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Abstract

Access control can be used to ensure that database queries pertaining to sensitive information are not
answered. This is not enough to prevent users from learning sensitive information though, because users
can combine non-sensitive information to discover something sensitive. Inference control prevents users
from obtaining sensitive information via such “inference channels”, however, existing inference control
techniques are not private - that is, they require the server to learn what queries the user is making in
order to deny inference-enabling queries.

We propose a new primitive - private inference control (PIC) - which is a means for the server to provide
inference control without learning what information is being retrieved. PIC is a generalization of private
information retrieval (PIR) and symmetrically-private information retrieval (SPIR). While it is straight-
forward to implement access control using PIR (simply omit sensitive information from the database), it
is nontrivial to implement inference control efficiently. We measure the efficiency of a PIC protocol in
terms of its communication complexity, its round complexity, and the work the server performs per query.
Under existing cryptographic assumptions, we give a PIC scheme which is simultaneously optimal, up
to logarithmic factors, in the work the server performs per query, the total communication complexity,
and the number of rounds of interaction. We also present a scheme requiring more communication but
sufficient storage of state by the server to facilitate private user revocation. Finally, we present a generic
reduction which shows that one can focus on designing PIC schemes for which the inference channels take
a particularly simple threshold form.

Keywords: Private information retrieval, oblivious transfer, inference control

1 Introduction

Consider a user who wants to query a database containing sensitive information. The user should learn the
response to a query if and only if it does not enable them to learn something sensitive. There are two ways
to learn something sensitive: by accessing sensitive information directly or by making a sequence of non-
sensitive queries whose answers, when taken together, allow the user to infer something sensitive. Preventing
the former is known as access control and the latter as inference control (see, for example, [21]). A sequence
of queries whose responses allow a sensitive inference to be made is known as an inference channel, and
the goal of inference control is to prevent the user from completing any inference channel. As an example,
consider the problem of protecting the identity of individuals in a database [18, 44, 43]. Social security
numbers are clearly identifying and access control ensures that they cannot be queried without appropriate
authorization. In addition, while attributes such as city of residence, year of birth, profession, marital status
and political party, may not be identifying individually (and so not subject to access control), when these
values are received for a single record in a database they may be identifying and thus they form an inference
channel.1 Inference control ensures that colluding users aren’t able to together make enough queries to
complete such a channel.

∗Most of this research was conducted while this author was an intern at PARC.
1Note that inference control is equivalent to access control if and only if all inference channels have length one.



An equally important aspect of this setting is the potential privacy loss on the user’s side due to the
exposure of their queries to the database server. To solve this problem private information retrieval (PIR)
schemes (see, for example, [16, 34]) have been developed, but such schemes are not concerned with inference
control. The question then arises: How can we ensure users are not able to infer sensitive information
without knowing what information they are retrieving? To solve this problem we introduce a new primitive
that we call private inference control, or PIC. In a PIC scheme, the server learns no information in the
computational sense about the user’s queries, even if the user is unable to retrieve the answer to their query.
Note that any PIC protocol implements oblivious transfer [42, 20, 38], so it must be interactive. Hence, the
server learns the number of queries made so far simply by counting the number of interactions with the user.
We emphasize that this is in fact the only information a computationally-bounded server learns about the
user’s queries. Indeed, it is precisely the knowledge of the number of queries made so far that will enable
the server to do collusion-resistant inference control.

Oblivious transfer has been studied in the context of access control [40, 3]. However, both [40] and [3]
can only be applied to protect against certain collections of inference channels, rather than the more general
collections that we consider here (see Section 3 for a precise description). In addition, they don’t apply to
the relational databases [14] that are our main focus because they view the data as consisting of a single
record. Running multiple instances of schemes in [40, 3] in parallel to accommodate multiple records causes
the efficiency of their techniques, and much of the user privacy that we desire, to be lost. Indeed, we believe
that new ideas are needed to solve the PIC problem.

Our enabling technique is the transfer of a small amount of extra information to the user with a query.
In subsequent queries, the extra information is used to encrypt data that is communicated through the
execution of a PIR or SPIR protocol. The encryption is done in such a way to ensure that users who have
made a permissible sequence of queries thus far (as defined by the inference channels) are able to decrypt.
The difficulty comes in determining how to do this encryption to accommodate an arbitrary collection of
inference channels while keeping communication overhead and server work at reasonable levels.

As suggested by our earlier example, PIC is useful in relational databases. Once the inference channels
have been identified (with a tool such as [43], for example) a PIC scheme can be designed to ensure that
users are prevented from making undesired inferences while privately accessing the database, even when users
collude. In addition, even when data perturbation is used to ensure privacy of the data (see, for example,
[5, 48, 2]), PIC can be useful. For example, in [18] it’s shown that in a statistical database in which sums
are queried, a large amount of perturbation is needed in order to preserve privacy. So much perturbation,
in fact, that the data is potentially useless. If a PIC scheme were employed in such a setting it might be
possible to retain the usefulness of the data by reducing the amount of perturbation while ensuring that no
user can query enough data to determine the individual, unperturbed data values.2 Finally, PIC may be
useful in Internet content distribution, as it can allow clients to hide their items of interest from merchants
(thus avoiding marketing intrusions) while providing merchants with the guarantee that only prescribed
content can be retrieved.

Overview. This paper is organized as follows. Section 1.1 summarizes our results. We discuss related
work in Section 1.2. Section 2 provides notation and Section 3 describes our model of PIC. In Section 4 we
show that it suffices to consider inference channels of a certain “threshold” form. In Section 5 we present a
simple protocol that introduces our techniques. Section 6 contains a stateful protocol with optimal server
work and private user revocation based on query histories. Section 7 describes our PIC scheme that is
simultaneously optimal in communication/round complexity and server work per query. We conclude in
Section 8. Appendix A discusses some of the cryptographic tools we rely upon, and Appendices B and C
supply proofs for Sections 4 and 6, respectively.

2However, with such an approach the user can learn the structure of the inference channels (but not the data that completes
the channels) which may not occur when data is protected solely by perturbation. See Section 3 for more on this point.
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1.1 Results

Besides the contribution we make by rigorously defining the security model for private inference control,
we also achieve extremely efficient implementations. Note that one possible implementation is just to run
a generic secure function evaluation (also referred to as a secure cicuit evaluation) [30, 50]. However, the
communication complexity of such schemes is at least linear in the input size. In contrast, we obtain solu-
tions with substantially sublinear communication complexity. Our key idea to achieve low communication
is to carefully divide up the keys/state of our schemes so as to run secure function evaluation on a small
set of inputs while running a private information retrieval scheme on a larger set of inputs. Of course, the
difficulty of doing this is that this division of inputs must respect user privacy and inference control. Our
final scheme in section 7 accomplishes this division. Plugging in the best known PIR parameters [13, 36],
we obtain:

Result. For databases of size n, there exists a 1-round PIC scheme with total communication O(polylog(n))
and server work O(npolylog(n)). (Section 7)

In addition, in Section 6 we present a scheme that incurs more overhead but has the benefit of supporting
private user revocation. That is, the server can ensure that users who have accessed certain information are
no longer able to query the database without knowing who these users are.

As a warmup to these schemes we present a scheme Section 5 achieving low communication when the
user knows all of his queries in advance.

Finally, we present a reduction that shows that one can focus on designing PIC schemes for which
the inference channels take a particularly simple “threshold” form and transform them into PIC schemes
handling arbitrary inference channels without much cost in efficiency for a certain range of parameters.

1.2 Related Work

Private information retrieval (PIR) was introduced in a seminal paper by Chor et al [16]. In such schemes a
server holds an n-bit binary string x ∈ {0, 1}n, representing a database, and a user has some index i ∈ [n]. At
the end of the protocol the user should learn xi and the server should learn nothing about i. This notion of
privacy was later relaxed [13, 34, 36] to prevent any computationally-bounded server from learning anything
about i. See [4] for a survey of PIR.

A symmetrically private information retrieval (SPIR) protocol [23] guarantees that the user learns nothing
about any index in x other than the one requested, in addition to providing user privacy. Note that neither
SPIR nor PIR accounts for changes in a user’s permissions over time; these permissions must change in
order to enforce inference control. However, both PIR and SPIR protocol are useful building blocks for PIC
and are used in our protocols.

SPIR is essentially equivalent to the older notion of 1-out-of-n oblivious transfer (OT) [42, 9], where the
emphasis in SPIR is on the communication complexity. The oblivious transfer works that bare the most
similarity to PIC are [3, 40]. In [40], Naor and Pinkas present schemes enabling a user to query a database
adaptively for at most a parameter τ number of times, while preserving the privacy of both the user and the
database. Hence, [40] can be viewed as studying a simplified version of our problem in which the database
consists of a single record and the inference channels are all sets of τ + 1 attributes. It is not clear that the
techniques of [40] can be efficiently extended to our setting. In particular, the natural extension in which
one instance of a protocol from [40] is run for each record results in linear communication and doesn’t offer
the privacy of our protocols since the server knows when each record is queried.

In [3], Aiello, Ishai and Reingold also only consider the single record setting and the natural extension of
their protocols to multiple records is less efficient, and less privacy-preserving, than our protocols. However,
the schemes in [3] have the advantage of allowing for more general inference channels than those in [40].
Phrased in terms of our setting, in [3] a price is associated with each attribute of a record and a user can
only query attributes until their budget is exceeded. Although this allows for a wider variety of inference
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channels, it is not as general as the setting we consider. We consider inference channels that are subsets
of the attributes (this is made more precise in Section 3), and so an inference can be drawn when all of
the attributes in a subset are received for any particular record. As an example of inference channels that
cannot be realized in the “price” model of [3], consider the following two inference channels (Ai denotes the
ith attribute in the database), I1 = {A1, A2}, I2 = {A3, A4}. In order to provide inference control with the
protocols of [3], there must be at least one attribute in each with a price of more than 1/2 of the budget,
but then no two of these attributes can be “bought” given the budget, however no such pair of attributes
forms an inference channel.

