Elastic Block Ciphers

Debra L. Cook, Moti Yung, and Angelos D. Keromytis
Department of Computer Science
Columbia University
{dcook,moti,angelgs@cs.columbia.edu
May 30, 2004

Abstract. We introduce the new concept efastic block cipherssymmetric-
key encryption algorithms that (1) for a variable-size indo not expand the
plaintext {.e.,do not require plaintext padding) and (2) adjust their cotational
load proportionallyto the size increase. Contrary to stream ciphers, elastakbl
ciphers maintain the diffusion property and non-synctuityiof traditional block
ciphers. Elastic block ciphers are ideal (when combinedi eitcryption modes)
for applications where length-preserving encryption istrizeneficial, such as
protecting variable-length database fields or network gisck

We present a general algorithm for converting a traditidoba@tk cipher, such as
AES, toits elastic version, and analyze the security of éselting cipher against
key recovery attacks. Our approach allows us to “stretch”shpported block
size of a block cipher up to twice the original length, whiterieasing the com-
putational load proportionally to the expanded block stzer approach does not
allow us to use the original cipher as a “black bok&(, as an ideal cipher or a
pseudorandom permutation as is used in constructing md@esxyption). Nev-
ertheless, under some reasonable conditions on the ctantture and its key
schedule, we reduce certain key recovery attacks of théieelassion to such
attacks on the fixed-size block cipher. This schema and theiggreduction en-
able us to capitalize on secure ciphers and their alreadplesdted security prop-
erties in developing elastic designs. We note that we arewate of previous
“reduction type” proofs of security in the area of concrete. (non “black-box”)
block cipher design. Our work puts forth the notion of elaistiin block cipher
design.

Keywords: Cipher Design, Variable Length Block Cipher, Elastic Bldgibhers,
Encryption Algorithm, Key Recovey Attacks, Security Praof

1 Introduction

Block ciphers typically support a small number of block sizesually just one. Since
the length of the data to be encrypted is often not a multipteeblock size, plaintext-
padding schemes are necessary. Although widely used iniggapadding imposes
additional computational and space overheads to the etimnyprocess. For example,
most data fields in a database do not interact well with thie&plock sizes: integers
are often 32 bits long, doubles are 80 bits and strings arelifrary length. Thus,
the amount of space that is “wasted” due to encryption candréfisant in a large
database. Similar issues arise when considering netwatffictprotectiong.g.,in IPsec

[1]. Furthermore, certain applications require that thegtd of the protected data re-
main the same. A natural alternative, using a stream cipbemot always attractive

since it sacrifices data and key diffusion, and it furtheuisgs synchrony between the
sender and the receiver, which is an unsuitable assumpmtiandny applications. The

ideal solution combines the length-preserving aspectsre&s ciphers with the dif-

fusion properties of block ciphers, and uses existing antlamalyzed components or
algorithms, to leverage prior work as much as possible.

We introduce the new concept of alastic block ciphervhich allows us to “stretch”
the supported block size of a block cipher up to a length dotfé original block
size, while increasing the computational load proportigrnta the “stretched” block
size. This, together with modes of operation, permit bldzksto be set based on an
application’s requirements, allowing, for example, a mi@ditional block size to be
used for all blocks, or a traditional block size to be useddibibut the last block in
a given mode of operation. Such a cipher will be very usefdadtabase and network
traffic encryption, as well as other applications of endiyut

In this paper, we propose and analyze a general method fatirogean elastic block
cipher from an existing block cipher. Our intent is not toigasanad-hocnew cipher,
but to systematically build upon existing block ciphers. Wéther modify the round
function of the base block cipher nor decrease the numbeswfds applied to each
bit (position), but rather create a method by which bits elihe supported block size
can be interleaved with bits in the supported block size. @ethod takes a novel ap-
proach that permits a reduction to be formed between théieksd original cipher,
allowing us to relate the security of the elastic versionhiat of the fixed-size “tradi-
tional” version. We utilize the reduction to evaluate thewséy of elastic block ciphers
against certain key recovery attacks. We are not aware sfiegiproof methods that ar-
gue about sub-ciphers in the area of concrete block ciptsgulehen the basic block
cipher is not treated as a black box (due to efficiency requargs in our case). The
importance of such a proof is that it allows one to exploitéstablished and provable
properties of existing ciphers in establishing certairperties of the new design.

There has been little previous work on variable-length geexandom functions
(PRFs). The focus has been on variable-length inputs widdflength outputs as ap-
plicable to MACs and hash functions [2-5] and, more recettymodes that work
on multiples of the original block length [6, 7]. While thehave been proposals for
variable-length block ciphers in the past, such as [8], We tdifferent approach in
that we do not wish to design a new cipher but rather provideehanism for convert-
ing existing block ciphers into variable-length block agps.

