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Abstra
t. The 
lass of Rotation Symmetri
 Boolean Fun
tions (RS-

BFs) has re
eived serious attention re
ently in sear
hing fun
tions of


ryptographi
 signi�
an
e. These fun
tions are invariant under 
ir
ular

translation of indi
es. In this paper we study su
h fun
tions on odd num-

ber of variables and interesting 
ombinatorial properties related to Walsh

spe
tra of su
h fun
tions are revealed. In parti
ular we 
on
entrate on

plateaued fun
tions (fun
tions with three valued Walsh spe
tra) in this


lass and derive ne
essary 
onditions for existen
e of balan
ed rotation

symmetri
 plateaued fun
tions. As appli
ation of our result we theoreti-


ally show the non existen
e of 9-variable, 3-resilient RSBF with nonlin-

earity 240 that has been posed as an open question in FSE 2004. Further

we show how one 
an make eÆ
ient sear
h in the spa
e of RSBFs based

on our theoreti
al results and as example we 
omplete the sear
h for

unbalan
ed 9-variable, 3rd order 
orrelation immune plateaued RSBFs

with nonlinearity 240.

Keywords: Boolean Fun
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edness, Combinatorial Cryptography,
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1 Introdu
tion

While designing 
ryptographi
ally signi�
ant Boolean fun
tions, many require-

ments have to be ful�lled, su
h as balan
edness, nonlinearity, algebrai
 degree,


orrelation immunity, resistan
e from algebrai
 atta
ks et
. Some of them may


ontradi
t ea
h other, e.g., bent fun
tions, whi
h have highest possible nonlinear-

ity, 
an not be balan
ed. Getting the best possible trade-o� among these param-

eters has always been a 
hallenging task as evident from literature (see [10,11,13℄

and the referen
es in these papers). The 
lass of Rotation symmetri
 Boolean

fun
tions (RSBFs) is a 
lass of fun
tions that are invariant under 
ir
ular trans-

lation of indi
es. It has been shown that many fun
tions in this 
lass are ri
h in

terms of 
ryptographi
 properties [2, 5, 12, 13℄. Further the RSBF 
lass is mu
h

smaller (� 2

2

n

n

) 
ompared to the spa
e of n-variable Boolean fun
tions (2

2

n

) and



hen
e sear
h te
hniques work mu
h better in this smaller 
lass. Given Boolean

fun
tions on even number of input variables, the best possible nonlinearity 
an

be a
hieved when the magnitude of all the Walsh spe
tra values are same. How-

ever, this is not possible when the number of input variables are odd. In su
h

a s
enario, the fun
tions with three valued Walsh spe
tra 0;�� may be inves-

tigated [1, 15℄, whi
h are known as plateaued fun
tions. It has been noted that

there are fun
tions with very good 
ryptographi
 properties in this 
lass [1, 15℄.

In [13℄, two data stru
tures, the matri
es

n

A and

n

B, were presented that

made the sear
h for RSBFs more eÆ
ient. The matrix

n

B is used for fast gener-

ation of the truth table from its algebrai
 normal form, and

n

A is used for fast


al
ulation of the Walsh transform for the RSBF. In this paper we investigate

the matrix

n

A in detail. We introdu
e a new matrix,

n

H, whi
h is a sub matrix

of

n

A, for odd n, after some permutation. This allows us to improve the 
al
ula-

tion of the Walsh transform for RSBFs and provides mu
h better 
ombinatorial

insight to the problem. Our matrix stru
ture 
an be used to make a 
on
rete

study on plateaued RSBFs on odd number of variables and we 
ould provide

ne
essary 
onditions on existen
e of balan
ed plateaued RSBFs. The 
onstru
-

tion of 9-variable, 3-resilient Boolean fun
tion with nonlinearity 240 is still an

unsolved open question in literature [10, 11℄. In [13℄ an estimate to sear
h su
h

fun
tions in rotation symmetri
 
lass has been presented whi
h needed sear
h

of 2

43

many Boolean fun
tions and 
ould not be 
ompleted in [13℄. Sin
e su
h

fun
tions are plateaued fun
tions, we apply our results to theoreti
ally show the

nonexisten
e of 9-variable, 3-resilient, nonlinearity 240 fun
tions in the rotation

symmetri
 
lass. Further, using the matrix

n

H, we found eÆ
ient sear
h strate-

gies for plateaued RSBFs whi
h is mu
h faster than what presented in [13℄. We

also use eÆ
ient implementation strategy in software to make the sear
h faster.

