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Abstrat. The lass of Rotation Symmetri Boolean Funtions (RS-

BFs) has reeived serious attention reently in searhing funtions of

ryptographi signi�ane. These funtions are invariant under irular

translation of indies. In this paper we study suh funtions on odd num-

ber of variables and interesting ombinatorial properties related to Walsh

spetra of suh funtions are revealed. In partiular we onentrate on

plateaued funtions (funtions with three valued Walsh spetra) in this

lass and derive neessary onditions for existene of balaned rotation

symmetri plateaued funtions. As appliation of our result we theoreti-

ally show the non existene of 9-variable, 3-resilient RSBF with nonlin-

earity 240 that has been posed as an open question in FSE 2004. Further

we show how one an make eÆient searh in the spae of RSBFs based

on our theoretial results and as example we omplete the searh for

unbalaned 9-variable, 3rd order orrelation immune plateaued RSBFs

with nonlinearity 240.

Keywords: Boolean Funtions, Balanedness, Combinatorial Cryptography,

Correlation Immunity, Nonlinearity, Walsh Transform.

1 Introdution

While designing ryptographially signi�ant Boolean funtions, many require-

ments have to be ful�lled, suh as balanedness, nonlinearity, algebrai degree,

orrelation immunity, resistane from algebrai attaks et. Some of them may

ontradit eah other, e.g., bent funtions, whih have highest possible nonlinear-

ity, an not be balaned. Getting the best possible trade-o� among these param-

eters has always been a hallenging task as evident from literature (see [10,11,13℄

and the referenes in these papers). The lass of Rotation symmetri Boolean

funtions (RSBFs) is a lass of funtions that are invariant under irular trans-

lation of indies. It has been shown that many funtions in this lass are rih in

terms of ryptographi properties [2, 5, 12, 13℄. Further the RSBF lass is muh

smaller (� 2

2

n

n

) ompared to the spae of n-variable Boolean funtions (2

2

n

) and



hene searh tehniques work muh better in this smaller lass. Given Boolean

funtions on even number of input variables, the best possible nonlinearity an

be ahieved when the magnitude of all the Walsh spetra values are same. How-

ever, this is not possible when the number of input variables are odd. In suh

a senario, the funtions with three valued Walsh spetra 0;�� may be inves-

tigated [1, 15℄, whih are known as plateaued funtions. It has been noted that

there are funtions with very good ryptographi properties in this lass [1, 15℄.

In [13℄, two data strutures, the matries

n

A and

n

B, were presented that

made the searh for RSBFs more eÆient. The matrix

n

B is used for fast gener-

ation of the truth table from its algebrai normal form, and

n

A is used for fast

alulation of the Walsh transform for the RSBF. In this paper we investigate

the matrix

n

A in detail. We introdue a new matrix,

n

H, whih is a sub matrix

of

n

A, for odd n, after some permutation. This allows us to improve the alula-

tion of the Walsh transform for RSBFs and provides muh better ombinatorial

insight to the problem. Our matrix struture an be used to make a onrete

study on plateaued RSBFs on odd number of variables and we ould provide

neessary onditions on existene of balaned plateaued RSBFs. The onstru-

tion of 9-variable, 3-resilient Boolean funtion with nonlinearity 240 is still an

unsolved open question in literature [10, 11℄. In [13℄ an estimate to searh suh

funtions in rotation symmetri lass has been presented whih needed searh

of 2

43

many Boolean funtions and ould not be ompleted in [13℄. Sine suh

funtions are plateaued funtions, we apply our results to theoretially show the

nonexistene of 9-variable, 3-resilient, nonlinearity 240 funtions in the rotation

symmetri lass. Further, using the matrix

n

H, we found eÆient searh strate-

gies for plateaued RSBFs whih is muh faster than what presented in [13℄. We

also use eÆient implementation strategy in software to make the searh faster.

As an example of our searh eÆieny we exhaustively searhed for unbalaned

9-variable, 3rd order orrelation immune, algebrai degree 5 and nonlinearity

240 RSBFs and found 2 � 8406 many suh funtions. The searh took only 6064

seonds against the estimated time of 3 years

1

as presented in [13℄.

2 Preliminaries

A Boolean funtion on n variables may be viewed as a mapping from V

n

= f0; 1g

n

into V

1

= f0; 1g. We interpret a Boolean funtion f(x

1

; : : : ; x

n

) as the output

olumn of its truth table, i.e., a binary string of length 2

n

,

f = [f(0; 0; : : : ; 0); f(1; 0; : : : ; 0); f(0; 1; : : : ; 0); : : : ; f(1; 1; : : : ; 1)℄:

We say that a Boolean funtion f is balaned if the truth table ontains an equal

number of 1's and 0's.

1

Note that, we have attempted to make the searh (as explained in [13℄) faster using

eÆient software implementation and found that it is possible to implement opti-

mized ode that an searh the omplete spae in 470 hours using a Pentium M 1.6

GHz omputer with 512 MB RAM. We have also parallelized the e�ort over a few

omputers and searhed the omplete spae as explained in [6℄.



The Hamming weight of a binary string S is the number of ones in the string.

This number is denoted by wt(S). The Hamming distane between two strings,

S

1

and S

2

is denoted d

H

(S

1

; S

2

) and is the number of plaes where S

1

and S

2

di�er. Note that d

H

(S

1

; S

2

) = wt(S

1

� S

2

).

Any Boolean funtion has a unique representation as a polynomial over F

2

,

alled the algebrai normal form (ANF),

f(x

1

; : : : ; x

n

) = a

0

�

M

1�i�n

a

i

x

i

�

M

1�i<j�n

a

ij

x

i

x

j

� : : :� a

12:::n

x

1

x

2

: : : x

n

;

where the oeÆients a

0

; a

ij

; : : :, a

12:::n

2 f0; 1g. The algebrai degree, deg(f),

is the number of variables in the highest order term with non-zero oeÆient. A

Boolean funtion is aÆne if there exists no term of degree > 1 in the ANF and

the set of all aÆne funtions is denoted A(n). An aÆne funtion with onstant

term equal to zero is a linear funtion. The nonlinearity of an n-variable funtion

f is the minimum distane from the set of all n-variable aÆne funtions,

nl(f) = min

g2A(n)

(d

H

(f; g)):

Boolean funtions used in iphers must have high nonlinearity to prevent linear

attaks [4, 7℄.