A noteworthy proposal for a variable length-block cipherated by converting any
existing block cipher into one that accepts variable sizlbllengths is [9], which
demonstrates that the problem we deal with has been nofidtemethod in [9] in-
volves two applications of the cipher for block lengths begw the original length and
less than twice that length. Therefore, the resulting aipbguires twice the work of the
original block cipher per block, regardless of the bloclesin comparison, the work-
load in our construction gradually expands to twice thahefdriginal block cipher as
the block length expands (which was one of our design gdats)example, when both
schemes are applied to 128-bit AES, our scheme requiresxareereund to encrypt

a 136-bit plaintext; whereas, the method in [9] requireserima rounds. Unlike our
construction, [9] does not modify the original block ciploert adds operations around
it, treating the original cipher as a pseudo-random pertimtéPRP) and analyzes it as
a black box. In our method, we cannot treat the original dipisea black box but need
to add to its internals. This is, perhaps, the major methamioal difference between
the works. While we do not modify the round function of thegimil block cipher in
our construction (and thus allow for reduction-type proofige alter the inputs to each
round, add whitening steps (when not already present), giet@ the key schedulé
novelty of our methodology is that while modifying the ciphethis fashion, we are
able to maintain a reduction between the original and etagérsions which permits us
to link their security against key recovery attacks.

Our work proposes elasticity of block size as a criteriondipher design, creating
areas for future work. These areas include the analysisastielversions of concrete
ciphers and their security against cryptanalytic techesqoot addressed here (since
security of block ciphers need to consider various typepetsic attacks).

The remainder of the paper is organized as follows. Sectepfains our approach
for constructing elastic block ciphers from existing blaighers. Section 3 presents a
security analysis for our scheme. To this end, we introdbheecbncept of a reduction
between ciphers to relate the security of the elastic arginaii versions of a cipher.
Section 4 concludes the paper.

2 Elastic Block Cipher Construction

2.1 Algorithm

We begin with a description of the algorithm for modifyingtancryption and decryp-
tion functions of existing block ciphers to accept blocksiakeb to 2b — 1 bits, where
b is the block size of the original block cipher. (The resutinlock cipher can accept
blocks of length2b, but the original block cipher can be applied to two blockéhwait
padding in that case.) We neither modify the round functibtihe block cipher nor de-
crease the number of rounds applied to each bit; insteadreegeca method by which
bits beyond the supported block size can be interleavedhitihn the supported block
size. We explain the reasoning behind the specific stepsatiohe2.2.

We assume that the appropriate amount of key material isaéai The exact key
expansion algorithm will depend on the specific block cipkemve skip that discussion
for now; we describe its properties later on. In this paperfecus on the basic algo-
rithm independent of the original block cipher. Subtlespscific to particular types of
block ciphers, such as those using Feistel networks, aedreotd are left for subse-
quent work. Figure 1 illustrates the resulting cipher whenrnodifications are applied
to the version of AES [10] that accep88-bit inputs.

The following notation and terms will be used in the desaiptind analysis of the
elastic block cipher:

Notation:

— @ denotes any existing block cipher that is structured as aeseg of rounds.
— r denotes the number of rounds(h

— b denotes the block length of the input@in bits.

— P denotes a single block of plaintext.

— (' denotes a single block of ciphertext.

— yis aninteger in the randé, b — 1].

— G' denotes the modified with b+ y bit input for any valid value of.. G ' will be

referred to as the elastic version@f
G}, denote<7 " for a specific value of.

— 7" denotes the number of roundsa’.

— k denotes a key.

— rk denotes a set of round keys resulting from the key expansion.

— G}, and G, will refer to G with the round keys resulting from expanding key

and toG with the round keysk, respectively.

Terminology:

— A bit (position) input to a block cipher is calleattivein a round if the bit is input

to the round function. For example, in DES [11], half of th&slare active in each
round, while in AES all bits are active in each round.

— The round function will refer to one entire round 6f For example, ifG is a

Feistel network, the round function 6f will be viewed as consisting of one entire
round of the Feistel network as opposed to just the functimtwvithin the Feistel
network.

Given@ and a plaintexP of lengthb + y bits, make the following modifications to

G’s encryption function to create the encryption functiorGof:

1.

2.

Set the number of rounds, such that each of thie+ y bits is input to and active
in the same number of rounds@h’ as each of thé bitsis inG. ' = r + [yr/b].
XOR all b + y bits with key material as the first step. @ includes whitening
as the first step prior to the first round, the step is modifiemh¢tuded + y bits
(the originalb-bits “inner block” whitening for the leftmost bits, as welb “side
whitening” of the extray bits). If G does not have an initial whitening step, this
step is added t@/ '. In either case, additional bits of expanded key material ar
required beyond the amount neededd@bd(for the side whitening and perhaps the
added inner-block whitening).

. (Optional) Add a simple key-dependent mixing step thatpees or mixes the bits

in a manner that any individual bit is not guaranteed to béanérightmosty bits
with a probability of 1. This will be referred to as the mixistgp and is viewed as
the identity function if it is omitted. Similarly, a key depdent mixing step may be
added at the end of the last round.

. Use the leftmodi-bits that are output from the mixing step as the input to thund

function.

. If the round function includes XORing with key materialthe end of the round

and/or as a final step in the algorithm, the whitening shoelgpérformed on all
b+y bits (inner-block as well as side whitening)dfdoes not contain end-of-round
whitening and/or whitening as the last step in the algorjthdd these whitening
steps and apply them to aJl+ b bits. In either case, additional bits of expanded
key material are required beyond the amount require@ by

_szbt'rs_l b%ﬂj } Plaintext 128+y bits, 0<y < 128 bits

‘ AddRoundKey ‘

Optional { Key Dgfp@ndgnl MixingJ
>V <
S-Box
Shiftrows
MixColumns AES round, except last
A4
‘ AddRoundKey ‘
Total # of rounds = 10(128+y)/128]
Addition to round to swap y bits.
XOR vy bits left out of round with
y bits that were in the round, and
v swap the two segments
S-Box
hiftrows
Shi J'OWQ last round
Optional { Key Dependent Mixing
\ AddRoundKey |
v

128+y bit ciphertext

Fig. 1. Elastic Version of AES

6. Alternate whichy bits are left out of the round by XORIing thebits left out of the
previous round withy bits from the round’s output, then swap the result withghe
bits left out of the previous round. Specifically:

(a) LetY denote they bits that were left out of the round.