As an example of our sear
h eÆ
ien
y we exhaustively sear
hed for unbalan
ed

9-variable, 3rd order 
orrelation immune, algebrai
 degree 5 and nonlinearity

240 RSBFs and found 2 � 8406 many su
h fun
tions. The sear
h took only 6064

se
onds against the estimated time of 3 years

1

as presented in [13℄.

2 Preliminaries

A Boolean fun
tion on n variables may be viewed as a mapping from V

n

= f0; 1g

n

into V

1

= f0; 1g. We interpret a Boolean fun
tion f(x

1

; : : : ; x

n

) as the output


olumn of its truth table, i.e., a binary string of length 2

n

,

f = [f(0; 0; : : : ; 0); f(1; 0; : : : ; 0); f(0; 1; : : : ; 0); : : : ; f(1; 1; : : : ; 1)℄:

We say that a Boolean fun
tion f is balan
ed if the truth table 
ontains an equal

number of 1's and 0's.

1

Note that, we have attempted to make the sear
h (as explained in [13℄) faster using

eÆ
ient software implementation and found that it is possible to implement opti-

mized 
ode that 
an sear
h the 
omplete spa
e in 470 hours using a Pentium M 1.6

GHz 
omputer with 512 MB RAM. We have also parallelized the e�ort over a few


omputers and sear
hed the 
omplete spa
e as explained in [6℄.



The Hamming weight of a binary string S is the number of ones in the string.

This number is denoted by wt(S). The Hamming distan
e between two strings,

S

1

and S

2

is denoted d

H

(S

1

; S

2

) and is the number of pla
es where S

1

and S

2

di�er. Note that d

H

(S

1

; S

2

) = wt(S

1

� S

2

).

Any Boolean fun
tion has a unique representation as a polynomial over F

2

,


alled the algebrai
 normal form (ANF),

f(x

1

; : : : ; x

n

) = a

0

�

M

1�i�n

a

i

x

i

�

M

1�i<j�n

a

ij

x

i

x

j

� : : :� a

12:::n

x

1

x

2

: : : x

n

;

where the 
oeÆ
ients a

0

; a

ij

; : : :, a

12:::n

2 f0; 1g. The algebrai
 degree, deg(f),

is the number of variables in the highest order term with non-zero 
oeÆ
ient. A

Boolean fun
tion is aÆne if there exists no term of degree > 1 in the ANF and

the set of all aÆne fun
tions is denoted A(n). An aÆne fun
tion with 
onstant

term equal to zero is a linear fun
tion. The nonlinearity of an n-variable fun
tion

f is the minimum distan
e from the set of all n-variable aÆne fun
tions,

nl(f) = min

g2A(n)

(d

H

(f; g)):

Boolean fun
tions used in 
iphers must have high nonlinearity to prevent linear

atta
ks [4, 7℄.

Many properties of Boolean fun
tions 
an be des
ribed by the Walsh trans-

form. Let x = (x

1

; : : : ; x

n

) and ! = (!

1

; : : : ; !

n

) both belonging to f0; 1g

n

and

x�! = x

1

!

1

�: : :�x

n

!

n

: Let f(x) be a Boolean fun
tion on n variables. Then the

Walsh transform of f(x) is a real valued fun
tion over f0; 1g

n

whi
h is de�ned

as

W

f

(!) =

X

x2f0;1g

n

(�1)

f(x)�x�!

:

A Boolean fun
tion f is balan
ed i� W

f

(0) = 0. The nonlinearity of f is

given by nl(f) = 2

n�1

�

1

2

max

!2f0;1g

n

jW

f

(!)j: Correlation immune fun
tions

and resilient fun
tions are two important 
lasses of Boolean fun
tions. A fun
tion

ism-resilient (respe
tivelymth order 
orrelation immune) i� its Walsh transform

satis�es

W

f

(!) = 0; for 0 � wt(!) � m (respe
tively 1 � wt(!) � m).

