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Abstract. The class of Rotation Symmetric Boolean Functions (RS-
BFs) has received serious attention recently in searching functions of
cryptographic significance. These functions are invariant under circular
translation of indices. In this paper we study such functions on odd num-
ber of variables and interesting combinatorial properties related to Walsh
spectra of such functions are revealed. In particular we concentrate on
plateaued functions (functions with three valued Walsh spectra) in this
class and derive necessary conditions for existence of balanced rotation
symmetric plateaued functions. As application of our result we theoreti-
cally show the non existence of 9-variable, 3-resilient RSBF with nonlin-
earity 240 that has been posed as an open question in FSE 2004. Further
we show how one can make efficient search in the space of RSBF's based
on our theoretical results and as example we complete the search for
unbalanced 9-variable, 3rd order correlation immune plateaued RSBF's
with nonlinearity 240.
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1 Introduction

While designing cryptographically significant Boolean functions, many require-
ments have to be fulfilled, such as balancedness, nonlinearity, algebraic degree,
correlation immunity, resistance from algebraic attacks etc. Some of them may
contradict each other, e.g., bent functions, which have highest possible nonlinear-
ity, can not be balanced. Getting the best possible trade-off among these param-
eters has always been a challenging task as evident from literature (see [10,11,13]
and the references in these papers). The class of Rotation symmetric Boolean
functions (RSBF's) is a class of functions that are invariant under circular trans-
lation of indices. It has been shown that many functions in this class are rich in
terms of cryptographic properties [2,5,12,13]. Further the RSBF class is much

smaller (= 2%) compared to the space of n-variable Boolean functions (22") and



hence search techniques work much better in this smaller class. Given Boolean
functions on even number of input variables, the best possible nonlinearity can
be achieved when the magnitude of all the Walsh spectra values are same. How-
ever, this is not possible when the number of input variables are odd. In such
a scenario, the functions with three valued Walsh spectra 0, £\ may be inves-
tigated [1,15], which are known as plateaued functions. It has been noted that
there are functions with very good cryptographic properties in this class [1,15].

In [13], two data structures, the matrices ,.4 and , B, were presented that
made the search for RSBFs more efficient. The matrix ,,B is used for fast gener-
ation of the truth table from its algebraic normal form, and ,,.A is used for fast
calculation of the Walsh transform for the RSBF. In this paper we investigate
the matrix ,,.A in detail. We introduce a new matrix, ,#, which is a sub matrix
of ,A, for odd n, after some permutation. This allows us to improve the calcula-
tion of the Walsh transform for RSBFs and provides much better combinatorial
insight to the problem. Our matrix structure can be used to make a concrete
study on plateaued RSBFs on odd number of variables and we could provide
necessary conditions on existence of balanced plateaued RSBFs. The construc-
tion of 9-variable, 3-resilient Boolean function with nonlinearity 240 is still an
unsolved open question in literature [10,11]. In [13] an estimate to search such
functions in rotation symmetric class has been presented which needed search
of 243 many Boolean functions and could not be completed in [13]. Since such
functions are plateaued functions, we apply our results to theoretically show the
nonexistence of 9-variable, 3-resilient, nonlinearity 240 functions in the rotation
symmetric class. Further, using the matrix ,,#, we found efficient search strate-
gies for plateaued RSBFs which is much faster than what presented in [13]. We
also use efficient implementation strategy in software to make the search faster.
As an example of our search efficiency we exhaustively searched for unbalanced
9-variable, 3rd order correlation immune, algebraic degree 5 and nonlinearity
240 RSBFs and found 2 - 8406 many such functions. The search took only 6064
seconds against the estimated time of 3 years!' as presented in [13].

2 Preliminaries

A Boolean function on n variables may be viewed as a mapping from V,, = {0, 1}"
into V7 = {0,1}. We interpret a Boolean function f(z1,...,z,) as the output
column of its truth table, i.e., a binary string of length 2",

f=1f(0,0,...,0), f(1,0,...,0), f(0,1,...,0),..., f(L,1,...,1)].

We say that a Boolean function f is balanced if the truth table contains an equal
number of 1’s and 0’s.

! Note that, we have attempted to make the search (as explained in [13]) faster using
efficient software implementation and found that it is possible to implement opti-
mized code that can search the complete space in 470 hours using a Pentium M 1.6
GHz computer with 512 MB RAM. We have also parallelized the effort over a few
computers and searched the complete space as explained in [6].



The Hamming weight of a binary string S is the number of ones in the string.
This number is denoted by wt(S). The Hamming distance between two strings,
Sy and So is denoted dgy(S1,S2) and is the number of places where S; and S
differ. Note that dgy(S1, S2) = wt(S1 & Ss).