Many properties of Boolean funtions an be desribed by the Walsh trans-

form. Let x = (x

1

; : : : ; x

n

) and ! = (!

1

; : : : ; !

n

) both belonging to f0; 1g

n

and

x�! = x

1

!

1

�: : :�x

n

!

n

: Let f(x) be a Boolean funtion on n variables. Then the

Walsh transform of f(x) is a real valued funtion over f0; 1g

n

whih is de�ned

as

W

f

(!) =

X

x2f0;1g

n

(�1)

f(x)�x�!

:

A Boolean funtion f is balaned i� W

f

(0) = 0. The nonlinearity of f is

given by nl(f) = 2

n�1

�

1

2

max

!2f0;1g

n

jW

f

(!)j: Correlation immune funtions

and resilient funtions are two important lasses of Boolean funtions. A funtion

ism-resilient (respetivelymth order orrelation immune) i� its Walsh transform

satis�es

W

f

(!) = 0; for 0 � wt(!) � m (respetively 1 � wt(!) � m).

Following the same notation as in [10, 11, 13℄ we use (n;m; d; �) to denote

an n-variable, m-resilient funtion with degree d and nonlinearity �. Further, by

[n;m; d; �℄ we denote an unbalaned n-variable, mth order orrelation immune

funtion with degree d and nonlinearity �.

2.1 Rotation Symmetri Boolean Funtions

Rotation symmetri Boolean funtions are invariant under yli rotation of

inputs. Let x

i

2 f0; 1g for 1 � i � n. For 1 � k � n, we de�ne the permutation

�

k

n

(x

i

) as

�

k

n

(x

i

) =

(

x

i+k

; if i+ k � n

x

i+k�n

; if i+ k > n



Let (x

1

; x

2

; : : : ; x

n�1

; x

n

) 2 V

n

. Then we extend the de�nition as

�

k

n

(x

1

; x

2

; : : : ; x

n�1

; x

n

) = (�

k

n

(x

1

); �

k

n

(x

2

); : : : ; �

k

n

(x

n�1

); �

k

n

(x

n

)): Hene, �

k

n

ats as k yli rotation on an n-bit vetor.

De�nition 1. A Boolean funtion f is alled Rotation Symmetri if for eah

input (x

1

; : : : ; x

n

) 2 f0; 1g

n

, f(�

k

n

(x

1

; : : : ; x

n

)) = f(x

1

; : : : ; x

n

) for 1 � k � n.

The inputs to a rotation symmetri Boolean funtion an be divided into

partitions so that eah partition onsists of all yli shifts of one input. A

partition is generated by G

n

(x

1

; x

2

; : : : ; x

n

) = f�

k

n

(x

1

; x

2

; : : : ; x

n

)j1 � k � ng

and the number of suh partitions is denoted by g

n

. Thus the number of n-

variable RSBFs is 2

g

n

. Let �(k) be Euler's phi-funtion, then it an be shown

by Burnside's lemma that (see also [12℄)

g

n

=

1

n

X

kjn

�(k) 2

n

k

:

By g

n;w

we denote the number of partitions with weight w. It an also be

heked that the number of degree w RSBFs is (2

g

n;w

� 1)2

P

w�1

i=0

g

n;i

. For the

formula of how to alulate g

n;w

for arbitrary n and w, we refer to [12℄.

A partition, or group, an be represented by its representative element �

n;i

.

This is the lexiographially �rst element belonging to the group. The repre-

sentative elements are again arranged lexiographially. The rotation symmetri

truth table (RSTT) is de�ned as the g

n

-bit string

[f(�

n;0

); f(�

n;1

); : : : ; f(�

n;g

n�1

)℄:

In [13℄ it was shown that the Walsh transform takes the same value for all

elements belonging to the same group, i.e., W

f

(u) =W

f

(v) if u 2 G

n

(v).

In [13℄, two matries were introdued,

n

A and

n

B, for eÆient searh of

RSBFs. The matrix

n

A is de�ned as

n

A

i;j

=

X

x2G

n

(�

n;i

)

(�1)

x��

n;j

;

for an n-variable RSBF. Using this g

n

� g

n

matrix, the Walsh spetra for an

RSBF an be alulated from the RSTT as

W

f

(�

n;j

) =

g

n

�1

X

i=0

(�1)

f(�

n;i

)

n

A

i;j

:

The notation of �

k

n

an be extended, in a similar fashion, to monomials. For

example, if we have a 4 variable rotation symmetri Boolean funtion and the

term x

1

x

2

x

3

is present in the ANF, then the terms x

2

x

3

x

4

; x

3

x

4

x

1

and x

4

x

1

x

2

must also be present in the ANF. We an assoiate n-bit pattern (x

1

; x

2

; : : : ; x

n

)

of �

n;i

with a monomial as well. If there is a `1' in the orresponding position we



say that the variable is present in the monomial. Considering this, the g

n

� g

n

matrix

n

B is de�ned as [13℄

n

B

i;j

=

M

e2G

n

(�

n;j

)

ej

�

n;i

:

That is, we take a funtion with all monomials oming from one group, repre-

sented by �

n;j

. Then we hek the value of the funtion when the input is �

n;i

.

This value is put in the loation

n

B

i;j

. With this matrix, one an get the RSTT

of the funtion from the ANF.

Note that the ANF of the RSBFs are suh that if one monomial from a ro-

tational symmetri group is present in the ANF then all the other monomials

of that rotational symmetri group are also present [5, 13℄. Thus the algebrai

normal from of any RSBF possesses a very nie and regular form. The algebrai

attak (see [3,8℄ and the referenes in these papers) is getting a lot of attention

reently. To resist algebrai attaks, the Boolean funtions used in the ryp-

tosystems should be hosen properly. It is shown [3℄ that given any n-variable

Boolean funtion f , it is always possible to get a Boolean funtion g with degree

at most d

n

2

e suh that f � g is of degree at most d

n

2

e. Here the funtions are on-

sidered to be multivariate polynomials over GF(2) and f � g is the polynomial

multipliation. Thus while hoosing an f , the ryptosystem designer should be

areful that it should not happen that degree of f � g < d

n

2

e where g is also a

low degree funtion. There is no known result of weakness on ryptographially

signi�ant RSBFs yet and we believe that given the algebrai struture of the

RSBFs, they will be resistant against the algebrai attaks if the parameters are

hosen properly. Though we are not studying this aspet in this paper, we think

this ould be an important researh problem and this gives a good motivation

to study the RSBFs for other ryptographi properties.