Following the same notation as in [10, 11, 13℄ we use (n;m; d; �) to denote

an n-variable, m-resilient fun
tion with degree d and nonlinearity �. Further, by

[n;m; d; �℄ we denote an unbalan
ed n-variable, mth order 
orrelation immune

fun
tion with degree d and nonlinearity �.

2.1 Rotation Symmetri
 Boolean Fun
tions

Rotation symmetri
 Boolean fun
tions are invariant under 
y
li
 rotation of

inputs. Let x

i

2 f0; 1g for 1 � i � n. For 1 � k � n, we de�ne the permutation

�

k

n

(x

i

) as

�

k

n

(x

i

) =

(

x

i+k

; if i+ k � n

x

i+k�n

; if i+ k > n



Let (x

1

; x

2

; : : : ; x

n�1

; x

n

) 2 V

n

. Then we extend the de�nition as

�

k

n

(x

1

; x

2

; : : : ; x

n�1

; x

n

) = (�

k

n

(x

1

); �

k

n

(x

2

); : : : ; �

k

n

(x

n�1

); �

k

n

(x

n

)): Hen
e, �

k

n

a
ts as k 
y
li
 rotation on an n-bit ve
tor.

De�nition 1. A Boolean fun
tion f is 
alled Rotation Symmetri
 if for ea
h

input (x

1

; : : : ; x

n

) 2 f0; 1g

n

, f(�

k

n

(x

1

; : : : ; x

n

)) = f(x

1

; : : : ; x

n

) for 1 � k � n.

The inputs to a rotation symmetri
 Boolean fun
tion 
an be divided into

partitions so that ea
h partition 
onsists of all 
y
li
 shifts of one input. A

partition is generated by G

n

(x

1

; x

2

; : : : ; x

n

) = f�

k

n

(x

1

; x

2

; : : : ; x

n

)j1 � k � ng

and the number of su
h partitions is denoted by g

n

. Thus the number of n-

variable RSBFs is 2

g

n

. Let �(k) be Euler's phi-fun
tion, then it 
an be shown

by Burnside's lemma that (see also [12℄)

g

n

=

1

n

X

kjn

�(k) 2

n

k

:

By g

n;w

we denote the number of partitions with weight w. It 
an also be


he
ked that the number of degree w RSBFs is (2

g

n;w

� 1)2

P

w�1

i=0

g

n;i

. For the

formula of how to 
al
ulate g

n;w

for arbitrary n and w, we refer to [12℄.

A partition, or group, 
an be represented by its representative element �

n;i

.

This is the lexi
ographi
ally �rst element belonging to the group. The repre-

sentative elements are again arranged lexi
ographi
ally. The rotation symmetri


truth table (RSTT) is de�ned as the g

n

-bit string

[f(�

n;0

); f(�

n;1

); : : : ; f(�

n;g

n�1

)℄:

In [13℄ it was shown that the Walsh transform takes the same value for all

elements belonging to the same group, i.e., W

f

(u) =W

f

(v) if u 2 G

n

(v).

In [13℄, two matri
es were introdu
ed,

n

A and

n

B, for eÆ
ient sear
h of

RSBFs. The matrix

n

A is de�ned as

n

A

i;j

=

X

x2G

n

(�

n;i

)

(�1)

x��

n;j

;

for an n-variable RSBF. Using this g

n

� g

n

matrix, the Walsh spe
tra for an

RSBF 
an be 
al
ulated from the RSTT as

W

f

(�

n;j

) =

g

n

�1

X

i=0

(�1)

f(�

n;i

)

n

A

i;j

:

