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Abstract. This paper presents the theoretical blueprint of a new secure token called
the Externalized Microprocessor (XµP). Unlike a smart-card, the XµP contains no ROM
at all.

While exporting all the device’s executable code to potentially untrustworthy terminals
poses formidable security problems, the advantages of ROM-less secure tokens are nu-
merous: chip masking time disappears, bug patching becomes a mere terminal update

and hence does not imply any roll-out of cards in the field. Most importantly, code size
ceases to be a limiting factor. This is particularly significant given the steady increase
in on-board software complexity.

After describing the machine’s instruction-set we will introduce two XµP variants. The
first design is a public-key oriented architecture which relies on a new RSA screening
scheme and features a relatively low communication overhead at the cost of computa-
tional complexity, whereas the second variant is secret-key oriented and relies on simple
MACs and hash functions but requires more communication.

For each of these two designs, we propose two protocols that execute and dynamically
authenticate arbitrary programs. We also provide a strong security model for these
protocols and prove their security under appropriate complexity assumptions.

Keywords. Embedded cryptography, RSA signature screening schemes, ROM-less smart
cards, Program authentication, Full-Domain Hash, Secure Tokens, Compilation theory,
Provable security, Mobile code, Read-Only Memory.

⋆ An extended abstract of this work can be found under the same title at [8].
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1 Introduction

The idea of inserting a chip into a plastic card is as old as public-key cryptography. The
first patents are now 25 years old but mass applications emerged only a decade ago
because of limitations in the storage and processing capacities of circuit technology.
More recently new silicon geometries and cryptographic processing refinements led the
industry to new generations of cards and more complex applications such as multi-
applicative cards [11].

Over the last decade, there has been an increasing demand for more and more complex
smart-cards from national administrations, telephone operators and banks. Complex-
ity grew to the point where current cards are nothing but miniature computers em-
barking a linker, a loader, a Java virtual machine, remote method invocation modules,
a bytecode verifier, an applet firewall, a garbage collector, cryptographic libraries, a
complex protocol stack plus numerous other clumsy OS components.

This paper ambitions to propose a disruptive secure-token model that tames this
complexity explosion in a flexible and secure manner.

From a theoretical standpoint, we look back to von Neumann’s computing model
wherein a processing unit operates on volatile and nonvolatile memories, generates
random numbers, exchanges data via a communication tape and receives instructions
from a program memory. We revisit this model by alleviating the integrity assumption
on the executed program, explicitly allowing malevolent and arbitrary modifications
of its contents. Assuming a cryptographic key is stored in nonvolatile memory, the
property we achieve is that no chosen-program attack can actually infer information
on this key or modify its value: only authentic programs, the ones written by the
genuine issuer of the architecture, may do so.

Quite customizable and generic in several ways, our execution protocols are directly
applicable to the context of a ROM-less smart card (called the Externalized Micropro-
cessor or XµP) interacting with a powerful terminal (Externalized Terminal or XT).
The XµP executes and dynamically authenticates external programs of arbitrary size
without intricate code-caching mechanisms. This approach not only simplifies current
smart-card-based applications but also presents immense advantages over state-of-the-
art technologies on the security marketplace.

1.1 What Is a Smart-Card

The physical support of a conventional smart-card is a plastic rectangle printed with
information concerning the application or the issuer, as well as readable information
about the card holder (for instance, a validity date or a photograph). This support
can also carry a magnetic stripe or a bar-code.

ISO Standard 7816 specifies that the micromodule must contain an array of eight
contacts but only six of these are actually connected to the chip, which is usually not
visible. The contacts are assigned to power supplies (Vcc and Vpp), ground, clock, reset
and a serial data communication link commonly called I/O. ISO is currently consid-
ering various requests for re-specification of the contacts; notably for dual USB/7816
support.

While for the time being card CPUs are mainly 8 or 16-bit microcontrollers1 new
32-bit devices have recently become available.

1 The most common cores are Motorola’s 68HC05 and Intel’s 80C51.
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From a functional standpoint a smart card is a miniature computer. A small on-board
RAM serves as a temporary storage of calculation results and the card’s microprocessor
executes a program etched into the card’s ROM at the mask-producing stage. This
program cannot be modified or read-back in any way.

For storing user-specific data individual to each card, cards contain EEPROM (Elec-
trically Erasable and Programmable ROM) or flash memory, which can be written and
erased hundreds of thousands of times. Java cards even allow the import of executable
programs (applets) into their nonvolatile memory according to the card holder’s needs.

Finally, the card contains a communication port (serial via an asynchronous link) for
exchanging data and control information with the external world. A common bit rate
is 9,600 bits per second, but much faster ISO-compliant throughputs are commonly
used (from 19,200 up to 115,200 bits per second). The advent of USB cards opens new
horizons and allows data throughput to easily reach one megabit per second.

chip chip=+

+

Fig. 1. Smart-Card Manufacturing

To prevent information probing, all these elements are packed into one single chip.
If this is not done, the wires linking the system components to each another could
become potential passive or active penetration routes [18]. The different steps of smart
card manufacturing are shown in Figure 1: wire bonding (chip + micromodule) and
potting (chip + micromodule + plastic).

The authors believe that the first smart-card architects did not really brave the wrath
of engineering optimal secure portable devices but rather chose the easiest short-
term solution: that of physically hardening architectures that proved useful in coffee
machines or toys.

It seems that both the industry and the research community accepted this endocode2

(embedded code) paradigm as a truth in itself, which corollary was that subsequent en-
deavors were mostly devoted to improve the performance of this existing architecture3

instead of looking for alternative ways for securely executing embedded code.

2 ǫνδoν = within (endon).
3 Throughout the past decade, the name of the game was larger RAM, ROM and EEPROM capac-

ities, faster coprocessors, lower current consumption, better resistance to side-channel attacks...
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1.2 Alternative Designs?

A card never comes alone, it always interacts with an application that implements
the ’terminal part’ of the protocol. It follows that no matter what application we talk
about, terminals ’know’ what functions the cards they must interact with implement.
For instance a mobile phone contains the terminal part of the GSM application, ATMs
implement the terminal part of the payment application and the same is true for
health, gaming, IT security, identity or transport applications.

Some of this century’s best discoveries were creative and determined efforts to answer
”What if...?” questions. What if people could fly? What if electrical energy could
be harnessed to produce light? What if there was an easily accessible, international
communication and information network? The answers have resulted in permanent
changes: air travel, light bulbs, the Internet. These discoveries have rendered their
less effective counterparts to relative extinction from use: gone is the stagecoach, gas
lighting, and multi-volume hardbound encyclopedias. These improvements remind us
of the research community’s option and ability to experiment, re-mold, re-think, and
imagine. In that spirit, this article submits a new question:

Given that terminals ’know’ what functions the cards they must interact

with implement, what if terminals could completely contain or help execute

a card’s code? And if so, could this be done securely and efficiently?

In this paper we answer the above question by providing the theoretical blueprint
of a new secure token called the Externalized Microprocessor (XµP) which, unlike a
smart-card, contains no ROM at all.

While exporting all the device’s executable code to potentially untrustworthy termi-
nals poses formidable security problems, the advantages of ROM-less secure tokens
are numerous: chip masking time disappears, bug patching becomes a mere terminal
update and hence does not imply any roll-out of cards in the field. Most importantly,
code size ceases to be a limiting factor.

In a nutshell one can compare today’s smart cards to Christopher Columbus’ caravels
that carried all the necessary food, weapons and navigation equipment (ROM) on
board whereas the XµP architecture (ectocode4) introduced in this paper is analogous
to modern submarines who rely on regular high sea rendezvous and get goods and
ammunitions delivered while on assignment.

A basic DSP board XµP prototype is currently under development.

1.3 Outline of our Work

In Section 2, we progressively refine the machine’s architecture. Sections 3 and 5
provide efficient architecture designs for the XµP relying on RSA. Section 6 introduces
a rigorous adversarial model and assesses the security of our execution protocols in it,
under adequate complexity assumptions. Section 8 introduces an alternative design
based on ephemeral MACs instead of RSA. Further sections extend the instruction set
in several directions by introducing powerful instructions while maintaining security.
Section 12 provides an implementation of RC4 that illustrates the computational
power of our secure platform. Sections 13 and 14 consider various engineering issues
related to prototyping the XµP.

4 ǫκτoς = outside (ectos).
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2 The XµP’s Architecture and Instruction Set xjvml

We model the XµP’s executable program P as a sequence of instructions:

1 : INS1

2 : INS2
...
ℓ : INSℓ

located at addresses i ∈ 1, · · · , ℓ off-board.

These instructions are in essence similar to instruction codes executed by any tradi-
tional microprocessor. Although the XµP’s instruction-set can be similar to that of a
68HC05 or a MIX processor [15], we have chosen to model it as a jvml0-like machine
[22], extending this language into xjvml as follows. xjvml is a basic virtual proces-
sor operating on a volatile memory ram, a non-volatile memory nvm, classical I/O
ports denoted IO (for data) and XIO (for instructions), an internal random number
generator denoted RNG and an operand stack st, in which we distinguish

– transfer instructions: load x pushes the current value of ram[x] (i.e. the mem-
ory cell at immediate address x in ram) onto the operand stack. store x pops
the top value off the operand stack and stores it at address x in ram. Simi-
larly, load IO captures the value presented at the I/O port and pushes it onto
the operand stack whereas store IO pops the top value off the operand stack
and sends it to the external world. load RNG generates a random number and
pushes it onto the operand stack (the instruction store RNG does not exist).
getstatic pushes nvm[x] onto the operand stack and putstatic x pops the top
value off the operand stack and stores it into the nonvolatile memory at address x;

– arithmetic and logical operations: inc increments the value on the top of the
operand stack. pop pops the top of the operand stack. push0 pushes the integer
zero onto the operand stack. xor pops the two topmost values of the operand
stack, exclusive-ors them and pushes the result onto the operand stack. dec’s
effect on the topmost stack element is the exact opposite of inc. mul pops the
two topmost values off the operand stack, multiplies them and pushes the result
(two values representing the result’s MSB and LSB parts) onto the operand stack;

– control flow instructions: letting 1 ≤ L ≤ ℓ be an instruction’s index, goto L
is a simple jump to program address L. Instruction if L pops the top value off
the operand stack and either falls through when that value is the integer zero or
jumps to L otherwise. The halt instruction halts execution.

Note that no program memory appears in our architecture: instructions are simply sent
to the microprocessor which executes them in real time. To this end, a program counter
i is maintained by the XµP: i is set to 1 upon reset and is updated by instructions
themselves. Most of them simply increment i← i+1 but control flow instructions may
set i to arbitrary values in the range [1, ℓ]. To request instruction INSi, the XµP simply
sends i to the XT and receives INSi via the specifically dedicated communication port
XIO. A toy example of program written in xjvml is given on Figure 2.
Denoting by memory the memory space formed by nvm, ram and st altogether5, the
dynamic semantics of our instruction-set are given in Figure 3 (note that there are no
rules for halt as execution stops when a halt is reached).

5 In other words, memory = {ram, st,nvm}.



8

I/ORNG

ST (Stack)

getstatic x

putstatic x

load  x

store x

load  IO

store IO
load RNG

push0

add

inc

xor

mul

...

RAM NVM

load     IO
load    17
xor
load    RNG
add
if         end
goto   loop

push0
inc
store  IO
halt

loop:

end:

Fig. 2. An Example of Program in xjvml

It is implicitly understood that instructions that read the contents of the stack may
throw an interrupt if the stack is empty (i.e. s = 0) or contains insufficient data (e.g.
when executing an xor while s = 1). The following subsections progressively refine
the XµP’s architecture by presenting successive versions of the machine and explaining
the rationale behind each refinement.

2.1 Step 1: The Open XµP

We assume that the program’s author deposits in each untrustworthy Externalized

Terminal (XT) the ectocode:

1 : INS1

2 : INS2
...
ℓ : INSℓ

The Open XµP is very simple: as execution starts the device resets its program counter
(i ← 1) and requires ectoinstruction 1 from the XT. The Open XµP executes INS1,
updates its internal state, determines the next program counter value and repeats this
process while INSi 6= halt. This is nothing but the usual way in which microprocessors
execute code stored in external ROMs.

The protocol is formally described on Figure 4 (note that executing INSi updates i).

As is obvious, the Open XµP lends itself to a variety of attacks. Typically, an opponent
could pull-out the contents of the XµP’s NVM by sending to the machine the sequence
of instructions:
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INSi effect on i effect on ram effect on st effect on s

inc i← (i + 1) none st[s]← (st[s] + 1) none

dec i← (i + 1) none st[s]← (st[s]− 1) none

pop i← (i + 1) none st[s]← undef s← (s− 1)

push0 i← (i + 1) none st[s + 1]← 0 s← (s + 1)

load x i← (i + 1) none st[s + 1]← ram[x] s← (s + 1)

load IO i← (i + 1) none st[s + 1]← IO s← (s + 1)

load RNG i← (i + 1) none st[s + 1]← RNG s← (s + 1)

store x i← (i + 1) ram[x]← st[s] st[s]← undef s← (s− 1)

store IO i← (i + 1) IO← st[s] st[s]← undef s← (s− 1)

if L if st[s] = 0 then i← (i + 1) none st[s]← undef s← (s− 1)
if st[s] 6= 0 then i← L

goto L i← L none none none

xor i← (i + 1) none st[s− 1]← st[s − 1]⊕ st[s] s← (s− 1)
st[s]← undef

mul i← (i + 1) none α
def
= st[s− 1]× st[s] none

st[s− 1]← α mod 256
st[s]← α div 256

effect on nvm

getstatic x i← (i + 1) none st[s + 1]← nvm[x] s← (s + 1)

putstatic x i← (i + 1) nvm[x]← st[s] st[s]← undef s← (s− 1)

Fig. 3. Instruction Set xjvml

0. The XµP initializes i← 1
1. The XµP queries from the XT ectoinstruction number i
2. The XT sends INSi to the XµP

3. The XµP executes INSi

4. goto step 1.

Fig. 4. The Open XµP (Insecure)
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1 : getstatic 1
2 : store IO
3 : getstatic 2
4 : store IO
5 : getstatic 3
6 : store IO
...

instead of the legitimate ectoprogram crafted by the XµP’s designer (we call such
illegitimate sequences of instructions xenoprograms6). It follows that the ectocode
executed by the machine must be authenticated in some way.

2.2 Step 2: The Authenticated XµP

To ascertain that the ectoinstructions executed by the device are indeed those crafted
by the code’s author we refine the previous design by associating to each ectoin-
struction a digital signature. The program’s author generates a public and private
RSA signature key-pair {N, e, d} and burns {N, e} into the Authenticated XµP. The
ectocode is enhanced with signatures as follows:

1 : σ1 : INS1

2 : σ2 : INS2
...
ℓ : σℓ : INSℓ

where σi = µ(i, INSi)
d mod N and µ is an RSA padding function7.

The protocol is enhanced as follows:

0. The XµP initializes i← 1
1. The XµP queries from the XT ectoinstruction number i
2. The XT sends {INSi, σi} to the XµP

3. The XµP

(a) ascertains that σe
i = µ(i, INSi) mod N

(b) executes INSi

4. goto step 1.

Fig. 5. The Authenticated XµP (Insecure and Inefficient)

While the Authenticated XµP prevents an opponent from feeding the device with
xenoinstructions, an attacker could still mix legitimate ectoinstructions belonging to
different ectoprograms. In other words, one could successfully replace the 14th opcode
of a GSM ectoprogram by the 14th opcode of a Banking ectoprogram.

To avoid this code mixture attack we slightly twitch the design by burning a unique
program identifier ID into the device; the existence of ID in the XµP enables the

6 ξǫνoς = foreign (xenos).
7 Note that if a message-recovery padding scheme is used, XT storage can be reduced: upon reset

the XT can sequentially verify all the σi, extract the INSi and reconstruct the executable part of
the ectocode.
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execution of the ectoprogram which ’name’ is ID. ID is included in each σi (i.e. σi =
µ(ID, i, INSi)

d mod N). IDs are either sequentially generated by the programmer or
uniquely produced by hashing the ectoprogram.

2.3 Step 3: The Screening XµP

Although RSA signature verification can be relatively easy, verifying an RSA signature
per ectoinstruction is resource-consuming. To overcome this difficulty, we resort to the
screening technique devised by Bellare, Garay and Rabin in [4]. Unlike verification,
screening ascertains that a batch of messages has been signed instead of checking that
each and every signature in the batch is individually correct.