(b) LetX denote some subsetgbits from the round’s output dfbits. A different
set of X bits (in terms of position) is selected in each round. How ¢sth
selectX is dependent on the specific block cipher. We discuss thikduin
Section 2.2.

(c) SetY + X @Y.

(d) SwapX andY to form the input to the next round.

This step will be referred to as “swapping” or the “swap Stapd may be added to

the last round if we require that all rounds be identical. ldegr, having the swap

in the last round does not provide additional security.

The resultG ', is a permutation oh + y bits. Its inverse, the decryption function,
consists of the same steps with the round keys applied iretfegse order and the round
function replaced by its inverse.

2.2 Explanation of Algorithm

The method was designed fét' to be equivalent t@7 (with the possible addition of
whitening and the optional key-dependent mixing steps)mthe data is an integral
number ofb-bit blocks, while accommodating a rangetofo 2b — 1-bit blocks. The
following is an explanation of why specific steps are inclitethe construction.

Step 1:Each bit position of the input is required to be active in tame number of
rounds inG ' as the number of rounds in which each bit is activ&inThis requirement
allows the computational workload to increase proportielyato the block size while
avoiding a reduced round attack rfrom being applied td7 '. Consider what happens
if y = b— 1 and no rounds were added@when creatings ': b — 1 bits would be
active in only% of the rounds in which a bit is normally active (d. As y increases,
the number of rounds increases gradually from 1 when0 <[] < 1to 2r when
r—1<[Z#] <

Step 2:The initial whitening is performed on abl + y bits in order to prevent an
adversary from learning input bits to the second round in a known-plaintext attack.

Step 3:A key-dependent permutation or mixing of bytes prior to thst fiound in-
creases the extent to which the first round contributes teepiteng a differential attack.
The mixing step will need to take less time than a single rootiterwise, an additional
round can be added instead to decrease the probability afaifispdifferential occur-
ring. A trivial mixing that prevents the attacker from knagiwith probability 1 which
y bits are excluded from the first round is a key-dependentiootaThis guarantees
any particular bit is within the bits with probability< % Similarly, a key-dependent
mixing step after the last round will prevent a single rouiftecential from occurring
with a probability of 1 in the first round of decryption.

Step 5:Including allb + y bits in the whitening performed at the end of a round
prevents an adversary from learning any of the output bitthefnext-to-last round.
Suppose the additiongl bits were not included in the whitening; then the ciphertext
C, for the block would include thg bits that were excluded from the last round. Since
no bit is excluded from 2 consecutive rounds, an adversamjdMoe provided withy
bits of output from the next to last round, potentially aglin cryptanalysis.

Step 6:X @Y is performed instead of merely swappifgandY in order to increase
the rate of diffusion. IfG does not have complete diffusion in one round, then at the
end of the first round there is some subSedf bits output from the round that have
not been impacted by some of the bitsXn While the bits inY” may impactS in the
second round, swappin§ andY” would result in the bits inX' having no impact in the
second round; whereas, swappiigwith X @ Y will allow the bits in X to impact
the second round. The selection &f depends on the round function of the specific
block cipher. The bit positions selected firshould vary amongst the rounds to ensure
that all bit positions are involved in both ttbebit and y-bit components, as opposed
to always selecting the samepositions for use inX. If all input bits to the round are
utilized in the same manner, the bit positions chosen¥focan be rotated across the
rounds. For example, in AES all bytes are processed by the §ametions within the
round. In that case, it is sufficient to selé€tto be consecutive bits starting at position
a1 + a2 xi(mod b) in round: for some constants, anda.. If the input bits are treated
differently in the round (for example, in RC6 the input catsiof4 words of which

one pair is operated-on differently than the other paigntbwap the bits such that each
bit participates in each pair the same number of times. Aerdibnefit of the XOR is a
reduction in the ability to specify g-bit differential in the input to the second round. If
the optional key-dependent mixing step is omitted, thehait the XOR a differential
in the second round’s input gfbits can be obtained with probabilitp0% regardless of
the round function, by choosing the rightmgsbits of the original input appropriately.
An issue that is left to subsequent work is how to select ttetbibe swapped (or
adding the swap step less often) when the original ciphetsd function is structured
such that only a subset of théits are processed by the round function in each round
or subsets of thé bits are processed differently by the round function.
Decryption: The inverse of the round function, if it is not its own invereaust be
used for decryption. While the structure is similar to an alahced Feistel network,
it is not a Feistel network due to bits output from the roundction in theit* round
becoming the bits omitted from the-15¢ round. In constrast, in an (unbalanced) Feistel
network bits input to the round function in th& round become the bits omitted from
the round function in thé + 15t round.! Thus, it is not possible to perform decryption
by simply running the ciphertext through the encryptiondiion of G * with the round
keys used in reverse order. Designing the elastic ciphenignrhanner increases the
diffusion rate compared to that of an unbalanced Feistelonit