An alternate approach to inference control, and access control in general, is data perturbation [5, 48, 2].
Data perturbation has the benefit that queries are never blocked and hence the user gains no information
about what’s sensitive in the database. This property is especially important when inference channels are
data dependent. However, recent work [18] suggests that in some settings the amount of perturbation that
must be applied to the data to guarantee privacy may be so much as to render the data useless.

A solution to the PIC problem is possible using techniques for search on encrypted data (see, [46] and
the more recent work [11, 22]). The idea is that the records a user has queried are stored in encrypted form
on the server and the user gives the server the capability to determine whether or not the current record of
interest has been queried too much. With such a solution communication cost is essentially the cost of the
SPIR protocol employed. However such an approach doesn’t offer complete privacy to the user as the server
is able to determine exactly how many times a record has been queried and exactly when it was queried,
even though the correct index of the record may be hidden from the server.

Tools and techniques for ensuring inference control without user privacy can be found in [43, 32, 47].

2 Preliminaries

We make use of the following tools in this paper: computational symmetrically-private information retrieval
on records, homomorphic encryption, non-malleable encryption, and zero-knowledge proofs of knowledge.
Background on these tools, including a specific construction of SPIR on records used in our protocols, is
found in Appendix A. For simplicity, we will use the term SPIR to refer to our specific construction of SPIR
on records of size k, where throughout, k is a security parameter.

For an integer m, [m] denotes the set {1, . . . ,m}. Further, let 2[m] denote the set of all subsets of [m].
For a vector s, si refers to its ith coordinate, and if si is itself a vector, si,j denotes the jth coordinate of

si. We repeat this notation indefinitely, so if si,j is also a vector, si,j,k denotes its kth coordinate. For i ≤ j,
let si,...,j denote the (j − i + 1)-tuple (si, si+1, . . . , sj−1, sj).

For two strings or vectors s and t, let s ◦ t denote their concatenation. Let |s| denote the length of s.
By η(a, b) we denote an arbitrary negligible function, i.e., a function of a, b which is less than any inverse

polynomial in a, b for a and b sufficiently large.
Two families of random variables Un and Vn are computationally indistinguishable if for all probabilistic

polynomial time (PPT) algorithms A, |Pr[A(Un) = 1] − Pr[A(Vn) = 1]| < η(n).
The notation Õ suppresses terms that are polylogarithmic in the number of database records n.

3 The Model

In this paper we restrict our attention to single-server computationally-private schemes. We first consider
honest users, U , and the honest server, S. We consider malicious users U∗ in our definition of inference
control, and honest but curious3 servers S∗ in our definition of user privacy. We require all users and servers
to be efficient probabilistic algorithms. For notational convenience, we assume all entries in the database
are single bits, but our definitions easily extend to handle entries in {0, 1}l for constant l.

3Honest but curious means that, as a black box, the server behaves the same way as the honest server, but the server may
keep all messages from a user and run arbitrary efficient algorithms on them.
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A database is a string x ∈ ({0, 1}m)n. xi denotes the ith record of the database, and xi,j denotes the jth
attribute value of the ith record. In our general asymptotic analysis, we assume the number of attributes,
m, is at most O(log log n), whereas the number of records n is very large, as is the case for many relational
databases. In the important case when the inference channels take a threshold form, or are otherwise easy
to describe, we show how to dispense with this assumption on m. In fact in section 7 we give a best-possible
PIC implementation for any m. Even in section 7, we will however assume that m is at most polynomially
larger4 than n.

We assume that given the description of x, there is a mechanism for generating a collection C of sets
F ⊆ [m] denoting the inference channels in x. The meaning of C is that, for all i ∈ [n] and F ∈ C, the user
should not learn xi,j for all j ∈ F . A tool such as the one in [43] can be used to determine C. We take C
to be an input to the server. We sometimes think of C and F ∈ C as sets, and other times as tuples.

As discussed in [18, 44, 43], a driving motivation is that we are concerned with information that is
sensitive because it identifies individuals. We can think of an individual as a record. An individual is more
likely to be identified the more of their attributes are revealed. For example, it’s almost impossible to identify
someone from zip code alone, but there might be a single person with a given zip code, car make and place
of work, and if so, these attributes constitute an inference channel. Hence, our inference channels consist of
subsets of attributes, and inference control ensures a user doesn’t learn all the attributes in such a subset for
any particular record. If one insists on an inference channel existing between some set S of distinct records
in the database, one can merge the set S into a single record and apply our schemes with an efficiency cost.

Note that as is clear in the above example, we assume C is monotone, that is, if A ∈ C and A ⊆ B, then
B ∈ C. We also assume C is nonempty (else, PIR trivially solves our problem) and that C is an input to the
user. Indeed, we cannot expect to hide C from the user since the user can probe the database, see which
queries are blocked, and learn information about C. Note that C describes the structure of the database, and
does not reveal any actual database entries.

There are two stages in a private inference control scheme: the offline stage and the online stage. In the
offline stage the user and server are given their inputs, and the server is allowed to preprocess the database.
In the online stage an honest user generates coordinates of a |T |-tuple, T = ((i1, j1), . . . , (i|T |, j|T |)) one at a
time, where (it, jt) is allowed to depend on all previous interactions with the server. In the lth execution of
the online stage an honest user should output xil,jl

. The fact that the user generates coordinates of T one
at a time reflects the fact that a user typically queries a database adaptively. However, in section 5, as an
introduction to our techniques, we consider the case when T is known in advance.

For simplicity we will only require correctness when T consists of distinct pairs. Hence, |T | ≤ (m− 1)n.
However, all of our protocols can be easily modified to allow for repeat queries (see Section 8). Also, we
give a direct construction of a PIC scheme in section 7 which handles both repeated queries and rejected
queries. That is, even if a user has a query blocked because it is inference-enabling, they can continue to
make future queries and retrieve database entries so long as these queries are not inference-enabling.

We call a query sequence T of distinct pairs permissable if it doesn’t complete any inference channels,
that is, if for all F ∈ C and all i ∈ [n], there exists an ℓ ∈ F such that (i, ℓ) 6∈ T . We can think of T = T (U, x)
(here U denotes the code of U) as a random variable induced by the uniform distribution on ρ and γ, where
ρ and γ are random strings stored by the user and server, respectively. If U is honest, T assumes a particular
permissable query sequence for fixed ρ and γ.

We proceed to define the algorithms and stages that the user and server run in any PIC protocol. In every
algorithm, n,m, C, and 1k are inputs, where k = k(n) is a security parameter. For notational convenience
we do not include these inputs in the algorithms’ descriptions.

Private Inference Control: A PIC protocol consists of the following stages and algorithms.

Offline Stage: The user gets a random string ρ and the server a random string γ. |ρ| and |γ| are polyno-
mials in n and k. The same ρ (resp. γ) will be an input to every user (resp. server) algorithm for every

4Notationally this means that Õ(polylog m) = Õ(1)
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interaction with the server (resp. user). We may assume all user and server algorithms are deterministic
given ρ and γ. The server is given x ∈ ({0, 1}m)n and both parties are given C ∈ 2[m]. The server runs an
efficient preprocessing algorithm P (·, ·), which outputs a string y = P (x, γ).

Each execution of the online stage is allowed to be a multiround protocol, and we let r denote the number
of rounds per execution. Without loss of generality we may assume r is the same in every execution. In the
wth round of the lth execution the user computes and sends a message mw,l to the server and the server
computes and sends an answer aw,l back to the user. Define:

Mw,l = {mi,j | 1 ≤ j < l and 1 ≤ i ≤ r, or j = l and 1 ≤ i ≤ w},

and define:
Aw,l = {ai,j | 1 ≤ j < l and 1 ≤ i ≤ r, or j = l and 1 ≤ i ≤ w}.

Note that M0,l = Mr,l−1 and A0,l = Ar,l−1. During the protocol the user will have some state σU (Aw,l, ρ)
and the server some state σS(Mw,l, x, γ) for some w and l. For instance, σU (Aw,l, ρ) and σS(Mw,l, x, γ) could
contain the entire message history.

Online Stage : Let Q(·, ·, ·, ·), D(·, ·, ·, ·, ·) and R(·, ·, ·, ·, ·) be efficient algorithms. Q is the query generator,
D the database algorithm, and R the reconstruction algorithm. The following process is run:

• For 1 ≤ l ≤ |T |,

1. The user generates Tl = (il, jl) so that T1,...,l is permissable.

2. For 1 ≤ w ≤ r,

(a) The user computes mw,l = Q(il, jl, σU (Aw−1,l, ρ), ρ) and sends mw,l to the server.

(b) The server computes (aw,l, σS(Mw,l, x, γ)) = D(mw,l, x, y, σS(Mw−1,l, x, γ), γ), and sends aw,l

to the user.

(c) The user computes σU (Aw,l, ρ) = R(aw,l, il, jl, σU (Aw−1,l, ρ), ρ).
If w = r, R(aw,l, il, jl, σU (Aw−1,l, ρ), ρ) also outputs outl.

We define the view, VU∗(x, ρ, γ), of an arbitrary user, U∗, with respect to an arbitrary honest but curious
server to consist of ρ, and Ar,|T |. We define the view, VS∗(U∗, x, ρ, γ), of an arbitrary server S∗ with respect

to an arbitrary user U∗ to consist of x, γ, and Mr,|T |. As with the algorithm descriptions, n,m, C, and 1k

are also part of user and server views.

Correctness and Security Definitions: The algorithms P,Q,D,R constitute a PIC protocol if the fol-
lowing hold for all n,m, k, and monotone C ∈ 2[m]:

1. Correctness: For all x ∈ ({0, 1}m)n and all honest users U ,

Pr
ρ,γ

[∀α ∈ [|T (U, x)|], outα = xiαjα] = 1.

2. User Privacy: For all x ∈ ({0, 1}m)n, for all honest users U and any two sequences T1, T2 with
|T1| = |T2|, for all γ and for all honest but curious servers S∗, S∗ can distinguish user query sequence T1

from sequence T2 with only negligible probability. That is, for all efficient (in n, 1k) algorithms A,

|Pr
ρ

[A(VS∗(U, x, ρ, γ)) = 1 | T (U, x) = T1] − Pr
ρ

[A(VS∗(U, x, ρ, γ)) = 1 | T (U, x) = T2]| < η(n, k),

where the probability is also taken over the coin tosses of the adversary’s algorithm A, where A is addition-
ally given5 n and 1k.