The notation of �

k

n


an be extended, in a similar fashion, to monomials. For

example, if we have a 4 variable rotation symmetri
 Boolean fun
tion and the

term x

1

x

2

x

3

is present in the ANF, then the terms x

2

x

3

x

4

; x

3

x

4

x

1

and x

4

x

1

x

2

must also be present in the ANF. We 
an asso
iate n-bit pattern (x

1

; x

2

; : : : ; x

n

)

of �

n;i

with a monomial as well. If there is a `1' in the 
orresponding position we



say that the variable is present in the monomial. Considering this, the g

n

� g

n

matrix

n

B is de�ned as [13℄

n

B

i;j

=

M

e2G

n

(�

n;j

)

ej

�

n;i

:

That is, we take a fun
tion with all monomials 
oming from one group, repre-

sented by �

n;j

. Then we 
he
k the value of the fun
tion when the input is �

n;i

.

This value is put in the lo
ation

n

B

i;j

. With this matrix, one 
an get the RSTT

of the fun
tion from the ANF.

Note that the ANF of the RSBFs are su
h that if one monomial from a ro-

tational symmetri
 group is present in the ANF then all the other monomials

of that rotational symmetri
 group are also present [5, 13℄. Thus the algebrai


normal from of any RSBF possesses a very ni
e and regular form. The algebrai


atta
k (see [3,8℄ and the referen
es in these papers) is getting a lot of attention

re
ently. To resist algebrai
 atta
ks, the Boolean fun
tions used in the 
ryp-

tosystems should be 
hosen properly. It is shown [3℄ that given any n-variable

Boolean fun
tion f , it is always possible to get a Boolean fun
tion g with degree

at most d

n

2

e su
h that f � g is of degree at most d

n

2

e. Here the fun
tions are 
on-

sidered to be multivariate polynomials over GF(2) and f � g is the polynomial

multipli
ation. Thus while 
hoosing an f , the 
ryptosystem designer should be


areful that it should not happen that degree of f � g < d

n

2

e where g is also a

low degree fun
tion. There is no known result of weakness on 
ryptographi
ally

signi�
ant RSBFs yet and we believe that given the algebrai
 stru
ture of the

RSBFs, they will be resistant against the algebrai
 atta
ks if the parameters are


hosen properly. Though we are not studying this aspe
t in this paper, we think

this 
ould be an important resear
h problem and this gives a good motivation

to study the RSBFs for other 
ryptographi
 properties.

3 Walsh Spe
tra of RSBFs

In this se
tion we derive 
ombinatorial results related to RSBFs and their Walsh

spe
tra. We �rst start with a te
hni
al result that 
ounts the number of groups

of t elements when tjn. This result will be used later to analyse the Walsh spe
tra

of balan
ed plateaued RSBFs. In fa
t, the result is true for 
lasses of 
y
li
ally

shift-invariant binary sequen
es irrespe
tive of their usage in RSBFs.

Theorem 1. For an n-variable RSBF the number of groups with t elements

is d

n;t

=

1

t

P

kjt

�(

t

k

)2

g
d(n;k)

; for t = 1; 2; : : : ; n; where �(t) is the M�obius

fun
tion, i.e., �(t) = 1, if t = 1, �(t) = 0, if e

i

� 2 and �(t) = (�1)

m

, otherwise,

when t = p

e

1

1

p

e

2

2

: : : p

e

m

m

is fa
torized in powers of m distin
t primes, p

1

; p

2

: : : p

m

.

Proof. Let S = f0; 1g

n

and x 2 S. Denote by p

t

the number of elements for

whi
h �

t

n

(x) = x. Sin
e the number of orbits for the permutor �

t

n

is g
d(n; t),

and ea
h orbit must 
ontain all 0's or all 1's to ful�ll the 
ondition �

t

n

(x) = x,

the number of 
ombinations must be p

t

= jfx 2 S : �

t

n

(x) = xgj = 2

g
d(n;t)

: A

re
ursive expression for d

n;t


an be derived as



d

n;1

= 2 and d

n;t

= (p

t

�

P

kjt;k<t

k � d

n;k

)=t.