2.3 Key Schedule

Our obvious options in creating the key schedule@f include modifying the key
schedule ofG to produce additional bytes, or increasing the original length and
running the key schedule multiple times. A third, less obigioption is to use an ex-
isting efficient stream cipher that is considered securerattjte, to generate all or
part of the key schedule, independent of the choic&' .of he stream cipher can either
serve as the entire key schedule, replacing th&t,air provide only the additional key
bits needed for whitening and the mixing step, while usirg dhiginal key schedule
of G for all other expanded key bits. Using a stream cipher mayltr@sthe expanded
key being more (pseudo-)random than the output of the kegddh ofG and the key
schedule foG ' (as a schema) need not be changed for new choic@s of

We make the following assumption regarding the expandes ksgd for the elastic
version of the cipher. In our analysis, we embed a cop¥ afiside a prefix of7 ' and
assume the round keys bits used outside the embeddm® independent of (do not
give any information about) the round key bits used insicedimbedded copy af.
We call this independence property needed for the analymisper expansiohof the
key schedule of the elastic cipher. Given the lack of any ¢&dn proofs in the area of
concrete block cipher design, and given that such ide@izatf the key schedule can
be achieved by certain scheduling methods that can be abi@pte,use a stream cipher
to get the “independent” portion of the expanded key bitd, model them in the proof

L within the context of our work, the term unbalanced Feissthork refers to a Feistel network
in which the left and right parts are not of equal length aseefin [12]. The term “unbalanced
Feistel network” has been used in at least one other comtestdr to Feistel networks in which
the input and output are of different lengths.

as partial round keys that can be known/ controlled withdfgicting the security of
the other round keys), we feel that this is reasonable assomior initiating analytic
methods that validate the security of a design against gitteccks via “reduction-type”
proofs in this area. (We note that we can embeid a place different from the prefix of
G " and obtain the same relationship between the secur/’andG, but our analysis
in Section 3 concentrates on one embedding efithin the prefix ofG '.)

3 Security of G’

3.1 Overview

For any concrete block cipher used in practice (and notdceas a pseudorandom
permutation or a member of a family of functions), the ciptennot be proven secure
in a theoretical sense but rather is proven secure agaiosirktypes of attacks. Thus,
we can only do the same for the elastic version of such a cipherder to provide
a general understanding of the security of our constructienprovide a method for
reducing the security of the elastic version to that of thgioal version, showing that a
security weakness i@ ' implies a weakness i@. Our security analysis a@ ' exploits
the relationship betwee@@ ' andG and the proper expansion assumption on the key
schedule. Specifically, we exploit the fact that an instafc@ is embedded it7 '.

We concentrate on key-recovery attacks. We show how to ee@utto G in a
manner that allows an attack that finds the round key& 6fto find the round keys
for G. Security against key-recovery attacks does not by iteghly security €.g.,the
identity function which ignores the key is insecure whiley kecovery is imposible).
However, all concrete attacks against real ciphers (diffgal, linearetc) attempt key
recovery and thus practical block ciphers should be segaimst such attacks.

In order to focus on the core components of the algorithm featingG ' from
G, we consideli without the optional key-dependent mixing steps describetep 3
of the algorithm. If present, these intuitively only sereeiicrease the security ¢f’
since they prevent an attacker from knowing with probapiitvhich bits are omitted
from the first application of the round function. Furthermaince the mixing steps are
added steps (as opposed to modifications to componeiit} asing key material that
is independent of the round and whitening key material (bhyamsumption on the key
schedule), they do not impact our analysis which is entidelgendent on the fact that
G ' contains an instance 6f in a manner that permits a reduction fra@i to G.

3.2 Round Key Recovery Attack

As mentioned above, we use the fact that an instan¢eisfembedded id7 ' to create
a reduction fromG ' to G. As a result of this reduction, an attack agaifstthat allows
an attacker to determine some of the round keys implies aolkagigainsg itself which

is polynomially related (with a concrete polynomial) in @esces to the attack o ’.
Assuming that itself is resistant to such attacks, we conclude thatoes not reveal
round-key bits to the attacker. The reduction requires a&éplaintext, ciphertext)
pairs. This is not considered a limiting factor because isttypes of attacks, whether

they are known plaintext, chosen plaintext, adaptive pdainchosen ciphertegtc. the
attacker acquires a set of such pairs. We also assumé'tiat end-of-round whitening
and that the key scheduling and expansion method is inplepiendent. Again, these
assumptions apply to many ciphers, or versions of ciphersdbntain whitening and
expand the key.