Any Boolean function has a unique representation as a polynomial over Fy,
called the algebraic normal form (ANF),

f(Il,...,:L'n) =ag D @ a;xr; D @ Qi T;T5 D ... D aA12. . nT1T2 - . - T,
1<i<n 1<i<j<n

where the coefficients ag, a;j, ..., a12..n, € {0,1}. The algebraic degree, deg(f),
is the number of variables in the highest order term with non-zero coefficient. A
Boolean function is affine if there exists no term of degree > 1 in the ANF and
the set of all affine functions is denoted A(n). An affine function with constant
term equal to zero is a linear function. The nonlinearity of an n-variable function
f is the minimum distance from the set of all n-variable affine functions,
nl(f) = min (du(f,9)).
geA(n)

Boolean functions used in ciphers must have high nonlinearity to prevent linear
attacks [4,7].

Many properties of Boolean functions can be described by the Walsh trans-
form. Let © = (z1,...,2,) and w = (w1, ...,w,) both belonging to {0,1}" and
Tw=z1w1D...0x,w,. Let f(x) be a Boolean function on n variables. Then the
Walsh transform of f(x) is a real valued function over {0,1}™ which is defined

as
Wiw) = 3 (-1fE@ere,
ze{0,1}»

A Boolean function f is balanced iff W;(0) = 0. The nonlinearity of f is
given by nl(f) = 2""! — max,eo,1} |[Wy(w)|. Correlation immune functions
and resilient functions are two important classes of Boolean functions. A function
is m-resilient (respectively mth order correlation immune) iff its Walsh transform

satisfies
We(w) =0, for 0 < wt(w) < m (respectively 1 < wt(w) < m).

Following the same notation as in [10,11,13] we use (n,m,d,o) to denote
an n-variable, m-resilient function with degree d and nonlinearity o. Further, by
[n,m,d, o] we denote an unbalanced n-variable, mth order correlation immune
function with degree d and nonlinearity o.

2.1 Rotation Symmetric Boolean Functions
Rotation symmetric Boolean functions are invariant under cyclic rotation of
inputs. Let ; € {0,1} for 1 <i < n. For 1 < k < n, we define the permutation
pr(xi) as
k Titk,y if 4 + k S n
pn (i) = -
Titk—n, fi+k>n



Let (x1,%2,...,Tn-1,%n) € V. Then we extend the definition as

p']rcz(l'lax% - 7In—1axn) = (p']rcz(xl)apflrcz(x2)7 s 7p']rcz(l-n—1)7p$l(xn)) Hence, pfl
acts as k cyclic rotation on an n-bit vector.

Definition 1. A Boolean function f is called Rotation Symmetric if for each
input (w1,...,1,) € {0,1}", f(pk(x1,...,20)) = f(w1,...,7,) for 1 <k < n.

The inputs to a rotation symmetric Boolean function can be divided into
partitions so that each partition consists of all cyclic shifts of one input. A
partition is generated by G (x1,22,...,2n) = {pk(z1,22,...,2,)|1 < k < n}
and the number of such partitions is denoted by g,. Thus the number of n-
variable RSBFs is 29». Let ¢(k) be Euler’s phi-function, then it can be shown
by Burnside’s lemma that (see also [12])

k|n

By gn, we denote the number of partitions with weight w. It can also be
checked that the number of degree w RSBFs is (29mv — 1)22;:01 9».:. For the
formula of how to calculate g, ,, for arbitrary n and w, we refer to [12].

A partition, or group, can be represented by its representative element A, ;.
This is the lexicographically first element belonging to the group. The repre-
sentative elements are again arranged lexicographically. The rotation symmetric
truth table (RSTT) is defined as the g,,-bit string

[F(An0), F(An)s s f(An,g. )]

In [13] it was shown that the Walsh transform takes the same value for all
elements belonging to the same group, i.e., Wy(u) = Wy (v) if u € G, (v).

In [13], two matrices were introduced, ,.A and ,B, for efficient search of
RSBFs. The matrix , A is defined as

nAiJ' = Z (_1)$.An)j7

2€G, (An i)

for an n-variable RSBF. Using this g,, X g, matrix, the Walsh spectra for an
RSBF can be calculated from the RSTT as

gn—1

Wildng) = 3 (=10 A

=0

The notation of p¥ can be extended, in a similar fashion, to monomials. For
example, if we have a 4 variable rotation symmetric Boolean function and the
term xyzox3 is present in the ANF, then the terms xox3xy, x32471 and x4z 2o
must also be present in the ANF. We can associate n-bit pattern (z1,za,...,Z,)
of A, ; with a monomial as well. If there is a ‘1’ in the corresponding position we



say that the variable is present in the monomial. Considering this, the g, x gy
matrix B is defined as [13]

WBii= D el

e€G, (An,j)

That is, we take a function with all monomials coming from one group, repre-
sented by A, ;. Then we check the value of the function when the input is A, ;.
This value is put in the location ,,B; ;. With this matrix, one can get the RSTT
of the function from the ANF.