5Note that since m = O(1), A does not have to be given C and m since they can be hardwired into A, even if A is uniform.
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3. Inference Control: We make a comparison with the ideal model in which a trusted third party,
Charlie, when given x ∈ ({0, 1}m)n and a permissable T , gives the user xi,j for all pairs (i, j) ∈ T . More
precisely, we require that for every U∗ and every ρ, there exists an efficient U ′, given the code of U∗ and ρ,
that plays U∗’s role in the ideal model, such that for every x ∈ ({0, 1}m)n, U ′ can find a permissable T such
that the output of U∗ interacting with the honest server and and the output of U ′ interacting with Charlie
given x and T are computationally indistinguishable. Note that U ′ is also allowed to make queries adaptively,
so T may depend on x. In general, the T found by U ′ is a random variable induced by the uniform distri-
bution on γ. Observe that the inference channels, C, are known to both U∗ and U ′ and are part of their views.

We phrase our definition in terms of a single user for ease of exposition. Clearly, for collusion-resistance it
does not suffice to protect against inferences by a single user. It is straightforward to modify our protocols to
protect against collusion – we simply permit each user to access less of each channel. The same technique is
used in [47] to ensure collusion-resistant inference control without privacy, however it is easily adopted in our
setting as it only depends on server knowledge of the number of queries a user has made not the content of
the queries. Adjusting the definition is similarly straightforward, one would instead consider malicious users,
U∗

1 , . . . , U∗
c , where c is the desired level of collusion resistance. We revisit collusion resistance in Section 8.

Since our goal is to ensure that a malicious user doesn’t learn any unintended information, the above
definition is similar to what is termed “sender’s security” in [40] and “vendor’s security” in [3]. However, we
differ from both notions in that inference channels are a more general concept than the query counts in [40]
and the query prices in [3], that determine access controls in those works. We could also define inference
control and user privacy to hold with respect to non-uniform adversaries (and in fact our schemes can be
made secure against such adversaries), but for ease of exposition, we do not take that up here.

Efficiency: For fixed n,m, and k, we measure the efficiency of a PIC protocol as follows. All of our
efficiency measures are per query, that is, for a single execution of the online stage. The communication
complexity C(n,m, k) is defined to be: maxC, x∈({0,1}m)n, U, γ, ρ, l

∑r
w=0 (|mw,l| + |aw,l|) . The server work

of a PIC protocol W (n,m, k) is the max, over all C, x, U, γ, ρ, and l, of the sum of the running times of
D(mw,l, x, y, σS(Mw−1,l, x, γ), γ) over w. The round complexity of a PIC protocol R(n,m, k) is r.

Parameter Summary:

Inputs: A database x, random user input ρ, random server input γ, collection of inference channels C, num-
ber of records n, number of attributes m, and security parameter k.

Components: Preprocessing algorithm P , query generator Q, database algorithm D, and reconstruction
algorithm R.

Intermediate Variables: Query sequence T for honest users U , messages sent from user to server Mw,l,mw,l,
messages sent from server to user Aw,l, aw,l, outputs of user outl, state of user σU (·, ·), state of server σS(·, ·, ·),
preprocessing output string y and round complexity r.

There is some redundancy in the notation because the intermediate variables are determined given the
inputs and components. However, at times we will use the intermediate variables for simplicity.

4 A Generic Reduction

We show that it suffices to focus on developing protocols that meet the definition of PIC when the inference
channels, C, take a particularly simple form. We note that for m larger than O(log log n), this reduction is
not particularly efficient. Thus, in section 7 we directly construct a PIC scheme with an exponential savings
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over that achieved via this reduction.

Definition 1 A protocol is a threshold private inference control scheme, abbreviated TPIC, if it
satisfies the requirements of a private inference control scheme under the assumption that C = {[m]}.

Note that a TPIC need not satisfy the requirements of a PIC for C 6= {[m]}. However, the following theorem
shows that given any TPIC, we can construct a PIC with related efficiency (for m not too large):

Theorem 1 Let (P ′, Q′,D′, R′) be a TPIC with communication C ′(n,m, k), server work W ′(n,m, k), and
round complexity R′(n,m, k). Then there exists a PIC scheme (P,Q,D,R) with communication complexity
C(n,m, k) = m2mC ′((m + 1)2mn,m, k), server work W (n,m, k) = m2mW ′((m + 1)2mn,m, k), and round
complexity R(n,m, k) = m2mR′((m + 1)2mn,m, k).

Proof Sketch: The idea behind the proof is to make a new record for each channel in an original record.
The new records have variable size between 1 and m, so we pad them with random bits so that they all have
the same length. Bits in the pad are XORed to values in the record in order to enable the record to be
queried exactly m − 1 times. Because of the expansion of each record, an attribute value may now occur
in multiple records. We force the user to read all records containing this element by using secret sharing to
“split” the element across each of these records. The only way to recover the element is to query all records
containing it. The formal proof, together with a small example, can be found in Appendix B.

Again, we stress that this is a general theorem which constructs a PIC out of any TPIC, with complexity
exponential in m. Note that |C| itself may be exponential in m, so this reduction is fairly efficient for general
|C|. In section 7 we provide a protocol with much better complexity though, which will be useful in the
multi-user setting when m may be large.

5 Warm-up: PIC with Static Queries

To introduce some of the techniques behind our PIC protocols we first consider the case in which the user
has a fixed set of queries T , or a query script, to execute. When the queries are known to the user a priori it’s
possible to require the user to execute the queries in a certain order. This greatly simplifies the access control
problem because it reduces the number of permissable query sequences, and thus makes it simpler to encrypt
the database contents so that a user who is attempting to make an inference channel-completing query will
not be able to decrypt the requested content. Our warm-up protocol is a TPIC protocol, C = {[m]}.

The protocol works as follows. Upon receiving the sth query from an honest user U , the server forms a
table with entries consisting of each data item xi,j concatenated with a key. When s ≥ m these entries are
encrypted using a symmetric encryption algorithm E(·, ·), where the first input is the encryption key (we
denote E(k, ·) by Ek(·)). The encryptions are generated under a set of keys that are only held by the user if
they’ve made a permissable set of queries thus far and are following the protocol by executing entries of T
in increasing order. By the latter we mean that records (i.e. the n rows of the matrix, x ∈ ({0, 1}m)n) are
queried in increasing order and for a given record i, if (i, j1) is queried before (i, j2), then j1 < j2. Hence,
it is permissable for a user to query record i on their sth query if either a record j < i was queried on
their (s − 1)th query or their (s − 1)th query was also to record i but they queried a record j′ < i on their
(s − m + 1)th query. Because the variation amongst the permissable query sequences is thus reduced, the
communication overhead is on the same order as the cost of a SPIR invocation on a database of size O(kn2).

Protocol 1 Consider the following static set of queries T = ((i1, j1), . . . , (it, jt)), where 1 ≤ t ≤ (m − 1)n.
We describe how the protocol proceeds on the sth query, (is, js). U ’s key set, KU , is initially empty. Let
H : {0, 1}∗ → {0, 1}k be a cryptographic hash function, where k denotes the security parameter.

1. Query Generator, Q: For the sth query, the user,U , and the server engage in SPIR protocol (see
Appendix A) on inputs (is, js), to generate a query, ms, that is sent to the server.
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2. Database Algorithm, D: To process the sth query from U , the server first selects n values at random
from {0, 1}k: k1,s,. . . , kn,s. For s ≥ m, let Ks

i,j = H(ki,s−1, kj,s−m+1) for 1 ≤ j ≤ i − 1. The
server forms the following sequence of concatenated values for 1 ≤ i ≤ n: yi,1 = (xi,1||ki,s), yi,2 =
(xi,2||ki,s), . . . , yi,m = (xi,m||ki,s).

(a) If s ≤ m − 1, the server forms the following table, Ts, with n rows and m columns, (yi,j)1≤i≤n,1≤j≤m.

(b) If t ≥ s > m − 1, the server forms a table Ts with n rows and 2(n − 1)m columns (2n(n − 1)m
entries in total), where the first 2(i − 1)m entries in row i are:

{Ek1,s−1
(yi,j), Ek2,s−1

(yi,j), . . . , Eki−1,s−1
(yi,j), EKs

i,1
(yi,j), . . . EKs

i,i−1
(yi,j)}j=1,...,m

The remaining 2(n− i)m entries in each row i are chosen randomly from the range of encryption
algorithm E, or can be omitted.

(c) The server executes the SPIR protocol on inputs Ts and ms and sends its response, as, to the
user.

3. Reconstruction R: The user recovers the desired data value xis,js and adds kis,s to KU . This recovery
step requires decryption using keys in KU in steps s > m − 1.

We do not give a formal proof of the security of this protocol since it is merely presented as an example
of our approach. Note that correctness easily holds when queries are executed in order because if the user
is not in danger of completing an inference channel with their sth query, they will have a key for another
row from their previous query, or a key for the same row for their previous query and a key for an earlier
row from the query they made m − 1 queries ago. If the user doesn’t have such keys, they will not be able
to decrypt, which is the basis for inference control. This protocol doesn’t completely preserve user privacy
since there are always query sequences that the server knows could not have been executed, however within
these constraints, the queries inherit privacy from the SPIR protocol.

6 Stateful PIC with Linear Work

One of the main difficulties in constructing PIC protocols is that the large number of permissable query
sequences puts upward pressure on the size of the SPIR tables employed, and thus, on the communication
complexity. The warm-up scheme side-steps this by dramatically reducing the number of permissable query
sequences at the cost of non-adaptive queries. The scheme of this section manages communication cost by
allowing the server to store encrypted information about each user’s queries. This has several significant
benefits. First, it allows for adaptive queries and second it keeps the server’s work at essentially an optimal
level, O(k2n), where k is a security parameter taken to be Õ(1) in the following.6 Note that PIC necessarily
implements PIR, and the best known single-server PIR scheme, even with preprocessing, uses Ω(n) work
per query.