3 Walsh Spetra of RSBFs

In this setion we derive ombinatorial results related to RSBFs and their Walsh

spetra. We �rst start with a tehnial result that ounts the number of groups

of t elements when tjn. This result will be used later to analyse the Walsh spetra

of balaned plateaued RSBFs. In fat, the result is true for lasses of ylially

shift-invariant binary sequenes irrespetive of their usage in RSBFs.

Theorem 1. For an n-variable RSBF the number of groups with t elements

is d

n;t

=

1

t

P

kjt

�(

t

k

)2

gd(n;k)

; for t = 1; 2; : : : ; n; where �(t) is the M�obius

funtion, i.e., �(t) = 1, if t = 1, �(t) = 0, if e

i

� 2 and �(t) = (�1)

m

, otherwise,

when t = p

e

1

1

p

e

2

2

: : : p

e

m

m

is fatorized in powers of m distint primes, p

1

; p

2

: : : p

m

.

Proof. Let S = f0; 1g

n

and x 2 S. Denote by p

t

the number of elements for

whih �

t

n

(x) = x. Sine the number of orbits for the permutor �

t

n

is gd(n; t),

and eah orbit must ontain all 0's or all 1's to ful�ll the ondition �

t

n

(x) = x,

the number of ombinations must be p

t

= jfx 2 S : �

t

n

(x) = xgj = 2

gd(n;t)

: A

reursive expression for d

n;t

an be derived as



d

n;1

= 2 and d

n;t

= (p

t

�

P

kjt;k<t

k � d

n;k

)=t.

Eah element x 2 S must be ounted one in some group t. First we ount

how many elements will be ounted in groups of size t, and then divide this

number by t, in order to get the number of suh groups d

n;t

. Hene, t � d

n;t

=

2

gd(n;t)

�

P

kjt

k<t

k � d

n;k

)

P

kjt

k � d

n;k

= 2

gd(n;t)

. We use M�obius funtion �(t)

to invert the expression. Hene, d

n;t

=

1

t

P

kjt

�(

t

k

)2

gd(n;k)

. ut

Corollary 1. g

n

=

P

n

t=1

d

n;t

and jSj =

P

n

t=1

t � d

n;t

= 2

n

.

3.1 Investigation of

n

A Matrix for n Odd

We onsider

n

A when n is an odd number and note that the number of groups

with even wt(�

n;i

) is the same as the number of groups with odd wt(�

n;i

).

Moreover, if we onsider all �

n;i

with even Hamming weights and denote by �

n;i

the representative element for the group ontaining the omplement of �

n;i

, it

is easy to note that G

n

(�

n;i

) 6= G

n

(�

n;j

) for any i; j. Hene, the set of groups

an be divided into two equal parts ontaining representative elements of even

weight and odd weight, respetively.

Permute the matrix

n

A using a permutation � suh that the �rst g

n

=2 rows

orrespond to the representative elements, �

n;i

, of even weight and the seond

g

n

=2 rows orrespond to the omplements of them. That is we �rst list the

representative elements �

n;i

with even weights in lexiographial order for i = 0

to

g

n

2

�1. Then we put the elements (these are of odd weights) in the order suh

that �

n;i

= �

n;i�

g

n

2

for i =

g

n

2

to g

n

� 1. In the permutation we swap rows and

the orresponding olumns of

n

A. We denote the resulting matrix by

n

A

�

and

show that

n

A

�

is of the form

n

A

�

=

�

n

H

n

H

n

H �

n

H

�

;

where

n

H is a sub matrix of

n

A

�

.

Let us onsider n = 5, for whih g

n

= 8. In [13℄, the group representa-

tives are ordered lexiographially, i.e., (0; 0; 0; 0; 0), (0; 0; 0; 0; 1), (0; 0; 0; 1; 1),

(0; 0; 1; 0; 1), (0; 0; 1; 1; 1), (0; 1; 0; 1; 1), (0; 1; 1; 1; 1), (1; 1; 1; 1; 1). We get the ma-

trix

5

A. On the other hand if we permute them as (0; 0; 0; 0; 0), (0; 0; 0; 1; 1),

(0; 0; 1; 0; 1), (0; 1; 1; 1; 1), (1; 1; 1; 1; 1), (0; 0; 1; 1; 1), (0; 1; 0; 1; 1), (0; 0; 0; 0; 1),

i.e., even weight elements and then the orresponding odd weight elements, we

get the matrix

5

A

�

whih is of a nie sub matrix struture.

5

A =

0

B

B

B

B

B

B

B

B

B

B

�

1 1 1 1 1 1 1 1

5 3 1 1 �1 �1 �3 �5

5 1 1 �3 1 �3 1 5

5 1 �3 1 �3 1 1 5

5 �1 1 �3 �1 3 1 �5

5 �1 �3 1 3 �1 1 �5

5 �3 1 1 1 1 �3 5

1 �1 1 1 �1 �1 1 �1

1

C

C

C

C

C

C

C

C

C

C

A

;

5

A

�

=

0

B

B

B

B

B

B

B

B

B

B

�

1 1 1 1 1 1 1 1

5 1 �3 1 5 1 �3 1

5 �3 1 1 5 �3 1 1

5 1 1 �3 5 1 1 �3

1 1 1 1 �1 �1 �1 �1

5 1 �3 1 �5 �1 3 �1

5 �3 1 1 �5 3 �1 �1

5 1 1 �3 �5 �1 �1 3

1

C

C

C

C

C

C

C

C

C

C

A

:



We now present the proof with the following results. Let X ^ Y and X � Y

denote bitwise AND respetively XOR for the vetors X and Y .