Note that the ANF of the RSBFs are such that if one monomial from a ro-
tational symmetric group is present in the ANF then all the other monomials
of that rotational symmetric group are also present [5,13]. Thus the algebraic
normal from of any RSBF possesses a very nice and regular form. The algebraic
attack (see [3,8] and the references in these papers) is getting a lot of attention
recently. To resist algebraic attacks, the Boolean functions used in the cryp-
tosystems should be chosen properly. It is shown [3] that given any n-variable
Boolean function f, it is always possible to get a Boolean function g with degree
at most [f] such that fx*g is of degree at most [%]. Here the functions are con-
sidered to be multivariate polynomials over GF(2) and f * ¢ is the polynomial
multiplication. Thus while choosing an f, the cryptosystem designer should be
careful that it should not happen that degree of f x g < [§] where g is also a
low degree function. There is no known result of weakness on cryptographically
significant RSBFs yet and we believe that given the algebraic structure of the
RSBFs, they will be resistant against the algebraic attacks if the parameters are
chosen properly. Though we are not studying this aspect in this paper, we think
this could be an important research problem and this gives a good motivation
to study the RSBF's for other cryptographic properties.

3 Walsh Spectra of RSBF's

In this section we derive combinatorial results related to RSBF's and their Walsh
spectra. We first start with a technical result that counts the number of groups
of ¢ elements when ¢|n. This result will be used later to analyse the Walsh spectra
of balanced plateaued RSBFs. In fact, the result is true for classes of cyclically
shift-invariant binary sequences irrespective of their usage in RSBF's.

Theorem 1. For an n-variable RSBF the number of groups with t elements
is dnyt = %Zkhs p(E)2ecdmk) o for t = 1,2,...,n, where u(t) is the Mdobius
function, i.e., u(t) =1,ift =1, u(t) =0, ife; > 2 and p(t) = (—1)™, otherwise,
when t = pS*ps? ... pEm is factorized in powers of m distinct primes, p1,pa ... Pm.

Proof. Let S = {0,1}"™ and = € S. Denote by p; the number of elements for
which pf (z) = z. Since the number of orbits for the permutor pf, is ged(n,t),
and each orbit must contain all 0’s or all 1’s to fulfill the condition pf (z) = =,
the number of combinations must be p; = [{z € S : pl,(z) = x}| = 28w A
recursive expression for d, ; can be derived as



Qs = 2 and g = (1 = Sy ek - dus)

Each element z € S must be counted once in some group t. First we count
how many elements will be counted in groups of size ¢, and then divide this
number by ¢, in order to get the number of such groups d,, ;. Hence, t - dy, + =
2scd(n,t) Z,f‘jt kedpgk =Ygk dnk = 280d(n:t)  We use Mobius function pu(t)

to invert the expression. Hence, d,, ; = %Zk‘t ,u(%)2g°d(””“). a

Corollary 1. g, =Y./ dy; and |[S| =37 t-dy: = 2"

3.1 Investigation of ,,.A Matrix for n Odd

We consider ,, 4 when n is an odd number and note that the number of groups
with even wt(A,;) is the same as the number of groups with odd wt(A,, ;).
Moreover, if we consider all 4,, ; with even Hamming weights and denote by A, ;
the representative element for the group containing the complement of A, ;, it
is easy to note that G,,(4,,;) # Gn(4,,;) for any 4, j. Hence, the set of groups
can be divided into two equal parts containing representative elements of even
weight and odd weight, respectively.

Permute the matrix ,.4 using a permutation 7 such that the first g, /2 rows
correspond to the representative elements, A, ;, of even weight and the second
gn/2 rows correspond to the complements of them. That is we first list the
representative elements A, ; with even weights in lexicographical order for 2 = 0
to £~ —1. Then we put the elements (these are of odd weights) in the order such
that A, ; = ZM»,% for i = % to g, — 1. In the permutation we swap rows and
the corresponding columns of ,,.A. We denote the resulting matrix by ,,.A™ and
show that ,, A™ is of the form

T n% TL%

where ,,H is a sub matrix of ,, A™.

Let us consider n = 5, for which g, = 8. In [13], the group representa-
tives are ordered lexicographically, i.e., (0,0,0,0,0), (0,0,0,0,1), (0,0,0,1,1),
(0,0,1,0,1), (0,0,1,1,1), (0,1,0,1,1), (0,1,1,1,1), (1,1,1, 1, 1). We get the ma-
trix 5.4. On the other hand if we permute them as (0,0,0,0,0), (0,0,0,1,1),
(0,0,1,0,1), (0,1,1,1,1), (1,1,1,1,1), (0,0,1,1,1), (0,1,0,1,1), (0,0,0,0,1),
i.e., even weight elements and then the corresponding odd weight elements, we
get the matrix 5. 4™ which is of a nice sub matrix structure.

1 11 11111 1 11 1111 1
5 3 1 1-1-1-3-5 5 1-3 1| 5 1-3 1
5 1 1-31-3 1 5 5-3 1 1 5-3 1 1
q- |5 1-3 13 115 o |2 11315 1 1-3
T 131 3 15 |’°%" T |1 1 1 1f-1-1-1-
5-1-3 1| 3-1 1-5 5 1-3 1/-5-1 3-1
5-3 1 1] 1 1-3 5 5-3 1 1/-5 3-1-1
1-1 1 1]-1-1 1-1 5 1 1-3-5-1-1 3




We now present the proof with the following results. Let X AY and X @ Y
denote bitwise AND respectively XOR, for the vectors X and Y.