Ea
h element x 2 S must be 
ounted on
e in some group t. First we 
ount

how many elements will be 
ounted in groups of size t, and then divide this

number by t, in order to get the number of su
h groups d

n;t

. Hen
e, t � d

n;t

=

2

g
d(n;t)

�

P

kjt

k<t

k � d

n;k

)

P

kjt

k � d

n;k

= 2

g
d(n;t)

. We use M�obius fun
tion �(t)

to invert the expression. Hen
e, d

n;t

=

1

t

P

kjt

�(

t

k

)2

g
d(n;k)

. ut

Corollary 1. g

n

=

P

n

t=1

d

n;t

and jSj =

P

n

t=1

t � d

n;t

= 2

n

.

3.1 Investigation of

n

A Matrix for n Odd

We 
onsider

n

A when n is an odd number and note that the number of groups

with even wt(�

n;i

) is the same as the number of groups with odd wt(�

n;i

).

Moreover, if we 
onsider all �

n;i

with even Hamming weights and denote by �

n;i

the representative element for the group 
ontaining the 
omplement of �

n;i

, it

is easy to note that G

n

(�

n;i

) 6= G

n

(�

n;j

) for any i; j. Hen
e, the set of groups


an be divided into two equal parts 
ontaining representative elements of even

weight and odd weight, respe
tively.

Permute the matrix

n

A using a permutation � su
h that the �rst g

n

=2 rows


orrespond to the representative elements, �

n;i

, of even weight and the se
ond

g

n

=2 rows 
orrespond to the 
omplements of them. That is we �rst list the

representative elements �

n;i

with even weights in lexi
ographi
al order for i = 0

to

g

n

2

�1. Then we put the elements (these are of odd weights) in the order su
h

that �

n;i

= �

n;i�

g

n

2

for i =

g

n

2

to g

n

� 1. In the permutation we swap rows and

the 
orresponding 
olumns of

n

A. We denote the resulting matrix by

n

A

�

and

show that

n

A

�

is of the form

n

A

�

=

�

n

H

n

H

n

H �

n

H

�

;

where

n

H is a sub matrix of

n

A

�

.

Let us 
onsider n = 5, for whi
h g

n

= 8. In [13℄, the group representa-

tives are ordered lexi
ographi
ally, i.e., (0; 0; 0; 0; 0), (0; 0; 0; 0; 1), (0; 0; 0; 1; 1),

(0; 0; 1; 0; 1), (0; 0; 1; 1; 1), (0; 1; 0; 1; 1), (0; 1; 1; 1; 1), (1; 1; 1; 1; 1). We get the ma-

trix

5

A. On the other hand if we permute them as (0; 0; 0; 0; 0), (0; 0; 0; 1; 1),

(0; 0; 1; 0; 1), (0; 1; 1; 1; 1), (1; 1; 1; 1; 1), (0; 0; 1; 1; 1), (0; 1; 0; 1; 1), (0; 0; 0; 0; 1),

i.e., even weight elements and then the 
orresponding odd weight elements, we

get the matrix

5

A

�

whi
h is of a ni
e sub matrix stru
ture.

5

A =

0

B

B

B

B

B

B

B

B

B

B

�

1 1 1 1 1 1 1 1

5 3 1 1 �1 �1 �3 �5

5 1 1 �3 1 �3 1 5

5 1 �3 1 �3 1 1 5

5 �1 1 �3 �1 3 1 �5

5 �1 �3 1 3 �1 1 �5

5 �3 1 1 1 1 �3 5

1 �1 1 1 �1 �1 1 �1

1

C

C

C

C

C

C

C

C

C

C

A

;

5

A

�

=

0

B

B

B

B

B

B

B

B

B

B

�

1 1 1 1 1 1 1 1

5 1 �3 1 5 1 �3 1

5 �3 1 1 5 �3 1 1

5 1 1 �3 5 1 1 �3

1 1 1 1 �1 �1 �1 �1

5 1 �3 1 �5 �1 3 �1

5 �3 1 1 �5 3 �1 �1

5 1 1 �3 �5 �1 �1 3

1

C

C

C

C

C

C

C

C

C

C

A

:



We now present the proof with the following results. Let X ^ Y and X � Y

denote bitwise AND respe
tively XOR for the ve
tors X and Y .