Another benefit of this approach is that the storage of encrypted query histories can facilitate user
revocation as an adjustment to changes in the inference channel. If, for example, it is determined that
certain information in the database is sufficiently sensitive that an user who has accessed it should no longer
be permitted to query the database this can easily be privately “checked” by the database and all future
queries by such a user rebuffed. User privacy is preserved since the server doesn’t know whether the user
passed or failed the check. Further, the presence of the encrypted query histories makes it easy to adapt to
changes in the inference channels (likely with a dynamic database).

The protocol makes use of a homomorphic encryption function, Ehom(·) (instantiated with Paillier’s
scheme of Appendix A, for example). With Ehom(·) the user can privately send query information to the

6That is, we are ignoring logarithmic factors and using Õ(1) for k = O(logr(n)), as is done for security against PPT (in n)
algorithms for the best known PIR/SPIR schemes [13, 36, 39].
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server. Then, using the homomorphic property of Ehom(·), the server can encrypt a secret, S, in such a way
that the user can only recover S if not in danger of making an undesired inference with the user’s current
query. Finally, the user and server engage in SPIR7 (see Appendix A) on a table encrypted under S and
the user’s encrypted query information. Hence, recovery of S effectively authorizes the user to receive the
answer to their query.

Protocol 2 Let U ’s tth query be Tt = (it, jt), 1 ≤ it ≤ n, 1 ≤ jt ≤ m and let C = {[m]}. We describe how
this TPIC protocol proceeds on the tth query.

1. If t = 1, U generates public and private keys for Ehom(·) and sends the public key to the server.

2. Sending query information: U sends the server Ehom(it) and Ehom(jt) and gives a zero-knowledge
proof of knowledge that the ciphertexts are well-formed.

3. Generating authorization:

(a) If t < m then the server sets St = 0 and proceeds to step 4. Else, the server generates a secret
St and randomly generated shares, y1, . . . , yt−1, forming a (t − m + 1)-out-of-(t − 1) sharing of
St [45] and sends the user Ehom((i1 − it)y1), . . . , E

hom((it−1 − it)yt−1) using the homomorphic
property of Ehom(·).

(b) U decrypts and recovers at least t−m+1 of the values in {y1, . . . , yt−1} if U has made a permissible
sequence of queries, and thus is able to reconstruct the secret St.

4. Query Processing:

(a) The server generates random values, v
(1)
i,j , v

(2)
i,j , for every 1 ≤ i ≤ n, 1 ≤ j ≤ m, and forms the

table with nm entries T = (Ehom(v
(1)
i,j (j − jt) + v

(2)
i,j (i − it) + St + xij))i,j .

(b) U and the server engage in the SPIR protocol on T . In order to be able to recover xi,j, U must
know St and the following equalities must hold: i = it and j = jt. Hence, U can at most recover
xit,jt, and can only do so if U has made a permissible sequence of queries.

We discuss the key points pertaining to the protocol’s security here and refer the reader to Appendix C
for the details. Inference control intuitively holds because step 2 ensures that a user who is in danger of
completing an inference channel won’t be able to recover St because in step 2(a), for at least m− 1 values of
j, Ehom((ij − it)yj) = Ehom(0). The use of encryption in the SPIR phase8 ensures that the user will only be
able to decrypt entries in the record the user is authorized to query. Note that unlike the warm-up protocol,
a user who is blocked from making an inference channel-completing query will be able to continue to receive
information from the database (provided subsequent queries are permissible given past ones). User privacy
relies upon the SPIR protocol and the strength of the encryption schemes.

The per query communication cost is O(kt) plus the cost of a SPIR invocation. As mentioned in
Section 1.2, the O(kt) part of the cost can be removed with a decrease in user privacy, by using techniques
for search on encrypted data [46, 11, 22] to enable the server to determine whether or not a server is authorized
by searching the user’s encrypted query history, and thus removing step 2. Server work is essentially optimal
in this protocol at O(k2n) with the bulk of the work occurring in step 3.

Applying Theorem 1 turns this TPIC scheme into a PIC scheme with Õ(n) server work per query and
Õ(t) communication per query, which may be Õ(n), depending on t.

Finally we note that since the server stores the encrypted query histories it is simple to accommodate
user revocation based on the user’s history. As an extreme example, if it is determined that access to xi,j is

7PIR may well be sufficient in order to achieve inference control here, however we opt for the stronger SPIR approach in
order to demonstrate security more easily (see Appendix C).

8PIR may suffice instead of SPIR, however we use the stonger primitive SPIR to facilitate the security proof (Appendix C).
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sufficiently valuable that a user with that information should no longer be allowed to access the database,
then the server can easily “check” for E(i) and E(j) using the same secret sharing techniques of step 3. This
does not immediately compromise the user’s privacy as the server does not know that the user was unable
to recover the secret, although the user should maintain a consistent query pattern in order to ensure that
the server does not learn they were revoked.

7 One-round PIC with Polylogarithmic Communication and Linear Work

In this section we present, up to logarithmic factors, a PIC protocol that is simultaneously optimal in its
communication complexity, round complexity, and server work per query. Again, as in Section 6, we assume
the security parameter k = Õ(1).9 Our protocol achieves communication complexity Õ(1), uses 1 round,
and has Õ(n) work per query. This is optimal in all three aspects with respect to known PIR schemes, even
with preprocessing [7].

Our scheme enjoys a number of additional features:10

1. It directly allows for repeat queries.

2. It allows the user U to continue querying the database even if he tried to make an inference-enabling
query at some point in the past. Hence the collection of inference channels C need not be a user input.

3. The only information about U ’s query history the server S needs to store is the total number of queries
made thus far.

4. It directly handles arbitrary inference channels instead of going through Theorem 1.

5. The work and communication depend only linearly on m and the description of C, and hence m may
be O(log log n) without asymptotically affecting the work or communication. Note that this is best
possible, since |C| may be as large as 2m in any inference control scheme.

6. In the special case of threshold inference channels, the communication is O(polylog(mn)) and the work
is Õ(mn), so m may even be polynomial in n without asymptotically affecting the communication.
Observe that Ω(mn) work is necessary for any value of m with respect to known PIR schemes.

7. The space complexity of S is dominated by the size of the database itself.

8. The server just needs Õ(1) bits of randomness.

Without loss of generality, we assume n is a power of 2. We use a data structure B consisting of a balanced
binary tree with n leaves, where in addition, we connect m children to each leaf of the binary tree. The idea
is that the leaves of B denote entries xi,j of the database, and the parents of the leaves denote records xi. U
will obtain keys K(w, z) associated with each leaf w indicating whether or not the value at the leaf has been
accessed. Here z ∈ {0, 1}. Internal nodes w also have associated keys K(w, z), where here z is an integer
indicating the total number of times leaves in the subtree rooted at w have been accessed. These keys will
be used to do inference control. When a user U retrieves a database entry they use their keys to go up the
tree. If U tries to use “older” keys indicating that nodes have been accessed less than they actually have,
their keys will be inconsistent with S’s knowledge of the total number of queries made thus far, and U will
not be able to recover the desired database entry.

9Such is the case for security against PPT (in n) algorithms for the best known PIR/SPIR schemes (e.g., transforming the
PIR protocol of [13] to a SPIR protocol using [39].)

10Features 1 and 2 also hold for the scheme of Section 6. We view feature 3 as a significant advantage from a security standpoint,
however as discussed in Section 6 storing state can facilitate useful access management features such as user revocation.
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Before going into detail, let us fix some notation. Let α denote the root of B. We say w ∈ B is at
height d if it is d levels above the leaves. The leaves are at height 0. Each node in B of height 1 is denoted
by i for some i ∈ [n], and each of the m children of i are denoted by (i, j) for some j ∈ [m] (we sometimes
use w to refer to an arbitrary node in B, including those at height 0 and 1). For a non-root node w in B,
let sib(w) denote w’s siblings (there is either 1 or m − 1). For a non-leaf node w, let children(w) denote
w’s children. For a leaf node w, let anc(w) denote the set of log n + 1 ancestors along the path from w
to α, inclusive. We say a node w is accessed whenever xi,j is successfully retrieved by the user for which
w ∈ anc(i, j). Finally, for leaves w define the set of 2 log n + m − 1 nodes that is the set of ancestors (as
defined above) together with the siblings of the ancestors:

sibanc(w) = anc(w) ∪ {u | ∃v ∈ anc(w) s.t. u = sib(v)}

7.1 Protocol Description

When the honest user queries xi,j, he will use the set of keys π = {K(w, fw) | w ∈ sibanc(i, j)}, where fw

is the number of times w has been accessed. If the user is dishonest, for some w ∈ sibanc(i, j), he may
substitute K(w, z) in place of K(w, fw) for some integer z 6= fw. However, the invariant we maintain is that
with all but negligible probability, any user U∗ cannot determine K(w, z) for any z > fw, and so if K(w, z)
is substituted for K(w, fw), it holds that z < fw. If the user is given xi,j, he will also obtain the updated set
of keys {K(w, fw + 1) | w ∈ sibanc(i, j)}.

Our scheme enforces inference control by what we call sum-consistency. For any non-leaf node w and
its children, children(w), we say the keys K(w, i), {K(u, ju) | u ∈ children(w)} are sum-consistent if
i =

∑

u∈children(w) ju. Suppose the honest user U wants to retrieve xi,j on the (t + 1)st query. We
claim the set of keys π gives a proof that U is not in danger of completing an inference channel. Indeed, if
U is honest, π has the following three properties:

1. For each non-leaf node w in anc(i, j), K(w, fw) and {K(u, fu) | u ∈ children(w)} are sum-consistent.

2. fα = t.

3. If U is not in danger of completing an inference channel by learning xi,j, then for all inference channels
F ∈ C, there is some j′ ∈ F such that j′ 6= j for which K((i, j′), 0) ∈ π.

A dishonest user U∗ will not be able to furnish a proof π to obtain xi,j when learning xi,j completes an infer-
ence channel F . Indeed, if U∗ does not substitute K(w, z) for K(w, fw) for some z 6= fw and w ∈ sibanc(i, j),
the third property above cannot hold. On the other hand, by the invariant mentioned above, if U∗ substi-
tutes K(w, z) for K(w, fw) for some z 6= fw for some w, then z is necessarily less than fw so properties (1)
and (2) cannot hold simultaneously.