More technically, the RSA-screening algorithm proposed in [4] works as follows, as-
suming that µ = h is a full domain hash function: given a list of message-signature
pairs {mi, σi = h(mi)

d mod N}, one screens this list by simply checking that

(

t
∏

i=1

σi

)e

=
t
∏

i=1

h(mi) mod N and i 6= j ⇔ mi 6= mj .

At a first glance, this primitive seems to perfectly suit the code externalization problem
where one does not necessarily need to ascertain that all the signatures are individually
correct, but rather control that all the ectocode ({INSi, σi}) seen by the XµP has indeed
been signed by the program’s author at some point in time.

Unfortunately the restriction i 6= j ⇔ mi 6= mj has a very important drawback
as loops are extremely frequent in executable code (in other words, the XµP may
repeatedly require the same {INSi, σi} while executing a given ectoprogram)8. To
overcome this limitation, we propose a new screening variant where, instead of checking
that each message appears only once in the list, the screener controls that the number
of elements in the list is smaller than e i.e. :

(

t
∏

i=1

σi

)e

=

t
∏

i=1

h(mi) mod N and t < e .

This screening scheme is referred to as µ-RSA. The security of µ-RSA for µ = h where
h is a full domain hash function, is guaranteed in the random oracle model [6] by the
following theorem:

Theorem 1. Let (N, e) be an RSA public key where e is a prime number. If a forger
F can produce a list of t < e messages {m1, . . . ,mt} and σ < N such that σe =
∏t

i=1 h(mi) mod N while the signature of at least one of m1, . . . ,mt was not given to
F , then F can be used to efficiently extract e-th roots modulo N .

The theorem applies in both the passive and the active setting: in the former case, F
is given the list {m1, . . . ,mt} as well as the signatures of some of them. In the latter,
F is allowed to query a signing oracle and may choose the mi-values. We refer the
reader to Appendix A for a proof of Theorem 1 and detailed security reductions.

Noting that e = 216 + 1 seems to be a comfortable choice for e here, we devise the
protocol shown in Figure 6.

8 Historically, [4] proposed only the criterion (
∏

σi)
e =

∏

h(mi) mod N . This version was broken by
Coron and Naccache in [14]. Bellare et alii subsequently repaired the scheme but the fix introduced
the restriction that any message can appear at most once in the list.
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0. The XµP receives and checks ID and initializes i← 1
1. The XµP

(a) sets t← 1
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP queries from the XT ectoinstruction number i
4. The XT

(a) updates σ ← σ × σi mod N
(b) sends INSi to the XµP

5. The XµP updates ν ← ν × µ(ID, i, INSi) mod N
6. If t = e or INSi = halt then the XµP

(a) queries from the XT the current value of σ
(b) halts execution if ν 6= σe mod N (cheating XT)
(c) executes INSi

(d) goto step 1
7. The XµP

(a) executes INSi

(b) increments t← t + 1
(c) goto step 3.

Fig. 6. The Basic Screening XµP (Insecure)

As one can see, two events can trigger a verification (steps 6a and 6b): the execution
of e − 1 ectoinstructions (in which case the verification allows to reset the counter
t to 1) or the ectoprogram’s completion (halt). For the sake of conciseness we will
denote by CheckOut the test performed in steps 6a and 6b. Namely CheckOut is the
XµP-triggered operation consisting in querying from the XT the current value of σ,
ascertaining that ν = σe mod N and halting execution in case of mismatch. We plot
this behavior also on Figure 7.

(t=e)

(halt)

Fig. 7. An Example of Program Execution with the Basic Screening XµP: black dots represent in-
structions and arrows stand for control flow transitions. Verifications are depicted by small circles
around instructions while the event triggering the CheckOut is mentioned within parenthesis.

Unfortunately, this protocol is vulnerable: again, an attacker may feed the device with
misbehaving xenocode (e.g. the hostile xenocode presented in Section 2.1) crafted so
as to never trigger a CheckOut. In other words, as far as the xenocode comprises less
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than e instructions and never halts the attacker can freely read-out secrets from the
NVM or even update the NVM at wish (for instance, illegally credit the balance of an
e-Purse).

It follows that the execution of ectoinstructions that have an irreversible effect on the
device’s NVM or on the external world must be preceded by a CheckOut so as to
validate the genuineness of the entire list of ectoinstructions executed so far.

For this reason we single-out the very few ectoinstructions that send signals out of the
XµP (typically the ectoinstruction commanding a data I/O port to toggle) and those
ectoinstructions that modify the state of the XµP’s non-volatile memory (typically the
latching of the control bit that triggers EEPROM update or erasure). These ectoin-
structions will be called security-critical in the following sections and are defined as
follows:

Definition 1. An ectoinstruction is security-critical if it might trigger the emission

of an electrical signal to the external world or if it causes a modification of the micro-

processor’s internal nonvolatile memory. We denote by S the set of security-critical

ectoinstructions.

In our model S = {putstatic x, store IO}. We can now twitch the protocol as
depicted in Figure 8.

0. The XµP receives and checks ID and initializes i← 1
1. The XµP

(a) sets t← 1
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP queries from the XT ectoinstruction number i
4. The XT

(a) updates σ ← σ × σi mod N
(b) sends INSi to the XµP

5. The XµP updates ν ← ν × µ(ID, i, INSi) mod N
6. if t = e or INSi ∈ S then the XµP

(a) CheckOut

(b) executes INSi

(c) goto step 1
7. The XµP

(a) executes INSi

(b) increments t← t + 1
(c) goto step 3.

Fig. 8. The Screening XµP (Insecure)

We plot an illustration of this protocol on Figure 9.

Unfortunately, the Screening XµP lends itself to a subtle attack that exploits i as a
side channel. In the example below k denotes the NVM address of a secret key byte
u = nvm[k]:
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(t=e)

(halt)

(if L1)

(if L3)

(store IO)

(putstatic 67)

Fig. 9. An Example of Program Execution with the Screening XµP: grey dots now represent security-
critical instructions. Verifications are still depicted by small circles around instructions.

1 : getstatic k
2 : if 1000
3 : dec

4 : if 1001
5 : dec

6 : if 1002
7 : dec

8 : if 1003
...

The Screening XµP will require from the XT a continuous sequence of xenoinstructions
followed by a sudden request of xenoinstruction INS1000+u :

INS1, INS2, . . . , INSu−1, INSu, INS1000+u, . . .

u = nvm[k] has hence leaked-out.

Before presenting a solution that eliminates the i side-channel, let us precisely for-
malize the problem: an ectoinstruction is called leaky if it might cause a physically
observable variable (e.g. the program counter) to take one of several possible values,
depending on the data (ram, nvm or st element) handled by the ectoinstruction. The
opposite notion is data indistinguishability that characterizes those ectoinstructions
for which the processed data have no influence whatsoever on environmental variables.
Executing a xor, typically, does not reveal information (about the two topmost stack
elements) which could be monitored from the outside of the XµP while, on the con-
trary, the division ectoopcode div is leaky. div can be misused to scan secret data as
follows: use the unknown variable as a denominator and monitor the occurrence of a
’division by zero’ interrupt (when the XµP branches to an interrupt routine it requires
from the XT some address different from i+1). The attacker can hence decrement the
unknown variable until the interrupt is thrown, and count the number of decrements.
Note, however, that div only leaks information about its denominator and remains
data-indistinguishable with respect to the numerator.
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INSi effect on i effect on ram effect on st effect on s

div if st[s] 6= 0 then i← (i + 1) none α← st[s− 1] div st[s] none
if st[s] = 0 then i← InterruptAddr β ← st[s− 1] mod st[s]

st[s − 1]← α, st[s]← β

As the execution of leaky ectoinstructions may reveal information about internal pro-
gram variables, they fall under the definition of security-criticality and we therefore
include them in S. In our ectoinstruction-set (as defined so far), only if L and div

are leaky:

S = {putstatic x, store IO, if L, div} .

2.4 Step 4: The Opaque XµP

To deal with information leakage through if L, one has several options: the most
evident of which consists in simply triggering a CheckOut whenever the XµP encounters
any ectoinstruction of S (Figure 10).

0. The XµP receives and checks ID and initializes i← 1
1. The XµP

(a) sets t← 1
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP queries from the XT ectoinstruction number i
4. The XT

(a) updates σ ← σ × σi mod N
(b) sends INSi to the XµP

5. The XµP updates ν ← ν × µ(ID, i, INSi) mod N
6. if t = e or INSi ∈ S then the XµP

(a) CheckOut

(b) executes INSi

(c) goto step 1
7. The XµP

(a) executes INSi

(b) increments t← t + 1
(c) goto step 3.

Fig. 10. The Opaque XµP (Secure But Suboptimal)

We plot an illustration of this protocol on Figure 11.
As one can easily imagine, ifs constitute the basic ingredient of while and for as-
sertions which are extremely common in executable code. Moreover, in many cases,
whiles and fors are even nested or interwoven. It follows that the Opaque XµP would
incessantly trigger the relatively expensive9 CheckOut step. This is clearly an overkill:
in many cases ifs can be safely performed on non secret data dependent10 variables
(for instance the variable that counts 16 rounds during a DES computation).

9 While the execution of a regular ectoinstruction demands only one modular multiplication, the
execution of an INSi ∈ S requires the transmission of an RSA signature (e.g. 1024 bits) and an
exponentiation (e.g. to the power e = 216 + 1) in the XµP.

10 Read: non-((secret-data)-dependent).
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(t=e)

(halt)

(if L1)

(if L3)

(store IO)

(putstatic 67)

Fig. 11. An Example of Program Execution with the Opaque XµP: if instructions are now considered
as being security-critical and trigger a CheckOut upon execution.

Efficiency can be improved by adding two popular 80C51 assembly opcodes to the
XµP’s ectoinstruction-set: move x,#c and djnz x,L (the acronym djnz stands for
Decrement and Jump if Non Zero) which dynamic semantics are11:

INSi effect on i effect on ram effect on st effect on s

djnz x, L if ram[x] 6= 0 then i← L ram[x]← ram[x]− 1 none none
if ram[x] = 0 then i← (i + 1)

move x, #c i← (i + 1) ram[x]← #c none none

Fig. 12. Dynamic Semantics of djnz and move

It suffices now to create a small array (denoted sram, the ’s’ standing for ’secure’)
where the XµP will authorize only the two operations move and djnz (in other words
any ectoinstruction other than move and djnz attempting to modify the sram will
cause execution to halt). The sram can hence serve to host all the non data-dependent
loop counters without triggering a CheckOut:

S = {putstatic x, store IO, if L, djnzx 6∈sramx,L, div} .

This optimization is nothing but an information-flow watchdog that enforces a very
primitive security policy inside the XµP. Having illustrated our purpose, we now back-
track and remove move and djnz from the ectoinstruction-set and devote the follow-
ing section to refine and analyse different security policies for reducing the number of
CheckOut calls caused by S as much as possible.

3 Internal Security Policies: Protocol 1

In the next refinement of our architecture a privacy bit is associated to each of the
XµP’s RAM, NVM and stack cells. We denote by ϕ(ram[j]) the privacy bit associated
to ram[j], by ϕ(nvm[j]) the privacy bit associated to nvm[j] and by ϕ(st[j]) the
privacy bit associated to st[j]. NVM privacy bits are nonvolatile. For the sake of
conciseness we denote by Φ the privacy bit space Φ = ϕ(memory).

11 #c represents the constant value c. For instance move x, #15 stores the value 15 in ram[x].
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Informally speaking, the privacy bit’s goal is to prevent the external world from prob-
ing secret data handled by the XµP. RAM privacy bits are initialized to zero upon
reset, NVM privacy bits are set to zero or one by the XµP’s issuer at the produc-
tion stage. Privacy bits of released stack elements are automatically reset to zero and
ϕ(RNG) is always stuck to one by definition.

We also introduce simple rules by which the privacy bits of new variables abide (evolve
as a function of prior ϕ values). Transfer ectoinstructions from ram (load) or nvm

(getstatic) to st, pushing a memory variable onto the stack, also copy this variable’s
privacy bit into the privacy bit of the topmost stack element ϕ(st[s]). Similarly, trans-
fer ectoinstructions from stack to ram and nvm cells (store, putstatic) transfer
privacy bits as well. By default, load IO sets ϕ(st[s]) to zero (i.e. any external data
fed into the XµP is considered as publicly observable by opponents and hence non-
private) and store IO simply resets ϕ(st[s]) when returning a data to the external
world.

The rule we apply to arithmetical or logical ectoinstructions (and more generally to
any ectoinstruction that pops stacked data and/or pushes computation results onto
the stack) is privacy-conservative; viz. the output privacy bits are all set to zero if
and only if all input privacy bits were zero (otherwise they are all set to one). In
other words, as soon as private data enter a computation all output data are tagged
as private. As each and every computation is carried out on the stack, it suffices to
enforce this rule over the privacy bit subspace ϕ(st). This rule is easily hardwired as
a simple boolean “or” for binary (two parameter) ectoinstructions; of course, unary
ectoinstructions such as inc or dec leave ϕ(st[s]) unchanged. For the sake of clarity,
we provide in Figure 13 the dynamic semantics of ectoinstructions over Φ.

INSi effect on Φ

inc none

dec none

pop ϕ(st[s])← 0

push0 ϕ(st[s + 1])← 0

load x ϕ(st[s + 1])← ϕ(ram[x])

load RNG ϕ(st[s + 1])← 1

store x ϕ(ram[x])← ϕ(st[s])
ϕ(st[s])← 0

load IO ϕ(st[s + 1])← 0

store IO ϕ(st[s])← 0

if L ϕ(st[s])← 0

goto L none

xor ϕ(st[s− 1])← ϕ(st[s− 1]) ∨ ϕ(st[s])
ϕ(st[s])← 0

mul ϕ(st[s]), ϕ(st[s− 1])← ϕ(st[s − 1]) ∨ ϕ(st[s])

div ϕ(st[s]), ϕ(st[s− 1])← ϕ(st[s − 1]) ∨ ϕ(st[s])

getstatic x ϕ(st[s + 1])← ϕ(nvm[x])

putstatic x ϕ(nvm[x])← ϕ(st[s])
ϕ(st[s])← 0

Fig. 13. Dynamic Semantics Over Φ

Thus, one observes that whatever the ectoprogram actually computes, each and every
non-private intermediate value ϑ appearing during its execution must depend only
on non-private values stored in NVM and on (observable and hence necessarily non-
private) data provided by the XT through the XµP’s I/O port. Informally, this means
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that an external observer could recompute ϑ by herself through a passive observation
of ectoinstructions and data emitted by the XT12, assuming that the XµP’s non-volatile
non-private information is known13.

Based on this property which we call data simulatability, our security policy allows
to process leaky ectoinstructions in different ways depending on whether they are run
over private or non-private data. Typically, executing an if does not provide critical
information if the topmost stack element is non-private because the computation path
leading to this value is simulatable anyway. A CheckOut may not be mandatorily
invoked in this case. Accordingly, outputting a non-private value via a store IO
ectoinstruction does not provide any sensitive information, and a CheckOut can be
spared in this case as well.

The case of putstatic happens to be a bit more involved because skipping Check-

Outs in this context gives the ability to freely modify the XµP’s NVM, which can be
the source of attacks. A typical example is an attack by fault injection, in which a
malevolent XT would send to the XµP the xenoinstructions:

1 : push0

2 : putstatic 17
3 : halt

where data element nvm[17] is a private DES key byte. Letting the XµP execute
this xenocode will partially nullify this key and will thereby allow Differential Fault
Analysis [2] to infer the remaining key bits. The fact that data written in NVM is
non-private is irrelevant here, because other DFA attacks also apply when storing a
private data [3]. This example tells us to require a CheckOut when the NVM cell to be
modified is marked as private. But what if the destination is non-private? Well, this
depends on the notion captured by what we called privacy in the first place. Assume
that we apply the security policy given by Figure 14.

INSi Trigger CheckOut if:

if L ϕ(st[s]) = 1

div ϕ(st[s]) = 1

store IO ϕ(st[s]) = 1

putstatic x ϕ(nvm[x]) = 1

Fig. 14. Read and Write Policy

By virtue of this policy, replacing a non-private NVM data field does not trigger a
CheckOut. This means that all non-private NVM objects are left freely accessible to
the external world for both reading and writing. This implements a read and write

policy which might be desirable for objects such as cookies (stored in the device by
applications for future use). On the contrary, certain publicly readable objects must
not be freely rewritable e.g. the balance of an e-purse, an RSA public key14 and so
forth. In which case we enforce the read only policy shown on Figure 15.

12 ϑ’s dataflow graph can be easily isolated amongst the stream of ectoinstructions and symbolically
executed to retrieve the current value of ϑ.