Proposition 1. Let A = (a

1

; a

2

; : : : ; a

n

) 2 f0; 1g

n

and B = (b

1

; b

2

; : : : ; b

n

) 2

f0; 1g

n

. If wt(A) and wt(B) is an even number and if n is odd, then

n

M

i=1

(a

i

^ b

i

) =

n

M

i=1

(a

i

^ b

i

) =

n

M

i=1

(a

i

^ b

i

) = 1�

n

M

i=1

(a

i

^ b

i

): (1)

Proof. We have (X ^ Y ) � (X ^ Y ) = (X � X) ^ Y = 1 ^ Y = Y . Sine

L

n

i=1

�

(a

i

^ b

i

) � (a

i

^ b

i

)

�

=

L

n

i=1

b

i

= 0, it follows that

L

n

i=1

(a

i

^ b

i

) =

L

n

i=1

(a

i

^ b

i

). The seond equality in (1) also follows immediately. Similarly, we

an write (X^Y )�(X^Y ) = (X�X)^Y = 1^Y = Y . Sine

L

n

i=1

�

(a

i

^b

i

)�

(a

i

^ b

i

)

�

=

L

n

i=1

b

i

= 1, it follows that

L

n

i=1

(a

i

^ b

i

) = 1�

L

n

i=1

(a

i

^ b

i

) ut

Theorem 2. When n is odd, the matrix

n

A

�

is of the form

n

A

�

=

�

n

H

n

H

n

H �

n

H

�

;

where

n

H is a

g

n

2

�

g

n

2

matrix.

Proof. Sine the matrix

n

A

�

is written suh that �

n;i

orresponds to row/olumn

i and �

n;i

orresponds to row/olumn g

n

=2 + i, we an write the following. For

0 � r;  < g

n

=2 we have

n

A

�

r;

=

X

x2G

n

(�

n;r

)

(�1)

x��

n;

=

X

x2G

n

(�

n;r

)

(�1)

L

n

i=1

(x

i

^�

(n;)

i

)

n

A

�

r;+

g

n

2

=

X

x2G

n

(�

n;r

)

(�1)

x��

n;+

g

n

2

=

X

x2G

n

(�

n;r

)

(�1)

L

n

i=1

(x

i

^�

(n;)

i

)

n

A

�

r+

g

n

2

;

=

X

x2G

n

(�

n;r+

g

n

2

)

(�1)

x��

n;

=

X

x2G

n

(�

n;r

)

(�1)

L

n

i=1

(x

i

^�

(n;)

i

)

n

A

�

r+

g

n

2

;+

g

n

2

=

X

x2G

n

(�

n;r+

g

n

2

)

(�1)

x��

n;+

g

n

2

=

X

x2G

n

(�

n;r

)

(�1)

L

n

i=1

(x

i

^�

(n;)

i

)

Sine the number of 1's in �

n;i

is even, 0 � i < g

n

=2, it follows from Propo-

sition 1 that

n

A

�

r;

=

n

A

�

r;+

g

n

2

=

n

A

�

r+

g

n

2

;

= �

n

A

�

r+

g

n

2

;+

g

n

2

. ut

Corollary 2. The �rst olumn of the matrix

n

A ontains exatly d

n;t

values of

t, for t = 1; 2; : : : ; n. Also, for n odd, d

n;t

is an even number.

Proof. The �rst olumn

n

A

i;0

is onstruted as

n

A

i;0

=

P

x2G

n

(�

n;i

)

(�1)

x�0

=

jG

n

(�

n;i

)j, sine we know that there are d

n;t

groups with jG

n

(�

n;i

)j = t, the

�rst part of the orollary follows.

We have proved that for odd n,

n

A an be onstruted through the matrix

n

H whih must ontain

d

n;t

2

groups of size t in the �rst olumn. Hene, d

n;t

is

even. ut



Remark 1. In Subsetion 2.1 we de�ned the RSTT of an RSBF as the g

n

-

bit string [f(�

n;0

); f(�

n;1

); : : : ; f(�

n;g

n�1

)℄, where �

n;0

; �

n;1

; : : : ; �

n;g

n�1

are or-

dered lexiographially. Given Theorem 2, from now on, we onsider the RSTT

�

,

where we �rst list the representative elements �

n;i

with even weights in lexio-

graphial order for i = 0 to

g

n

2

� 1. Then we put the elements in the order suh

that �

n;i

= �

n;i�

g

n

2

for i =

g

n

2

to g

n

� 1. In the rest of the doument, we will

use only this ordering (permutation) and by abuse of notations, apply (RSTT,

RSTT

�

) and (

n

A;

n

A

�

) as same thing unless spei�ally mentioned.

3.2 Improved Walsh Transform Computation

The fat that

n

A

�

is of this form redues the number of operations needed to

alulate the Walsh spetra for an RSBF. For notation purposes, divide the

RSTT into two partitions, �

1

and �

2

, suh that RSTT = f0; 1g

g

n

= f0; 1g

g

n

=2

k

f0; 1g

g

n

=2

= �

1

k �

2

. We de�ne a one-to-one mapping

�

�

: �

1

k �

2

= f0; 1g

g

n

2

k f0; 1g

g

n

2

�! �

�

1

k �

�

2

= (�1)

f0;1g

g

n

2

k (�1)

f0;1g

g

n

2

;

i.e., if �

1

i

= 0 then �

�

1

i

= 1

0

= +1, otherwise �

�

1

i

= (�1)

1

= �1.

Then we an de�ne

w

1

= �

�

1

n

H; w

2

= �

�

2

n

H (2)

and W

f

(!) = ((w

1

+w

2

) k (w

1

�w

2

)). In the following, we will sometimes refer

to w

1

and w

2

as partial Walsh transform, or just pWT. To ompute the Walsh

transform using the matrix

n

A, g

2

n

operations must be done. In the ase when

n

H is used, the number of operations is instead 2 �

�

g

n

2

�

2

+ g

n

=

g

2

n

2

+ g

n

� g

2

n

:

3.3 Plateaued RSBFs

A Boolean funtion on odd number of variables is said to be plateaued [1, 15℄

if its Walsh transform takes only the three values 0 and ��, where � is some

positive integer. We all � the amplitude of the funtion.