2
=
=

} Input after initial whitening

ENEZIIN s }
J
}

=hE]

Round 1 } Input after initial whitening

B

Round 1

:
'

Round 2 Round 2

} r-3 rounds

)

y

T

-3 rounds

gl
8

B

Y

:

;

. .
Y
und func v

[

Y

nd

Round r

(New] | oW
.
N

Round r

)
-

T
j
|
4
y
[C Key bits

T
I
[
I
ion
its
tion

[=]
|
g

Round r+1

e
EE

Fig. 2. G within G’

Before we formally claim the security, we first draw attentto the fact that the
operations performed i¥ ' in its prefix until the leftmosb bit positions go through as
many rounds as i, can be shown to be an application®f as depicted intuitively
in Figure 2. This relationship can be used to convert an lattdtch finds the round
keys forG ' to an attack which finds the round keys 1Gr Recall that(G,, denotes
G using round keysk. Specifically, ifG.'(p ||) = ¢ || z, a set of round keys,
rk, for G such thatG,;(p) = ¢ can be formed from the round keys and the round

outputs inG ' by collapsing the end-of-round whitening and swapping steps '
into a whitening step. The leftmogtbits of the round key for the initial whitening are
unchanged, and the rightmaadbits are dropped. While the resulting round keys provide
good whitening to the rounds of the copy@f(due to the proper expansion property),
they will vary in roundd tor per (plaintext, ciphertext) pair due to the previous rosnd’
output impacting the end-of-round whitening step. Howgités possible to use these
keys to solve for the round keys 6f as will be argued below.

Theorem [: If there exists an attack off ’ that allows the round keys to be determined
for the firstr rounds, then there exists a polynomially related attackomith - rounds,
assuming:

— @ contains end-of-round whitening.

— No message-related round keys. Namely, if there are expiakalebits utilized in
G aside from the initial and end-of-round whitening stepgsthexpanded key bits
depend only on the key and do not vary across inputs.

— The expanded key bits are done via proper expansion (defir@edtion 2.3).

With respect to the first condition placed 6hin Theorem | the condition may be
removed if the attack o6 ' involves solving for the round-key bits directly and allows
the bits used in the whitening steps to be sdi for bit positions not swapped and to
0 or 1, as necessary, for bit positions swapped, to ensure themmhg on the leftmost
b bits is equivalent to XORing with, which is the same as having no whiteningin
If the attack onG ' finds all possible keys or sets of round keys, the attack muidt fi
the key(s) or set(s) of round keys corresponding to round kiegt are equivalent to
XORing with 0.

In proving the theorem, we will describe two methods of mitilg the attack oidr '
to attackG. Before beginning, we prove a claim which will assist thedean under-
standing the linkage betweéhandG '. The claim shows that for any set of (plaintext,
ciphertext) pairs encrypted under some set of round keys inthere exists a corre-
sponding set of (plaintext, ciphertext) pairs &where the round keys used@’ for
the round function and the leftmaisbits of each whitening step are the same as those
used inG, the plaintexts used i& are the leftmosb bits of the plaintexts used i@ ’,
and the ciphertexts fai are the same as the leftmashbits of output of the-*" round
of G/ prior to the swap step.

Claim I: Let {(pi,ci)} denote a set of (plaintext, ciphertext) pairs and I¢| =
lvi| = y. If Gi(pi) = ci, then there exist sets of round keys for the firstrounds
of G' that are consistent with inpujg || w producingci || vi as the output of the
rt* round prior to the swap at the end of thé round, fori = 1 to n, such that the
following condition applies:
Condition I: The leftmosb bits used for whitening in each round are identical across
then sets and any bits used internal to the round function ardigmcross the
sets.
Furthermorey may be any valid value. The bits in are not used and thus no restric-
tions are placed on their values.

Proof: Letrk = {rk; for j = 0 tor} be the set of round keys corresponding to key
k for G. rky denotes the key bits used for initial whitening. Rgt, ¢i), form a set of

10

‘ IN (b bits) ‘ ‘Y(ybits)

|

Round
Function

B= b»whilening y whitening
key bits key bits =Y
our
XOR y bits

of OUT” with
%
ouT y bits from OUT’

Converted round key for G = (B with y bits replaced by their XOR with Y’) =B

Fig. 3. Converted Key Unchanged in Lefth Bits

the firstr round keys foiG ' as follows: Pick a constant string, of y bits, such as a
string of0's. Letpi || w be the input ta& '. Letrki’ = {rki} for j = 0 tor} denote
the round keys fot7 ’ through ther! round for the pait(pi, ci). Set any bits ki
used internal to the round function to be the same as thesponeling bits in'k;. Set
the leftmosth bits used for whitening imki} to theb bits used for whitening ink; .
Set the rightmosy bits used for whitening imk:’; to be the same as thebits left out
of the round function in roung of G '. This is illustrated by Figure 3. Notice that the
leftmostb bits used for whitening in each round are identical across thets, and any
bits used internal to the round function are identical a&then sets; specifically, they
correspond ta'k in each case, and the rightmagbits used in each whitening step
differ based or{pi, ci) across the: sets.

The operations off ' on the leftmosb bits through round, prior to the last swap,
are identical to the operationsd¥y, (pi) because the swap stepGh results in XORing
y bits of a round function’s output with 0's. Therefore, the leftmogtbits output from
thert" round prior to the swap in theé" round isci. Therefore, fori = 1 to n there
exists a set of round keyski’ for G}, such thatG ' (pi) produces: as the leftmosb
bits in thert” round prior to the swap step and Condition | holds, thus prg@laim .

Proof of Theorem 1\We now describe the reduction and two attacks. The attaeks ar
presented in terms of solving for the round keys from roQrtd r, but may also be
performed by working from round back to the initial whitening. The first method’s
efficiency is dependent o, |k|, andr, and may be the least useful of the two. We
present it first in order to illustrate the method by whichnmdikeys forG ' can be
converted into round keys fa¥.