Proposition 1. Let A = (ay,as,...,a,) € {0,1}" and B = (b1, bs,...,b,) €
{0,1}". If wt(A) and wt(B) is an even number and if n is odd, then

n n n

Plai Abi) = P @i Abi) = Plai Ab) =1 @@ Ab). (1)

i=1 i=1 i=1 i=1
Proof. We have (X AY)® (X AY) = (X ®X)AY = 1AY =Y. Since
D, ((ai Ab) @ (@ A bi)) = @™, b = 0, it follows that @™ (a; A b;) =
@, (@; Ab;). The second equality in (1) also follows immediately. Similarly, we
can write (X AY)®(XAY) = (X®X)AY =1AY =Y. Since P}, ((ai/\gi) ®
(a; /\Ei)) =@, bi = 1, it follows that P (a; Ab) =1 P (@ Ab) O

Theorem 2. When n is odd, the matriz , A" is of the form

™ __ TLH TLH
A= (oo,

where ,H is a % x & matriz.

Proof._Since the matrix ,, A™ is written such that 4,, ; corresponds to row/column
i and A, ; corresponds to row/column g,/2 + i, we can write the following. For
0 <r,c < gn/2 we have

D DR G D DI G

2€Gn(An,r) €EG (An, )
z-A gn n AT
= n,ct — (@A o,
nA g = > (-1 T = (—1)Pi= (@re,)
2€GL(An,r) T€G, (An,r)
= @ Ap,c — T (TAAG oy,
nAriop e = E : (1) = E (—1)Di=a @M
2€Gn(A, 4 g ) T€G (An )
z-A an n o (mAA
— n,c+ — i=1 (ZTiN n,c);
nA:+97"7c+gT" - § : (-1) 2 = E (—1)ea 1 (me)i)
zEGn(An‘r+g_2ﬂ) z€Gy (An,r)

Since the number of 1’s in A, ; is even, 0 < i < g,,/2, it follows from Propo-
sition 1 that , A7 . = AT nA nA O

_ ™ — ™
ret 9 T T+ e T T8 e i
Corollary 2. The first column of the matriz n A contains exactly dy, ¢ values of

t, fort =1,2,...,n. Also, for n odd, d,: is an even number.

Proof. The first column ,.A4; o is constructed as ,.A4; 0 = ZweGn(An i)(—l)x'o =

|Gr(Ap,)|, since we know that there are dy; groups with |G, (A, )| = t, the
first part of the corollary follows.

We have proved that for odd n, ,4 can be constructed through the matrix
nH which must contain % groups of size ¢ in the first column. Hence, d,, ; is
even. a



Remark 1. In Subsection 2.1 we defined the RSTT of an RSBF as the g,-
bit string [f(An0), f(An1),-. -, f(Ang._1)], where Ap o, Ap1,..., Apg,_, areor-
dered lexicographically. Given Theorem 2, from now on, we consider the RSTT™,
where we first list the representative elements A, ; with even weights in lexico-
graphical order for i = 0 to 2= — 1. Then we put the elements in the order such
that A, ; = A, i for i = g" to g, — 1. In the rest of the document, we will
use only this orderlng (permutatlon) and by abuse of notations, apply (RSTT,
RSTT™) and (,A4,, A™) as same thing unless specifically mentloned.

3.2 Improved Walsh Transform Computation

The fact that , A" is of this form reduces the number of operations needed to
calculate the Walsh spectra for an RSBF. For notation purposes, divide the
RSTT into two partitions, o; and oy, such that RSTT = {0,1}9» = {0,1}9~/2 ||
{0,1}9/2 = &, || 2. We define a one-to-one mapping

In In * * @ e
oo o2 = 10,18 0,1} — of || 0§ = (-1 F || ()0

ie., if o1, = 0 then o}, = 1° = +1, otherwise o}, = (—1)! = —1.
Then we can define

wy = O—T nH,wz = U; nH (2)

and Wy (w) = (w1 +ws) || (wy —w2)). In the following, we will sometimes refer
to wy and we as partial Walsh transform, or just pWT. To compute the Walsh
transform using the matrix ,,.A, g2 operations must be done. In the case when

‘ 2 )
nH is used, the number of operations is instead 2 - (97")2 +gn = 97" + g, < g2.

3.3 Plateaued RSBF's

A Boolean function on odd number of variables is said to be plateaued [1,15]
if its Walsh transform takes only the three values 0 and £\, where X\ is some
positive integer. We call A the amplitude of the function.

Following the notation (2) from Subsection 3.2, for plateaued RSBFs we get,

wy;, +wy; =0o0r £ A\ wy, —wy, =0o0r £A. (3)

There are only 9 valid pairs (wy,,ws,) fulfilling (3) and they are listed in Table 1.
This means that w;, and wy, € {0, £ A/2, £ A}, i.e., they can only take 5
values. The partition of the matrix ,.A™ as in Theorem 2 and Table 1 give us
the following result.