13 If this is not the case, a xenoprogram disclosing this nvm information can be easily written by the
attacker.

14 Forcing an RSA e to one would allow to trivially bypass signature verification.
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INSi Trigger CheckOut if:

if L ϕ(st[s]) = 1

div ϕ(st[s]) = 1

store IO ϕ(st[s]) = 1

putstatic x always

Fig. 15. Read-Only Policy

To abstract away the security policy, we introduce the boolean predicate

Alert : S × Φ 7→ {True,False}

Alert(INS, Φ) evaluates as True when a CheckOut is to be invoked, e.g. following one
of the two mechanisms above. We hence twitch our protocol as shown on Figure 16.

0. The XµP receives and checks ID and initializes i← 1
1. The XµP

(a) sets t← 1
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP queries from the XT ectoinstruction number i
4. The XT

(a) updates σ ← σ × σi mod N
(b) sends INSi to the XµP

5. The XµP updates ν ← ν × µ(ID, i, INSi) mod N
6. if t = e or (INSi ∈ S and Alert(INSi, Φ)) then the XµP

(a) CheckOut

(b) executes INSi

(c) goto step 1
7. The XµP

(a) executes INSi

(b) increments t← t + 1
(c) goto step 3.

Fig. 16. Enforcing a Security Policy: Protocol 1

4 The declassify and if phi Ectoinstructions

As discussed above, the internal security policy preserves privacy in the sense that
any intermediate variable ϑ depending on a private variable ϑ′ will be automatically
tagged as private. Under many circumstances, final computation results returned by
the ectoprogram need to be declassified i.e. have their privacy bit reset to zero. A
typical example is an AES computation: some publicly known plaintext is given to
the XµP. The machine encrypts it under a key stored in NVM and marked as private.
Because every single variable containing ciphertext bits is a function of all key bits,
all the final ciphertext bits will be eventually tagged as private. Outputting or manip-
ulating the ciphertext will hence provoke potentially unnecessary CheckOuts despite
the fact that in most protocols and applications ciphertexts are usually looked upon as
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(t=e)

(halt)

(if L1)

(if L3)

(store IO)

(putstatic 67)

non-private

non-private

Fig. 17. An Example of Program Execution with Protocol 1: small squares around security-critical
instructions denote useless signature verifications saved thanks to the internal security policy.

public data. The same observation applies to public-key signatures, MACs and more
generally to any private cryptographic computation which output is public15.

To allow the programmer easy data declassification, we introduce a specific ectoin-
struction that we call declassify. This ectoinstruction simply resets the privacy bit
ϕ(st[s]) of the topmost stack element regardless st[s]’s value. declassify’s dynamic
semantics are given in Figure 18.

INSi effect on i effect on memory effect on Φ effect on s

declassify i← (i + 1) none ϕ(st[s])← 0 none

Fig. 18. Ectoinstruction declassify

Of course, declassify is security-critical because a malevolent XT could simply send
the xenoprogram

1 : getstatic 17
2 : declassify

3 : store IO

to the XµP (where 17 is, again, the address of some private NVM data), thereby
breaching privacy16. We subsequently enrich S with declassify and upgrade the
internal security policy to trigger a CheckOut whenever the XµP executes this ec-
toinstruction on a private variable. When the topmost stack element is not tagged
as private declassify has no effect whatsoever (except incrementing i) and is thus
unnecessary to CheckOut. Alert is redefined as on Figure 19.

In the same spirit, programmers may find it handy to dispose of an ectoinstruction
that tests privacy bits. The ability to distinguish between private and non-private
variables provides a way of treating arbitrary variables in a generic way while relying
later on an easy switch between separate ectocode sequences devoted to private or

15 Note that MACs and ciphertexts are not necessarily systematically public, a MAC can for instance
serve to generate a secret session key.

16 Recall that store IO does not trigger a CheckOut when executed on non-private data.
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INSi Trigger CheckOut if:

if L ϕ(st[s]) = 1

div ϕ(st[s]) = 1

store IO ϕ(st[s]) = 1

putstatic x always

declassify ϕ(st[s]) = 1

or

INSi Trigger CheckOut if:

if L ϕ(st[s]) = 1

div ϕ(st[s]) = 1

store IO ϕ(st[s]) = 1

putstatic x ϕ(nvm[x]) = 1

declassify ϕ(st[s]) = 1

Fig. 19. Security Policies (Including declassify)

non-private cases. To this end, we add to the ectoinstruction-set the ectoinstruction
if phi L whose dynamic semantics are given in Figure 20.

INSi effect on i effect on memory effect on st and Φ effect on s

if phi L if ϕ(st[s]) = 0 then i← (i + 1) none st[s]← undef s← (s− 1)
if ϕ(st[s]) = 1 then i← L ϕ(st[s])← 0

Fig. 20. Ectoinstruction if phi

In other words, if phi L is similar to if L except that the branch is conditioned by
the event ϕ(st[s]) = 1 instead of st[s] = 0. It is worthwhile to note that if phi L
needs not be included into S because the fact that the program counter jumps to L or
i + 1 does not reveal any information whatsoever about the stacked value other than
its privacy status17.

Interestingly, the ectoinstructions declassify and if phi L are powerful enough to
allow any computation over privacy bits themselves. For instance, the programmer
may need (for some obscure reason) to compute C ← A + B where ϕ(C) ← ϕ(A) ⊕
ϕ(B). This is not immediate because executing an add would compute A + B but the
privacy bit of the result would be ϕ(A) ∨ ϕ(B). As an illustration, we show how to
emulate such an ectoinstruction (add mem-xor phi) using declassify and if phi.
Input variables A and B are stored in ram[a] and ram[b] and remain unmodified
throughout the computation, while the output C is stored at address ram[c]:

17 This raises an interesting theoretical question: does a multi-level machine where each ϕ(memory[i])
also admits an upper order privacy bit ϕ(ϕ(memory[i])) makes sense from a security standpoint?
Here ϕ(ϕ(memory[i])) = 1 captures a meta-secrecy (’no comment’) notion indicating that the
machine would even refuse disclosing if the variable memory[i] is private or not. While the con-
cept can be generalized to higher degrees (e.g. ϕ(ϕ(. . . ϕ(memory[i]) . . . ) its practical significance,
applications and semantics seem to deserve clearer definitions and further research.
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add mem-xor phi:

1 : load a
2 : if phi L2

L1 :

3 : load a
4 : load b
5 : add

6 : goto end

L2 :

7 : load b
8 : if phi L3

9 : goto L1

L3 :

10 : load a
11 : load b
12 : add

13 : declassify

end :

14 : store c

Any other computation over privacy bits is theoretically (and practically) doable
(e.g. implementing the other boolean operators is left as an exercise to the reader).

5 Authenticating Ectocode Sections: Protocol 2

Following the classical definition of [1,19], we call a basic block a straight-line sequence
of instructions that can be entered only at its beginning and exited only at its end.
The set of basic blocks of a program P is usually given under the form of a graph
CFG(P ) and computed by the means of control flow analysis techniques [20,19]. In
such a graph, vertices are basic blocks and edges symbolize control flow dependencies:
B0 → B1 means that the last instruction of B0 may handover control to the first
instruction of B1. In our ectoinstruction-set, basic blocks admit at most two sons
with respect to control flow dependance; a block has two sons if and only if its last
ectoinstruction is an if i.e. either an if L or an if phi L. When B0 → B1, B0 ⇒ B1

means that B0 has no son but B1 (but B1 may have other fathers than B0). In this
section we define a slightly different notion that we call ectocode sections.

Informally, an ectocode section is a maximal collection of basic blocks B1 ⇒ B2 · · · ⇒
Bℓ such that no ectoinstruction of S∪{halt} appears in the blocks except, possibly, as
the last ectoinstruction of Bℓ. The section is then denoted by S = 〈B1, . . . ,Bℓ〉. In an
ectocode section, very much like in a basic block, the control flow must be deterministic
i.e. be independent of program variables; thus a section may contain several cascading
goto ectoinstructions but no data-dependant branches. Ectocode sections, unlike basic
blocks, may share ectoinstructions; yet they have a natural graph structure induced by
CFG(P ) – which we do not need in the sequel. It is known that computing a program’s
basic blocks can be done in almost-linear time [20] and it is easily seen that the same
holds for ectocode sections. Here is a sketchy way of computing the set Sec(P ) of
ectocode sections of an ectoprogram P :
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– compute the graph CFG(P ) and associate a section to each and every basic block
i.e. set

Sec(P ) = Vertices (CFG(P )) ,

– recursively apply the following rules to all elements of Sec(P ):

• if S = 〈B1, . . . ,Bℓ〉 and S′ = 〈B′
1, . . . ,B

′
ℓ′〉 are such that Bℓ ⇒ B′

1 in CFG(P )
then unify S and S′ into S = 〈B1, . . . ,Bℓ,B

′
1, . . . ,B

′
ℓ′〉,

• if section S = 〈B1, . . . ,Bℓ〉 is such that Bi contains INS ∈ S ∪ {halt},
split S into two sections S′ and S′′ with S′ = 〈B1, . . . ,Bi−1,B

′
i〉 and S′′ =

〈B′′
i ,Bi+1, . . . ,Bℓ〉 where (B′

i,B
′′
i ) is a split of block Bi such that B′

i ends with
INS.

For instance, we identify in the toy example given at Figure 21 four sections denoted
S0,S1,S2 and S3. Note that sections S1 and S2 have ectoinstructions in common.
Ectocode sections are displayed as a graph to depict control flow dependance between
them.

Code

load  10
load  11
mult    
store IO
push0   
dec     
xor     
goto  L3

L6:        
load  11
add     
goto  L7

L3:        
inc     
goto  L4

L7:        
store 11
halt    

L4:        
load  12
xor     
if  L6  
load  10
add     
goto  L3

Basic Blocks

load  10
load  11
mult    
store IO
push0   
dec     
xor     
goto  L3

L3:        
inc     
goto  L4

L6:        
load  11
add     
goto  L7

L7:        
store 11
halt    

L4:        
load  12
xor     
if  L6  

load  10
add     
goto  L3

Code Sections

(section 0)

load  10
load  11
mult    
store IO

(section 1)

push0   
dec     
xor     
goto  L3

L3:        
inc     
goto  L4

L4:        
load  12
xor     
if  L6  

(section 2)

load  10
add     
goto  L3

L3:        
inc     
goto  L4

L4:        
load  12
xor     
if  L6  

(section 3)

L6:        
load  11
add     
goto  L7

L7:        
store 11
halt    

Fig. 21. Example of Determining Code Sections in a Program.

Given that an ectocode section can be regarded as one monolithic composite macro-
ectoinstruction, and that they can be computed at compile time, signatures can certify
ectocode sections rather than individual ectoinstructions. In other words, a single
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signature per section suffices (note again that sections that comprise ectoinstructions
belonging to S are chopped at these ectoinstructions).

The signature of an ectocode section S starting at address i is:

σi = µ(ID, i, h)d mod N with h = H(INS1, . . . , INSk) ,

where INS1, . . . , INSk are the successive ectoinstructions of S. Here, H is a hash func-
tion defined by

H(x1, . . . , xj) = F (xj , F (xj−1, F (. . . , F (x2, F (x1, IV )) . . . )

where F (x, y) is H’s compression function and IV an initialization constant18.

The last ectoinstruction INSk is:

1. either an element of S in which case its execution might trigger a CheckOut or
not according to the security policy Alert(INSk, Φ),

2. or if phi, which does not cause a CheckOut,

3. halt which aborts execution.

We summarize the new protocol in Figure 22.

This protocol presents the advantage of being far less time consuming, because the
number of CheckOuts (and updates of ν) is considerably reduced. The formats under
which an ectocode can be stored in the XT are diverse. The simplest of these consists
in representing P as the list of all its signed ectocode sections

P = (ID, (1 : σ1 : S1), . . . , (k : σk : Sk)) .

Whatever the file format used in conjunction with our protocol is, the term authenti-

cated ectoprogram designates an ectoprogram augmented with its signature material
Σ(P ) = {σi}i. Thus, our protocol actually executes authenticated ectoprograms. An
ectoprogram is converted into an authenticated executable file via a specific compila-
tion phase involving both code processing and signature generations.

6 Security Analysis

What we are after in this section is a formal proof that our protocols 1 and 2 are
secure. The security proof shall have two ingredients: a well-defined security model –
describing an adversary’s goals and resources – and a reduction to some complexity-
theoretic hard problem. As a first investigation, we focus on the protocol of Section 3
in which all ectoinstructions are signed separately. The same results will apply mutatis

mutandis to the more advanced protocol utilizing signed ectocode sections. We first
discuss the security model.

18 Iterated hashing has a crucial importance here: iterated hashing allows to pipeline ectoinstructions
one by one and thereby allow their on-the-fly hashing and execution. In other words, one does not
need to bufferize (cache) an entire section in the XµP first and execute it next: ectoinstructions
arrive one after the other, get hashed and executed.
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0. The XµP receives and checks ID and initializes i← 1
1. The XµP

(a) sets t← 1 (t now counts code sections)
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP

(a) sets h← IV
(b) queries the code section starting at address i

4. The XT

(a) updates σ ← σ × σi mod N
(b) sets j = 1

5. The XT

(a) sends INSi
j to the XµP

(b) increments j ← j + 1
6. The XµP

(a) receives INSi
j ,

(b) updates h← F (INSi
j, h)

7. If INSi
j ∈ S and (Alert(INSi

j , Φ) or t = e) the XµP

(a) sets ν = ν × µ(ID, i, h) mod N
(b) CheckOut

(c) executes INSi
j

(d) goto step 1

8. Else if INSi
j ∈ S then the XµP

(a) sets ν = ν × µ(ID, i, h) mod N
(b) increments t← t + 1

(c) executes INSi
j

(d) goto step 3
9. Else the XµP

(a) executes INSi
j

(b) increments j ← j + 1
(c) goto step 5.

Fig. 22. Ectocode Authentication at Ectocode Section Level: Protocol 2

(t=e)

(halt)

(if L1)

(if_phi L3)

(store IO)

(putstatic 67)

non-private

Fig. 23. An Example of Program Execution with Protocol 2: instructions are grouped into code
sections at the end of which a CheckOut may or may not be performed.
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6.1 The Security Model

We assume the existence of three parties in the game:

– an ectocode issuer CI that compiles xjvml ectoprograms into authenticated exe-
cutable files with the help of the signing key {d,N},

– an XµP that follows the communication protocol of Section 3 and containing the
verification key {e,N} matching {d,N}. The XµP also possesses some crypto-
graphic private key material k stored in its NVM,

– an attacker A willing to access k using means that will be explained later.

We do not have to include XTs in our model because in fine an XT has no particu-
lar role in the security model: it contains no cryptographic keys and merely forwards
ectoprograms from the CI to the XµP. When the CI sporadically issues compiled ecto-
programs, downloading these into XTs can be seen as an act of publication. Alternately,
we could include XTs in our model and view A as a malevolent XT.

The Adversary’s Resources: Parties behave as follows. The CI crafts polynomially
many authenticated ectoprograms of polynomially bounded size and publishes them.
We assume no interaction between the CI and A. Then A and the XµP engage in the
protocol and A attempts to make the XµP execute a sequence of xenoinstructions
(i.e. a sequence not originally issued by the CI).

The Adversary’s Goal: The adversary’s goal might depend on the role played by
the XµP’s cryptographic key k. Of course, inferring information about k – worse,
recovering k completely – comes immediately to one’s mind, but there could also be
weaker (somewhat easier or more subtle) ways of misusing k. For instance if k is
a symmetric encryption key, A might try to decrypt ciphertexts encrypted under k.
Similarly, if k is a signature key, A could attempt to rely on the protocol engaged with
the XµP to help forging signatures in a way or another. More exotically, the adversary
could try to hijack the key k e.g. use it as an AES key whereas k was intended to be
used as an RSA key. A’s goal in this case is a bit more intricate to capture19. Hence
we do not prohibit that kind of scenario in our security model. Third, the adversary
may attempt to modify k, thereby opening the door to fault attacks. To cope with
all these subtleties at once and abstract away the cryptographic nature of k, we rely
on the notion of data-flow dependance [19], starting by introducing the notions our
security model will be based upon.