First method:

11

This method produces an attack @rthat runs in time polynomial in the attack on
G ' andr. It is more efficient than an exhaustive key search V\@‘len% The attack
works as follows: Assume there exists a known (plaintepthertext) pair attack o6”
which produces the round keys either by finding the origiegl &nd then expanding it,
or by finding the round keys directly. Using round keys formds O tor of G/, convert
the round keys into round keys f6f one round at a time. For each round, extract the
largest set of (plaintext, ciphertext) pairs used in thacktionG ' that have the same
converted round key. Each round may reduce the size of tief pairs by2?Y. The end
resultis a set of round keys f6f that are consistent with a setgf;—; b-bit (plaintext,
ciphertext) pairs fo7. We then describe how to take a set of (plaintext, cipherteits
for G, convert them into a set of (plaintext, ciphertext) pains@ in order to run the
attack onG ' to find the round keys fa&. Finally, we discuss the bounds gifior which
this attack is more efficient than an exhaustive key search.

Let {(P,C)} = {(pi || zi,ci || zi)} (for i = 1 ton) denote a set ofi known
b+ y-bit (plaintext, ciphertext) pairs fak ', where|pi| = |ci| = b and|zi| = |zi| = y.

Assume the existence of an algorittia. that finds all possible key$k; }, corre-
sponding to{ (P, C)} in time less than a exhaustive search for the keyrheenote the
number of keys found. Without loss of generality, it is assdrthe keys are available in
expanded form. The key bits for the initial whitening will beferred to as “round key
0.

LetS = {ek;} for j = 1 to m be the set of expanded keys used for whitening for
which ek; is from the expansion of kely; andG |, (pi || zi) = ci || zi fori = 1ton.

Let R;,: denote any key material utilized within the round functidine values
found for such key bits will be the same for the solutions\dtiby the attack fo€' '
andG.

Let {(P,U)} = {(pi||wi, ui||vi)} such thatui||vi is the output of the® round of
G', where|ui| = b andjvi| = y.

Let S’ = {ek|ek’ = bits of ek; € S corresponding to roundsto r used for
whitening} be the set of expanded key bits used for whitening in rodrnds- of G '.

For eachek; € S’ and each(pi || @i, ui || vi) € {(P,U)}, convert the round keys
to round keys foG. Letek;; be the converted key corresponding to tHeelement of
{(P,U)} and thej" element ofS’. The part ofek;; corresponding to round will be
identical across all elements. When the round keys are cma/@t mosy bits change
in the leftmostb bits. Thus, the resulting round keys for roupd) < ¢ < r can be
divided for each of thg impacted bits into those that havé) an the affected bit and
those that have ain the affected bit. Foy = 1 tor, defineS/, , as the maximum-
sized set ofk;;s from S,,4,_, that have identical round key(s) for rougdwhere
Stna, = S'-Let{(P,U)na, } be the corresponding elements{¢f’, U) }. When form-
ing {(P,U)rna, }, atleasR=Y|{(P,U),na,_, }| of the elements frord (P, U),pa,_, }
are included.

To illustrate how the setS], , and{(P,U),,q, } are created, consider the example
shown in Figure 4 wheré = 4, y = 2, and the leftmos® bits are swapped with
they bits in the swap step. The round numbeyiand{(P,U),q4,_, } contains three
(plaintext, ciphertext) pairs. Suppose the outputs of thd function in the'" of G’
are100101, 110011 and111111 and the whitening bits in thg”" round are)11010. The

12

converted round keys corresponding to the three caseslafe1110 and1110. Since
1110 occurs in the majority of the cases, set gié round key ofG to 1110. S’ ,

contains the round keys for rounds Qjte 1 from S}, , ~ and0010, and{(Z, U)mdj
contains the second and third (plaintext, ciphertext)gg@om {(P,U)na,_, }-

1001 01 1100 11 1111 11

KB% «—KY KB#@ KY KB— «— KY

1111 00 1010 10 1001 10

KB =0110
KY =01
1111 11 0010 10 0001 10
1001 1100 1111
conve.rted converted converted
key bits key bits key bits
0110 1110 1110
1111 0010 0001

Fig. 4. Forming S,

rndg

Let {(P,C)c} = {(wi,ci)|(pi || yi,ui || vi) € {(P,U)rna, }}. H(P.O)a}| =
n/2¥". {(P,C)q} is a set of (plaintext, ciphertext) pairs for whiéh., (pi) = ¢i V
(pi, ci) € {(P,C)c} with the whitening round keys ofk € 57,, and any additional
key material utilized by the rounds is the same as that:fgrnamelyR;,,;.

For now, we are only concerned with obtaining a set, and nc#ssarily the largest,
of (plaintext, ciphertext) pairs corresponding to a comrkey In order to produce the
largest set of (plaintext, ciphertext) pairs with a commenw levery possiblé‘;ndq can
be formed for each round, and the iteration for ghe 1°¢ round applied to each. This
will create a tree of depthwith at most2¥ children of each node.