Proposition 2. Consider an RSBF on odd number of variables represented by
the RSTT (0’1 || 0'2).

1. If it is plateaued then the functions with RSTT (o2 || 01), (o1 || 72), (@2 ||
01), (01 ]| 92), (@2 || 01), (01 || 02) and (o2 || o1) are also plateaued.

2. If it is correlation immune (respectively resilient) then the functions with
RSTT (o2 || 01), (o1 || 92), and (o2 || o1) are also correlation immune
(respectively resilient).



Table 1. Possible values for wi; and ws; when searching for plateaued RSBFs.

w1, + w2, (w1, — w2, w1, w2,
0 0

0 +A +A/2 —A/2

0 - —A/2 +A/2

+A 0 +A/2 | 4A/2
+A +A +A 0
+A - 0 +A

-A 0 —A/2 | =A/2
—A +A 0 —A
—A —A —A 0

3.4 Necessary condition for balanced plateaued RSBF's

Based on the above discussion, we now present concrete results on necessary
conditions for existence of balanced plateaued RSBFs.

Theorem 3. For n odd, if there exist an n-variable balanced plateaued RSBF
with amplitude \ = 2%, then the following condition must be satisfied:
There exist ki ...k}, and k' ... k!, kf € [0... dni) and 7 € {0,1}, such that

2
n I TAE2" n " __ —1tA+2"
thlt'kt— 4 ,thlt'kt— 4 .

Proof. If the function (oy || o2) is balanced, then from Table 1, the partial
Walsh transform (pWT) for the first column must be {0, £*}, i.e., (o7 -, H)[0] =

T 3,(05 - H)[0] = =7 - 3, for 7 € {0,1}. In the first column there are d2
groups of size t. Let for kj of them o} get (+1), and for the rest (dg" — k)

it will be (-1). Then pWT for the first column is expressed as (o7 - ,H)[0] =

Silt k= (Bt -kt =73 =20 ket =R B
n T " dn,t
Sigtekp =T for kp =[0... %L
The similar expression for (o3 - ,H)[0] is 37, ¢t k) = =222 for k) =
[0... %), O

2

Now we present the result for non existence of (9,3,5,240) RSBF, which has
been posed as an open question in [13].

Theorem 4. A (9,3,5,240) RSBF can not ewist.

Proof. Note that this function is plateaued [11]. Thus we analyze 9-variable
balanced plateaued functions for A = 2% and for this we need to study the
oH matrix. Since 2° = 512, for a balanced function to exist, it must be that
1 ki +3-ks+9- -k = W following Theorem 3 and we get the only
solution k] = 1,k} =0,ky =15 and k' =0,k = 1,kj =13 for 7 = 1.

Let us now consider the value of W;(011011011), which must be any one of
0,+32. Let W;(011011011) = wy; + wy,. From Table 1 we get that wy,, w,; can
take values 0,+16. To get the exact values of w;,,ws; one needs to look at the



last but one column of the matrix 9. The matrix is as follows.