Following the notation (2) from Subsetion 3.2, for plateaued RSBFs we get,

w

1

i

+ w

2

i

= 0 or � �;w

1

i

� w

2

i

= 0 or � �: (3)

There are only 9 valid pairs (w

1

i

; w

2

i

) ful�lling (3) and they are listed in Table 1.

This means that w

1

i

and w

2

i

2 f0; � �=2; � �g, i.e., they an only take 5

values. The partition of the matrix

n

A

�

as in Theorem 2 and Table 1 give us

the following result.

Proposition 2. Consider an RSBF on odd number of variables represented by

the RSTT (�

1

k �

2

).

1. If it is plateaued then the funtions with RSTT (�

2

k �

1

), (�

1

k �

2

), (�

2

k

�

1

), (�

1

k �

2

), (�

2

k �

1

), (�

1

k �

2

) and (�

2

k �

1

) are also plateaued.

2. If it is orrelation immune (respetively resilient) then the funtions with

RSTT (�

2

k �

1

), (�

1

k �

2

), and (�

2

k �

1

) are also orrelation immune

(respetively resilient).



Table 1. Possible values for w

1

i

and w

2

i

when searhing for plateaued RSBFs.

w

1

i

+ w

2

i

w

1

i

� w

2

i

w

1

i

w

2

i

0 0 0 0

0 +� +�=2 ��=2

0 �� ��=2 +�=2

+� 0 +�=2 +�=2

+� +� +� 0

+� �� 0 +�

�� 0 ��=2 ��=2

�� +� 0 ��

�� �� �� 0

3.4 Neessary ondition for balaned plateaued RSBFs

Based on the above disussion, we now present onrete results on neessary

onditions for existene of balaned plateaued RSBFs.

Theorem 3. For n odd, if there exist an n-variable balaned plateaued RSBF

with amplitude � = 2

k

, then the following ondition must be satis�ed:

There exist k

0

1

: : : k

0

n

and k

00

1

: : : k

00

n

, k

�

i

2 [0 : : :

d

n;i

2

℄, and � 2 f0; 1g, suh that

P

n

t=1

t � k

0

t

=

��+2

n

4

;

P

n

t=1

t � k

00

t

=

���+2

n

4

.

Proof. If the funtion (�

1

k �

2

) is balaned, then from Table 1, the partial

Walsh transform (pWT) for the �rst olumn must be f0;

��

2

g, i.e., (�

�

1

�

n

H)[0℄ =

� �

�

2

; (�

�

2

�

n

H)[0℄ = �� �

�

2

, for � 2 f0; 1g. In the �rst olumn there are

d

n;t

2

groups of size t. Let for k

0

t

of them �

�

1

get (+1), and for the rest (

d

n;t

2

� k

0

t

)

it will be (-1). Then pWT for the �rst olumn is expressed as (�

�

1

�

n

H)[0℄ =

P

n

t=1

[t � k

0

t

� (

d

n;t

2

� k

0

t

) � t℄ = � �

�

2

) 2

P

n

t=1

k

0

t

� t =

��

2

+

P

n

t=1

t �

d

n;t

2

)

P

n

t=1

t � k

0

t

=

��+2

n

4

; for k

0

t

= [0 : : :

d

n;t

2

℄:

The similar expression for (�

�

2

�

n

H)[0℄ is

P

n

t=1

t � k

00

t

=

���+2

n

4

; for k

00

t

=

[0 : : :

d

n;t

2

℄. ut

Now we present the result for non existene of (9; 3; 5; 240) RSBF, whih has

been posed as an open question in [13℄.

Theorem 4. A (9; 3; 5; 240) RSBF an not exist.

Proof. Note that this funtion is plateaued [11℄. Thus we analyze 9-variable

balaned plateaued funtions for � = 2

5

and for this we need to study the

9

H matrix. Sine 2

9

= 512, for a balaned funtion to exist, it must be that

1 � k

1

+ 3 � k

3

+ 9 � k

9

=

�� �2

5

+512

4

following Theorem 3 and we get the only

solution k

0

1

= 1; k

0

3

= 0; k

0

9

= 15 and k

00

1

= 0; k

00

3

= 1; k

00

9

= 13 for � = 1.

Let us now onsider the value of W

f

(011011011), whih must be any one of

0;�32. Let W

f

(011011011) = w

1

i

+ w

2

i

. From Table 1 we get that w

1

i

; w

2

i

an

take values 0;�16. To get the exat values of w

1

i

; w

2

i

one needs to look at the



last but one olumn of the matrix

9

H. The matrix is as follows.

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 5 1 1 5 1 1 1 1 1 �3 �3 1 �3 1 5 �3 �3 �3 �7 1 1 1 1 1 �3 �3 �3 �3 5