Of course, for user privacy, U cannot simply give π to S. Instead, U will prove knowledge of π via a
secure function evaluation (SFE) [30, 50] with S. The idea is that U will input π to the SFE, which will give
the user a certain secret if and only if π is a valid proof. Now the communication complexity of an SFE for a
function is linear in the circuit size computing the function, and therefore, if the keys K(w, i) are completely
independent of each other, the communication complexity of a generic SFE for π will be Ω(mn), which is
prohibitive. Indeed, since the server cannot know which keys the user will use because of user privacy, and
since the keys are independent random values, the server must input all possible user keys 11 into the circuit
so the circuit can perform comparisons on them.

To get by with low communication, we observe that the keys associated with different nodes need not

11Of course, the server can use its knowledge of the number of queries made thus far to exclude some keys from the circuit
input. This does not asymptotically help though, once the user makes enough queries.
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be totally independent of one another, as long as they are not predictable from each other. Let E be a
non-malleable [19] (see Appendix A) symmetric-key encryption scheme, and let K be a secret key of E
known only to S. Then for each node w and integer i, we define the key K(w, i) to be the encryption
EK(w, i) under key K. Since E is non-malleable, EK(w, i) is unpredictable from EK(v, j) for (w, i) 6= (v, j).
The important point here is that the server just needs to input the decryption key K of E to the secure cir-
cuit in order to perform the necessary comparisons on the user’s keys, rather than Ω(mn) truly random keys.

We would also like to handle repeated queries and rejected queries. By the former we mean that a user
should be able to query record/attribute pairs already queried and by the latter we mean that even if a
user’s query is rejected at some point, he should still be allowed future queries as long as they are not
inference-enabling. To this end the user will have keys EK(“reject′′, z1) and EK(“repeat′′, z2) for integers
z1 and z2. The idea is that z1 denotes the total number of rejected queries made so far, and z2 denotes
the total number of queries that were repeats. Since E is non-malleable and K is unknown to U , U cannot
construct/modify such encryptions. These encryptions will be updated by the server “obliviously” in the
secure function evaluation we now describe.

The user’s input to the circuit, C, is a set of keys π′, an i ∈ [n], a j ∈ [m], and two k-bit numbers P ,
Q, which if U is honest, denote EK(“reject′′, z1) and EK(“repeat′′, z2) for some integers z1, z2. The server
input is the secret key K, the total number of queries made so far t, the collection of inference channels C,
and a seed s to a pseudorandom function h.

The circuit functionality C first checks if EK((i, j), 1) ∈ π′, which it can do efficiently since it knows
K. If this is the case, C checks if Q is of the form EK(“repeat′′, z2) for some integer z2, and if so, outputs
EK(“repeat′′, z2 + 1) to the user by decrypting and re-encrypting. If Q is not of this form, C outputs
EK(“repeat′′, 1). In either case C additionally gives h(s, i, j) to U . Otherwise, if EK((i, j), 1) /∈ π′, C checks
that the keys in π′ satisfy the properties of a valid proof π, that is, they form a sum-consistent path from
(i, j) to α. Note that, we replace the property that fα = t with the property that fα = t− z1 − z2, since the
user could not have updated his keys in the z1 + z2 queries which were rejects or repeats. Note that C can
do this efficiently by decrypting the keys in π′ using K along with simple arithmetic operations.

Let g(π′) denote the set of keys {K(w, fw + 1) | K(w, fw) ∈ π′}. If π′ passes the above test, the user
output of C is h(s, i, j) and g(π′). If π′ does not pass the test, C checks if P is of the form EK(“reject′′, z1)
for an integer z1, and if so, outputs EK(“reject′′, z1+1) to the user. Otherwise, C outputs EK(“reject′′, 1) to
the user. In either case, the server has no output. Since the input size to C is Õ(|C|+m) (for |K|, |s| = Õ(1)),
the total communication and server work required for this step is poly(|C|,m) [30, 50] since C is an efficient
computation. Note that, by outputting EK(“reject′′, 1) and EK(“repeat′′, 1) we don’t need the user to
already know EK(“reject′′, 0) and EK(“repeat′′, 0) at the beginning of the protocol.

Finally, the last step is for the user to use h(s, i, j) to recover xi,j. To this end, for each i ∈ [n] and
j ∈ [m], the server prepares a table T with i, jth entry set to xi,j ⊕h(s, i, j). U and S then engage in SPIR12

on T , and U should obtain Ti,j, from which he can recover xi,j if and only if he previously received h(s, i, j).
Using the best known SPIR schemes, server work in this step is Õ(mn) and the communication is Õ(1).

The following summarizes our protocol:

Protocol 3 In the offline stage the server S randomly chooses a seed s to a pseudorandom function h and
a key K to a non-malleable encryption scheme E. In the t-th execution of the online stage, the user U first
generates a query (it, jt). Then U and S perform the following SFE and SPIR reading in parallel. These

12PIR may well be sufficient in order to achieve inference control here, however we opt for the stronger SPIR approach in
order to use the simulator of [39].
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two steps encompass the query generation algorithm Q, database algorithm D, and reconstruction algorithm
R discussed in section 3:

1. Let C be a secure circuit implementing the functionality described above. U constructs the set of
keys π = {K(w, fw) | w ∈ sibanc(it, jt)}, and feeds these along with keys EK(“reject′′, z1) and
EK(“repeat′′, z2) into C, where z1, z2 denote the number of rejected/repeated queries made thus far.
If no such queries have been made in one of these two cases (i.e., z1 or z2 is 0), then U substitutes a
random value in the range of E in its place. S then feeds s,K, and the inference channels C into C.
S gets no output from C, while U ’s output is divided into cases (recall the protocol description refers
to honest U and S):

(a) If learning xit,jt is inference-enabling, U ’s output is E(“reject′′, z1 + 1).

(b) If xit,jt was previously queried, U ’s output is E(“repeat′′, z2 + 1) together with h(s, it, jt).

(c) Otherwise U ’s output is h(s, it, jt) and the updated keys {K(w, fw + 1) | K(w, fw) ∈ π}.

2. S prepares a table T with i, jth entry set to xi,j ⊕h(s, i, j) and U and S engage in SPIR on records on
T . U should obtain Tit,jt.

If learning xit,jt is not inference-enabling, U reconstructs xit,jt from h(s, it, jt) and Tit,jt = xit,jt ⊕h(s, it, jt).

7.2 Efficiency Wrap-up

Since server work and communication are dominated by the SPIR invocation, we see that the overall server
work of our scheme is Õ(mn) and the communication is Õ(poly(m, |C|)). Finally we note that both the se-
cure circuit evaluation and the SPIR invocation each take one round (with say, using the circuit evaluation
of [12]), and further, they can be parellelized. Hence the whole scheme can be done in a single round.

Observe that the only state the server keeps of the user’s history is the total number of queries made
thus far, which of course, is unavoidable. Also, the secure circuit evaluation directly detects arbitrary infer-
ence channels, instead of passing through theorem 1.

In the special case where C is of the form {S ⊂ [m] | |S| ≥ τ}, i.e., a threshold access structure,
|C| = log m as we just need to describe τ . In this case we can modify our scheme so that the commu-
nication is O(polylog(mn)) and the work remains at Õ(mn). To do this, instead of having m keys for each
attribute for a given record i, contributing a factor of m to the communication of the SFE, we instead have
a single key for each record i encoding the total number of attributes in i which have been queried. Note
that by definition of C, the actual attributes queried are immaterial. This can be done as long as the key
size is larger than log m bits, and hence the communication drops to O(polylog(mn)). We can still handle
repeat queries by distributing a special key with each attribute of i, which can be an additional input to the
secure circuit evaluation and checked to see if a repeat is being made. Again, this is just one additional key
per secure circuit evaluation, so we get an exponential (in m) savings in communication. This allows m to
be polynomial in n without asymptotically affecting the communication.

One final point is that by using a pseudorandom function h and key-dependencies through an encryp-
tion scheme E, the only randomness the server needs to keep around is the seed s and the key K. This
consumes Õ(1) space. When the server runs SPIR the space complexity is just Õ(mn), the space necessary
to store the database.

7.3 Security proofs

We give proofs that the above protocol meets the requirements of a PIC protocol:
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Correctness: It is straighforward from the protocol description to check that for an honest user U ,
U can recover exactly those queries that are not inference-enabling. We note that the scheme handles repeat
queries and rejected queries, as claimed at the beginning of this section.

User Privacy: Observe that an honest but curious server S∗’s view is that of a polynomial (in n) number
of SFE and SPIR interactions with an honest U . Note that there are efficient simulators S1 for the SFE
[30, 50] and S2 for the SPIR (to construct S2, simply fix an arbitrary input for U , and simulate the SPIR
interaction of U with S∗ for that input). Since S∗ is honest but curious, its inputs (importantly x) are fixed
at the beginning of the protocol, and since S∗ gets no output from either the SFE or the SPIR, its view is
just the concatenation of the outputs of S1 and S2 evaluated on its inputs at the beginning of the protocol.
This defines a simulator for the view of S∗, which implies user privacy. For more background see [26].

Inference Control: Consider an arbitrary user U∗ with random tape p. As with user privacy, there
is an efficient simulator S1 for the SFE simulating U∗’s view with the honest server S. Further, using the
PIR to SPIR transformation of [39], there exists a simulator S2 which given U∗’s code and p, can extract
the indices requested (explicitly or implicitly) by U∗ in any of the polynomial number of SPIR interactions
of U∗ with S.

Let U ′ play U∗ in the ideal model. U ′ first chooses a random key K for E and a seed s for the
pseudorandom function h. Suppose after t queries (including repeated/rejected queries), the view generated
by U ′ is computationally indistinguishable from that generated by U∗ interacting with S. By induction, we
may assume that with overwhelming probability U∗ has only a negligible advantage of predicting EK(w, j)
for any w ∈ B and and j > fw. This holds in the base case since U∗ doesn’t know K. Again by induction,
we may assume that U∗ can only generate EK(“reject′′, j) for j less than or equal to the total number of
rejected queries thus far. Similarly, U∗ can only generate EK(“repeat′′, j) for j at most the total number of
repeated queries thus far. We describe U ′’s simulation on the (t + 1)st query, and show the inductive steps
for the above.