i+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 5 1 1 5 1 1 1 1 1-3-3 1-3 1 5-3-3-3-7 1 1 1 1 1-3-3-3-3 5
9 1.5 1 1 1 1-3 1-3 1 1-7 1-3 1-3-3-3 5 1-3-3-3 1 5 1 1-3 5
9 1.1 5-3 1-3 1-3-3 -3 1-3-3-3-3 5 5 1-3 1 1-3 1 1-3 1 1 9 5
9 5 1-3 1-7-3 1-3-3 1-3 5 1-3 1 1 1 5 5 1 1-3 1 1 1-3-3-3 1
9 1.1 1-7 5-3-3-3 1 1-3 5 1 1-3-3-3 1 1-3 1 5 1-3 1 1 1-3 5
9 1.1-3-3-3 1-3 1-3-3 5 1 5 5 1 1 1 1-3 5 1 1-7-3-3 1 1-3 1
9 1-3 1 1-3-3 1-3 5 1-3-3 1 5 5 1 1-3 5-3-3 1-3-3-3 1 1 9 1
9 1.1-3-3-3 1-3 1 5 5 55 1-3-3 1 1 1 1-3-3-7 1 1 5-3 1 1-3 1
9 1-3-3-3 1-3 5 5 1 5 1-3-3 1-3 1 1-3 1 1 5 1-3 1 1 1-=7-3 1
9-3 1-3 1..1-3 1.5 5 1-3-3 1-3 1 1 1 5-3 1 1-3 1-7 1-3 5-3 1
9-3 1.1-3-3 5-.3 5 1-3 1.5-3 1 1 1 1-3 1-3 1-3 1-3 5-3-3 9 1
9 1-7-3 5 5 1-3 1-3-3 5 1-3-3 1 1 1 1 5-3 1 1 1-3-3 1 1-3 1
9-3 1-3 11 5 1-3-3 1-3-3 1 5 1 1 1 5-3-7 1-3 1 1 1 5 —-3-3 1
9 1-3-3-3 1.5 5-3 1-3 1-3 5 1-3 1 1-3 1 1-3 1 5 1 1-7 1-3 1
9 5 1-3 1-3 1.5 1-3 1 1 1 1-3-3-3-3-3-3-3 1 1 1-3 1 5 5 9 —3
9-3-3 5 1-3 1 1 1 1 1 1 1 1 1-3-—-7 1 1 1 5-3-3 5 —-3-3 5 —-3-3 1
9-3-3 5 1-3 1 1 1 1 1 1 1 1 1-3 1-7 1 1-3 5-3-3 5—-3-3 5 -3 1
9-3-3 15 1 1-3 1-3 5-3 1 5-3-3 1 1 1-3 1-3 5-3 1 1-3-3 9 1
9-7 5-3 5 1-3 5-3 1-3 1. 5-3 1-3 1 1-3 1 1-3 1-3 1 1 1 1-=-3 1
9 1 1 1 1-3 5-3-3 1 1-3-3-7 1-3 5-3 1 1 5 1 5 1-3 1 1 1-3 -3
9 1-3 1.1 1 1-3-7 5 1 1 1 1-3 1-3 5-3-3 1 5-3-3 1 5 1 1-3 -3
9 1-3-3-3 5 1 1 1 1-3-3 1-3 1 1-3-3 5 1 5-3-3-3 5 1 1 1 9 -3
9 1-3 11 1-7-3 1-3 1 1 1 1 5 1 5—-3-3-3 1—-3-3 5 1 5 1 1-3 -3
9 1 1 1 1-3-3-3 5 1 -7-3-3 1 1-3-3 5 1 1-3 1 5 1 5 1 1 1-3 -3
9-3 -3 1.1-3-3-3 1 1 5-3 1 1 1-3-3 1 1 1 5 1 5 1-3-3-3 9 —3
9-3 1.1-3 1 1 1 1 1-3-3 1 5-7 5 5-3-3 1 1 1 1 1 1-3 5 -3 -3 —3
9-3 1.1-3 1 1 1 1-—-7 5-3 1-3 1 5—-3 5-3 1 1 1 1 1 1-3-3 5 -3 -3
3-1-1 3-1-1-1 3-1-1-1 3-1-1-1 3-1-1 3-1-1-1 3 -1-1 3-1-1-1-1
9 5 5 5 1 5 1 1 1 1 1 1 1 1 1-3 1 1 1 1-3-3-3-3-3-3—-3-3-3-7

Let us represent the last but one column of the matrix ¢ as a column matrix
C. Thus wy; = 07C and wy; = 05C, where o7, 0 are as given in Subsection 3.2.
The values ki, k{ correspond to the top most element of C, which is 1 and the
values k%, k% correspond to the last but one element of C, which is —1. The
values of k§, k§ correspond to the other 28 values in the column matrix C, where
twenty one many values are —3 and seven many values are 9. Let kj = a' + b’
and k§ = a” +b", where @', a"” correspond to the values —3 and o', " correspond
to the values 9. Now wy, = 07C =1x1+(—1) x(=1)+(2a'—21) x (—3) + (2b' —
7) x9=2—6a"+ 18V'. Also, we have o’ + b’ = k{ = 15. Thus the only possible
solution is ¢’ = 12, = 3 and in that case w;, = —16. Similarly, ws, = 03C =
(1) x 141 x (=1)+ (20" — 21) x (=3) + (26" — 7) x 9 = —2 — 6a’ + 18b". Also,
we have a” +b" = k{l = 13. Thus the only possible solution is a’ = 9,b"” = 4 and
in that case wy, = 16. Hence W;(011011011) = w1, + w2, = 0. From Theorem 2,
it follows that if W;(011011011) = w1, + wo, then W;(001001001) = w1, — wo,.
Thus, W;(001001001) = —32 # 0. Hence, from definition, the function can not
be 3-resilient. This proves that there can not be any (9, 3,5,240) RSBF. O

We have checked the necessary condition is satisfied for A = 2" for odd
composite n = 15,21 and 25. For n = 15, the solutions are k} = 1,k} = 0,k =
1,k5 =550 and ki = 0,kY = 1,k = 2,k{y = 541 when 7 = 1. For n = 21, the
solutions are k{ = 0,k = 1k, = 1,k =24990 or k] = 0,k = 1,k, =4,k =
24989 or K} = 0,kf = 1,k, = 7,k = 24988 and k) = 1,k = 0,k = 2,kl, =
24941 or kY = 1,k = 0,kY = 5,kl, = 24940 or kY = 1,k{ = 0,k7 = 8, k), =
24939 when 7 = 1. For n = 25, the solutions are k] = 1,kf = 1,k}; = 335626
and k' = 0, kf = 2, kh; = 335462 when 7 = 1. Note that there is no solution with
7 = 0. It will be interesting to find out some general solution pattern for odd
composite n’s from the necessary condition of Theorem 3, which is done for odd
prime n’s in Corollary 3 below. Further we need to study the other columns of




the matrix ,, as in the proof of Theorem 4 if we like to prove the non existence
results for these cases.

