
CompChall: Addressing Password Guessing Attacks

Vipul Goyal
1

, Virendra Kumar
2

, Mayank Singh
2

, Ajith Abraham
3

 and Sugata Sanyal
4

1
OSP Global, Mumbai, India

vgoyal@ospglobal.com
2

Crypto Group, Institute of Technology, Banaras Hindu University, India
{virendra.kumar, mayank.singh}@eee06.itbhu.org

3
School of Computer Science and Engineering, Chung-Ang University, Korea

ajith.abraham@ieee.org
4

School of Technology & Computer Science, Tata Institute of Fundamental Research, India
sanyal@tifr.res.in

Abstract

Even though passwords are the most convenient
means of authentication, they bring along themselves
the threat of dictionary attacks. Dictionary attacks may
be of two kinds: online and offline. While offline
dictionary attacks are possible only if the adversary is
able to collect data for a successful protocol execution
by eavesdropping on the communication channel and
can be successfully countered using public key
cryptography, online dictionary attacks can be
performed by anyone and there is no satisfactory
solution to counter them. This paper presents a new
authentication protocol which is called CompChall
(computational challenge). The proposed protocol uses
only one way hash functions as the building blocks and
attempts to eliminate online dictionary attacks by
implementing a challenge-response system. This
challenge-response system is designed in a fashion that
it does not pose any difficulty to a genuine user but is
time consuming and computationally intensive for an
adversary trying to launch a large number of login
requests per unit time as in the case of an online
dictionary attack. The protocol is stateless and thus
less vulnerable to DoS (Denial of Service) attacks.

1. Introduction

Presently, a vast majority of systems use passwords
as the means of authentication. Passwords are very
convenient for the users, easier to implement and so

are very popular also. Although more secure
authentication schemes have been suggested in the
past, e.g., using smartcards, none of them have been in
widespread use in the consumer market. The password
based authentication, although very convenient, has
some drawbacks due to the very nature of this system.
As is obvious, humans have a tendency to choose
relatively short and simple passwords that they can
remember. Thus the chosen passwords belong to a
small domain making them susceptible to exhaustive
search or dictionary attacks [2, 3]. There are several
instances of such attacks on various systems
throughout the world [1].

Password based systems mainly suffer from offline
and online dictionary attacks. In an offline dictionary
attack the adversary eavesdrops on the communication
channel to record data for a successful protocol
execution. The adversary then goes offline and tests
passwords against the recorded protocol execution data
without contacting the server at all. In an online
dictionary attack, the adversary tries the possible
passwords by attempting to logging in to the server
online. Offline dictionary attacks, although severe, can
be prevented by various protocols using public key
cryptography suggested in the past. The first password
based authentication protocol secure against offline
dictionary attacks, called EKE, was designed by
Bellovin and Merritt [6]. Since then a number of
excellent protocols addressing this problem have been
proposed [4]. However, no satisfactory measures to
curb online dictionary attacks have been suggested so

far. There are some methods to deal with them but
some of them have security flaws and the others are
impractical in terms of usage. Our discussion will be
mainly centered on online dictionary attacks and
measures to curb it. The proposed protocol employs
fast one way hash functions [11] and reduces the
number of possible password guesses in a given time
period. This is done by asking the client to compute the
response for a given challenge. The computation of this
response is designed to be a time consuming operation.
Special care is taken to ensure that the client is not able
to reuse the computation and to make the protocol
perfectly stateless.

The rest of the paper is organized as follows:
In Section 2 we discuss the existing protocols, their

strengths, weaknesses and flaws (if any). Sections 3
and 4 are dedicated to the proposed protocol where we
discuss the basic idea behind the design of the protocol
and then discuss the protocol at length. In Section 5 we
discuss a few enhancements and modifications for use
in specific situations. Finally we conclude the paper in
Section 6.