Key-dependent Executions. Considering an authenticated ectoprogram P , we re-
spectively denote nvm-In(P ) and In(P ) the sets of input state variables and input
variables of P ; assuming that the stack and the RAM in the XµP are empty when P
starts being executed, nvm-In(P ) only contains non-volatile variables and In(P ) con-
tains variables provided via the external data port (load IO). Similarly, nvm-Out(P )
and Out(P ) respectively denote the sets of non-volatile variables written by P and
output variables returned through the data port by P . It might be the case that the

19 To understand the danger here, consider a key used in a 10 round AES. If the device accepts to
use the same key for a 12 round AES, an external observer can mount an attack on a 12− 10 = 2
round AES.
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sets of effectively read or written variables of P vary depending on executions, espe-
cially when the control flow graph of P is data-dependent. In this case, we can only
apply these definitions to a specific execution

[P ] = P (In,nvm-In,RNG)

of P , where In is the input tape (IO) of [P ], nvm-In is the XµP’s non-volatile memory
and RNG stands for the random tape output by the XµP’s Random Number Genera-
tor20. The sets nvm-In([P ]), In([P ]), nvm-Out([P ]), Out([P ]) and RNG([P ]) are then
naturally defined as the subsets of corresponding variable types that are induced by
the execution [P ].

We identify k as the set of NVM private variables containing the secret key bits.
Because our xjvml language does not admit branches to addresses obtained from
computations21, there exists a natural bijective mapping between NVM variables and
their addresses22; we assume that the memory locations of variables in k are publicly
known. An execution [P ] is said to be key-independent if k ∩ nvm-In([P ]) = ∅ and
k ∩ nvm-Out([P ]) = ∅.

Let ϑ, ϑ′ be variables of [P ]. We denote by ϑ 4θ ϑ′ the data-flow dependence rela-
tion [19], meaning that the value written at time θ = 1, . . . ,Time([P ]) in ϑ by [P ]
is computed as a function fϑ,θ of ϑ′, and possibly of other variables. By extension of
notations, we denote nvm-In(ϑ, θ) ⊆ nvm-In([P ]) and In(ϑ, θ) ⊆ In([P ]) the sets of
state and input variables ϑ′ such that ϑ 4θ ϑ′ and ϑ = fϑ,θ (In(ϑ, θ),nvm-In(ϑ, θ)). In
a similar way, we denote by nvm-Out(ϑ, θ) ⊆ nvm-Out([P ]) and Out(ϑ, θ) ⊆ Out([P ])
the sets of written state and output variables ϑ′ such that ϑ′ 4θ ϑ.

Extension to Probabilistic Variables. A program variable is probabilistic when
it is data-flow dependent of a value read on the RNG. It may be the case that the
attacker A attempts to collect information about the random tape of the program
through probabilistic variables. A typical case is when the program implements a
probabilistic signature scheme e.g. DSA. When (with obvious notations) the signatures
parts r = gh mod p mod q and s = (x · r + SHA-1(m))/h mod q have been sent to
the external world by a genuine DSA program, an attacker could try to inject extra
instructions into the XµP before letting the program reach its final halt instruction,
so that the random value h (or a piece of it) is returned to A via the I/O port. The
secret key x is then easily extracted from the knowledge of m, q, r, s and h. Of course,
the DSA program itself could be written in such a way that the internal value of
h is erased before the signature (r, s) is returned: since every part of the signature
depends on the private key (x here), the signature is tagged as private and putting in
onto the I/O port (store IO) will trigger a signature verification, thereby validating
the program and also the erasure of h. Nevertheless, it might be the case that cautious
erasures be impossible before returning values to the external world, especially when
the program implements a 3-pass cryptographic protocol for instance. It appears, as a
consequence, that the random values used by the program need to be considered as a
part of the private key material k. As said above, this is done by letting ϕ(RNG) take
the constant value 1 so that each and every probabilistic variable will be tagged as
private due to the privacy-conservative rule applied to computations. Theoretically,

20 [P ] is commonly referred to as the running code or trace of P .
21 Only branches and jumps to hard-coded addresses are made possible in our programming language.
22 This strong property makes pointer analysis vacuous in xjvml and conceptually eases our investi-

gation.
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we should then slightly adapt our definition of key-independence above to take the
privacy of the random tape into account. For the sake of clarity, though, we simply
include all RNG values into the cryptographic material k and maintain our definition
as previously discussed for more readability23. It is only a matter of form, and this
choice does not affect the security proof whatsoever.

Critical ectoinstructions. A variable ϑ of [P ] is externally visible when it is
processed by an ectoinstruction that returns its value to the external world or reveals
some information about it: these ectoinstructions are exactly the ones identified as
elements of S\{putstatic}. Denoting by Vis([P ]) the set of externally visible variables
of [P ], we say that [P ] is a key extractor when

k ∩
⋃

ϑ∈Vis([P ])
1≤θ≤Time([P ])

nvm-In(ϑ, θ) 6= ∅ ,

and that P is a key modifier if

k ∩ nvm-Out([P ]) 6= ∅ .

Moreover, during the execution [P ], one of the two definitions (or none) is reached
first. This happens when some ectoinstruction in S \ {putstatic} is executed on a
variable depending on k or when executing a putstatic on a variable belonging to k.
The first ectoinstruction INSc executed by [P ] that classifies [P ] into either category
is called critical. Given that the critical ectoinstruction is unique or does not exist, it
follows that key extraction or modification are mutually exclusive properties.

Partial executions. While the XµP is executing some ectoprogram P with identity
IDP , nothing refrains an attacker from suddenly disconnecting the XµP’s power supply,
thus causing a disruption in the execution of P . This event is assumed to reset all
volatile variables of P , as well as the XµP’s security buffers ν and h. In this case the
ectoprogram P ′ having been executed (the one seen by the XµP) is a partial execution
of P and we denote this partial ordering over ectoprogram executions by [P ′] ⊑ [P ]
(note that IDP ′ = IDP ). It is understood here that the two executions [P ′] and [P ]
are run on the same input data, state variables and random tape. Having [P ′] ⊑ [P ]
means that in two parallel universes where [P ′] and [P ] are running under the same
given tapes, everything remains identical until [P ′] is completed. When [P ′] 6⊑ [P ],
there must exist at least one ectoinstruction index i such that the i-th ectoinstruction
INSi executed24 by [P ′] differs from the i-th ectoinstruction executed by [P ]. The set
of all ectoinstructions of [P ′] satisfying this property is denoted Diff([P ′] , [P ]). The
first ectoinstruction of Diff([P ′] , [P ]) being executed in [P ′], i.e. the one with smallest
index, is denoted INS 6= and is called the differentiating ectoinstruction of [P ′] with
respect to [P ]. In the general case when P and P ′ are two arbitrary authenticated
programs, we define Diff([P ′] , [P ]) as before if IDP ′ = IDP and Diff([P ′] , [P ]) = [P ′]
otherwise. This notion is easily extended when [P ] 6⊑ [P1] , . . . , [Pℓ] by having INS 6=

defined as the first ectoinstruction among ∩1≤j≤ℓDiff([P ] , [Pj ]) that gets executed by
[P ]. For [P ] 6⊑ [P1] , . . . , [Pℓ], we define the split of [P ] with respect to [P1] , . . . , [Pℓ] as
the unique pair of executions ([P ]− , [P ]+) such that [P ] is the concatenation of [P ]−

and [P ]+ and the first ectoinstruction of [P ]+ is precisely INS 6=.

23 i.e. we redefine the set of private variables as k = k ∪ RNG.
24 Note that we rely on the index of INSi, not on its address.
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Free Executions. Although we considered only executions of xjvml ectoprograms
so far, an adversary communicating with the XµP is allowed to transmit a sequence of
xenoinstructions that cannot be viewed as [P ] for any ectoprogram P . Indeed, when a
ectoprogram P is adequately executed by the XµP, the same ectoinstruction INSi (and
possibly σi) is sent each time the device requests the i-th ectoinstruction of P . This
may not be the case for the xenocode sequence transmitted to an XµP under attack.
In fact, the adversary may well benefit from the memoryless behavior of the XµP and
even entirely base her strategy on this constitutional amnesia. We call a sequence
ξ of arbitrary xjvml xenoinstructions a free execution. It is easily seen that the
notions of key extraction, key modification, critical ectoinstruction and differentiating
ectoinstruction with respect to a set [P1] , . . . , [Pℓ] of ectoprogram executions naturally
stretch to free executions.

The Attack Scenario The attack is modeled as follows. The CI publishes a collection
of valid authenticated ectoprograms P1, . . . , Pℓ totalling at most n ectoinstructions.
Variables in k are marked as private in NVM and all other non-volatile variables are
non-private. The adversary executes Protocol 1 on the XµP with respect to some free
execution ξ and provides input variables In(ξ) of her choosing. The attack succeeds
when

(a) ξ 6⊑ [P1] , . . . , [Pℓ],

(b) if (ξ−, ξ+) is the split of ξ with respect to [P1] , . . . , [Pℓ] then ξ+ is a key extractor
or a key modifier,

(c) ξ+ is not interrupted by the XµP (cheating terminal) upon the receiving of the
critical xenoinstruction INSc of ξ+ i.e. INSc passes through the security firewall
and gets executed.

We say that A is an (ℓ, n, τ, ε)-attacker if after seeing at most ℓ authenticated ecto-
programs P1, . . . , Pℓ totalling at most n ≥ ℓ ectoinstructions and processing at most
τ steps, Pr[A succeeds] ≥ ε. In this definition, we include in τ the execution time
Time(ξ) of ξ, stipulating by convention that executing each ectoinstruction takes one
clock cycle and that all transmissions (ectoinstruction addresses, ectoinstructions, sig-
natures and IO data) are instantaneous.

6.2 Security Proof for Protocol 1

We state:

Theorem 2. If the screening scheme µ-RSA is (qk, τ, ε)-secure against existential
forgery under a known message attack, then Protocol 1 of Section 3 is (ℓ, n, τ, ε)-secure
for n ≤ qk.

Corollary 1. If µ is a full domain hash function, then Protocol 1 is secure under the
RSA assumption in the random oracle model.

Proof. Monitoring the communications between the adversary and the XµP, we trans-
form a successful execution ξ into a valid forgery for µ-RSA thereby simulating a forger
F . We first notice that the n signed messages

{(IDj , i(j), INSi(j)) 1 ≤ j ≤ ℓ, 1 ≤ i(j) ≤ Size(Pj)}
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harvested by A in P1, . . . , Pℓ are all different, thereby complying with the resources of
F . We wait until the completion of the attack and observe our transcript, proceeding
as follows. When engaging the protocol with the XµP, A had to send some value for
ID, which is recorded. The situation is twofold:

1. either ID corresponds to one of the ectoprograms P1, . . . , Pℓ, say Pm. According
to the conditions for the attack to succeed, we know that there must exist a
differentiating ectoinstruction INS 6= in ξ with respect to [Pm]. Let us denote by i6=
the value of i queried by the XµP right before INS 6= was sent. INS 6= splits ξ into
(ξ−, ξ+) as defined in the previous section;

2. or it corresponds to none of them but ID is nevertheless accepted by the XµP (we
implicitly assume that the set of IDs accepted by a given XµP is publicly known).
In this case, we define INS 6= as the first ectoinstruction of ξ and set i6= = 1, ξ− = ∅
and ξ+ = ξ.

In either case, the following fact holds:

Lemma 1. CI never signed (ID, i6=, INS 6=).

Besides, following the attack model, ξ+ must contain a critical xenoinstruction INSc

which categorizes ξ+ as a key-extractor or a key-modifier. We know that INSc gets
executed by the XµP with probability at least ε.

Assume that INSc is executed by the XµP. We rewind time to the latest moment
when the XµP resets ν ← 1 before INS 6= is sent by A and concentrate on the partial
execution ξ0 of ξ starting from reset time until INSc is executed. Hence

ξ0 = (INS1, . . . , INSp−1, INSp = INS 6=, INSp+1, . . . , INSu = INSc) ,

where p ≥ 1 and u ≥ p. For r = 1, . . . , u, we denote by addr the value of i queried by
the XµP before the ectoinstruction INSr was transmitted. Now the following fact is a
direct consequence of the definition of a critical ectoinstruction:

Lemma 2. For each and every ectoinstruction INSr, r = 1, . . . , u−1, either INSr 6∈ S
or INSr ∈ S and Alert(INSr, Φ) = False.

Thus, to construct ξ0, the adversary is left free to use arbitrary combinations of data-
indistinguishable xjvml ectoinstructions or security-critical instructions which handle
non-private variables. Provided that u < e, the first u − 1 ectoinstructions will be
executed without triggering a CheckOut. Indeed, having INSr ∈ S and simultaneously
Alert(INSr, Φ) = True would mean that one of the variables of INSr is private, thereby
proving a data-flow dependence between this variable and one of the state variables
in k because we assumed that only these are tagged as private in NVM. Then INSr

would be critical by virtue of our definition and we would get r = u by uniqueness of
INSc.

On the other hand, INSc will trigger a signature verification over all the ectoinstruc-
tions (INS1, . . . , INSu) of ξ0. The fact that the XµP accepts executing INSc means that
A had to provide a σ satisfying

σe =
u
∏

r=1

µ(ID, addr, INSr) mod N .
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Now the right term contains µ(ID, addp, INSp) = µ(ID, i6=, INS 6=) and from Lemma 1, we
know that µ(ID, i6=, INS 6=)d mod N is not contained in any of P1, . . . , Pℓ. Consequently,
the set of messages {(ID, addr, INSr)}1≤r≤u and σ constitutes a valid forgery for µ-
RSA. When u ≥ e, a CheckOut is performed after INSe−1 is received by the XµP. In
this case, we must have p ≤ e − 1 for otherwise a CheckOut would have taken place
(thereby resetting ν ← 1) before INS 6= is sent, which contradicts the definition of ξ0.
Hence, the XµP continues execution only if A provides a σ such that

σe =

e−1
∏

r=1

µ(ID, addr, INSr) mod N ,

and again, µ(ID, i6=, INS 6=) appears in the right term. A valid forgery for µ-RSA is then
given by the set of messages {(ID, addr, INSr)}1≤r≤e−1 and σ. Collecting the forgery
can actually be done on the fly while the attack is carried out, thus requiring less than
τ steps since Time(ξ) ≤ τ .

Finally, when µ = FDH, outputting a valid forgery is equivalent to extracting e-th
roots modulo N as shown in Appendix A. Then Corollary 1 is proved by invoking
Theorem 1. ⊓⊔

6.3 Security Proof for Protocol 2

We now move on to the (more efficient) Protocol 2 defined in Section 5. The (µ,H)-
RSA screening scheme is defined as in Section 5 with padding function (x, y, z) 7→
µ(x, y,H(z)). We slightly redefine (ℓ, n, τ, ε)-security as resistance against adversaries
that comply with the attack model of Section 6 and have access to at most ℓ authen-
ticated ectoprograms totalling at most n ectocode sections. We state:

Theorem 3. If the screening scheme (µ,H)-RSA is (qk, τ, ε)-secure against existen-
tial forgery under a known message attack, then Protocol 2 is (ℓ, n, τ, ε)-secure for
n ≤ qk.

Proof. We adapt the proof of Theorem 2 by considering ectocode sections instead
of ectoinstructions. First, we extend the definition of (static) ectocode sections to
free executions, as follows: given a sequence of ectoinstructions ξ, we partition ξ into
intervals of maximal length ending by an ectoinstruction of S. The ectocode sections
of ξ are identified as these intervals. We further define the differentiating section S 6=

of ξ with respect to [P ] when IDξ = IDP and ξ 6⊑ [P ] as the ectocode section of ξ that
contains INS 6=. When IDξ 6= IDP , S 6= is set to the first ectocode section of ξ. The split
(ξ−, ξ+) is redefined in a straightforward manner.

Here again, when Protocol 2 starts, the adversary A has to send some value for ID. If
ID corresponds to Pm for 1 ≤ m ≤ ℓ, the differentiating section S6= in ξ splits ξ into
(ξ−, ξ+). Then i6= denotes the value of i queried by the XµP right before the ectocode
section S 6= is transmitted. If ID corresponds to none of P1, . . . , Pℓ then S 6= is the first
section of ξ and we set i6= = 1, ξ− = ∅ and ξ+ = ξ. Again:

Lemma 3. CI never signed (ID, i6=,S 6=).

Moreover, ξ+ must contain a critical xenoinstruction INSc characterizing ξ+ as a key-
extractor or a key-modifier. We define the critical section Sc of ξ+ as the section
containing INSc. By the definition of ectocode sections, Sc ends with INSc since INSc ∈
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S. Assuming that INSc is executed by the XµP, we rewind time to the latest moment
where the XµP resets ν ← 1 before S6= is sent by A and focus on the partial execution
ξ0 of ξ starting from reset time until INSc is executed. Hence

ξ0 = (S1, . . . ,Sp−1,Sp = S6=,Sp+1, . . . ,Su = Sc) ,

where again p ≥ 1 and u ≥ p. We denote by addr the value of i sent by the XµP to A
before the section Sr is transmitted. We state:

Lemma 4. For each and every ectocode section Sr, r = 1, . . . , u−1, denoting by INSr

the last ectoinstruction of Sr, either INSr 6∈ S or INSr ∈ S and Alert(INSr, Φ) = False.