9 1 5 1 1 1 1 �3 1 �3 1 1 �7 1 �3 1 �3 �3 �3 5 1 �3 �3 �3 1 5 1 1 �3 5

9 1 1 5 �3 1 �3 1 �3 �3 �3 1 �3 �3 �3 �3 5 5 1 �3 1 1 �3 1 1 �3 1 1 9 5

9 5 1 �3 1 �7 �3 1 �3 �3 1 �3 5 1 �3 1 1 1 5 5 1 1 �3 1 1 1 �3 �3 �3 1

9 1 1 1 �7 5 �3 �3 �3 1 1 �3 5 1 1 �3 �3 �3 1 1 �3 1 5 1 �3 1 1 1 �3 5

9 1 1 �3 �3 �3 1 �3 1 �3 �3 5 1 5 5 1 1 1 1 �3 5 1 1 �7 �3 �3 1 1 �3 1

9 1 �3 1 1 �3 �3 1 �3 5 1 �3 �3 1 5 5 1 1 �3 5 �3 �3 1 �3 �3 �3 1 1 9 1

9 1 1 �3 �3 �3 1 �3 1 5 5 5 1 �3 �3 1 1 1 1 �3 �3 �7 1 1 5 �3 1 1 �3 1

9 1 �3 �3 �3 1 �3 5 5 1 5 1 �3 �3 1 �3 1 1 �3 1 1 5 1 �3 1 1 1 �7 �3 1

9 �3 1 �3 1 1 �3 1 5 5 1 �3 �3 1 �3 1 1 1 5 �3 1 1 �3 1 �7 1 �3 5 �3 1

9 �3 1 1 �3 �3 5 �3 5 1 �3 1 5 �3 1 1 1 1 �3 1 �3 1 �3 1 �3 5 �3 �3 9 1

9 1 �7 �3 5 5 1 �3 1 �3 �3 5 1 �3 �3 1 1 1 1 5 �3 1 1 1 �3 �3 1 1 �3 1

9 �3 1 �3 1 1 5 1 �3 �3 1 �3 �3 1 5 1 1 1 5 �3 �7 1 �3 1 1 1 5 �3 �3 1

9 1 �3 �3 �3 1 5 5 �3 1 �3 1 �3 5 1 �3 1 1 �3 1 1 �3 1 5 1 1 �7 1 �3 1

9 5 1 �3 1 �3 1 5 1 �3 1 1 1 1 �3 �3 �3 �3 �3 �3 �3 1 1 1 �3 1 5 5 9 �3

9 �3 �3 5 1 �3 1 1 1 1 1 1 1 1 1 �3 �7 1 1 1 5 �3 �3 5 �3 �3 5 �3 �3 1

9 �3 �3 5 1 �3 1 1 1 1 1 1 1 1 1 �3 1 �7 1 1 �3 5 �3 �3 5 �3 �3 5 �3 1

9 �3 �3 1 5 1 1 �3 1 �3 5 �3 1 5 �3 �3 1 1 1 �3 1 �3 5 �3 1 1 �3 �3 9 1

9 �7 5 �3 5 1 �3 5 �3 1 �3 1 5 �3 1 �3 1 1 �3 1 1 �3 1 �3 1 1 1 1 �3 1

9 1 1 1 1 �3 5 �3 �3 1 1 �3 �3 �7 1 �3 5 �3 1 1 5 1 5 1 �3 1 1 1 �3 �3

9 1 �3 1 1 1 1 �3 �7 5 1 1 1 1 �3 1 �3 5 �3 �3 1 5 �3 �3 1 5 1 1 �3 �3

9 1 �3 �3 �3 5 1 1 1 1 �3 �3 1 �3 1 1 �3 �3 5 1 5 �3 �3 �3 5 1 1 1 9 �3

9 1 �3 1 1 1 �7 �3 1 �3 1 1 1 1 5 1 5 �3 �3 �3 1 �3 �3 5 1 5 1 1 �3 �3

9 1 1 1 1 �3 �3 �3 5 1 �7 �3 �3 1 1 �3 �3 5 1 1 �3 1 5 1 5 1 1 1 �3 �3

9 �3 5 �3 1 1 �3 �3 �3 1 1 5 �3 1 1 1 �3 �3 1 1 1 5 1 5 1 �3 �3 �3 9 �3

9 �3 1 1 �3 1 1 1 1 1 �3 �3 1 5 �7 5 5 �3 �3 1 1 1 1 1 1 �3 5 �3 �3 �3

9 �3 1 1 �3 1 1 1 1 �7 5 �3 1 �3 1 5 �3 5 �3 1 1 1 1 1 1 �3 �3 5 �3 �3

3 �1 �1 3 �1 �1 �1 3 �1 �1 �1 3 �1 �1 �1 3 �1 �1 3 �1 �1 �1 3 �1 �1 3 �1 �1 �1 �1

9 5 5 5 1 5 1 1 1 1 1 1 1 1 1 �3 1 1 1 1 �3 �3 �3 �3 �3 �3 �3 �3 �3 �7

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Let us represent the last but one olumn of the matrix

9

H as a olumn matrix

C. Thus w

1

i

= �

�

1

C and w

2

i

= �

�

2

C, where �

�

1

; �

�

2

are as given in Subsetion 3.2.

The values k

0

1

; k

00

1

orrespond to the top most element of C, whih is 1 and the

values k

0

3

; k

00

3

orrespond to the last but one element of C, whih is �1. The

values of k

0

9

; k

00

9

orrespond to the other 28 values in the olumn matrix C, where

twenty one many values are �3 and seven many values are 9. Let k

0

9

= a

0

+ b

0

and k

00

9

= a

00

+b

00

, where a

0

; a

00

orrespond to the values �3 and b

0

; b

00

orrespond

to the values 9. Now w

1

i

= �

�

1

C = 1�1+(�1)�(�1)+(2a

0

�21)�(�3)+(2b

0

�

7)� 9 = 2� 6a

0

+ 18b

0

. Also, we have a

0

+ b

0

= k

0

9

= 15. Thus the only possible

solution is a

0

= 12; b

0

= 3 and in that ase w

1

i

= �16. Similarly, w

2

i

= �

�

2

C =

(�1)� 1+1� (�1)+ (2a

00

� 21)� (�3)+ (2b

00

� 7)� 9 = �2� 6a

00

+18b

00

. Also,

we have a

00

+ b

00

= k

00

9

= 13. Thus the only possible solution is a

00

= 9; b

00

= 4 and

in that ase w

2

i

= 16. Hene W

f

(011011011) = w

1

i

+w

2

i

= 0. From Theorem 2,

it follows that if W

f

(011011011) = w

1

i

+ w

2

i

then W

f

(001001001) = w

1

i

�w

2

i

.