2. Related Research

Password based systems are vulnerable to online
dictionary attacks. These attacks are difficult to curb
and hence pose a major problem in the functioning of
password based systems. Countermeasures adopted to
prevent the online dictionary attacks are many a times
expensive and yet not very effective. Some of the
measures adopted to prevent this attack (with their
drawbacks) are as follows:

2.1. Account Locking

After a few fixed number of unsuccessful login
attempts, the account of the particular user is locked
for some time. This is certainly helpful in preventing
the online dictionary attacks by limiting the number of
wrong password guesses in a given time period.
However, if adapted, account locking makes the
system vulnerable to denial of service (DoS) attacks in
which an adversary may launch login requests with
random passwords to lock a user’s account. Thus, the
genuine users are deprived of the service in that period.
Yahoo!, for example, reports that users, who compete
in auctions, use these methods to block the account of
other users who compete in the same auctions. This
attack may be worrisome to mission critical
applications, for example to enterprises whose
employees and customers use the web to login to their
accounts. In a similar manner, distributed denial of
service (DDoS) attack may also be launched on a

system employing the account locking feature. In this,
the attacker could plant hidden agents around the web
and all the agents would start operating at a specific
time. Thus, they would block a large proportion of the
accounts of the attacked server by trying to login into
accounts in that server using random passwords.

Another major drawback of the “account locking
feature” is that since it causes user accounts to be
locked, either by mistake (e.g. by users that do not type
their passwords correctly) or as a result of dictionary
attacks, the service provider must operate customer
service centres to handle calls from users whose
accounts are locked. The cost of running these centres
is high, and is estimated to cost more than $25 per
customer call. Imagine that each user locks his account
once every five years, then the service cost, per user,
per year, is at least $5. A news article [1] suggested
that eBay had not implemented account locking
features due to the costs of operating customer support
centers.

An option here for the service provider could be to
automatically unlock the account after a fixed amount
of time (e.g. 12 hours). But then, it is easy for anyone
to keep the account of a customer always locked (e.g.
by using programs which send login requests with
random passwords after every 12 hours) and thus
totally depriving the customer of the service.

Despite the above serious problem, account locking
is still a commonly adopted countermeasure against
online dictionary attacks. Several major web based
service providers use this approach to counter online
dictionary attacks.

2.2. Delayed Response

In this scheme, the server provides a delayed
response to the user request, say for example, not faster
than one answer per second. This may prevent an
attacker from checking sufficiently many passwords in
a reasonable time.

This scheme is very effective for local machines in
which the user has to login to the computer using a
physically attached keyboard. However, it is
ineffective in a network environment. The attacker can
try many login attempts in parallel and circumvent the
timing measure using the fact that user logins are
typically handled by servers that can handle many
login sessions in parallel. For example, the attacker can
send a login attempt every 10 milliseconds, thus
obtaining a throughput of 100 login attempts per
second, regardless of how long the server delays the
answer to the login attempt. This scheme also suffers
from global password attacks. An attacker may be
interested in breaking into any account in the system

rather than targeting a specific account. A system that
has many user accounts and enables logins over a
network accessible to the adversary suffers from such
attacks.

2.3. Use of CAPTCHA

CAPTCHA (Completely Automated Public Turing
Test to tell Computers and Humans Apart) is a scheme
[10] which offers a challenge to the user attempting to
login. These challenges, for example a distorted and
cluttered image of a word with textured background,
are easy for humans to respond but rather difficult for
computers to answer. It is worthwhile noting here that
an online attacker is essentially a programmed
computer.

Until recently, this scheme was an effective
countermeasure against online dictionary attacks.
However, due to recent developments in Artificial
Intelligence and Computer Vision, programs are
available which can quickly interpret and answer these
challenges. EZ-Gimpy and Gimpy for example are
word based CAPTCHA’s that have been broken by
Mori and Malik at UC Berkeley Computer Vision
Group [5]. Due to these developments, even
CAPTCHA is no longer considered to be a secure
technique to prevent online dictionary attacks.

From the above discussion, it is clear that a better
and elegant method for solving this pressing problem is
required.

3. A Brief Idea of the Protocol

The proposed protocol attempts to eliminate the
possibility of a large number of password guesses in a
small time interval by making guessing a time
consuming and costly process. Further, the proposed
protocol is stateless and thus less vulnerable to DoS
attacks [7]. The protocol does not use public key
cryptography. This means that the protocol is
vulnerable to offline dictionary attacks [4] if an
adversary records data for a successful protocol
execution by eavesdropping on the communication
channel. In order to resist offline dictionary attacks, the
server and client may first establish an SSL connection
and the session key could be used to encrypt different
messages of the protocol. Major web based service
providers like Yahoo! and Hotmail already use SSL for
protecting login data in transit. Hence, this does not
seem to require any infrastructure changes. In cases
where performance degradation due to public key
cryptography is a concern, we provide a variant of our
protocol which makes it very difficult to launch offline
dictionary attack.