The first min(e − 1, u) − 1 ectocode sections will be executed without triggering a
CheckOut because having INSr ∈ S and Alert(INSr, Φ) = True for r ≤ min(e − 1, u)
leads to INSr = INSu, reductio ad absurdum. But INSmin(e−1,u) must trigger a Check-

Out of sections {S1, . . . ,Smin(e−1,u)} of ξ0. Having the XµP executing INSmin(e−1,u)

requires that A provided σ with

σe =

min(e−1,u)
∏

r=1

µ(ID, addr,H(Sr)) mod N .

The right term therefore contains µ(ID, addp,H(Sp)) = µ(ID, i6=,H(S 6=)) and by virtue
of Lemma 3, the set of messages {(ID, addr,Sr)}1≤r≤u and σ constitute a valid forgery
for (µ,H)-RSA. ⊓⊔

When µ(a, b, c) = h(a‖b‖H(c)) and h is seen as a random oracle, a security result
similar to Corollary 1 can be obtained for Protocol 2. However, a bad choice for H could
allow A to easily find collisions in µ via collisions over H. Nevertheless, unforgeability
can be formally proved under the assumption that H is collision-intractable. We refer
the reader to Theorem 6 given in Appendix B. Associating Theorems 3 and 6, we
conclude:

Corollary 2. Assume µ(a, b, c) = h(a‖b‖H(c)) where h is a full-domain hash function
seen as a random oracle. Then Protocol 2 is secure under the RSA assumption and
the collision-intractability of H.

6.4 Further Discussions on the Security Model

Key-dependent variables. The notions of key-extraction or key modification may
seem somewhat too strong; according to the XµP’s internal security policy, a← k⊕ k
is considered as a private variable if k is private. An adversary successful in exporting a
from the XµP without triggering a CheckOut is then considered as a key extractor even
though no real information about the key k has leaked. Similarly, illegally overwriting
an NVM private variable with a copy of itself (via putstatic) makes the ectoprogram
a key modifier although its execution does not really affect the confidentiality of k. We
see no simple means by which our security model would treat these specific cases apart,
nor why one would need to. As mentioned earlier, the security policy is preservative
over the privacy bits of program variables and it is unclear whether weakening this
property is feasible, or even desirable.
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What about active attacks? Although RSA-based screening schemes may feature
strong unforgeability under chosen-message attacks (see Appendix A.2 for such a
proof for FDH-RSA), it is easy to see that our protocols cannot resist chosen-message
attackers whatever the security level of the underlying screening scheme happens to
be. Indeed, assuming that the adversary is allowed to query the issuer CI with messages
of her choosing, a trivial attack consists in obtaining the signature:

σ = µ(ID, 1,H(getstatic 17, store IO, halt))d mod N

where ID is known to be accepted by the XµP and nvm[17] is known to contain a
fraction of the cryptographic key k25. Similarly, the attacker may query the signature of
some trivial key-modifying sequence. Obviously, nothing can be done to resist chosen-
message attacks.

Probabilistic Paddings. When strong security against active attacks is desired,
RSA-based signature and screening schemes rely upon probabilistic padding functions
such as PSS or PSS-R [7,5]. These schemes may then feature an optimally tight se-
curity reduction in the random oracle model (ε′ ≈ ε) and are therefore comparably
more secure against active attacks (ε′ ≈ ε/qc was proven nearly optimal for FDH for
instance), while keeping optimal security ε′ = ε against passive attacks. Given that
chosen-message attacks cannot be avoided in our setting, we see no evident advantage

in using a probabilistic padding for µ.

7 Variants of our Protocols

Our protocols 1 and 2 are general enough to allow many variations in different di-
rections. What we describe in this section is a couple of variants. The first one is a
variation of Protocol 1 which lowers the verification cost by relying on Rabin’s sig-
nature scheme instead of RSA. The other is a variant of Protocol 2 and reduces the
number of verifications by memorizing correct sections in cache memory.

7.1 A Variant with Fast Signature Verification

The Principle. As seen in the previous sections, the XµP’s CheckOut procedure is
basically a modular exponentiation to the power e, and a comparison. Because RSA-
screening imposes that at most e − 1 instructions (resp. sections) be repeated, our
protocols count the number of instructions (resp. sections). However, to be applicable
to real life programs that intensively use loops, the public exponent value e must be
set to a large enough prime number. A typical value for e is 216 + 1, meaning that a
signature verification is roughly equivalent to 17 modular multiplications.

Alleviating the restriction on signature screening, we show that e can be set to 2. Not
only is the variant faster (signature verification reduces to a single modular squaring),
but also the security level is improved: RSA-screening is based on the RSA (or root
extraction) problem, while Rabin-screening relies on integer factoring.

The basic principle of the variant consists in keeping a counter u that counts the
number of backward jumps executed since the last CheckOut occurred. Updating u

25 The halt is even superfluous as the attacker can power off the device right after the store gets
executed.
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can be easily hardwired as it amounts to a simple address comparison between the
input and output values of i. Wlog, we may assume that the value of i and u are
automatically updated during the execution of instructions.

Concrete protocol with e = 2. The reason for defining u is explained in the
following protocol, which follows from Protocol 1. Here, the program is not stored
in the XT as a collection ({INSi, σi}), but rather as ({INSi, {σi,u}0≤u≤U}) for some
parameter U . We recall that the execution of INSi also updates u.

0. The XµP receives and checks ID and initializes i← 1
1. The XµP

(a) sets u← 0
(b) sets ν ← 1

2. The XT sets σ ← 1 and u′ ← 0
3. The XµP queries from the XT ectoinstruction number i
4. The XT

(a) updates σ ← σ × σi,u′ mod N
(b) sends INSi to the XµP

5. The XµP updates ν ← ν × µ(ID, i, INSi, u) mod N
6. The XT updates u′ with the knowledge of INSi

7. if u = U or (INSi ∈ S and Alert(INSi, Φ)) then the XµP

(a) (CheckOut)
queries from the XT the current value of σ
halts execution if ν 6= σ2 mod N (cheating XT)

(b) executes INSi

(c) goto step 1
8. The XµP

(a) executes INSi

(c) goto step 3.

Fig. 24. Rabin-based Variant: Protocol 1.1

The advantages and drawbacks of this protocol are quite clear: on one hand, the pro-
gram material Σ(P ) is multiplied in size by a factor nearly U while on the other hand,
the CheckOut stage only requires a single modular multiplication, thereby leading to
a 95% speed-up when compared to Protocol 1 with e = 216 + 1. As usual, the XT is
supposed to have virtually unlimited storage resources.

The security of this variant follows from combining the security proof of Protocol 1
with the following theorem:

Theorem 4. Let N be an RSA modulus. If a forger F can produce a list of t messages
{m1, . . . ,mt} and σ < N such that σ2 =

∏t
i=1 h(mi) mod N while the Rabin signature

of at least one of m1, . . . ,mt was not given to F , then F can be used to efficiently
factor N .

The proof of Theorem 4 is detailed in Appendix C.

7.2 A Variant with a Caching Mechanism

Independently of minimizing the cost of a signature verification, one could also want to
reduce the number of signature verifications. Authenticating code sections in Protocol
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2 allowed to reduce the number of modifications applied to the verification accumu-
lator (i.e. the register ν). Here, we come up with a new improvement consisting in
remembering the signature of correct sections.

Informally, we use a cache of sections that were already recognized as valid by the XµP

in the past, and consequently for which future verifications are useless. Better than
storing the whole contents of code sections, we cache hash values of these sections
under a collision-resistant hash function of small output size H160. The protocol also
uses a cache memory cachethat should be of type LIFO (Last In - First Out). We
make use of a function AddInCache allowing to append a data in cache memory26. The
size Υof the cache memory has a direct impact on the efficiency of this variant.

The protocol is then as depicted on Figure 25.

0. The XµP receives and checks ID and initializes i← 1
1. The XµP

(a) sets t← 1
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP

(a) sets h← IV
(b) queries the ectocode section starting at address i

4. The XT

(a) updates σ ← σ × σi mod N
(b) sets j ← 1

5. The XT

(a) sends INSi
j to the XµP

(b) increments j ← j + 1
6. The XµP

(a) receives INSi
j ,

(b) updates h← F (INSi
j, h)

7. if INSi
j /∈ S, then the XµP

(a) executes INSi
j

(b) increments j ← j + 1
(c) goto step 5.

8. The XµP sets ν ← ν × µ(ID, i, h) mod N

9. if ¬Alert(INSi
j, Φ)) then the XµP increments t← t + 1

10. if t = e or (Alert(INSi
j , Φ)) then the XµP

(a) computes κ← H160(ν)
(b) if κ /∈ cache, CheckOut

(c) executes INSi
j

(d) AddInCache(κ)
(e) goto step 1

11. The XµP

(a) executes INSi
j

(b) goto step 3

Fig. 25. Variant with Cache Mechanism: Protocol 2.2

26 AddInCache can be implemented in several ways (e.g. with a cycling buffer).
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The main advantage of this protocol is that if the cache table is large enough, most
of sections are verified only once, thereby speeding up the execution of very repetitive
programs. Finally, we mention that the table cache could also be stored in nvm in
order to memorize the hash values of already verified sections. In this respect, this
table could also be initialized during the personalization step. This in turn results
in that critical (i.e. overused) functions will not trigger a signature verification when
executed.

8 MAC-Based Ectoprogram Authentication

Interestingly, public-key cryptography is not mandatory for implementing the concept
described in this paper. This section describes a simpler variant based on symmetric
cryptography. In this section µK(x) denotes a MAC function where K is the key and
x the MAC-ed data. H1 and H2 denote hash functions (e.g. SHA-1) with respective
compression functions H1 and H2 and initialization vectors IV1 and IV2. Finally, ℓ
the number of ectoinstructions in the ectoprogram P . We assume that ID = H1(P ).
The protocol is shown at Figure 26.

-2. The XµP generates a random session key K and initializes h← IV1

-1. for i← 1 to ℓ
(a) The XµP queries from the XT ectoinstruction number i
(b) The XT sends INSi to the XµP

(c) The XµP computes σi ← µK(i, INSi) and updates h← H1(h, INSi)
(d) The XµP sends σi to the XT (no copies of σi or INSi are kept in the XµP )
(e) The XT stores σi

0. The XµP ascertains that h = ID (abort if mismatch) and initializes i← 1
1. The XµP sets ν ← IV2

2. The XT sets σ ← IV2

3. The XµP queries from the XT ectoinstruction number i
4. The XT

(a) updates σ ← H2(σ, σi)
(b) sends INSi to the XµP

5. The XµP updates ν ← H2(ν, µK(i, INSi))
6. if INSi ∈ S and Alert(INSi, Φ) then the XµP

(a) CheckOut: query σ from the XT and ascertain that σ = ν
(b) executes INSi

(c) goto step 1
7. The XµP

(a) executes INSi

(b) goto step 3.

Fig. 26. MAC-Based (Ectoinstruction Level) Protocol: Protocol 3

In steps -2 and -1 the XµP does two operations:

1. Hash the entire program presented by the XT to ascertain that this program
indeed hashes into the reference digest ID, burned into the device at production
time.



37

2. MAC each and every instruction under an ephemeral key K and send the resulting
MACs to the XT for storage.

8.1 Security Analysis

Following the security model defined in Section 6, the security of Protocol 3 can be
formally assessed. Before assessing the security of our protocol, we define a weak form
of forgery for MAC functions.

Weak Forgeries for Symmetric Signatures. Classical notions of security for
symmetric signatures are given in Appendix D. Informally, a weak forgery for a given
MAC function µK with respect to a given hash function H is a list M = (m1, . . . ,mt)
of messages and a value h such that

H (µK(m1), . . . , µK(mt)) = h

whereas the signature µK(mi) of mi was never given to the forger for at least one
value of i ∈ [1, t]. This security notion comes with different flavors, depending on the
attack model, i.e. whether the forger is allowed to make adaptive signature queries or
not. In the sequel, we only consider the case of passive attacks: the forger F is given
a list of message-signature pairs M0 and attempts to produce (M,h) as above such
that M ( M0.

It is quite easy to show that a weak forgery is equivalent to a forgery in the random
oracle model that is, when H is seen as a random oracle. The proof of equivalence is
omitted here and left as an exercise for the reader.

More formally, we define a (qk, τ, ε)-weak forger for µK as a probabilistic polynomial-
time Turing machine F such that F returns a weak forgery (M,h) as above with
some probability ε after at most τ elementary steps, given as an input a list M0 of qk

message-signature pairs. The MAC function µK is said to be (qk, τ, ε)-secure against
weak forgeries with respect to H when there is no (qk, τ, ε)-weak forger for µK .

Security Proof for Protocol 3. We recall the attack model of Section 6.3,
saying that Protocol 3 is (ℓ, n, τ, ε)-secure if any adversary A having access to at most
ℓ authentic programs totalling at most n ectoinstructions and running in at most τ
steps succeeds with probability at most ε. Here yet again, A succeeds when the first
ectoinstruction belonging to S of the given code sequence ξ is accepted and executed
by the XµP. We claim:

Theorem 5. If µK is (qk, τ, ε)-secure against weak forgeries with respect to H2, then
Protocol 3 is (ℓ, n, τ, ε)-secure for n ≤ qk under the collision-freeness of H1.

Proof. We transform a successful free execution ξ created by an (ℓ, n, τ, ε)-attacker A
into a weak forgery for µK with respect to H2 or a collision for H1. Before starting,
we note that A is given (after the protocol has executed the preliminary steps) no
more than n different signed messages {(i(j), INSi(j)) 1 ≤ j ≤ ℓ, 1 ≤ i(j) ≤ Size(Pj)},
thereby complying with the resources of a known-message weak forger for µK .

As in the proofs of previous sections, we launch A and monitor all communications
between A and the XµP. Now, when Protocol 3 starts, the adversary A sends some
program P that hashes into some value ID = H1(P ). ID necessarily corresponds to
H1(Pm) for some 1 ≤ m ≤ ℓ otherwise the attack cannot be successful. The attacker
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then sends a free execution ξ to the XµP. Again, there must be a differentiating
ectoinstruction INS 6= attesting that ξ 6⊑ [Pm]. Then i6= denotes the value of i queried
by the XµP right before the ectoinstruction INS 6= is sent by A.
We define by E the event according to which the XµP did not send µK(i6=, INS 6=) at
step -1, i.e. the instruction INS 6= was not given to the XµP during the preliminary
stage. If E is false, then the program P contains the instruction INS 6= at address i6=
leading to

H1(P ) = H1(. . . , INS 6=, . . . ) = ID = H1(Pm) = H1(. . . , INS, . . . ) ,

for some instruction INS 6= INS 6= of Pm. We then stop and output (P,Pm) as a collision
for H1. If E is true, we call INS′ the i6=-th instruction MAC-ed by the XµP at step
-1 and we proceed as follows. We know by definition of the security model that ξ
must contain a critical ectoinstruction INSc ∈ S sent to the XµP after INS 6=. When
the attack succeeds, INSc is executed by the XµP after a CheckOut verification. At the
moment of this verification, the transcript contains the partial execution ξ′ ⊑ ξ (all
instructions executed until that point in time). Now when the verification occurs, the
XµP compares its digest

ν = H2

(

σ1, . . . , σi6=−1, µK(i6=, INS 6=), . . . , µK(ic, INSc)
)

with the value σ sent by A. Here, the first i6=−1 instructions are the common instruc-
tions of Pm and ξ. Since the event E is true, the MAC of (i6=, INS 6=) was not given to
A, so that (M,σ) with

M =
{

σ1, . . . , σi6=−1, µK(i6=, INS 6=), . . . , µK(ic, INSc)
}

constitutes a valid weak forgery for µK with respect to H2. ⊓⊔

The very same technique is applicable to the authentication of ectocode sections. In
this case, sections are MAC-ed as

σ = µK(i,H3(Si)) ,

where, as before, H3 is a hash function that processes one by one the ectoinstructions
of Si. The extension of the security proof to this variant is straightforward, and we
get the same security level under the additional assumption that H3 is collision-free.

8.2 Hashing Tree Variant

Even if the exchange of digests can be limited to one digest per ectocode section,
before execution starts, the entire programme must be pipelined into the XµP before
execution starts. This is clumsy and time consuming. Steps -2 and -1 can be eliminated
by resorting to tree hashing. Tree hashing is a well known cryptographic technique
allowing to ascertain that a word belongs to a message which digest value is ID without
re-hashing the entire message.

