounds is useful when settingG = G

0

b+y

, in
which case we are willing to adjust the rounds ofG

0

b+y

, then creating aG 0 for the new
G.

We define a direct attack onG 0

b+y

to be an attack that finds the key or round keys for
G

0

b+y

without attackingG 0

b+y

0

, for y0 > y, and converting the round keys fromG0

b+y

0

to round keys forG 0

b+y

: We define an indirect attack onG 0

b+y

to be an attack that finds
the round keys forG 0

b+y

0

for somey0 > y, and uses them to find the round keys for

G

0

b+y

, andy0 � y <

jkj

r

�

�2

, wherer� is the number of rounds inG 0

b+y

. Our analysis

implies that if a direct attack exists onG 0

b+y

for y <

jkj

r�2

, then an attack requiring
less time than an exhaustive key search exists onG. However, it does not implyG 0

b+y

is secure for ally <

jkj

r�2

, because there may be a direct attack onG

0

b+y

0

for somey0

such thaty0 � y <

jkj

r

�

�2

, thus implying an indirect attack onG 0

b+y

. In the worst case,

14



y

0

= y + 1 andr� must be increased tojkj + 2 for the attack to be more inefficient
than an exhaustive key search. If the length ofk can be changed (as part of the design
of G 0), settingjkj to 2b(r � 2) results in the bound beingy < 2b, thus allowing all
y 2 [0; b� 1℄.

Second method:
This attack runs in quadratic time in the number of rounds ofG and avoids the

decrease in the number of (plaintext, ciphertext) pairs that occurs in the first method.
The attack onG 0 is used to solve for round keys 0 and 1 forG, then repeatedly solves
for one round key ofG at a time, using the output of one round ofG as partial input to
a reduced round version ofG 0, running the attack onG 0 and converting the1st round
key of G 0 to the round key for the next round ofG. We assume that if an attack on
G

0 with r rounds exists, then a reduced round attack onG

0 exists for any number of
rounds< r

0.
Given a setf(P �

; C

�

)g = f(pi

�

; i

�

)g of n (plaintext, ciphertext) pairs forG,
create a setf(P;C)g = f(pi� k 0; i k vi)g of n (plaintext, ciphertext) pairs for anr
round version ofG 0. Note: we only require that they bits appended to eachpi� when
formingf(P;C)g be a constant; we choose to use 0. Thevi values appended to thei0s
are arbitrary and do not need to be identical. SolveG

0 for round keys 0 and 1. By the
pseudo-randomness of the round keys described in Section 2.3, sets of round keys exist
that correspond tof(P;C)g and which are identical in at least the first two rounds (the
round keys across alln pairs may be identical in all but the last round, but we are only
concerned with the first two rounds). Denote these asrk

0

0

andrk0
1

. Use the leftmostb
bits ofrk0

0

as round key 0,rk
0

, forG. Since the rightmosty bits are identical across all
inputs toG 0, whenrk0

1

is converted to a round key forG, the result will be the same
across alln elements off(P;C)g. Use the converted round key as round key 1,rk

1

, for
G. For eachpi�, apply the initial whitening and first round ofG using the two converted
round keys. Letp1i denote the output of the first round ofG for i = 1 to n. Using a
reduced round version ofG 0 with r � 1 rounds and the initial whitening removed, set
f(P;C)g = f(p1i k 0; i k vi)g and solve for the first round key ofG 0. As before,
convert the resulting round key(s) to a round key forG. Again, the converted round
keys forG will be identical across alln values. Use the converted round key as the
second round key forG. Repeat the process for the remaining rounds ofG, each time
using the outputs of the last round ofG for which the round key has been determined
as the inputs toG 0 and reducing the number of rounds inG 0 by 1, to sequentially find
the round keys forG. This attack requires work equivalent of applyingn rounds ofG
when deriving the outputs of the n inputs to each round ofG, n(r+1)r

2

rounds ofG 0

in the worst case ifA0

G

0

requires knowing the output of each round ofG

0 to find the
first round key andr applications ofA0

G

0

on n(r+1)r

2

rounds ofG 0 when solving for the
round keys ofG 0.