The proposed protocol uses only fast one way hash
functions [11]. The user and the server are required to
perform a few hash computations for each login
attempt. The system is deliberately made time
consuming and computationally intensive for the client
to ensure that it is not able to make a large number of
authentication requests per second. However, our
system is extremely efficient for the server.

In the following section, we discuss our protocol at
length.

4. The Protocol Description

Alice

H(r, R), R, H(H(r, P), Alice, KBob, n)
H(r

Alice, H(r, P),
H(H(r, P),Alice, KBob, n)

Success/Fail

Figure 1. Illustration of the different passes of the

protocol

The following notations have been used:

KBob Secret key of the server Bob, known only to
him and no one else

P Password of the user
n Number of unsuccessful login attempts to be

stored by the server
r A 20-bit random number
R A 128-bit random number
MAC Message Authentication Code to be sent by the

server to the client
H(X) Hash value of X using a one way collision

resistant hash function

This is a four pass protocol with two of the four

messages being simple message exchange without any
encryption. The rest two involve hash computation
once by the user and once by the server. Figure 1
shows the different passes of the protocol. The server
presents a challenge to the client with the client login
attempt being accepted only if it correctly computes
the response to the given challenge. This computation
can easily be increased or decreased by the server at

A
L
I
C
E

B
O
B

will. The proposed protocol is hereby described
followed by a brief discussion of the different security
measures taken to prevent the major threats.
Throughout the discussion, it is assumed that the user
is Alice (A) and the server is Bob (B).

4.1. Protocol Description

1. A B: Alice

This is a simple login request by the user Alice.

2. B A: H(r, R), R, H(H(r, P), Alice, KBob, n)
In response to the request sent by the user, the

server sends a challenge H(r, R), the value of R and the
message authentication code (MAC) H(H(r, P), Alice,
KBob, n). The challenge H(r, R) is the hash of
concatenation of two random numbers r (20-bit) and R
(128-bit). The user is required to compute r from the
given hash value and the value of R. r may be any
possible 20-bit number. We will discover shortly the
purposes for which r and R have been used. The third
part of the message, MAC is again a hash value and
unintelligible to anyone other than the server. This
hash can be regenerated only by the server as the secret
key KBob is known only to the server. Note that the
client does not use this MAC in anyway. It only has to
return the supplied MAC to the server in the next step
so that the server does not have to store it. This MAC
is used by the server to check the correctness of the
value of r found by the user and also for the freshness
of the message when the user replies with the message
3 as we will see later.

To find out the value of r, the user has to check the
hash values of all the possible 20-bit numbers
appended with the value of R. This process is
computationally intensive and may require
considerable time (about 5 sec or even more depending
on the system used). If instead of two random
numbers, only one large random number is used then
this computation time is very large and hence the user
will be over burdened, which is undesirable. Further, if
only a small 20-bit random number is used, then the
attacker might store the hash values of all the possible
20-bit random numbers and could easily bypass the
computation involved by simply looking for the correct
value of r from the corresponding stored hash values.
The use of two random numbers one of 20 bits and the
other of 128 bits thus fulfils two purposes. First, it
gives just the right amount of computation to the user
so that the online dictionary attacks are effectively
countered without inconvenience to a legitimate user.
Secondly, it prevents the possibility of pre-
computation of hash values of all possible 20 bit
numbers. Thus, the number R effectively acts as a salt

in the computation of the number r. The user, after
receiving the second message, does the required
computation to find the value of r after which it
proceeds with the third message.

3. A B: Alice, H(r, P), MAC

In order to make the protocol stateless, this step has
been made independent of the previous steps, i.e., the
client initiates the connection again after doing the
required computation and starts with the 3rd step of the
protocol directly.

The user, after receiving the second message,
computes the value of r from the given values and then
sends her identity, hash of the computed r concatenated
with the password P, and the MAC. In the message, r
and P have been hashed instead of sending them
directly in plaintext. This is to make the protocol
secure against an eavesdropper.

The server, after receiving this message, finds out
the hash of the sent H(r, P) appended with the id of
Alice, the secret key (KBob) and the stored value of n. It
then compares the obtained hash value with the sent
MAC. If they match, the login attempt is successful,
else the login attempt fails and the server increments
the value of n. The use of the MAC is that it authorizes
the supplied r to be the response of a challenge
generated by the server and prevents the replay attack
in which the attacker may use the same set of values
again and again. We have used the value of n (number
of unsuccessful attempts) in the computation of the
MAC. So, a repeated use of message 2 is not possible
as n increments on every unsuccessful attempt.