The technique is illustrated in Appendix C where one can see that:

ID = H(P ) = h1,2,3,4,5,6,7,8 = H(H(h1,2, (H(INS3), h4)), h5,6,7,8)

For the sake of clarity we illustrate the idea with individual instructions rather than
with ectocode sections and denote by ∆i the partial hash values required to reconstruct
ID given INSi (in our example ∆3 = {h4, h1,2, h5,6,7,8}).



39

0. The XµP initializes i← 1
1. The XµP queries from the XT ectoinstruction number i
2. The XT sends the data ∆i and INSi to the XµP

3. The XµP

(a) checks that HashTree(INSi,∆i) = ID

(b) executes INSi

(c) goto step 1

Fig. 27. Hash-Tree Protocol: Protocol 4

9 The if skip and restart Ectoinstructions

Many cryptographic operations require secret-data-dependent27 ifs. RSA square-and-
multiply is one such typical example where different secret bits trigger different INSi

requests.

While several side-channel protection techniques [12] allow an easy XµP implementa-
tion of such routines, it may appear handy to have a specific instruction that allows
the programmer to disable the execution of a sequence of ectoinstructions but still
accumulate them in ν ← ν × µ(ID, i, INSi) mod N .

We introduce two ectoinstructions called if skip and restart which work as follows.
On executing if skip, the XµP checks the topmost stack element st[s]. If st[s] 6= 0 the
ectoinstruction has no particular effect28. If st[s] = 0 however, the device suspends
the execution of all ectoinstructions following the if skip while maintaining their
modular accumulation in ν until the ectoinstruction restart is encountered. Regular
execution mode is then recovered.

It is easy to see that if skip and restart allow to program data-dependant rou-
tines without explicit branches: instead of executing separate functions and relying on
control switches, the programmer can ordain the ectoprogram to inhibit a fraction of
itself depending on input values (without altering the authentication process though).

From a computational standpoint, control switches and ectocode inhibition have com-
parable effects and are equivalently powerful. For the programmer, changing from
using one to the other is a mere question of programming habits.

What we want to ascertain, however, is the fact that data-dependent ectocode inhi-
bition is really data-indistinguishable; in other words, we require that no information
about the (private) topmost stack element should leak out of the device. To illustrate
different leakage hazards, we consider the following ectoprogram where ram[a] and
ram[b] are respectively private and non-private variables:

1 : load a
2 : if skip

3 : load b
4 : inc

5 : store b
6 : push0

7 : restart
...

27 (secret-data)-dependent.
28 Other than i← (i + 1), st[s]← undef and s← (s− 1).
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As is obvious, ram[b] is incremented when ram[a] = 0 and is left unchanged otherwise.
Since ram[b] is non-private, its value before the if skip execution can be retrieved
(see Section 3). Therefore, it suffices to consult the value of ram[b] just after the
restart is executed29 to probe whether ram[a] = 0 or not.

Written variables. This observation tells us to force to one the privacy bit of each
and every variable written by the if skip sequence i.e. by ectoinstructions located
after if skip and before restart. Indeed, one observable effect of executing a se-
quence of ectoinstructions is the modifications induced by these in memory variables.
We therefore twitch our if skip mechanism so that ectoinstructions that write vari-
ables (store x and putstatic x) appearing in the if skip sequence (be it executed
or not) set ϕ(ram[x]) or ϕ(nvm[x]) to one.

Security-criticality. Another danger stems from security-criticality: an attacker
may send to the XµP, in the middle of an if skip sequence, a xenocode such as

i : push0

i + 1 : store IO

and inspect what comes-out at the XµP’s IO port. The value zero will appear on the
data port if and only if the sequence is executed. Similarly, and for the same confiden-
tiality reasons, ectoinstructions that might trigger a CheckOut must be forbidden in an
if skip sequence. We must therefore force the XµP to abort the protocol (returning
a ”cheating terminal” error) if a security-critical ectoinstruction is encountered in an
if skip sequence.

Jumps and branches. In the same spirit, an attacker may insert a jump into an
if skip sequence, for instance with the xenoinstructions

i : push0

i + 1 : goto 1

Executing the jump would make the XµP query the contents of address 1, thus re-
vealing execution. The same holds for if phi. Therefore, branches and jumps must be
excluded from the set of ectoinstructions that the XµP is authorized to legitimately
encounter while treating an if skip sequence.

Stack-based attacks. Another observable witness of executions is their effect on
the stack level. In our toy example, the if skip sequence ends with a push0 ectoin-
struction. As a result, the value zero is pushed onto the stack (and s incremented by
one) when the sequence gets executed, which is not the case when the sequence is not
executed. An attacker willing to probe if ram[a] = 0 can simply send to the XµP,
right after restart, a xenocode that pops off all the stack elements until the stack
is emptied, in which case an interrupt is invoked. A simple count will reveal whether
the sequence was executed or not.

At a first glance, the impact of this observation would be twofold. First, the if skip

sequence designed by the programmer seems to require that the stack level be left
unchanged; we call a sequence of ectoinstructions featuring this property stack-level

29 By sending {load b, store IO} to the XµP.
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invariant. Second, no stack-level variant sequence should be created in an on-the-fly
manner by an attacker while an if skip sequence is being treated. Indeed, adding
the xenoinstruction push0 right before sending restart would render the sequence
stack-level variant, thereby leading to a security breach.

Instead of guarantying that if skip sequences are stack-level invariant, we choose, in
order to thwart stack-related attacks, to introduce a conceptually simpler mechanism
that we describe later.

Interrupt-based attacks. Forcing a CheckOut or writing on the IO port are not
the only ways in which one can breach the confidentiality of an if skip’s input. One
may also provoke dummy interrupts by injecting into the if skip sequence interrupt-
generating xenoinstructions. For instance, the xenocode

i : push0

i + 1 : push0

i + 2 : div

throws in a division-by-zero interrupt when executed. From the above, we know that
we already excluded div given its security-criticality; nevertheless, interrupts can also
be generated by non-security-critical operators such as xor or add. These instructions,
indeed, are fed with the stack’s contents and may well throw an interrupt when the
stack is empty or contains a single element. The attacker may then modify the if skip

sequence and send a series of xors:

i : xor

i + 1 : xor
...

It is easy to see that, whatever the ectocode executed by the XµP is, an attacker can
retrieve the stack level s at any point in time throughout the protocol. In the present
attack, the attacker recovers the value of s before the if skip is executed, rewinds
(reruns) the device, sends a sequence of s + 1 xors, and waits for the interrupt to
occur. The interrupt shows up when the XµP requests the interrupt address (instead
of s + i + 1) from the XT. In our xjvml language, as defined so far, the ’empty stack’
interrupt is the only one that can be generated by non-critical ectoinstructions.

Stack-indistinguishability. What we actually require from the if skip and re-

start ectoinstructions is the fact that the ectocode sequence that they define, when
inhibited, effectively handles the operand stack the same way they do when executed.
In other words, when the XµP enters an if skip sequence, ectoinstructions will ma-
nipulate the stack regardless their being executed or not. Thus, provoking an ’empty
stack’ interrupt is watertight, because it would occur whatever the mode (skip or
execution) the XµP is actually works in. Additionally, such a mechanism completely
alleviates the constraint of having stack-level invariant if skip sequences as discussed
above.

Putting it all together. Taking all the above into account, the simplest way of
implementing the skip mode consists in

– Aborting the protocol (cheating terminal) when a security-critical, branch or jump
ectoinstruction is encountered after an if skip and before a restart.
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– Inhibiting memory-writing: a store x ectoinstruction behaves the same way as in
execution mode except that ram[x] is left unchanged and its privacy bit ϕ(ram[x])
reset to one,

– Letting arithmetical, logical and transfer operators (other than store x) act on
the operand stack exactly the same way they do in execution mode, except that
the privacy bit of all variables pushed onto the stack is automatically set to one.

Finally, note that we do not catalog the ectoinstructions if skip and restart as
security-critical.

10 Indirect Addressing: loadi and storei Ectoinstructions

The xjvml language we have been investigating so far does not allow indirect address-
ing. Namely, one cannot transfer from memory to the operand stack (or the other way
around) the contents of a variable whose address is itself a variable. The purpose of
this section is to show how the ectoinstruction set and security policy of the XµP can
be extended to allow indirect addressing.

Description. We denote by loadi x and stori x the indirect versions of ectoin-
structions load x and store x, whose dynamic semantics are defined in Figure 28.

INSi effect on i effect on ram effect on st effect on s

loadi x i← (i + 1) none st[s + 1]← ram[ram[x]] s← (s + 1)

stori x i← (i + 1) ram[ram[x]]← st[s] st[s]← undef s← (s− 1)

Fig. 28. Dynamic Semantics of Indirect Addressing Transfers loadi and storei

These ectoinstructions are properly executed only when ram[x] contains data compat-
ible with the format of a memory address (”falling off” ram is not allowed). Therefore,
the value of ram[x] is transparently converted into a valid ram address right before
the transfer becomes effective: for instance, if |ram| denotes the size of the XµP’s
volatile memory space, the value of ram[x] could be reduced modulo |ram| before
transferring data to or from this address.

Related security policy. Obviously, care must be taken when the contents han-
dled by a loadi or storei is private. Similarly, privacy must be conserved also when
the address variable ram[x] itself is private. We devise the XµP-internal security policy
given in Figure 29.

INSi effect on Φ

loadi x ϕ(st[s + 1])← ϕ(ram[x]) ∨ ϕ(ram[ram[x]])
stori x ϕ(ram[ram[x]])← ϕ(st[s]) ∨ ϕ(ram[x])

Fig. 29. Dynamic Semantics of loadi and storei Over Φ

What the security policy we have chosen means is that, for both ectoinstructions, the
privacy bit updated during execution (in ram for stori x, on the stack for loadi x)
depends not only on the privacy of the transferred data but also on the privacy of the
address hosting the data. An illustrative example of this paradigm is the following:
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Assume the ectocode works with a non-private S-box S and that at some point the
value S[k] is required, where k is (directly related to) a private key. As S is publicly
known, S[k] provides information about k meaning that S[k] itself has to be treated
as a secret data precisely because of the secrecy of the indirection k. For the same
reason, pushing onto the stack an element of a private table T located at a non-private
index j in T , the stacked value T [j] must be considered private as it obviously reveals
information about T .

Security criticality. As loadi and storei operate only on the device’s volatile
memory, they are not considered security-critical. This consideration holds under the
hypothesis that memory locations dedicated to specific processing operations (RNG,
IO, stack, . . . ) cannot be accessed via these instructions, which are consequently lim-
ited to general-purpose memory cells.

11 Reading ROM Tables

Reading constant data tables from ROM is a very frequent operation. While the
treatment of this operation is in principle similar to the execution of any other ec-
toinstruction, here particular care must be taken to allow the XµP to authenticate
the contents of ROM tables as a proper part of the ectoprogram. We propose two
mechanisms for doing so, depending on the way a given ROM table is accessed.

11.1 Accessing Privately Located Entries

We assume that the XµP’s ectocode works with an array T of absolute constants so
that during computation, T is accessed at a variable location j. In this respect, we
rely on the indirect addressing mode provided by loadi x as follows. The ectocode
writes successively at consecutive ram addresses the constants T [0], T [1], . . . , T [n]
using regular xjvml ectoinstructions. Keeping the address addT of T [0] in memory,
T [j] is accessed given any j using loadi x where ram[x] is previously initialized to
addT + j. This simple mechanism is effective whatever the privacy status of j is; its
only limitation resides in the size of the XµP’s volatile memory, i.e. one cannot have
n > |ram|.

11.2 Accessing Non-Private Locations

We now turn to the description of a second mechanism by which the ectoprogram can
access the table T without having to store its entire contents in ram. Access to T will
only be possible at non-private, immediate locations.

We extend our ectoinstruction-set to include a specific table-reading operator: the
ectoinstruction push addT, j, where addT is the address of T located in ROM (i.e. in
the XT) and j a constant. The ectoinstruction is implemented as follows (assuming
authentication at the ectoinstruction level):

– The XµP sends i to the XT and gets INSi = push addT ,j in response;

– The XµP requests the ROM contents corresponding to (addT , j);
– The XT replies with T [j] and updates

σ ← σ × σ〈push addT ,j〉 mod N or σ ← H(σ, σ〈push addT ,j〉) ,
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while the XµP updates

ν ← ν × µ(ID, i, 〈push addT , j〉, T [j]) mod N

or

ν ← H(ν, µK(ID, i, 〈push addT , j〉, T [j]) ,

depending on the chosen execution protocol.

Thus, the contents of T are authenticated by the same technique as for ectoinstruc-
tions. The push addT , j operation never requires to trigger a CheckOut on execution
since j is inherently non-private. Hence we do not add this instruction to S. Note
that when Protocol 3 is implemented, the pre-execution phase has to access T [j] while
MAC-ing the ectoinstruction push addT , j.

12 A Software Example: Ectoprogramming RC4

12.1 Extra Ectoinstructions

Before giving the ectocode of a very-basic implementation of the RC4 for the XµP, we
introduce a handful of new ectoinstructions that are equivalent in term of security to
other ectoinstructions in our xjvml language. For each of these new ectoinstructions,
we give an ectoinstruction which effect on Φ is equivalent.

INSi effect on i effect on ram effect on st effect on s ϕ equivalence

push v i← (i + 1) none st[s + 1]← v s← (s + 1) push0

add i← (i + 1) none st[s − 1]← st[s− 1] + st[s] s← (s− 1) xor

add256 i← (i + 1) none st[s − 1]← st[s− 1] + st[s] mod 256 s← (s− 1) xor

mod i← (i + 1) none st[s − 1]← st[s] mod st[s− 1] s← (s− 1) mul

Fig. 30. Some More Ectoinstructions.

We remind that RC4 is a stream cipher devised by RSA Data Security: its specifica-
tions can be found in [25].

12.2 Ectoprogram and Brief Analysis

The ectoprogram works as follows: parts 1, 2 and 3 implement the key schedule whilst
the fourth and last part is dedicated to the encryption function itself. First, LoopA is
very simple: it uses two counters, stored in ram[259] and ram[260]: the first is a value
running down from 256 to 0, while the second runs up from 0 to 256. ram[259] is in
fact the loop index. ram[260] is the value stored in a buffer called RC4-State, used
for key schedule. The value is stored from ram[0] to ram[255].

Once the initialization step is done, the ectoprogram uses RC4-Key (which is sup-
posed to be stored from nvm[0] to nvm[8], with nvm[0] = 8 corresponding to the
key length). It copies this key RC4-Key into ram, from ram[300] to ram[307]. Fi-
nally, it initializes a certain number of counters in ram: x = ram[257], y = ram[258],
i1 = ram[260], i2 = ram[261], i = ram[263] are all reset to zero; ram[259] is initial-
ized to 256.

LoopB is the key schedule’s second step: RC4-Key[i1] is stored in ram[262]. Then,
RC4-State[i] is loaded, and RC4-State[i]+RC4-Key [i1]+ i2 mod 256 is computed
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Code for a basic RC4: Key Schedule and Cipher

(cipher)

Cipher:           
load            IO
store          259
                  
LoopC:            
load           257
push             1
add256            
store          257
                  
load           258
loadi          257
add256            
store          258
                  
loadi          257
store          260
loadi          258
stori          257
load           260
stori          258
                  
loadi          258
loadi          257
add256            
store          260
                  
load            IO
loadi          260
xor               
store           IO
                  
load           259
dec               
store          259
load           259
if           LoopC
halt              

(part 3)

LoopB:            
push           300
load           260
add               
store          262
loadi          262
                  
loadi          263
                  
add               
load           261
add256            
store          261
                  
loadi          263
store          262
loadi          261
stori          263
load           262
stori          261
                  
load           264
load           260
inc               
mod               
store          260
                  
load           263
inc               
store          263
                  
load           259
dec               
store          259
load           259
if           LoopB
goto        Cipher
                  

(part 2)

Part2:            
getstaticx       0
store          264
getstaticx       1
store          300
getstaticx       2
store          301
getstaticx       3
store          302
getstaticx       4
store          303
getstaticx       5
store          304
getstaticx       6
store          305
getstaticx       7
store          306
getstaticx       8
store          307
                  
push0             
store          257
push0             
store          258
push0             
store          260
push0             
store          261
                  
push0             
store          263
                  
push           256
store          259
                  
goto         LoopB
                  
                  

(part 1)

Key Schedule:     
push0             
store          260
push           256
store          259
                  
LoopA:            
load           260
stori          260
load           260
inc               
store          260
                  
load           259
dec               
store          259
load           259
if           LoopA
goto         Part2
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  

Fig. 31. Software Example: Ectoprogramming an RC4

and stored in ram[261]. Follows the exchange of RC4-State[i] and RC4-State[i2],
through a temporary memory variable ram[262]. i1 is incremented and taken modulo
the key length stored in ram[264]. Finally, i is incremented and the loop counter (in
ram[259]) is decremented. The loop is re-done if this counter is nonzero.