Let ¢, denote the time to run rounds ofG /, andt4 denote the time to rudg:.
In the case of obtaining at least one $€P, U), 4, } Of size> i, the time required
beyondt 4 consists ofnmit, time to obtain the outputs of the firstrounds for each
{(P,U)}, O(nmr) time to perform the conversion of the round keys fréGmto round
keys forG andO(nmr) time to formtheS|, , sets. Thus, the additional time required
to attackG (beyond the time required to attack; .,) is nmt, + O(nmr). The only
unknown value isn, the number of keys produced by the attack@rj_ ;. If m is

13

large enough, to the extent that it approaches the averagberwf keys to test in a
brute force attack o7 /, then this contradicts the assumption that an efficientlatta
exists onG ’, because the attacker is left with a large set of potentis ker decrypting
additional ciphertexts.

To perform the attack of¥ when given a set of (plaintext, ciphertext) pairs oy
convert the pairs into a set of (plaintext, ciphertext) péir G ' and find the round keys
for G ' then forG as follows: Letrk,.;, wherel <[< ' —r, denote a set of randomly
chosen round keys for roundst 1 to the last round ofs ' that will be held constant,
and letRF,,,; denote the last’ — r rounds ofG ’ using these round keys. Given a
set{(P*,C*)} = {(pi*,ci*)} for i = 1 ton known (plaintext, ciphertext) pairs for
G, create the sef(P, C)} of (plaintext, ciphertext) pairs to use in the attack®nh by
settingpi || zi = pi* || 0 andci || zi = RFepq(ci* || 0) for i = 1 to n. This choice of
ci || zi corresponds to an output af* || 0 in thert” round ofG . For the set of P, C')
pairs are created,P,U)} = {(pi* || 0,c¢i* || 0)}. Apply the attack or7 ’ to solve for
the round keys of7 ' then produce the se{s, U),pnq,. } andS,nq,. The sets of round
keys inS,..q, Will be consistent with the (plaintext, ciphertext) pains{iP, U), .4, }

We now discuss how the number of (plaintext, ciphertextjgpeaquired ice., the
number of encryptions required) compares to that of an esthaukey search. Recall
the size of resulting set of (plaintext, ciphertext) paifsicth are consistent with the
round keys is> si-. Wheny > “j—‘ the number of plaintexts encrypted, must be
> 2/Fl to guarantee at least one (plaintext, ciphertext) pair i§(i C)¢}, which is
more encryptions than required by an exhaustive key se®/ithout changing either
r or the length ofk, this bound ory can be slightly increased tp > % by using
b + y bit plaintexts that are the same in the rightmgdiits, and by defining the:
values representing the ciphertext outputGbfn the »** round of G ’ to be the out-
put of thert® round prior to the swapping step. This will result|i§., , | = n and
5! na.| = 1Spna,_, |, thus in first and*" rounds the set of (plaintext, ciphertext) pairs
is not reduced. The number of (plaintext, ciphertext) paicsluced foiG that are con-
sistent with the round keys fa¥ is > 5. Notice that increasing the number of
rounds inG increases the number of (plaintext, ciphertext) pairs ireguo guarantee
{(P,C)¢a} is non-empty and will prevent the attack from being more efficthan an
exhaustive key search. While we prefer to not afiein this manner, the efficiency of
the attack being based on the number of rounds is useful wéténgG = G}, in
which case we are willing to adjust the round®g+y, then creating & ' for the new
G.

We define a direct attack ar §)+y to be an attack that finds the key or round keys for
G 14, Without attacking= ;. ,, fory’ > y, and converting the round keys fro@ , .
toround keys forz |, . We define an indirect attack @i, , to be an attack that finds
the round keys fot7 |, for somey’ > y, and uses them to find the round keys for

b+y’
G g+y, andy’ —y < kL wherer* is the number of rounds i6' §)+y. Our analysis
[k

7’*72 1

implies that if a direct attack exists dr g+y for y < -=;, then an attack requiring

less time than an exhaustive key search exist& oHowever, it does not implg ’Hy

is secure for aly < % because there may be a direct attaclCof, ,, for somey’
L i i indi

such thaty’ — y < =, thus implying an indirect attack af ;,er. In the worst case,

rx_92

14

y" = y + 1 andr* must be increased ti@&| + 2 for the attack to be more inefficient
than an exhaustive key search. If the lengtlt @fan be changed (as part of the design
of G''), setting|k| to 2b(r — 2) results in the bound being < 2b, thus allowing all

y €1[0,b—1].

Second method:

This attack runs in quadratic time in the number of round&/cdnd avoids the
decrease in the number of (plaintext, ciphertext) pairs dleaurs in the first method.
The attack orG ' is used to solve for round keys 0 and 1 &y then repeatedly solves
for one round key of7 at a time, using the output of one round@®@fas partial input to
a reduced round version 6f ', running the attack o / and converting thé*¢ round
key of G ' to the round key for the next round 6f. We assume that if an attack on
G ' with r rounds exists, then a reduced round attackGohexists for any number of
rounds< r'.