Corollary 3. For a balanced plateaued RSBF on n > 3 wvariables, n prime, T
can only be (+1), i.e., pWT must take the value £A/2. Further, the necessary

condition of Theorem 3 is always satisfied for n prime and A = 2°5.

Proof. For n prime, in the first column of ,7 we have 1 row with (+1) and
2n 1l

rows with values (+n). With 7 = 0 we require o] such that pWT = 0,
ie., (k-n=x1) must be 0, for some k. For prime n > 3 there is no such k.

Now we prove the second part. For n prime, d, 1 = 2 and d, , = 2"{2. Thus

we get an equation of the form 1-k; +n -k, = # = +2"% + 272 where
ki € [0,1] and kn € [0, ...,
integer solution for ki, ky,.

Note that for n > 3 prime, n|2" ! — 1, ie., n|(2"2 +1)(2"2z —1).

If n|(2"2" + 1), then n|2"z (22 +1), i.e., n|2"2 4 272, Thus for 7 = 1,
we take k| = 0. Also, n|2"%° + 272 — (2"F* 4+ 1), ie, n| — 2" 422 — 1.
Thus for 7 = —1, we take kf' = 1.

Ifn|(2"2 —1), then n|2"2° (2”2 —1),ie.,n|—2"% +2" 2. Thus for r = —1,
we take k! = 0. Also, n| — 2" + 272 4 (2"F — 1), i.e., n|2"F 4272 — 1,

27:,71

T_l] We show that it is always possible to get an

Thus for 7 = 1, we take k] = 1. a
Existence of (n, ”T’:", "T“, 2n—1 2nT_1) functions for odd n is an important

open question in Boolean function literature [10,11,13]. These functions are
plateaued with A = 2°%". The only results available are for n = 5,7 as described
in [9]. Corollary 3 shows that the necessary condition is satisfied for any odd
prime n when we search in the class of RSBFs. This gives a partial theoretical
justification why such functions were available in the RSBF class for n = 5,7
as observed in [12]. Thus it will be interesting to target the problem for n = 11
also.

4 Search Strategy

Based on the theoretical results discussed so far, we present how these results
can be used for actual search for RSBFs with certain cryptographic properties.
It has been observed in [13] that to search for (9, 3, 5, 240) one needs to check for
243 many RSBFs. Though we have already proved theoretically that such RSBF
does not exist, we now show that the search can be reduced to 23* only. This
search also produces the [9, 3,5, 240] functions and we implement the search to
get the complete list of [9,3,5,240] RSBFs. Apart from the theoretical results,
we exploit nontrivial software implementation to make the search much faster.
This is important since the search space becomes larger for higher number of
variables and best possible software implementation is required for actual search.



The algorithm uses only the matrix ,7 in the search. The idea behind the
algorithm is very simple and it can be used to find plateaued RSBF's for a desired
Walsh transform, e.g., m-resilient or mth order correlation immune.

The first step of the algorithm is to search the complete set of o;1’s such that
wy = o7 - ,H only take values from the set wy;, € {0,£A/2,£A}. Note that in
the positions where the Walsh transform must be zero, the corresponding values
of the pWT must be wy, € {0,+A/2}, three valued only. Let us denote this set
of 01’s by S;,. From (2) and Table 1 we see that we = o9 - ,H is calculated in
the same way and has the same restrictions, so it means that S,, = S,, .

The second step of the algorithm is to calculate the Walsh transform for
(01 || o2) in the space S,, X S,,. It means that we need to save S,, in a list or
in a file.

The time complexity for the first step to find S,, is O(29%/2) and the second
step has the complexity O(|S,,|?), so the total time complexity is O(29%/%) +
O(|Sy, |?)- Note that in this strategy we do not care about what degree we have
on the functions, all functions with desired Walsh spectra will be found.

Now we describe how to use the proposed search strategy to implement an
exhaustive search for [9,3,5,240] functions. For RSBFs on 9 variables there
are gy = 60 groups and, hence, the total search space for these functions is 259,
However, in the ANF there can not be terms of degree 6, 7, 8 or 9 and, at least one
term of degree 5 must be present. Therefore, the search space does not include
all RSBF's on 9 variables, instead the search space is of size 2Zi=1 991 (2995 —1) =
229(21 — 1) ~ 2%3. This is the complexity of the algorithm when one first uses
the ,,B matrix and then the ,.A matrix in the search [13], without considering
nH. The term of degree 0 is not considered in the search space.

The restrictions on Walsh spectra for a [9, 3, 5,240] function are Wy (w) = 0,
for 1 < wt(w) < 3 and Wy(w) = 0 or & 32, for wt(w) = 0,wt(w) > 3. We do not
use the restriction that the function has a certain degree, instead we only use
the matrix ,H to reduce the time complexity. Since g9 = 60, the matrix ,H is of
size 30 x 30. We divide the RSTT into 2 parts, o1 and o2, each of 30 bits, and
generate the set S,,. By simulation we found that this set is of size |S,, | ~ 217
so there is no memory problem with storing the complete set in memory. This

will give us the total search of 23*, which is 2° times faster than only using , A
and ,B as done in [13].