The last part is the stream cipher itself: the ectoprogram loads (from the IO) the
length of the plaintext to encrypt and stores it in ram[259] then it begins a loop as
long as the plaintext to encrypt: It loads x (in ram[257]) and increments it modulo
256. It updates y (in ram[258]) by adding to it RC4-State[x] modulo 256, exchanges
RC4-State[x] and RC4-State[y], using a temporary variable ram[260], computes

RC4-State[x] + RC4-State[y] mod 256

and stores this quantity in t = ram[260]. Finally the ectoprogram gets from the IO the
value to encrypt: it just xors this value with RC4-State[t], and sends the encrypted
byte to the IO. Finally, it decrements the loop counter, and resumes the loop if needed.

12.3 How many CheckOuts are needed?

It appears that the enforcement of the security policy in the above example slows-
down execution only negligibly: indeed, during execution the authors noticed that the
XT was only asked for signatures during the store IO phase.

This drove us to introduce yet another improvement in the device, namely an ectoin-
struction allowing to send not only one value to the IO, but an array. In our case, this
would reduce the number of signature queries from one per byte to just one for the
entire message. This ectoinstruction is described in Figure 32.
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INSi effect on i effect on ram effect on st effect on s

export i← (i + 1) IO← st[s− 1] st[s− 1]← undef s← (s− st[s]− 1)
IO← st[s− 2] st[s− 2]← undef

. . . . . .

IO← st[s− st[s]] st[s− st[s]]← undef

st[s]← undef

Fig. 32. Store Large Results on IO.

This instruction, security-critical, would then be treated like a simple store IO, except
that the CheckOut is triggered when one (or more) of the privacy bits

ϕ(st[s]), ϕ(st[s− 1]), . . . , ϕ(st[s− st[s]])

is equal to one i.e.:

st[s]
∨

i=0

ϕ(st[s− i]) = 1

13 Deployment Considerations

From a practical engineering perspective, the new architecture is likely to deeply im-
pact the card industry. Today, this industry’s interests (the endocode i.e. the mask’s
contents) are inherently protected against alien scrutiny by the card’s tamper-resistant
features initially meant to protect the client’s NVM secrets. By deploying ectocode
in terminals, the card manufacturers’ role is likely to evolve and focus on personal-
ization. The card’s intelligence being entirely in the terminal, terminal manufacturers
will gain independence and face the usual challenges of the software industry (separa-
tion between code and hardware, ectocode must be protected by obfuscation against
reverse-engineering etc).

This section attempts to foresee a few expectable consequences of the concept intro-
duced in this paper.

13.1 Speed Versus Code Size

A dilemma frequently faced by smart card programmers is that of striking an effective
balance between endocode size and speed. The main cost-factor in on-board ROM is
not storage itself but the physical hardening of this ROM against external attacks.
Given that in the new architecture external (distrusted and hence cheaper) virtually
unlimited ROM can be used to securely store ectocode, ectocode can be optimized for
speed. For instance, one can cheaply unwind (inline) loops or implement algorithms
using pre-computed space-consuming look-up tables instead of performing on-line cal-
culations etc.

13.2 Code Patching

One of the major advantages of the XµP is the fact that a bug in an ectoprogram does
not imply the roll-out of devices in the field but a simple terminal update.

The bug patching mechanism that we propose consists in encoding in ID a backward
compatibility policy signed by the CI that either instructs the XµP to replace its old
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ID by a new one and stop accepting older version ectoprograms or allow the execution
of new or the old ectocode (each at a time, i.e. no blending possible). The description
of this mechanism is straightforward and omitted here.

In any case, the race against hackers becomes much easier. In a matter of hours the
old ectocode can be rolled out whereas today, card roll-out can take months or even
years. Patching a future smart card can hence become as easy as patching a PC.

13.3 Code Secrecy

It is a common practice in the telecom Industry to use proprietary A3A8 algorithms
[24]. Given that the XT contains the application’s code, our architecture assumes that
the algorithm’s specifications are public.

It should be pointed out that while the practice of keeping algorithms secret does

not fall under the standard setting within which system security is traditionally as-
sessed30, it is still possible to reach some level of ectocode secrecy by encrypting the
XT’s ectocode under a key (common to all XµPs). Obviously, morphologic information
about the algorithm will leak out to some extent (loop structure etc.) but important
elements such as S-box contents or the actual type of boolean operators used by the
ectocode could remain confidential if programmed appropriately. Note that compro-
mising one XµP will reveal the ectocode’s encryption key, but this is no different from
the traditional smart-card setting where a successful attack on one card suffices to
reveal the endocode common to all cards. Also, it should be stressed that compro-
mising the ectocode encryption key does not allow to feed the XµP with aggressive
xenocode (ectocode integrity and ectocode confidentiality being two different func-
tions). Finally, from a practical standpoint it is expected that current SIM cards will
be progressively replaced by 3G ones on the long run. 3G uses a public AES-based
authentication algorithm (Milenage) which specifications are public [23].

However, from the user’s perspective, the authors consider that the XµP architecture
offers much better (yet not perfect) privacy guarantees against back-doors by exposing
the executable ectocode to public scrutiny31. We assume that the mere possibility for
a user to inspect the exchanges between his XµP and the XT offer privacy guarantees
that stretch far beyond those offered by traditional smart-cards.

13.4 Limited Series

Consider a Swede traveling to China and using his card in an ATM there. Using
current technology, a mask deployed in Sweden can contain user instructions32.

If the user card’s were an XµP, Chinese terminals would have to also contain user
instructions in Swedish (in fact, in any possible language) or, alternatively, user in-
structions should have been personalized in the device’s NVM.

13.5 Simplified Stock Management

Given that a GSM XµP and an electronic-purse XµP differ only by a few NVM bytes
(essentially ID), by opposition to smart-cards, XµPs are real commodity products (such

30 Security must stem from the key’s secrecy and not from the algorithm’s confidentiality.
31 We do not get here into the philosophical debate of wether or not the ectocode input into the device

is indeed the one executed by the device.
32 ASCII strings such as ”Insert card” or ”Enter PIN code” in Swedish (≡ ”Stoppa in kortet”,

”Mata in din personliga kod”).
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as capacitors, resistors or Pentium processors) which stock management is greatly
simplified and straightforward.

In essence, when a card manufacturer33 finishes the coding of a traditional off-the-shelf
mask (e.g. a SIM card), the card manufacturer buys a few millions of masked chips
from the chip manufacturer34 and constitutes a stock. This stock is an important risk
factor as the card manufacturer must forecast sales with accuracy: a market downturn,
a standard change or unrealistic marketing plans can cause very significant financial
losses.

When constituting an XµP stock the risk is greatly reduced. The only important factor
is the card manufacturer’s global sales volume (per NVM size), which is much easier

to forecast than the sales volume per product.

For MAC-based XµPs, the manufacturer can even migrate into the device’s ROM
the list {H(Pi)} corresponding to the entire company history: i.e. the hash values
of all applications coded by the manufacturer so far - 160 bits per application. At
personalization time, the manufacturer can simply burn into the device the index i
that enables the execution of a given Pi.

Alternatively, the XT can contain a digital signature on {i,H(Pi)} and the XµP can
dispense with the storage of H(Pi).

13.6 Reducing The Number of Cards

Given the very small NVM room needed to store an ID and a public-key, a single
XµP can very easily support several applications provided that the sum of the NVM
spaces used by these applications does not exceed the XµP’s total NVM capacity and
that these NVM spaces are properly firewalled. From the user’s perspective the XµP is
tantamount to a key ring carrying all the secrets (credentials) used by the applications
that the user interacts with but not these applications themselves.

13.7 Faster Prototyping

Note that a PC, a reader and an off–the-shelf application-independent XµP are suffi-
cient for prototyping applications.

14 Engineering and Implementation Options

A large gamut of trade-offs and variants is possible when implementing the architecture
described in this paper. This section describes a few such options.

14.1 Replacing RSA

Clearly, any signature scheme that admits a screening variant (i.e. a homomorphic
property) can be used in our protocols. RSA features a low (and customizable) veri-
fication time, but replacing it by EC-based schemes for instance, could present some
advantages.

33 e.g. Gemplus, Oberthur, G&D or Axalto.
34 e.g. Philips, Infineon, ST Microelectronics, Atmel or Samsung.
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14.2 Speeding The Accumulation With Fixed Padding

Speeding-up the operation ν ← ν × µ(ID, i, h) mod N is crucial for the efficiency of
the protocols proposed in this paper. This paragraph suggests a candidate µ for which
the accumulation operation is particularly fast:

µ(x) = 2κ + h(x) for 2κ < N < 2κ+1 and 2
κ
4 < h(x) < 2

κ
4
+1

Indeed, any attack against this padding function will improve the κ
3 fixed padding

bound described in [10].

The advantage of this padding function is that while the multiplication of two κ-bit
integers requires κ2 operations, multiplying a random ν by µ(x) requires only κ2/4
operations.

14.3 Using a Smaller e

Implementers wishing to use a smaller e can use several t counters and a hash func-
tion h. Here the idea is that instead of incrementing t, the XµP increments th(i,INSi).
Whenever any of the tj-counters reaches e− 1 the XµP triggers a CheckOut. Denoting
by λ the size of h’s digests (in bits), one CheckOut per e×2λ−1 ectoinstruction queries
will be expectedly triggered, on the average.

14.4 Smart Usage of Security Hardware Features

Most of secure tokens in use today contain hardware-level countermeasures thwart-
ing physical attacks relying on power analysis or related techniques. As detailed in
the past sections, the XµP essentially runs in two modes, depending on the privacy
bit of the current variable being processed (unless the XµP is parallelized, it is guar-
antied that only one variable is processed at a given point in time). When the current
variable is non-private, an attacker is theoretically capable of recovering its value by
symbolically executing the transmitted piece of ectocode related to this variable. Be-
ing vacuous, hardware protections shall not necessarily be operating at that moment.
On the contrary, the XµP could (selectively?) activate these protections whenever a
private variable is handled or forecasted to be used a few cycles later.

14.5 High Speed XIO

A high-speed communication interface is paramount for servicing the extensive infor-
mation exchange between the XµP and the XT .

Let |INS| and |i| respectively denote the bitsizes required to encode the ectoinstructions
and their addresses in the XT. A typical example being |INS| = |i| = 32. We denote
by TrT(n) the time required to exchange n bits between the XµP and the XT and by
ExT the average time it takes to execute an instruction35 (latency).

Then, the XµP’s external operating frequency fext is:

fext =
1

TrT(|INS|+ |i|) + ExT
Hz

35 including the computation of ν ← ν × µ(ID, i, INSi) mod N .
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While the machine is actually run internally at:

fint =
1

ExT
Hz

One can remark that whenever the ectoinstruction is not a test (if L or if phi L)
or a goto, addresses are just incremented by one. It follows that transmission can
be significantly slashed in most cases as the sending of i becomes superfluous. This
observation also allows to parallelize the execution of INSi and the reception of INSi+1

for most ectoinstructions.

More specifically, even when INSi is a test the XT can still send to the XµP the
ectoinstruction that would be queried next if the test were negative. Should the test
be positive (miscache) the XµP can simply send a control bit to the XT who will reply
with the correct successor of INSi

36.
Neglecting the miscache bit’s cost, the frequency formula becomes:

fext =
1

(1− p)×max{TrT(|INS|),ExT}+ p×max{TrT(|INS|+ |i|),ExT}
Hz

where p is the average proportion of gotos in the code.

For the sake of illustration, we evaluated the above formula for a popular standard,
the Universal Serial Bus (USB). Note that USB is unadapted to our application as
this standard was designed for good bandwidth rather than for good latency.

In USB High Speed mode transfers of 32 bits can be done at 25 Mb/s which cor-
responds to 780K 32-bit words per second. When servicing our basic protocol, this
corresponds approximately to a 32-bit XµP working at 390 KHz; when parallel exe-
cution and transmission take place, one gets a 32-bit machine running at 780 KHz.

An 8-bit USB XµP (where transfers of 8 bits can be done at 6.7 Mb/s), would corre-
spond to 830K 8-bit words per second. This yields a parallel execution and transmis-
sion 8-bit machine running at 830 KHz.

15 Further Research

The authors believe that the concept introduced in this paper raises a number of
practical and theoretical questions. Amongst these is the safe externalization of Java’s
entire bytecode set, the safe co-operative development of ectocode by competing par-
ties (i.e. mechanisms for the secure handover of execution from ectoprogram ID1 to
ectoprogram ID2), the devising of faster ectoexecution protocols or the improvement
of those described earlier in this paper.

This paper showed how to provably securely externalize programs from the processor
that runs them. Apart from answering a theoretical question, we believe that our
technique provides the framework of novel practical solutions for real-life applications
in the world of mobile code and cryptography-enabled embedded software.
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51

References

1. A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, 1986.
2. E. Biham and A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems, In Advances

in Cryptography, Crypto’97, LNCS 1294, pages 513–525, 1997.
3. I. Biehl, B. Meyer and V. Müller, Differential Fault Attacks on Elliptic Curve Cryptosystems,

In M. Bellare (Ed.), Proceedings of Advances in Cryptology, Crypto 2000, LNCS 1880, pages
131–146, Springer Verlag, 2000.

4. M. Bellare, J. Garay and T. Rabin, Fast Batch Verification for Modular Exponentiation and

Digital Signatures, Eurocrypt’98, LNCS 1403, pages 236–250. Springer-Verlag, Berlin, 1998.
5. M. Bellare and P. Rogaway, PSS: Provably Secure Encoding Method for Digital Signatures,

Submission to IEEE P1363a, August 1998, http://grouper.ieee.org/groups/1363/.
6. M. Bellare and P. Rogaway, Random Oracles Are Practical: a Paradigm for Designing Efficient

Protocols, Proceedings of the first CCS, pages 62–73. ACM Press, New York, 1993.
7. M. Bellare and P. Rogaway, The Exact Security of Digital Signatures – How to Sign with RSA

and Rabin, Eurocrypt’96, LNCS 1070, pages 399–416. Springer-Verlag, Berlin, 1996.
8. B. Chevallier-Mames, D. Naccache, P. Paillier and D. Pointcheval, How to Disembed a Program?,

CHES 2004, Springer-Verlag, 2004.
9. G. Bilardi and K. Pingali, The Static Single Assignment Form and its Computation, Cornell Univ.

Technical Report, 1999, www.cs.cornell.edu/Info/Projects/Bernoulli/papers/ssa.ps.
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A Unforgeability of FDH-RSA Screening (Proof of Theorem 1)

We treat separately the case of passive and active attacks.

A.1 Known Message Attacks

In the passive attack model, we consider a forger F allowed to make qh queries to
the hash oracle h and qk known-message queries and outputting a list of t messages
(m1, . . . ,mt) as well as σ < N . We assume that with probability at least ε,

σe =

t
∏

i=1

h(mi) mod N ,

whereas the signature of at least one of the messages m1, . . . ,mt has never been
provided to F , meaning that the e-th root h(mj)

d of h(mj) for some 1 ≤ j ≤ t is
unknown to F . We show how to use this adversary to break RSA. More precisely, we
build a reduction R that uses F to compute the e-th root of an arbitrary y ∈ Z⋆

N with
probability ε′ = ε.

The reduction R works as follows. On input (y, e,N) where e is a prime number, R
invokes F and transmits (e,N) to F . Then R simulates the random oracle h as well
as the signing oracle Sk which returns upon request up to qk message-signature pairs
(mi, σi) with σe

i = h(mi) mod N . These simulations are performed as follows.

Simulation of Sk. Each time F requests a message-signature pair, R chooses (ac-
cording to any arbitrary distribution) some message m ∈ {0, 1}⋆ such that m does not
appear in R’s transcript, picks a random r ∈ Z⋆

N , defines h(m)← re mod N , updates
its transcript accordingly, and outputs the pair (m, r).

Simulation of h. Whenever F requests h(m) for some m ∈ {0, 1}⋆, R checks in
its transcript if h(m) is already defined, in which case h(m) is returned. If h(m) is
undefined, R picks a random r ∈ Z⋆

N , defines h(m) ← rey mod N , updates the
transcript and returns this value to F .

These simulations never fail to respond to F ’s queries and the distributions of answers
are statistically indistinguishable from the ones F expects. After at most qh hash
queries and qk message-signature queries, F outputs (m1, . . . ,mt) and σ within some
time bound τ . Then R queries h(mi) for i = 1, . . . , t to its own simulation of h and
checks whether σe =

∏t
i=1 h(mi) mod N .