By definition of the simulator S1, U ′ can use the code of U∗ to extract the inputs π′, i, j, P,Q for which
U∗’s interaction with S in the SFE computation is computationally indistinguishable from the view of a
user in the ideal model who just hands π′, i, j, P,Q to a trusted third party. Given π′, i, j and the previously
requested indices I of U ′ to the trusted third party Charlie, U ′ first checks if knowledge of xi,j together
with database values indexed by I complete an inference channel. If this is the case, U ′ checks if P is a
valid encryption of the form EK(“reject′′, z) for an integer z. If so, U ′ decrypts P , increments z by 1,
and gives EK(“reject′′, z + 1) to U∗ as output. Otherwise, U ′ gives EK(“reject′′, 1) to U∗ as output. U ′

then checks if (i, j) already appears in I. If so, U ′ checks if EK((i, j), 1) appears in π′. If not, U ′ outputs
EK(“reject′′, z + 1) or EK(“reject′′, 1) depending on whether or not P is a valid encryption. If EK((i, j), 1)
does appear in π′ and Q is a valid encryption of the form EK(“repeat′′, z) for some integer z, U ′ outputs
EK(“repeat′′, z + 1) and xi,j ⊕ h(s, i, j) to U∗, otherwise if EK((i, j), 1) appears in π′ but Q is not a valid
encryption, U ′ outputs EK(“repeat′′, 1) and xi,j ⊕ h(s, i, j) to U∗.

Finally, if (i, j) is neither inference-enabling nor already in I, U ′ checks if π′ has the three properties of
π given in the protocol description. Here, again, we replace the second property “fα = t” with the property
“fα = t− z1 − z2

′′, where P = EK(“reject′′, z1) and Q = EK(“repeat′′, z2). If π′ has these three properties,
U ′ updates I to include (i, j), asks the trusted third party Charlie for xi,j, and gives xi,j ⊕ h(s, i, j) as
output to U∗, as well as the updated list g(π′) defined in the protocol description. Finally, U ′ then runs the
simulator S2 for SPIR to extract the requested indices (i′, j′) from S and gives h(s, i′, j′) to U∗ as output
of the SPIR interaction. We give the user xi,j ⊕ h(s, i, j) as the output of the circuit simulation instead of
h(s, i, j) so that the server doesn’t have to talk to Charlie when simulating the SPIR interaction, and hence,
I, as defined, is exactly the set of database values the server has already queried from Charlie.

We claim the view generated by U ′ is indistinguishable from that of U∗ in an actual execution. By the
inductive hypothesis, it holds that π′ cannot satisfy the three properties of π given in the protocol description
if (i, j) is inference-enabling, and so the encryptions obtained by U∗ are the same as those obtained in a real
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execution. Note that since h is pseudorandom, xi,j ⊕ h(s, i, j) is indistiguishable from h(s, i, j), and so both
the output of the SFE and the SPIR are indistinguishable from that of a real execution.

It remains to show the inductive steps for the claims in the second paragraph. This follows from two
observations. First, by construction, EK(“reject′′, z) and EK(“repeat′′, z) are updated for U∗ precisely when
a query is rejected or repeated, respectively, and g(π′) is given to U∗ when in fact fw increases by one for
each w in sibanc(i, j) for query (i, j). The second observation is that E is non-malleable, so U∗ cannot
generate any other encryptions from these. This completes the proof.

8 Extensions and Open Problems

We’ve described our protocols in the context of a single user, however they naturally support many users. In
the multi-user setting the database server only needs the ability to link queries made by the same user and
so it’s possible for users to maintain some anonymity through the use of pseudonyms. In addition, collusion
resistance can easily be added to any of our protocols. To ensure c-collusion resistance for an m-channel,
meaning no c users can collude to complete the channel, we modify the protocols to only allow a user to
query a record (m−1)

c
times. With this modification, c users can together query at most m − 1 attributes in

an inference channel. Although, this may restrict information access quite a bit if the database isn’t queried
much, it does ensure collusion resistance in a fair manner.

As mentioned in Section 3, our protocols can be modified to allow for repeat queries. Note though, that
this is already directly handled by the protocol in Section 7. This is achieved by distributing a “master
key”, Ki,j, with each xi,j and requiring the server to maintain a table containing each xi,j encrypted under
Ki,j. A user can engage with the server in SPIR protocols on this table at will. If the user wants to protect
against the server learning that a repeat query is made, they can perform the repeat table lookup on every
query, with at most a constant factor slowdown in efficiency, together with a query on the actual database.

Finally, as this is a new primitive there are a number of open questions. Perhaps there are applications
of PIC, similar to those in [3], that lie outside of the realm of protecting sensitive subsets of information.
Another question is whether our protocols can be modified to enable users to update their state more in-
dependently, e.g., without going through a secure function evaluation. Although our protocols are already
one-round and communication-efficient, there still may be other PIC implementations where a user can di-
rectly provide himself with the capability to access the information they are authorized to receive, effectively
bypassing the secure function evaluation.
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A Tools

We rely on the following primitives in our protocols. In the following we describe each briefly in turn,
referring the reader to appropriate references for more details.

A.1 Computational Symmetrically-Private Information Retrieval on Records

Symmetrically-private information retrieval (SPIR) is introduced in [23]. With each invocation of a SPIR
protocol a user learns exactly one bit of a database while giving the database no information about which bit
was learned. Hence, SPIR protocols add data privacy to private information retrieval (PIR) protocols such
as [16], that only ensure user privacy. We rely on single-server SPIR schemes in our protocols. Such schemes
necessarily offer computational, rather than unconditional, security. In [39], for an n bit database it’s shown
how to transform any PIR protocol into a SPIR protocol with essentially the same communication cost;
more precisely, log n invocations of a 1-out-of-2 Oblivious Transfer13 protocol [20], which itself has constant
communication cost. We require an additional property of the SPIR protocol in our constructions, namely
that it is secure in the real/ideal model, that is, to guarantee the user does not learn more than a single index
i of the database x, we require that there is an efficient simulator which can extract the index i learned by any
(possible malicious) user U∗ interacting with the honest server. Applying the transformation of [39] to the
PIR schemes of [13, 36] gives such a construction with O(kn) server work and O(polylog(n)) communication,
where k is a security parameter. k can be set to O(polylog(n)) for security against polynomial size circuits
assuming the Φ-hiding assumption [13].

Another issue is that in all of our schemes, we actually perform SPIR on records of size k rather than
on a database x ∈ {0, 1}n. It is, however, a simple matter to convert a binary SPIR scheme into a SPIR
scheme on records by running k invocations of the binary scheme in parallel. This gives us a 1-round,
O(kpolylog(n)) communication per query, O(k2n) server work simulatable SPIR protocol on records of size
k. The dependence on k can be improved using techniques of [15], but since k is polylogarithmic in n in our
applications, for simplicity we don’t optimize this dependence in our protocols.

A.2 Homomorphic Encryption

An encryption scheme, E : (G1,+) → (G2, ·) is homomorphic if for all a, b ∈ G1, E(a+ b) = E(a) ·E(b). For
more background on this primitive see, for example, [28, 37].

We make use of the Paillier homomorphic encryption scheme [41] in one of our protocols and so we briefly
repeat it here:

1. Initialize: Choose two primes, p and q and set N = p · q. Let λ = lcm(p − 1, q − 1). Let the public
key be (N, g) where the order of g mod N2 is a multiple of N , and let the secret key be λ.

2. Encrypt: Given a message M ∈ ZN , choose a random value x ∈ Z∗
N . The encryption of M is,

E(M) = gMxN mod N2.

3. Decrypt: Let L(u) = (u−1)
N

, where u is congruent to 1 modulo N . To recover M from E(M) calculate,
L(E(M)λ mod N2)

L(gλ mod N2)
mod N .

In [41] it’s shown that this encryption scheme’s semantic security is equivalent to the Decisional Com-
posite Residuosity Assumption. To see that the scheme is homomorphic, note that E(M1) · E(M2) =
(gM1x1

N modN2) · (gM2x2
N modN2) = gM1+M2(x1x2)

N modN2 = E(M1 + M2).

13SPIR is essentially equivalent to the older notion of 1-out-of-n oblivious transfer [42]
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A.3 Zero-Knowledge Proofs

Zero-knowledge proofs (ZKPs) were introduced in [29] and it’s shown in [31] that all languages in NP have
zero-knowledge proofs provided one-way functions exist. For a recent survey on zero-knowledge proofs see
[27].

An interactive proof system for the language, L, enables a computationally unbounded prover, P , to
convince a polynomially bounded verifier, V , that an element of L is in fact in the language. Conversely, for
any element that’s not in L, P only succeeds in convincing V of membership with negligible probability. P
and V may be modelled as probabilistic Turing machines, with their interaction captured by a transcript.
We say an interactive proof system is zero-knowledge if the verifier learns nothing additional (i.e. beyond
membership in L or lack of membership in L) from the prover. This means that any (possibly malicious)
verifier V ′ can efficiently generate a transcript of the interaction that is indistinguishable from that produced
by P . That is, there exists a probabilistic polynomial time machine M , called the simulator of the interaction
of V with P , such that for all x ∈ L, {< P, V > (x)}x∈L is indistinguishable from {M(x)}. For our purposes,
computational indistinguishability suffices.

Intuitively, a zero-knowledge proof of knowledge allows a prover to convince a verifier of some fact in
zero-knowledge if and only if the prover “knows something”. This is formally captured by the existence
of an efficient algorithm known as a knowledge extractor - see [8] for definitions. We use this primitive in
Protocol 2.

A.4 Non-malleable Encryption

This concept was formally defined and introduced in [19]. Informally, an encryption scheme is non-malleable,
if in addition to being semantically secure, it is impossible to generate a different ciphertext from a given
ciphertext so that the two respective plaintexts are related. See [19] for a more formal description and
implementations.

21



B Reduction

In this appendix we prove the theorem of Section 4 and provide a small example of the database that’s
constructed in the offline stage. Z denotes the integers and N the positive integers.