Thus, W

f

(001001001) = �32 6= 0. Hene, from de�nition, the funtion an not

be 3-resilient. This proves that there an not be any (9; 3; 5; 240) RSBF. ut

We have heked the neessary ondition is satis�ed for � = 2

n+1

2

for odd

omposite n = 15; 21 and 25. For n = 15, the solutions are k

0

1

= 1; k

0

3

= 0; k

0

5

=

1; k

0

15

= 550 and k

00

1

= 0; k

00

3

= 1; k

00

5

= 2; k

00

15

= 541 when � = 1. For n = 21, the

solutions are k

0

1

= 0; k

0

3

= 1; k

0

7

= 1; k

0

21

= 24990 or k

0

1

= 0; k

0

3

= 1; k

0

7

= 4; k

0

21

=

24989 or k

0

1

= 0; k

0

3

= 1; k

0

7

= 7; k

0

21

= 24988 and k

00

1

= 1; k

00

3

= 0; k

00

7

= 2; k

00

21

=

24941 or k

00

1

= 1; k

00

3

= 0; k

00

7

= 5; k

00

21

= 24940 or k

00

1

= 1; k

00

3

= 0; k

00

7

= 8; k

00

21

=

24939 when � = 1. For n = 25, the solutions are k

0

1

= 1; k

0

5

= 1; k

0

25

= 335626

and k

00

1

= 0; k

00

5

= 2; k

00

25

= 335462 when � = 1. Note that there is no solution with

� = 0. It will be interesting to �nd out some general solution pattern for odd

omposite n's from the neessary ondition of Theorem 3, whih is done for odd

prime n's in Corollary 3 below. Further we need to study the other olumns of



the matrix

n

H as in the proof of Theorem 4 if we like to prove the non existene

results for these ases.

Corollary 3. For a balaned plateaued RSBF on n � 3 variables, n prime, �

an only be (+1), i.e., pWT must take the value ��=2. Further, the neessary

ondition of Theorem 3 is always satis�ed for n prime and � = 2

n+1

2

.

Proof. For n prime, in the �rst olumn of

n

H we have 1 row with (+1) and

2

n�1

�1

n

rows with values (+n). With � = 0 we require �

�

1

suh that pWT = 0,

i.e., (k � n� 1) must be 0, for some k. For prime n � 3 there is no suh k.

Now we prove the seond part. For n prime, d

n;1

= 2 and d

n;n

=

2

n

�2

n

. Thus

we get an equation of the form 1 � k

1

+ n � k

n

=

��+2

n

4

= �2

n�3

2

+ 2

n�2

, where

k

1

2 [0; 1℄ and k

n

2 [0; : : : ;

2

n�1

�1

n

℄. We show that it is always possible to get an

integer solution for k

1

; k

n

.

Note that for n > 3 prime, nj2

n�1

� 1, i.e., nj(2

n�1

2

+ 1)(2

n�1

2

� 1).

If nj(2

n�1

2

+ 1), then nj2

n�3

2

(2

n�1

2

+ 1), i.e., nj2

n�3

2

+ 2

n�2

. Thus for � = 1,

we take k

0

1

= 0. Also, nj2

n�3

2

+ 2

n�2

� (2

n�1

2

+ 1), i.e., nj � 2

n�3

2

+ 2

n�2

� 1.

Thus for � = �1, we take k

00

1

= 1.

If nj(2

n�1

2

�1), then nj2

n�3

2

(2

n�1

2

�1), i.e., nj�2

n�3

2

+2

n�2

. Thus for � = �1,

we take k

00

1

= 0. Also, nj � 2

n�3

2

+ 2

n�2

+ (2

n�1

2

� 1), i.e., nj2

n�3

2

+ 2

n�2

� 1.

Thus for � = 1, we take k

0

1

= 1. ut

Existene of (n;

n�3

2

;

n+1

2

; 2

n�1

� 2

n�1

2

) funtions for odd n is an important

open question in Boolean funtion literature [10, 11, 13℄. These funtions are

plateaued with � = 2

n+1

2

. The only results available are for n = 5; 7 as desribed

in [9℄. Corollary 3 shows that the neessary ondition is satis�ed for any odd

prime n when we searh in the lass of RSBFs. This gives a partial theoretial

justi�ation why suh funtions were available in the RSBF lass for n = 5; 7

as observed in [12℄. Thus it will be interesting to target the problem for n = 11

also.

4 Searh Strategy

Based on the theoretial results disussed so far, we present how these results

an be used for atual searh for RSBFs with ertain ryptographi properties.

It has been observed in [13℄ that to searh for (9; 3; 5; 240) one needs to hek for

2

43

many RSBFs. Though we have already proved theoretially that suh RSBF

does not exist, we now show that the searh an be redued to 2

34

only. This

searh also produes the [9; 3; 5; 240℄ funtions and we implement the searh to

get the omplete list of [9; 3; 5; 240℄ RSBFs. Apart from the theoretial results,

we exploit nontrivial software implementation to make the searh muh faster.

This is important sine the searh spae beomes larger for higher number of

variables and best possible software implementation is required for atual searh.



The algorithm uses only the matrix

n

H in the searh. The idea behind the

algorithm is very simple and it an be used to �nd plateaued RSBFs for a desired

Walsh transform, e.g., m-resilient or mth order orrelation immune.

The �rst step of the algorithm is to searh the omplete set of �

1

's suh that

w

1

= �

�

1

�

n

H only take values from the set w

1

i

2 f0;��=2;��g. Note that in

the positions where the Walsh transform must be zero, the orresponding values

of the pWT must be w

1

i

2 f0;��=2g, three valued only. Let us denote this set

of �

1

's by S

�

1

. From (2) and Table 1 we see that w

2

= �

2

�

n

H is alulated in

the same way and has the same restritions, so it means that S

�

2

= S

�

1

.

The seond step of the algorithm is to alulate the Walsh transform for

(�

1

k �

2

) in the spae S

�

1

� S

�

2

. It means that we need to save S

�

1

in a list or

in a �le.

The time omplexity for the �rst step to �nd S

�

1

is O(2

g

n

=2

) and the seond

step has the omplexity O(jS

�

1

j

2

), so the total time omplexity is O(2

g

n

=2

) +

O(jS

�

1

j

2

). Note that in this strategy we do not are about what degree we have

on the funtions, all funtions with desired Walsh spetra will be found.

Now we desribe how to use the proposed searh strategy to implement an

exhaustive searh for [9; 3; 5; 240℄ funtions. For RSBFs on 9 variables there

are g

9

= 60 groups and, hene, the total searh spae for these funtions is 2

60

.