Here, an important point to observe is that n does
not increment on a successful attempt. This is an
interesting feature making the protocol friendly to the
legitimate users. This means that if the user was
successful in his last login attempt, she would be
allowed to bypass the computation involved by reusing
the last computation. Thus a legitimate user may
actually be required to perform the computation only
the first time she tries to login. For every subsequent
login attempts, the last computation could be reused as
long as the login attempt does not fail.

By the use of MAC, the server is also relieved from
the burden of storing the current value of r and R for
checking the correctness of the value sent by the client.
This makes the protocol perfectly stateless.

4. B A: Success/Fail

This is a simple reply by the server indicating
whether the information provided by the user was
correct or incorrect. If found correct, the login attempt
is successful otherwise the user has to start all over
again with the first message.

Thus, for every login attempt, the user has to
compute the value of r to answer the server’s
challenge. This computation requires time which may
vary from computer to computer. The computation
time can be adjusted by simply varying the size of
number r to keep pace with the computational capacity
as it increases with time. This computation time is to
discourage the online dictionary attack in which a
machine launches thousands of login requests in
seconds. By using this technique, the number of
authentication requests possible in a given period of
time reduces significantly thereby making the process
of launching attacks costly and time consuming.

4.2. A Brief Security Analysis

In order to better understand the protocol, we
discuss the various ways in which an adversary may try
to defeat the scheme.

In the proposed scheme, the server is not required to
store either r or R. It verifies the values supplied by the
user in message 3 only using the supplied MAC. Thus,
an attacker might try to use the same MAC and hence
reuse the computation for different login attempts.
However, such an attempt is countered by our protocol.
The server uses the stored n to compute the MAC.
Since the value of stored n would be more than the
value of n in the sent MAC, the two MACs would not
match. Hence, the attempt to reuse the computation
fails. An attacker under no circumstances will be able
to change the MAC for different set of values of H(r,
P) and n since the secret key used in the MAC is not
known to any entity except the server.

In a similar way, an attempt to use the same value
of message 3 (computed for a particular user id) for a
different user id will fail since the user id is also used
in the MAC computation. Clearly, the only way in
which a computation may be reused is to reuse it for
the same user id and value of n. This means that the
computation can be reused in case the last login
attempt was successful.

5. Enhancements and Modifications

The protocol presented in Section 4 does not take
care of the situation in which the server itself may be
compromised. This is because the server is required to
store the user password in plaintext since it used for the
computation of H(r, P) in the computation of MAC.
The protocol can be augmented so that the server only
stores a one way hash H(P) of the password and the
authenticating user is required to have knowledge of
the actual password itself. Straightforward techniques
to do this are possible if it is acceptable for the client to

send the password in plaintext. However, this would
facilitate replay attacks if the protocol execution is not
protected by SLL.

Our augmentation is relatively complex but does
not make it mandatory to use SSL protection. It
employs the concept of lamport hashes [8]. To begin
with, the server stores Hm(P) (which is the mth hash of
P) and the user is required to supply H(m-1)(P) as a
password. Once the user has successfully logged in, the
stored Hm(P) is replaced by the supplied H(m-1)(P).
Thus, next time the user would be required to supply
H(m-2)(P). This process continues for m successful login
attempts. Although, it may seem that the user is
required to re-initialize the system by choosing a
different password after m successful logins, there are
efficient recently designed techniques [9] which allow
infinite number of login in the lamport system.
Messages for the ith execution of the protocol are given
below -

A B: Alice
B A: H(r, R), R, MAC
A B: Alice, r, H(i-1)(P), MAC
B A: Success/Fail
MAC = H(r, Hi(P), Alice, KBob, n)

Thus we have augmented the protocol in such a way

that neither the server is required to store plaintext
password, nor the password is transmitted in plaintext.

As discussed earlier, it may be desirable to resist
offline dictionary attacks without using SSL or other
public key cryptographic techniques due to efficiency
concern. Although this is not possible theoretically [4],
we design a variant which makes it very difficult to
launch successful offline dictionary attacks. A minor
variation in the messages produces interesting results.
In message 2, if H(r, R) is changed to H(r, P, R) (with
other things unchanged), then the protocol is effective
in preventing offline dictionary attacks. The protocol
execution is as follows -

A B: Alice
B A: H(r, P, R), R, MAC
A B: Alice, H(r, P), MAC
B A: Success/Fail
MAC = H(H(r, P), Alice, KBob, n)

Now, let’s try to analyze the system assuming that

the SSL session key has not been used to protect the
different passes of our protocol. The only thing
unknown to the user is r. So the required computation
is similar to as in original protocol. Taking the typical
amount of time required for a hash computation to be t
= 0.005 ms on today’s machines, the maximum time
required by the user to compute r will be 220*t i.e.