In summary, the attack onG described in this second method can be written as:
Inputf(P �

; C

�

)g = f(pi

�

; i

�

) for i = 1 to ng.
Createf(P;C)g = f(pi� k 0; i� k vi) for i = 1 to ng for a r round version ofG 0,

where thevi0s are arbitrary.
UsingA

G

0 , solve ar reduced round version ofG 0 for rk0
0

andrk0
1

.

15



Convertrk0
0

to rk
0

andrk0
1

to rk
1

.
Setp1i = first round output ofG usingrk

0

andrk
1

, for i = 1 to n.
For j = 1 to r � 1f

f(P;C)g = f(p1i k 0; i

�

k vi) for i = 1 to ng.
Solve ar � j reduced round version ofG 0 for the first round key,rk0

1

.
Convertrk0

1

to formrk

j+1

.
p(j + 1)i = output of roundj + 1 of G onpji usingrk

j+1

for i = 1 to n.
g

4 Conclusions

We have introduced a new concept, that of anelastic block cipherand presented a gen-
eral method for converting an existing block cipher that is based on a round function
into an elastic block cipher. The ability to create an elastic version of a block cipher al-
lows us to “stretch” the supported block size of the cipher upto twice the original length
while increasing the computational load proportionally tothe block size. We show that
the existence of an attack on the elastic version that produces certain round keys im-
plies a key recovery attack exists on the original block cipher by creating a reduction
between the elastic and original versions of the block cipher; this methodological con-
tribution appears to beuniquein the area of block cipher design. Practical applications
of elastic ciphers include database and network traffic encryption. Our work suggests
that the notion of elasticity can be a new design criterion for block ciphers. Our work
also suggests numerous questions for future work. Open issues include how to extend
the methodology presented here and how to further analyze elastic designs. Regarding
concrete instances of elastic ciphers, since the security of block ciphers is an involved
issue and requires consideration of various potential attacks, it is left open how to vali-
date these designs by concrete cryptanalysis of specific attacks, by performance analysis
and by considering their applications in various real contexts.

References

1. Kent, S., Atkinson, R.: Security Architecture for the Internet Protocol. Request for Com-
ments (Proposed Standard) 2401, Internet Engineering TaskForce (1998)

2. An, J., Bellare, M.: Constructing VIL-MACs from FIL-MACs: Message Authentication
Under Weakened Assumptions. In: Proceedings of Advances inCryptology - Crypto ’99,
LNCS 1666, Springer-Verlag. (1999)

3. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom Functions Re-Visited: The Cascade
Construction and its Concrete Security. In: Proceedings ofFoundations of Computer Sci-
ence, IEEE. (1996)

4. Bernstein, D.: How to Stretch Random Functions: The Security of Protected Counter Sums.
In: Journal of Cryptology, Vol. 12(3), Springer-Verlag. (1999) 185–192

5. Black, J., Rogaway, P.: CBC MACs for Arbitrary-Length: The Three-Key Constructions. In:
Proceedings of Advances in Cryptology - Crypto 2000, LNCS 1880, Springer-Verlag. (2000)

6. Halevi, S., Rogaway, P.: A Tweakable Enciphering Mode. In: Proceedings of Advances in
Cryptology - Crypto 2003, LNCS 2729, Springer-Verlag. (2003)

16



7. Halevi, S., Rogaway, P.: A Parallelizable Enciphering Mode. Cryptology ePrint Archive,
Report 2003/147 (2003)http://eprint.iacr.org/.

8. Schroeppel, R.: Hasty Pudding Cipher.http://www.cs.arizona.edu/rcs/hpc
(1998)

9. Bellare, M., Rogaway, P.: On the Construction of VariableLength-Input Ciphers. In: Pro-
ceedings of Fast Software Encryption (FSE), LNCS 1636, Springer-Verlag. (1999)

10. FIPS 197: Advanced Encryption Standard (AES) (2001)
11. FIPS 46-3: Data Encryption Standard (DES) (1999)
12. Schneier, Kelsey: Unbalanced Feistel Networks and Block Cipher Design. In: Proceedings

of Fast Software Encryption (FSE), LNCS 1039, Springer-Verlag. (1996)

17