Extraction of yd. Since each and every message mi ∈ {m1, . . . ,mt} has been
queried to the hash oracle (either by F or R), R knows an ri such that h(mi) = re

i y
mod N or h(mi) = re

i mod N . Letting A (respectively B) denote the set of indices i
such that h(mi) = re

i y mod N (resp. h(mi) = re
i mod N), we know that the messages

mi for i ∈ B are among the ones given by R’s simulation of Sk to F throughout the
experiment. By definition of F , B  {1, . . . , t} and hence |A| 6= 0. Consequently, if
the verification succeeds then

σe =
∏

i∈A

re
i y
∏

i∈B

re
i =





∏

1≤i≤t

ri





e

y|A| mod N ,
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meaning that
(

σ/
∏

ri

)e

= y|A| mod N .

Since 0 < |A| ≤ t < e and e is prime, there exist integers (α, β) such that α|A|+βe = 1.
Then

y = yα|A|+βe =
((

σ/
∏

ri

)α

yβ
)e

mod N ,

and R returns yd = (σ/
∏

ri)
α yβ mod N with probability one. Summarizing, since

F outputs a valid forgery with probability at least ε within τ steps, our reduction R
returns yd with probability ε′ = ε after at most τ ′ = τ + (qh + qk)O(log3 N) steps.

A.2 Chosen-Message Attacks

In an active adversarial model, the forger F is allowed, in addition to h and Sk, to
query at most qc times a signing oracle Sc for messages of her choosing. Relying on a
technique introduced by Coron [13], we modify the reduction R as follows.

Simulation of h. Whenever F requests h(m) for some m ∈ {0, 1}⋆, R checks if h(m)
is already defined, in which case h(m) is returned. If h(m) is undefined, R selects a
random bit b ∈ {0, 1} with a certain bias δ, i.e. b is set to zero with probability δ.
Then R picks a random r ∈ Z⋆

N , memorizes (m, b, r), defines h(m) ← reyb mod N
and returns this value to F .

Simulation of Sk. The simulation of Sk is unchanged: each time F requests a
message-signature pair, R chooses some arbitrary, fresh message m ∈ {0, 1}⋆ and
a random r ∈ Z⋆

N , defines h(m) ← re mod N , memorizes (m, 0, r) and outputs the
pair (m, r).

Simulation of Sc. When F requests the signature of m ∈ {0, 1}⋆,R checks in its own
transcript if some value is defined for h(m). If h(m) is undefined, R picks a random
r ∈ Z⋆

N , defines h(m)← re mod N , memorizes (m, 0, r) and returns r. Otherwise the
transcript contains a record (m, b ∈ {0, 1}, r). If b = 0, R returns r. If b = 1, R aborts.

Again, the simulations of h and Sk are perfect. However the simulation of Sc may
provoke an abortion before the game comes to an end. Let us assume that no abortion
occurs. After at most qh hash queries, qk known-message queries and qc chosen-message
queries, F outputs (m1, . . . ,mt) and σ within some time bound τ . Then, again, R
queries h(m1), . . . , h(mt) to its own simulation of h and checks if σe =

∏t
i=1 h(mi) mod

N .

Extraction of yd. Every message mi ∈ {m1, . . . ,mt} corresponds in the transcript
to a pair (bi, ri) such that h(mi) = re

i y
bi mod N . By definition of F , there is at least

one message mj that was neither output by Sk nor queried to Sc. Suppose that bj = 1
and that the verification is successful. Then

σe =
∏

re
i y

bi =
(

∏

ri

)e

y
∑

bi mod N ,

with
∑

bi ≥ bj = 1. Since 0 <
∑

bi ≤ t < e and e is prime, there exist integers (α, β)
with α

∑

bi + βe = 1. Then R returns yd = (σ/
∏

ri)
α yβ mod N with probability

one.
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Reduction Cost Analysis. Our reduction R succeeds with probability (taken over
the probability spaces of F and R):

ε′ = Pr[F forges ∧ ¬abortion ∧ bj = 1]

= Pr[F forges ∧ ¬abortion] Pr[bj = 1]

= Pr[F forges ¬abortion] Pr[¬abortion] Pr[bj = 1]

= εδqc(1− δ) ,

where the equalities stem from the pairwise independence of the random coins b and
their independence from the forger’s view. The optimal value for δqc(1− δ) is reached
for δ = 1− 1/(qc + 1). Then,

ε′ =
ε

qc

(

1−
1

qc + 1

)qc+1

≥
ε

4qc

for qc ≥ 1 .

The reductionR returns yd or aborts within time bound τ ′ = τ+(qh+qk+qc)O(log3 N)
steps.

B Unforgeability of (FDH, H)-RSA Screening (Proof of Theorem 6)

Theorem 6. We set µ(a, b, c) = h(a‖b‖H(c)) where h is a full-domain hash function
seen as a random oracle. Then µ-RSA is existentially unforgeable under a known-
message attack assuming that RSA is hard and H is collision-intractable.

Proof. We build a reduction algorithm R that uses an (qh, qk, t, τ, ε)-forger F to com-
pute the e-th root of y ∈ Z⋆

N with probability ε′1 and simultaneously a collision of
H with probability ε′2, where ε′1 + ε′2 ≥ ε. The reduction R works as follows. Given
(y, e,N), e prime, R transmits (e,N) to F and simulates the random oracle h and the
signing oracle Sk as follows.

Simulation of Sk. Upon request, R chooses some arbitrary fresh message m =
a‖b‖c ∈ {0, 1}⋆, computes γ = H(c), and makes sure that a‖b‖γ does not appear
in the transcript. If it does, the simulation of Sk is restarted. Otherwise, R picks a
random r ∈ Z⋆

N , defines h(a‖b‖γ) ← re mod N , memorizes 〈m,a‖b‖γ, r〉 and outputs
the pair (m, r).

Simulation of h. Whenever F requests h(a‖b‖γ) for some triple (a, b, γ) ∈ {0, 1}|a|×
{0, 1}|b| × Im(H), R checks if h(a‖b‖γ) is already defined, in which case the value de-
fined is returned to F . Otherwise, R picks a random r ∈ Z⋆

N , memorizes 〈⊥, a‖b‖γ, r〉,
defines h(a‖b‖γ)← rey mod N and returns h(a‖b‖γ) to F .

These simulations are perfect. After some time τ , F outputs σ and a t-uple (m1, . . . ,mt)
with mi = ai‖bi‖ci. Then R queries h(ai‖bi‖H(ci)) for i = 1, . . . , t to the simulation
of h and tests whether σe =

∏t
i=1 h(ai‖bi‖H(ci)) mod N .

Extraction of yd or extraction of a collision in H. Assume that F outputs
a correct forgery. Then there is for each message mi ∈ {m1, . . . ,mt} at least one record
〈xi, ai‖bi‖H(ci), ri〉 that appears in the transcript where xi ∈ {mi,⊥}. The messages
mi for which xi = mi were given by the simulation of Sk to F during the experiment.
Noting A = {i xi = ⊥}, two cases appear.
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|A| 6= 0: then R returns yd = (σ/
∏

ri)
α yβ mod N where α|A| + βe = 1;

|A| = 0: because at least one message mj = aj‖bj‖cj for j = 1, . . . , t appearing in the
forgery was not output by Sk, we get that the record 〈xj, aj‖bj‖H(cj), rj〉 contains
a message xj = aj‖bj‖c

′
j featuring H(c′j) = H(cj). R then outputs coll = (cj , c

′
j).

Reduction Cost Analysis. Letting ε′1 = Pr[R outputs yd] and ε′2 = Pr[R outputs coll],
we get

ε′1 = Pr[R outputs yd] = Pr[R outputs yd F forges ∧ |A| 6= 0]Pr[F forges ∧ |A| 6= 0]

+ Pr[R outputs yd ¬ (F forges ∧ |A| 6= 0)] Pr[¬ (F forges ∧ |A| 6= 0)]

≥ Pr[R outputs yd F forges ∧ |A| 6= 0]Pr[F forges ∧ |A| 6= 0]

= 1 · Pr[F forges ∧ |A| 6= 0] ,

and

ε′2 = Pr[R outputs coll] = Pr[R outputs coll F forges ∧ |A| = 0]Pr[F forges ∧ |A| = 0]

+ Pr[R outputs coll ¬ (F forges ∧ |A| = 0)] Pr[¬ (F forges ∧ |A| = 0)]

≥ Pr[R outputs coll F forges ∧ |A| = 0]Pr[F forges ∧ |A| = 0]

= 1 · Pr[F forges ∧ |A| = 0] ,

whereby:

ε′1 + ε′2 ≥ Pr[F forges ∧ |A| 6= 0] + Pr[F forges ∧ |A| = 0] = Pr[F forges] = ε .

The reduction R returns yd or coll in at most τ ′ = τ + (qh + qk)O(log3 N) steps. ⊓⊔

C Unforgeability of FDH-Rabin-Screening (Proof of Theorem 4)

We only consider the case of passive attacks. In the passive attack model, we consider
a forger F allowed to make qh queries to the hash oracle h and qk known-message
queries and outputting a list of t messages (m1, . . . ,mt) as well as σ < N . We assume
that with probability at least ε,

σ2 =
t
∏

i=1

h(mi) mod N ,

whereas the signature of at least one of the messages m1, . . . ,mt has never been
provided to F , meaning that no square root of h(mj) for some 1 ≤ j ≤ t is known
to F . We show how to use this adversary to extract square roots. More precisely, we
build a reduction R that uses F to extract a square root of an arbitrary y ∈ Z⋆

N with
probability ε′ = ε/2.

The reductionR works as follows. On input (y,N),R invokes F and transmits N to F .
Then R simulates the random oracle h as well as the signing oracle Sk which returns
upon request up to qk message-signature pairs (mi, σi) with σ2

i = h(mi) mod N .
These simulations are performed as follows.
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Simulation of Sk. Each time F requests a message-signature pair, R chooses (ac-
cording to any arbitrary distribution) some message m ∈ {0, 1}⋆ such that m does not
appear in R’s transcript, picks a random r ∈ Z⋆

N , defines h(m)← r2 mod N , updates
its transcript accordingly, and outputs the pair (m, r).

Simulation of h. Whenever F requests h(m) for some m ∈ {0, 1}⋆, R checks in
its transcript if h(m) is already defined, in which case h(m) is returned. If h(m) is
undefined,R picks a random r ∈ Z⋆

N and a random bit b ∈ {0, 1}, defines h(m)← r2yb

mod N , updates the transcript and returns this value to F .

These simulations never fail to respond to F ’s queries and the distributions of answers
are statistically indistinguishable from the ones F expects. After at most qh hash
queries and qk message-signature queries, F outputs (m1, . . . ,mt) and σ within some
time bound τ . Then R queries h(mi) for i = 1, . . . , t to its own simulation of h and
checks whether σ2 =

∏t
i=1 h(mi) mod N .

Extraction of a square root of y. Since each and every message mi ∈ {m1, . . . ,mt}
has been queried to the hash oracle (either by F or R), R knows an ri such that
h(mi) = r2

i y
bi mod N (if mi was requested to h) or h(mi) = r2

i mod N (if mi was
requested to Sk). Letting A (respectively B) denote the set of indices i such that mi

was requested to h (resp. to Sk), we know that the messages mi for i ∈ B are among
the ones given by R’s simulation of Sk to F throughout the experiment. By definition
of F , B  {1, . . . , t} and hence |A| 6= 0. Consequently, if the verification succeeds then

σ2 =
∏

i∈A

r2
i y

bi

∏

i∈B

r2
i =





∏

1≤i≤t

ri





2

yB mod N ,

with B =
∑

i∈A bi meaning that

(

σ/
∏

ri

)2
= yB mod N .

Since all bits bi are mutually independent and uniformly distributed over {0, 1}, we
have that B is odd with probability 1/2. When B is odd, there exist integers (α, β)
such that αB + 2β = 1. Then

y = yαB+2β =
((

σ/
∏

ri

)α

yβ
)2

mod N ,

and R returns the root x = (σ/
∏

ri)
α yβ mod N with probability one. Summarizing,

since F outputs a valid forgery with probability at least ε within τ steps, our reduction
R returns x such that x2 = y mod N with probability ε′ = ε/2 after at most τ ′ =
τ + (qh + qk)O(log3 N) steps.

D Security Model for Signatures and Macs

D.1 Signature Schemes

A signature scheme SIG = (SIG.Key,SIG.Sign,SIG.Verify) is defined by the three fol-
lowing algorithms:

– The key generation algorithm SIG.Key. On input 1k, the algorithm SIG.Key pro-
duces a pair (pk, sk) of matching public (verification) and private (signing) keys.
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– The signing algorithm SIG.Sign. Given a message m and a pair of matching public
and private keys (pk, sk), SIG.Sign produces a signature σ. The signing algorithm
might be probabilistic.

– The verification algorithm SIG.Verify. Given a signature σ, a message m and a
public key pk, SIG.Verify tests whether σ is a valid signature of m with respect
to pk.

Several security notions have been defined about signature schemes, mainly based
on the seminal work of Goldwasser et al [16,17]. It is now classical to ask for the
impossibility of existential forgeries, even for adaptive chosen-message adversaries:

– An existential forgery is a new message-signature pair, valid and generated by
the adversary. The corresponding security level is called existential unforgeabil-
ity (EUF).

– The verification key is public, including to the adversary. But more information
may also be available. The strongest kind of information is definitely formalized
by the adaptive chosen-message attacks (CMA), where the attacker can ask the
signer to sign any message of its choice, in an adaptive way.

As a consequence, we say that a signature scheme is secure if it prevents existential
forgeries, even under under adaptive chosen-message attacks. This is measured by
the following success probability, which should be small, for any adversary A which
outputs a new pair (m,σ), within a reasonable running time and at most qs signature
queries to the signature oracle:

Succeuf−cma
SIG (A, qs) = Pr

[

(pk, sk)← SIG.Key(1k), (m,σ)← ASIG.Sign(sk;·)(pk) :
SIG.Verify(pk;m,σ) = 1

]

.

D.2 Message Authentication Codes

A Message Authentication Code MAC = (MAC.Sign,MAC.Verify) is defined by the two
following algorithms, with a secret key sk uniformly distributed in {0, 1}ℓ:

– The MAC generation algorithm MAC.Sign. Given a message m and secret key
sk ∈ {0, 1}ℓ, MAC.Sign produces an authenticator µ. This algorithm might be
probabilistic.

– The MAC verification algorithm MAC.Verify. Given an authenticator µ, a mes-
sage m and a secret key sk, MAC.Verify tests whether µ has been produced using
MAC.Sign on inputs m and sk.

As for signature schemes, the classical security level for MAC is to prevent existential
forgeries, even for an adversary which has access to the generation and the verification
oracles. This is measured by

Succeuf−cma
MAC (A, qs, qv) = Pr

[

sk
R
← {0, 1}ℓ, (m,µ)← AMAC.Sign(sk;·),MAC.Verify(sk;·,·) :

MAC.Verify(sk;m,µ) = 1

]

,

where the adversary can ask up to qs and qv queries to the generation and verification
oracles MAC.Sign and MAC.Verify respectively. It wins the game if it outputs a new
valid authenticator.
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E Code Certification With a Hash-Tree

✉
H(P ) = ID = H(h1,2,3,4, h5,6,7,8)

✁
✁
✁
✁
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✁
✁
✁
✁
✁
✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

✉
h5,6,7,8 = H(h5,6, h7,8)

�
�

�
�

�
�

�

❅
❅

❅
❅

❅
❅

❅

✉
h1,2,3,4 = H(h1,2, h3,4)

�
�

�
�

�
�

�

❅
❅

❅
❅

❅
❅

❅

✉
h7,8 = H(h7, h8)

✟✟✟✟✟✟✟

❍❍❍❍❍❍❍

✉
h5,6 = H(h5, h6)

✟✟✟✟✟✟✟

❍❍❍❍❍❍❍

✉
h3,4 = H(h3, h4)

✟✟✟✟✟✟✟

❍❍❍❍❍❍❍

✉
h1,2 = H(h1, h2)

✟✟✟✟✟✟✟

❍❍❍❍❍❍❍

✉
h8

h8 ←− H(INS8)

✉
h7

h7 ←− H(INS7)

✉
h6

h6 ←− H(INS6)

✉
h5

h5 ←− H(INS5)

✉
h4

h4 ←− H(INS4)

✉
h3

h3 ←− H(INS3)

✉
h2

h2 ←− H(INS2)

✉
h1

h1 ←− H(INS1)