Theorem 1 Let (P ′, Q′,D′, R′) be a TPIC with communication C ′(n,m, k), server work W ′(n,m, k), and
round complexity R′(n,m, k). Then there exists a PIC scheme (P,Q,D,R) with communication complexity
C(n,m, k) = m2mC ′((m + 1)2mn,m, k), server work W (n,m, k) = m2mW ′((m + 1)2mn,m, k), and round
complexity R(n,m, k) = m2mR′((m + 1)2mn,m, k).

Proof: Much of the notation in this proof is defined in Sections 2 and 3. We use “primed” notation
for the original TPIC scheme and unprimed notation for our PIC scheme. Thus, x, γ, ρ, C, n,m, k denote
the inputs of the PIC scheme, P,Q,D, and R denote its components, and the intermediate variables are
Mw,l, Aw,l,mw,l, aw,l, outl, σU (·, ·), σS(·, ·, ·), y, and r. We construct inputs x′, γ′, ρ′, C′, n′,m′, k′ to feed into
the TPIC scheme, for which P ′, Q′,D′, and R′ are the components and the intermediate variables are
M ′

w,l, A
′
w,l,m

′
w,l, a

′
w,l, out′l, σ

′
U (·, ·), σ′

S(·, ·, ·), y′, and r′.

Offline Stage: Fix an honest user U . The user and server are given n,m, 1k, and a monotone C ∈ 2[m]. De-
fine m′ = m, C′ = {[m]}, n′ = (m+1)|C|n, and k′ = k. Let poly(n,m, k) be a polynomial bounding the length
of ρ′ and γ′ in the TPIC scheme. In the PIC scheme the user is given ρ with |ρ| = poly(m(m + 1)2mn,m, k)
and the server a γ with |γ| = poly(m(m + 1)2mn,m, k) + (m + 1)m2mn. The server is also given an
x ∈ ({0, 1}m)n. Set ρ′ = ρ, and let γ′ be the restriction of γ to its first poly(m(m+1)2mn,m, k) coordinates.
Define r = R(n,m, k) to be m|C|r′ = m|C|R(n′,m′, k′).

The server constructs a database x′ ∈ ({0, 1}m)n
′

, which can be thought of as a string in (({0, 1}m)|C|)(m+1)n.
For each i ∈ [n], j ∈ [|C|], and k ∈ [|Cj |], let si,j,k be a random bit subject to the constraints:

∀α ∈ [m],
⊕

j,k s.t. Cj,k=α

si,j,k = xi,α.

For each i ∈ [n], j ∈ [|C|], and |Cj| < k ≤ m, let ri,j,k be a random bit. For each i ∈ [n] and j ∈ [|C|],

• for k = 1, define x′
i,j,k = si,j,k ⊕

⊕m
v=|Cj |+1 ri,j,v,

• for 2 ≤ k ≤ |Cj |, define x′
i,j,k = si,j,k,

• and for |Cj | < k ≤ m, define x′
i,j,k = ri,j,k.

The x′
i,j,k for |Cj| < k ≤ m are the “random pad” values. Finally, for each i ∈ {n + 1, . . . , (m + 1)n}, each

j ∈ [|C|], and each k ∈ [m], set x′
i,j,k to be a random bit. These are “dummy” bits in the database that the

user will query so that the number of rounds per online execution is the same for every execution, which
we’ll need when proving user privacy. Observe that there are enough random bits in γ so that every random
bit needed in the construction of x′ is in fact a truly random bit. This follows from the fact that there are
at most (m + 1)m2mn random bits needed, one for each position in x′.

A small example of a database, x′, that is output at this stage is given in Figure 1.

P: Let y′ = P ′(x′, γ′), where P ′ is also given inputs n′,m′, 1k′

, C′, and γ′. Define y = P (x, γ) = x′ ◦ y′.

Online Stage: We consider the online stage for a given permissable T = ((i1, k1), . . . , (i|T |, k|T |)) = T (U, x).
For 1 ≤ l ≤ |T |, let El = {j | kl = Cj,1} be the set of channels whose first element is kl, and more generally,
let Fl = {j | kl ∈ Cj} be the set of channels containing kl. Define the sets:

Gl = {((il − 1)|C| + j, k) | j ∈ Fl, Cj,k = kl}, Hl = {((il − 1)|C| + j, k) | j ∈ El, |Cj | < k ≤ m}.
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r1,3,4s1,3,3s1,3,2s1,3,1           r1,3,4

s1,4,4s1,4,3s1,4,2s1,4,1

r1,2,4s1,2,3s1,2,2s1,2,1           r1,2,4

r1,1,4r1,1,3s1,1,2s1,1,1 r1,1,3 r1,1,4

x1,4x1,3x1,2x1,1

x

“Dummy” Bits

x’

Figure 1: For a database, x, with n = 1, m = 4, and C = ((1, 2), (1, 2, 3), (1, 2, 4), (1, 2, 3, 4)), the output,
x′ (depicted as a |C|(m + 1)n = 20 × 4 = m, binary matrix), of the offline stage is shown here. Note that
s1,4,1⊕s1,3,1⊕s1,2,1⊕s1,1,1 = x1,1, s1,4,2⊕s1,3,2⊕s1,2,2⊕s1,1,2 = x1,2, s1,4,3⊕s1,2,3 = x1,3 and s1,4,4⊕s1,3,3 = x1,4.

Gl denotes the si,j,k values queried in the lth execution, and Hl denotes the random pad values queried in
the lth execution. Order the pairs in Gl and Hl arbitrarily (so Gl and Hl become ordered tuples), and define
Il = Gl ◦Hl. Il is the list of pairs the user needs to query in the lth execution, excluding dummy pairs. Let
s(l) = (l − 1)r′ −

∑l−1
i=1 |Ii| and let t(l) = lr′ −

∑l
i=1 |Ii|. Express s(l) + |C|n as s1(l)m + s2(l) and t(l) + |C|n

as t1(l)m + t2(l) for integers s1(l), t1(l), s2(l), t2(l) with 0 ≤ s2(l), t2(l) < m. The following is the list of
dummy pairs the user queries so that the number of rounds per execution is the same in every execution:

Dl = ((i, j) ∈ Z × [m − 1] | ((s1(l), s2(l)) + (0, 1)) ≤ (i, j) ≤ (t1(l), t2(l))),

where for two pairs (x1, y1), (x2, y2) ∈ Z × [c], (x1, y1) ≤ (x2, y2) if and only if either x1 < x2, or x1 = x2

and y1 ≤ y2. Also, for a pair (x, y) ∈ Z× [c], (x, y) + (0, 1) denotes (x, y + 1) if y < c and (x + 1, 1) if y = c.

Set Jl = Il ◦ Dl, and observe that |Jl1 | = |Jl2 | = r
r′

for any l1 and l2. Jl is the list of pairs the user
actually queries in the lth execution. Define T ′ = J1 ◦ J2 ◦ · · · ◦ J|T |. The idea is that (Q,D,R) will run
(Q′,D′, R′) on each pair in T ′. There will be |T | executions l, 1 ≤ l ≤ |T |, of the online stage, and for each l
there will be r rounds w, 1 ≤ w ≤ r. For a given w and l, it will be as if (Q′,D′, R′) is running on T ′ and x′

with w′ and l′, where w′ = (w− 1 mod r′)+ 1 and l′ = (l− 1)m|C|+ ⌈w
r′
⌉. Define the map: Γ(w, l) = (w′, l′).
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We can define Mw,l, Aw,l,mw,l, and aw,l in terms of the simulation of (Q′,D′, R′) on T ′ and x′:

mw,l = m′
Γ(w,l), aw,l = a′Γ(w,l), and hence, Mw,l = M ′

Γ(w,l), Aw,l = A′
Γ(w,l).

It follows that C(n,m, k) ≤ m2mC ′((m + 1)|C|n,m, k) as claimed, since for each l, m2m invocations of the
underlying (Q′,D′, R′) protocol are run. Note also that R(n,m, k) ≤ m2mR′((m + 1)2mn,m, k) as claimed.

Q: For 1 ≤ l ≤ |T | and 0 ≤ w ≤ r, define14:

σU (Aw,l, ρ) = σ′
U(A′

Γ(w,l), ρ
′) ◦ s(l − 1) ◦ t(l − 1) ◦ {out′i | Γ(0, l)2 ≤ i ≤ Γ(w, l)2}.

Using the definition of the online stage of a PIC protocol (and of mw,l), this completely specifies the in-
put/output behavior of Q. Note that we keep s(l − 1) and t(l − 1) so that the user can construct s(l), t(l),
and hence Dl. We keep out′is around so that the user will be able to compute outl, defined below. Note
that some of the lists defined above (Dl, El, Fl, Gl,Hl, Il, Jl) could be included in the user’s state to improve
efficiency, but we don’t attempt to optimize user-side work.

D: For 1 ≤ w ≤ r, define σS(Mw,l, x, γ) = σ′
S(M ′

Γ(w,l), x
′, γ′). Using the definition of the online stage

(and of aw,l), this completely specifies D. Observe that W (n,m, k) ≤ m|C|W ′((m + 1)|C|n,m, k) as claimed,
since we have m|C|r′ executions of D′ per query. This follows from the fact that D just simulates D′ on the
appropriate inputs, so the running times of D′ and D are the same.

R: For all 1 ≤ l ≤ |T | define:

outl =

Γ(1,l)2+|Il|−1
⊕

i=Γ(1,l)2

out′i

From the definition of the online stage, this completely specifies R.

It remains to show that (P,Q,D,R) is a PIC scheme:

Correctness: Consider any honest user U and the honest server S. We need to prove that for all x
and all l ∈ [|T = T (U, x)|], outl = xTl

.

First, observe that we have carefully constructed T ′ so that if T has distinct coordinates, then so does
T ′. Indeed, consider any Jl1 , Jl2 for l1 6= l2. We claim Jl1 ∩ Jl2 = ∅. First note that the number of dummy
values queried for a given l is less than |C|m, and since T has distinct coordinates and C is nonempty,
|T | ≤ (m− 1)n. Hence, there are at most m(m− 1)n|C| dummy queries over all l. But x′ has mn|C| records
containing dummy values, and since each such record can be queried m − 1 times, there are m(m − 1)n|C|
dummy values that can be queried without completing an inference channel, as needed. Hence, Dl1∩Dl2 = ∅,
so we only need to show Il1 ∩ Il2 = ∅. But this is immediate from the definitions of El, Fl, Gl, and Hl.