Given a set{(P*,C*)} = {(pi*,ci*)} of n (plaintext, ciphertext) pairs fof,
create a sef(P,C)} = {(pi* || 0,ci || vi)} of n (plaintext, ciphertext) pairs for an
round version of7 ’. Note: we only require that thg bits appended to eagh* when
forming {(P, C)} be a constant; we choose to use 0. Thealues appended to tlaé's
are arbitrary and do not need to be identical. Salvefor round keys 0 and 1. By the
pseudo-randomness of the round keys described in Sec8pae2s of round keys exist
that correspond t§(P, C))} and which are identical in at least the first two rounds (the
round keys across all pairs may be identical in all but the last round, but we areg onl
concerned with the first two rounds). Denote thesekgsandrk]. Use the leftmosb
bits of rk{, as round key Orko, for G. Since the rightmogj bits are identical across all
inputs toG ’, whenrk} is converted to a round key f@¥, the result will be the same
across alk elements of (P, C)}. Use the converted round key as round keyki, for
G. For eaclpi*, apply the initial whitening and first round 6f using the two converted
round keys. Lepli denote the output of the first round 6ffor i = 1 to n. Using a
reduced round version @f ' with » — 1 rounds and the initial whitening removed, set
{(P,C)} = {(pli || 0,ci || vi)} and solve for the first round key &f . As before,
convert the resulting round key(s) to a round key ¢arAgain, the converted round
keys forG will be identical across alh values. Use the converted round key as the
second round key fof7. Repeat the process for the remaining round& péach time
using the outputs of the last round Gffor which the round key has been determined
as the inputs ta@7 ' and reducing the number of roundsGiY by 1, to sequentially find
the round keys fo(7. This attack requires work equivalent of applyingounds ofG
when deriving the outputs of the n inputs to each round;’ofw rounds ofG '
in the worst case ifd,, requires knowing the output of each round@®f to find the
first round key ana applications ofd;,, on w rounds ofG ' when solving for the
round keys of7 .

In summary, the attack o@ described in this second method can be written as:
Input{(P*,C*)} = {(pi*,ci*) fori = 1 ton}.
Create{(P,C)} = {(pi* || 0,ci* || vi) fori = 1 ton} for ar round version of5 ’,
where thevi’s are arbitrary.
Using A¢-, solve ar reduced round version & ’ for vk andrk;.

15

Convertrk| torkg andrkj tork; .
Setpli = first round output of7 usingrky andrk;, fori = 1ton.
Forj=1tor —1{
{(P,C)} = {(pli|| 0,ci* || vi) fori = 1ton}.
Solve ar — j reduced round version &f ' for the first round keyy k] .
Convertrk} to formrk;;1.
p(j + 1)i = output of roundj + 1 of G onpji usingrk;, fori = 1ton.

4 Conclusions

We have introduced a new concept, that oktastic block cipheand presented a gen-
eral method for converting an existing block cipher thatasdd on a round function
into an elastic block cipher. The ability to create an etastirsion of a block cipher al-
lows us to “stretch” the supported block size of the ciphetauwvice the original length
while increasing the computational load proportionallytte block size. We show that
the existence of an attack on the elastic version that pexiaertain round keys im-
plies a key recovery attack exists on the original block eipby creating a reduction
between the elastic and original versions of the block aipthés methodological con-
tribution appears to beniquein the area of block cipher design. Practical applications
of elastic ciphers include database and network trafficygriom. Our work suggests
that the notion of elasticity can be a new design criteriarbfock ciphers. Our work
also suggests numerous questions for future work. Opersssgalude how to extend
the methodology presented here and how to further analgsti@designs. Regarding
concrete instances of elastic ciphers, since the securitjook ciphers is an involved
issue and requires consideration of various potentiatlettat is left open how to vali-
date these designs by concrete cryptanalysis of specHitattby performance analysis
and by considering their applications in various real ceiste

References

1. Kent, S., Atkinson, R.: Security Architecture for thedmiet Protocol. Request for Com-
ments (Proposed Standard) 2401, Internet EngineeringHasle (1998)

2. An, J., Bellare, M.: Constructing VIL-MACs from FIL-MACdVessage Authentication
Under Weakened Assumptions. In: Proceedings of Advanc&syiptology - Crypto '99,
LNCS 1666, Springer-Verlag. (1999)

3. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandomdtioms Re-Visited: The Cascade
Construction and its Concrete Security. In: Proceedingsoaindations of Computer Sci-
ence, IEEE. (1996)

4. Bernstein, D.: How to Stretch Random Functions: The Siooir Protected Counter Sums.
In: Journal of Cryptology, Vol. 12(3), Springer-Verlag9@9) 185-192

5. Black, J., Rogaway, P.: CBC MACs for Arbitrary-Length:elhhree-Key Constructions. In:
Proceedings of Advances in Cryptology - Crypto 2000, LNC8.&pringer-Verlag. (2000)

6. Halevi, S., Rogaway, P.: A Tweakable Enciphering Mode.Pimceedings of Advances in
Cryptology - Crypto 2003, LNCS 2729, Springer-Verlag. (2P0

16

10.
11.
12.

. Halevi, S., Rogaway, P.: A Parallelizable Encipheringdglo Cryptology ePrint Archive,

Report 2003/147 (2003)t t p: / / eprint.iacr.org/.

. Schroeppel, R.: Hasty Pudding Ciphdrtt p: // ww. ¢cs. ari zona. edu/ rcs/ hpc

(1998)

. Bellare, M., Rogaway, P.: On the Construction of Varidbéagth-Input Ciphers. In: Pro-

ceedings of Fast Software Encryption (FSE), LNCS 1636 ,rgeri-Verlag. (1999)

FIPS 197: Advanced Encryption Standard (AES) (2001)

FIPS 46-3: Data Encryption Standard (DES) (1999)

Schneier, Kelsey: Unbalanced Feistel Networks andiBGipher Design. In: Proceedings
of Fast Software Encryption (FSE), LNCS 1039, Springertader(1996)

17