220*0.005*0.001 (= 5.24288 seconds) which is 5
seconds approximately.

Let n be the average number of guesses in an offline
dictionary attack before the actual password is found
out. Now, since the attacker does not know the value of
P as well as r, he will require 220*n hash computations
to find the correct values of r and P from message 2
(i.e. he will have to try all possible combinations of
passwords and 20-bit digits). Taking the estimated
value of n to be 10 million [12], the time required will
be:

220*10,000,000*0.005*0.001 seconds = 52428800
seconds = 1.6625 years.

It is worth noting that in the original protocol
proposed in Section 4, the corresponding time to
launch successful offline dictionary attack is (220*t +
n*t). Evaluating this expression, we get the time to be
(5.24288 + 50) = 55.24288 seconds.

Thus, it is clear that this variant is quite effective in
the prevention of offline dictionary attacks. This
variant may be used when the protocol execution is not
protected by SSL due to performance concerns.

6. Conclusion

In this paper, we addressed the problem of online
dictionary attacks and presented an authentication
protocol to counter the same. In the protocol, the client
is required to compute the response to the presented
challenge. Computing this response is deliberately
designed to be a time taking operation thus ensuring
that the client is not able to launch a large number of
login requests in a small amount of time. The protocol
is designed in a fashion such that the computation of
this response does not poses any problems for a
legitimate user since she may reuse the last
computation, but is time consuming and costly for an
adversary trying to launch thousands of login requests
per second. Finally, we constructed two variants of our
protocol. The first one deals with augmenting the
protocol so that the server is not required to store the
password in plaintext. The second one is concerned
with removing offline dictionary attacks in case the
public key cryptography protection is not used.

Future work involves modifying the protocol such
that the size of r and hence the required computation
increases dynamically as the server encounters a large
number of unsuccessful attempts in a small amount of
time. Finally, the presented technique could be used to
address the problem of eliminating more general denial
of service attacks on web servers by limiting the

number of requests per second in a similar fashion
without losing statelessness.

10. References

[1] Hackers find new way to bilk eBay users: CNET
news.com <http://news.com.com/2102-1017_3-
868278.html> March 25, 2002

[2] Klein D.V., Foiling the Cracker: A Survey of, and
Improvements to Password Security, 2nd USENIX UNIX
Security Workshop, 1990, pp. 5-14.

[3] Morris R. and Thompson K., Password Security: A Case
History, Communication of the ACM, Vol. 22, No. 11,
November, 1979, pp. 594-597.

[4] Halevi Shai, Krawczyk Hugo, Public Key Cryptography
and Password Protocols, ACM Transaction on Information
and System Security, Vol. 2, No. 3, pp. 230-268, August
1999.

[5] Greg Mori and Jitendra Malik, Recognizing Objects in
Adversarial Clutter: Breaking a Visual CAPTCHA,
Computer Vision and Pattern Recognition, 2003.

[6] Bellovin S. M. and Merritt M., Encrypted key exchange:
Password-based protocols secure against dictionary attacks,
Proc. IEEE Computer Society Symposium on Research in
Security and Privacy, pp. 72–84, May 1992.

[7] Rivest R., Can we eliminate certificate revocations lists?,
Financial Cryptography, LNCS, pp 178-183, Springer, 1998.

[8] Lamport L., “Password Authentication with Insecure
Communication”, Communications of the ACM, 24 (1981),
pp. 770-772.

[9] Vipul Goyal, “How to Re-initialize a hash chain”,
Cryptology ePrint Archive, Report 2004/097, 2004.
Available at http://eprint.iacr.org.

[10] Benny Pinkas and Tomas Sander, Securing passwords
against dictionary attacks, Proceedings of the 9th ACM
conference on Computer and Communications Security,
2002.

[11] ANSI X9.30 (PART 2), “American National Standard
for Financial Services – Public key Cryptology using
irreversible algorithms for the financial services industry –
part 2: The Secure Hash Algorithm (SHA)”, ASC X9
Secretariat –American Banker’s Association 1993.

[12] The Strong Password Dilemma, CSI Computer Security
Journal, 2002. Available online at
www.smat.us/sanity/pwdilemma.html