We also claim that if for all i ∈ [n] and all k ∈ [|C|], Ck 6⊂ {j | ∃a s.t. Ta = (i, j)}, then for all i ∈ [n′],
[m] 6= {j | ∃a s.t T ′

a = (i, j)}. To see this, first note that when i ∈ [n′] \ [|C|n], this is always true,
since by construction, queries to dummy values in the database never complete a channel. Then simply
note that if there is some i ∈ [|C|n] for which the set {j | ∃a s.t. T ′

a = (i, j)} = [m], then every at-
tribute of the ⌈ i

|C|⌉th record in x in the ((i mod n) + 1)st channel was queried, which means that the set

C(i mod n)+1 ⊆ {j | ∃a s.t. Ta = (⌈ i
|C|⌉, j)}, which shows the claim.

14Here we take Γ(0, l) = (r′, (l − 1)m|C|), which is what one obtains by extending the definitions of w′ and l′ to w = 0. Also,
we take s(0) = t(0) = 0.
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Correctness of (P,Q,D,R) thus follows from correctness of (P ′, Q′,D′, R′):

outl =

Γ(1,l)2+|Il|−1
⊕

i=Γ(1,l)2

out′i =
⊕

s∈Gl

x′
s ⊕

⊕

s∈Hl

x′
s

=
⊕

j∈El



sil,j,1 +
m

⊕

k=|Cj |+1

ril,j,k



 ⊕
⊕

j∈Fl\El, k s.t. Cj,k=kl

sil,j,k ⊕
⊕

j∈El

m
⊕

k=|Cj |+1

ril,j,k

=
⊕

j,k s.t. Cj,k=kl

sil,j,k = xil,kl
.

User Privacy: Suppose (P,Q,D,R) does not have user privacy, that is, suppose there is an efficient
algorithm A, an honest user U , an honest but curious server S∗

1 , an integer m, a monotone C ∈ 2[m], a
polynomial q, and an infinite sequence of integers n = {n(α)}α∈N, such that for every α ∈ N, there are
two sequences τ(α)1 6= τ(α)2 with |τ(α)1| = |τ(α)2| < mn(α), a random input γ(α), and a database
x(α) ∈ ({0, 1}m)n(α) such that:

|Pr
ρ

[A(VS∗

1
(U, x(α), ρ, γ(α))) = 1 | T = τ1(α)]−Pr

ρ
[A(VS∗

1
(U, x(α), ρ, γ(α))) = 1 | T = τ2(α)]| ≥

1

q(n(α), k(n(α)))
,

where A is additionally given inputs n(α),m, 1k(n(α)), and C.

The claim is that this immediately gives a distinguisher A′ for (P ′, Q′,D′, R′) for the infinite sequence
{n′(α) = (m+1)2mn(α)}α∈N, sequences τ(α)′1, τ(α)′2, where τ(α)′1, τ(α)′2 are the sequences fed into the sim-
ulation of (P ′, Q′,D′, R′) in the (P,Q,D,R) scheme given τ(α)1, τ(α)2, respectively, databases x(α)′ used
in the simulation given x(α), C′ = {[m]}, the randomness γ′(α) used in the simulation given γ(α), and the
same m, p, and q. Note that since we forced the number of rounds to be the same in every execution of the
online stage of (P,Q,D,R), τ(α)′1 and τ(α)′2 have the same length for all α. Since τ(α)1 6= τ(α)2, we have
τ(α)′1 6= τ(α)′2 by construction.

We consider the view of server S∗
2 who behaves as follows. First, we hardwire m and C into S∗

2 . On inputs
x′(α) and γ′(α), S∗

2 simply behaves as S∗
1 would in the (P,Q,D,R) scheme. First, S∗

2 runs D instead of D′.
Because σS(Mw,l, x(α), γ(α)) = σ′

S(M ′
Γ(w,l), x

′(α), γ′(α)) for the honest servers S, S′, because aw,l = aΓ(w,l)

for all α, and because S∗
2 can compute y = x′(α) ◦ y′(α), S∗

2 can easily simulate S∗
1 ’s input/output behavior.

Actually, S∗
2 can simulate every efficient algorithm S∗

1 runs. This is because, given x′(α), S∗
2 can use C

to recover x(α) and then recover γ(α). Moreover, since for all w and l we have that mw,l is the same as
m′

Γ(w,l) for the honest users in the (P,Q,D,R) and (P ′, Q′,D′, R′) schemes, it follows that the views of S∗
2

and S∗
1 are identically distributed. Hence A′ simply runs A on the views of S∗

2 on the two sequences τ ′
1(α)

and τ ′
2(α) together with x(α) and γ(α), and by the discussion above, if A has a non-negligible advantage

of distinguishing τ1(α) and τ2(α), then A′ has a non-negligible advantage of distinguishing τ ′
1(α) and τ ′

2(α).
Note that n′(α) = Θ(n(α)), k′(n′(α)) = k(n(α)), and given n′(α), A′ can compute and feed n(α) into A.
This contradicts the user privacy of (P ′, Q′,D′, R′).

Inference Control: Let S denote the honest server in the (P,Q,D,R) scheme and S′ the honest server
in the (P ′, Q′,D′, R′) scheme. Let γ∗ be γ minus the prefix γ′. To show that (P,Q,D,R) has inference
control, the crucial observation is that for every x, every user U∗

1 and every user randomness ρ used in the
(P,Q,D,R) scheme, there exists a user U∗

2 and a user randomness ρ′ such that VU∗

1
(x, ρ, γ) is identically

distributed to VU∗

2
(x′(γ∗), ρ′, γ′), where the probability space is induced by the uniform distribution on γ,

and x′(γ∗) is the database which is fixed given γ∗. The x′, ρ′ are just the values defined in the reduction of
(P,Q,D,R) to (P ′, Q′,D′, R′), and the fact that U∗

2 exists follows from the fact that S just simulates S′.
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Since (P ′, Q′,D′, R′) has inference control, there exists a U ′
2 interacting with the trusted third party Charlie

such that for every γ∗, U ′
2 can efficiently output a permissable random variable15 T∗(γ

∗) = T∗(γ
∗)(U∗

2 , x′(γ∗))
for which U ′

2({x
′(γ∗)i,j | (i, j) ∈ T∗(γ

∗)}) is computationally indistinguishable from VU∗

2
(x′(γ∗), ρ′, γ′). We

show there is a U ′
1 interacting with Charlie which can find efficiently find a permissable T (again, T is a

random variable) for which U ′
1({xi,j | (i, j) ∈ T}) is computationally indistinguishable from VU∗

1
(x, ρ, γ).

We show this by constructing a U ′
1 for which U ′

1({xi,j | (i, j) ∈ T∗}) and U ′
2({x

′
i,j(γ

∗) | (i, j) ∈ T ′
∗(γ

∗)}) for
random γ are identically distributed.

U ′
1 simply simulates U ′

2. There are three types of values U ′
2 may ask Charlie for: (1) a value x′

i,j,k of
the form si,j,k ⊕

⊕m
k=|Cj |+1 ri,j,k, (2) a value of the form si,j,k, and (3) a value of the form ri,j,k. U ′

1 feeds

random bits into the simulation of U ′
2 until it is forced to obtain an xi,j from Charlie, at which point it

requests xi,j . Note that xi,j is perfectly hidden until all random pad values ri,k,l in channels Ck for which
Ck,1 = j and |Ck| < l ≤ m are obtained, in addition to all of the si,k,l for which Ck,l = j are determined.
Only when the last such value is requested does U ′

1 actually request xi,j from Charlie.

It remains to show that the sequence of queries T requested by U ′
1 is permissable. Since T∗(γ

∗) is per-
missable for any γ, for every i ∈ [n], j ∈ [|C|], there is a k ∈ [m] such that x′(γ)i,j,k is not in T∗(γ

∗). By
construction of U ′

1, then, it is easy to see that for every i ∈ [n] and every channel F ∈ C, there is some j ∈ F
such that xi,j is not requested by U ′

2. This shows that (P,Q,D,R) has inference control.

This completes the proof.

15T∗(γ
∗) is induced by the uniform distribution on γ′.
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C Security of Stateful PIC

In this section we provide proof sketches of the security of the scheme of Section 6. Many of the details are
left to the reader.

Lemma 1 The protocol of Section 6 meets the requirements of a TPIC protocol, and hence applying theorem
1 gives a protocol meeting the requirements of a PIC protocol.

Proof:

Correctness: Assuming the correctness of the PIR protocol, an honest user receives, Ehom(St + xit,jt) on
their tth query and decrypts to obtain, St + xit,jt. If the query sequence thus far, ((i1, j1), . . . , (it, jt)) is
permissible, and thus consists of at most m − 1 queries to row it of the database, then the user possesses
the secret St from step 2(a) and so can recover the desired bit, xit,jt.

User Privacy: Assuming the semantic security of Ehom and the zero-knowledge property of step 1, user
privacy follows from the user privacy of SPIR. The proof is a standard hybrid argument and is omitted. See
[26] for more background.

Inference Control: Consider an arbitrary user U∗ with random tape ρ. Using the SPIR protocol of
Appendix A, there exists a simulator Sim which given U∗’s code and ρ, can extract the indices (it, jt)
requested by U∗ in step 3(b). Let U ′ interact with Charlie in the ideal model. U ′ runs the code of U∗ and
uses the knowledge extractor of the zero-knowledge proof of knowledge to obtain Ehom(i′t, j

′
t) and (i′t, j

′
t)

for some i′t and j′t. If (i′t, j
′
t) 6= (it, jt) (the extracted indices) or if (it, jt) together with the previous values

requested from Charlie complete an inference channel, in step 3(a) U ′ will provide the encryption Ehom(r)
for r a random value, otherwise, U ′ will ask Charlie for xit,jt and follow the protocol just as the honest server
would. Note that U ′ carries out step 2 as the honest server would. It is not hard to see that U ′ can generate
a computationally indistinguishable view to U∗’s, and hence a computationally indistinguishable output.
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