However, in the ANF there an not be terms of degree 6, 7, 8 or 9 and, at least one

term of degree 5 must be present. Therefore, the searh spae does not inlude

all RSBFs on 9 variables, instead the searh spae is of size 2

P

4

i=1

g

9;i

(2

g

9;5

�1) =

2

29

(2

14

� 1) � 2

43

. This is the omplexity of the algorithm when one �rst uses

the

n

B matrix and then the

n

A matrix in the searh [13℄, without onsidering

n

H. The term of degree 0 is not onsidered in the searh spae.

The restritions on Walsh spetra for a [9; 3; 5; 240℄ funtion are W

f

(!) = 0,

for 1 � wt(!) � 3 and W

f

(!) = 0 or� 32, for wt(!) = 0; wt(!) > 3. We do not

use the restrition that the funtion has a ertain degree, instead we only use

the matrix

n

H to redue the time omplexity. Sine g

9

= 60, the matrix

n

H is of

size 30 � 30. We divide the RSTT into 2 parts, �

1

and �

2

, eah of 30 bits, and

generate the set S

�

1

. By simulation we found that this set is of size jS

�

1

j � 2

17

so there is no memory problem with storing the omplete set in memory. This

will give us the total searh of 2

34

, whih is 2

9

times faster than only using

n

A

and

n

B as done in [13℄.

Table 2. Di�erent searh strategy omplexities.

Boolean funtions on 9 variables 2

512

RSBFs on 9 variables 2

60

Finding [9,3,5,240℄ using matries

n

A,

n

B [13℄ 2

43

Finding [9,3,5,240℄ using our strategy 2

34



Although the omplexity is redued it is important to minimize the onstant

time needed to hek eah andidate pair. For fast implementation purposes we

divide the matrix

n

H into two setions, H

1

and H

2

as shown in Figure 1, eah

ontaining 15 rows. We divide �

1

in the same way and denote the two parts

wt(!)(0 2 4 6 8

�

1a

�

1b

f0;�16g f0;�16gf0;�16;�32g

( pWT

n

H

H

1

H

2

|{z} | {z }| {z }

Fig. 1. For fast implementation purposes, the matrix

n

H is divided into setions.

�

1

= (�

1a

k �

1b

). For eah setion, the sum of the rows is preomputed for eah

of the 2

15

possible inputs, and these sums are stored in the tableH

fast

[2℄[2

15

℄[30℄,

having 2 setions with 2

15

possible inputs for eah, and the result is a vetor of

30 integers. Now to alulate the partial Walsh transform we only need 2 table

look ups and a maximum of 30 integer summations. Unneessary omputation

an be avoided by alulating the values of the pWT one by one. If one value

is not valid, then we stop and selet the next �

1

. Sine W

f

(!) must be 0 for

wt(!) � 3, the pWT in these positions must be in f0;�16g. Note that the

omplement of the representative elements of weight 6 and 8 have weights 1 and

3, so in these positions pWT must also be in f0;�16g. In the rest positions,

pWT 2 f0;�16;�32g. These restritions an be seen in Table 1. When S

�

1

is

found, we try all ombinations for the artesian produt (S

�

1

� S

�

1

) and hek

if the Walsh transform is valid for a [9; 3; 5; 240℄ funtion. Sine S

�

2

= S

�

1

, we

an use the same preomputed tables for fast alulation of w

2

= �

�

2

�

n

H.

The exat searh time required is 6064 seonds on a omputer with Pentium

M 1.6 GHz proessor and 512MB RAM using Windows XP operating system.

In [13℄, it was estimated that the searh will take almost 3 years to omplete the

searh on a single Pentium 1.6 GHz omputer with 256 MB RAM using Linux

7.2 operating system.

Using our strategy we ould hek that there is no resilient RSBFs with

parameters (9; 3; 5; 240) (already proved theoretially) and there are 8406 orre-



lation immune funtions with the same parameters [9; 3; 5; 240℄, when the term

of degree 0 is not onsidered. That is if we also onsider the omplement of the

funtions then there are 2� 8406 many funtions.

Let us denote the autoorrelation value of an n-variable Boolean funtion

f with respet to the vetor � as �

f

(�) =

P

x2f0;1g

n

(�1)

f(x)�f(x��)

; and the

absolute indiator �

f

= max

�2f0;1g

n

;� 6=0

j�

f

(�)j: Low autoorrelation value is

important for funtions in ryptographi appliations [14℄. Thus we also hek

the �

f

value for these [9; 3; 5; 240℄ funtions.

The�

f

values of the funtions are 80 (4956 many out of 8406), 96 (1020), 112

(312), 136 (180), 152 (1734) and 224 (204). A few orrelation immune RSBFs

with these parameters have been reported reently using simulated annealing

based heuristi searh [2℄. We exeute the searh ompletely and show that the

searh spae an be exhaustively analysed implying that the heuristi method is

not required in this ase.

It should be noted that we have only exploited the

n

H matrix but not used

the degree restritions on the funtions. The

n

B matrix may also be used for

faster searh with

n

H.

Motivated by Corollary 3 and the disussion after it, we also attempted

the searh for (11; 4; 6; 992) funtions. Note that these funtions are plateaued.

Existene of these funtions is not yet known. Sine g

11

= 188, the

11

H matrix

is 94� 94 and the method of searh that we attempt here will not work. Even if

using the degree restrition and use of

n

B matrix does not ome to muh help.

We attempted some heuristi searh and found an (11; 1; 6; 992) plateaued RSBF

with �

f

value 240. Heuristi searh, as attempted in [2℄ may ome to help in

suh a senario.

5 Conlusion

In this paper we studied the Walsh spetra of rotation symmetri Boolean fun-

tions. The set of rotation symmetri Boolean funtions is muh smaller than the

omplete spae of Boolean funtions. Even then omplete searh of RSBFs is

not pratial for n � 9. Our results provide ombinatorial insight to the Walsh

spetra of the funtions and we show that some neessary onditions on exis-

tene of ertain kinds of funtions an be derived from them. In partiular, we

studied the plateaued RSBFs in this paper. The entral result here is to show

that the

n

A matrix an be written as

�

n

H

n

H

n

H �

n

H

�

after ertain permutations when n is odd. Further researh in this diretion is to

study these matries in more details and to see whether some methods an be

explored to analyse funtions on higher number of variables. It should also be

noted that the matrix struture we present here annot be extended for n even

and studying that ase is also an interesting researh area.
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