Table 2. Different search strategy complexities.

Boolean functions on 9 variables 2512

RSBFs on 9 variables 200
Finding [9,3,5,240] using matrices .4, ., B [13][2**
Finding [9,3,5,240] using our strategy 234




Although the complexity is reduced it is important to minimize the constant
time needed to check each candidate pair. For fast implementation purposes we
divide the matrix , into two sections, H; and H, as shown in Figure 1, each
containing 15 rows. We divide o; in the same way and denote the two parts

0 2 4 6 8 <= wt(w)
1 [T i i
. I I
Ola Hl
. I I
I | Iy
. I "
ool |11 g, 1
. I I
U | |
[T T [ [1<=pWT
~ —— ——

{0,£16} {0,+16,+£32} {0, %16}

Fig. 1. For fast implementation purposes, the matrix ,H is divided into sections.

01 = (014 || 01p). For each section, the sum of the rows is precomputed for each
of the 2'® possible inputs, and these sums are stored in the table H ,5:[2][2'%][30],
having 2 sections with 2'® possible inputs for each, and the result is a vector of
30 integers. Now to calculate the partial Walsh transform we only need 2 table
look ups and a maximum of 30 integer summations. Unnecessary computation
can be avoided by calculating the values of the pWT one by one. If one value
is not valid, then we stop and select the next oy. Since Wy(w) must be 0 for
wt(w) < 3, the pWT in these positions must be in {0,+16}. Note that the
complement of the representative elements of weight 6 and 8 have weights 1 and
3, so in these positions pWT must also be in {0,+16}. In the rest positions,
pWT € {0,416, £32}. These restrictions can be seen in Table 1. When S, is
found, we try all combinations for the cartesian product (S,, X Ss,) and check
if the Walsh transform is valid for a [9, 3, 5,240] function. Since S,, = Sy, , We
can use the same precomputed tables for fast calculation of ws = o5 - , H.

The exact search time required is 6064 seconds on a computer with Pentium
M 1.6 GHz processor and 512MB RAM using Windows XP operating system.
In [13], it was estimated that the search will take almost 3 years to complete the
search on a single Pentium 1.6 GHz computer with 256 MB RAM using Linux
7.2 operating system.

Using our strategy we could check that there is no resilient RSBFs with
parameters (9,3, 5,240) (already proved theoretically) and there are 8406 corre-



lation immune functions with the same parameters [9, 3, 5, 240], when the term
of degree 0 is not considered. That is if we also consider the complement of the
functions then there are 2 x 8406 many functions.

Let us denote the autocorrelation value of an n-variable Boolean function
f with respect to the vector a as As(a) = Zwe{m}n(—l)f(””)@f(’”@“), and the
absolute indicator Ay = max, ¢ g1} 0x5|A7(@)|- Low autocorrelation value is
important for functions in cryptographic applications [14]. Thus we also check
the Ay value for these [9, 3, 5, 240] functions.

The Ay values of the functions are 80 (4956 many out of 8406), 96 (1020), 112
(312), 136 (180), 152 (1734) and 224 (204). A few correlation immune RSBFs
with these parameters have been reported recently using simulated annealing
based heuristic search [2]. We execute the search completely and show that the
search space can be exhaustively analysed implying that the heuristic method is
not required in this case.

It should be noted that we have only exploited the ,# matrix but not used
the degree restrictions on the functions. The ,B matrix may also be used for
faster search with ,H.

Motivated by Corollary 3 and the discussion after it, we also attempted
the search for (11,4,6,992) functions. Note that these functions are plateaued.
Existence of these functions is not yet known. Since g;; = 188, the 1;H matrix
is 94 x 94 and the method of search that we attempt here will not work. Even if
using the degree restriction and use of ,8 matrix does not come to much help.
We attempted some heuristic search and found an (11, 1,6, 992) plateaued RSBF
with Ay value 240. Heuristic search, as attempted in [2] may come to help in
such a scenario.

5 Conclusion

In this paper we studied the Walsh spectra of rotation symmetric Boolean func-
tions. The set of rotation symmetric Boolean functions is much smaller than the
complete space of Boolean functions. Even then complete search of RSBFs is
not practical for n > 9. Our results provide combinatorial insight to the Walsh
spectra of the functions and we show that some necessary conditions on exis-
tence of certain kinds of functions can be derived from them. In particular, we
studied the plateaued RSBFs in this paper. The central result here is to show
that the ,, A matrix can be written as

(i)

after certain permutations when n is odd. Further research in this direction is to
study these matrices in more details and to see whether some methods can be
explored to analyse functions on higher number of variables. It should also be
noted that the matrix structure we present here cannot be extended for n even
and studying that case is also an interesting research area.
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