Proposition 1. Let A = (a

1

; a

2

; : : : ; a

n

) 2 f0; 1g

n

and B = (b

1

; b

2

; : : : ; b

n

) 2

f0; 1g

n

. If wt(A) and wt(B) is an even number and if n is odd, then

n

M

i=1

(a

i

^ b

i

) =

n

M

i=1

(a

i

^ b

i

) =

n

M

i=1

(a

i

^ b

i

) = 1�

n

M

i=1

(a

i

^ b

i

): (1)

Proof. We have (X ^ Y ) � (X ^ Y ) = (X � X) ^ Y = 1 ^ Y = Y . Sin
e

L

n

i=1

�

(a

i

^ b

i

) � (a

i

^ b

i

)

�

=

L

n

i=1

b

i

= 0, it follows that

L

n

i=1

(a

i

^ b

i

) =

L

n

i=1

(a

i

^ b

i

). The se
ond equality in (1) also follows immediately. Similarly, we


an write (X^Y )�(X^Y ) = (X�X)^Y = 1^Y = Y . Sin
e

L

n

i=1

�

(a

i

^b

i

)�

(a

i

^ b

i

)

�

=

L

n

i=1

b

i

= 1, it follows that

L

n

i=1

(a

i

^ b

i

) = 1�

L

n

i=1

(a

i

^ b

i

) ut

Theorem 2. When n is odd, the matrix

n

A

�

is of the form

n

A

�

=

�

n

H

n

H

n

H �

n

H

�

;

where

n

H is a

g

n

2

�

g

n

2

matrix.

Proof. Sin
e the matrix

n

A

�

is written su
h that �

n;i


orresponds to row/
olumn

i and �

n;i


orresponds to row/
olumn g

n

=2 + i, we 
an write the following. For

0 � r; 
 < g

n

=2 we have

n

A

�

r;


=

X

x2G

n

(�

n;r

)

(�1)

x��

n;


=

X

x2G

n

(�

n;r

)

(�1)

L

n

i=1

(x

i

^�

(n;
)

i

)

n

A

�

r;
+

g

n

2

=

X

x2G

n

(�

n;r

)

(�1)

x��

n;
+

g

n

2

=

X

x2G

n

(�

n;r

)

(�1)

L

n

i=1

(x

i

^�

(n;
)

i

)

n

A

�

r+

g

n

2

;


=

X

x2G

n

(�

n;r+

g

n

2

)

(�1)

x��

n;


=

X

x2G

n

(�

n;r

)

(�1)

L

n

i=1

(x

i

^�

(n;
)

i

)

n

A

�

r+

g

n

2

;
+

g

n

2

=

X

x2G

n

(�

n;r+

g

n

2

)

(�1)

x��

n;
+

g

n

2

=

X

x2G

n

(�

n;r

)

(�1)

L

n

i=1

(x

i

^�

(n;
)

i

)

Sin
e the number of 1's in �

n;i

is even, 0 � i < g

n

=2, it follows from Propo-

sition 1 that

n

A

�

r;


=

n

A

�

r;
+

g

n

2

=

n

A

�

r+

g

n

2

;


= �

n

A

�

r+

g

n

2

;
+

g

n

2

. ut

Corollary 2. The �rst 
olumn of the matrix

n

A 
ontains exa
tly d

n;t

values of

t, for t = 1; 2; : : : ; n. Also, for n odd, d

n;t

is an even number.

Proof. The �rst 
olumn

n

A

i;0

is 
onstru
ted as

n

A

i;0

=

P

x2G

n

(�

n;i

)

(�1)

x�0

=

jG

n

(�

n;i

)j, sin
e we know that there are d

n;t

groups with jG

n

(�

n;i

)j = t, the

�rst part of the 
orollary follows.

We have proved that for odd n,

n

A 
an be 
onstru
ted through the matrix

n

H whi
h must 
ontain

d

n;t

2

groups of size t in the �rst 
olumn. Hen
e, d

n;t

is

even. ut



Remark 1. In Subse
tion 2.1 we de�ned the RSTT of an RSBF as the g

n

-

bit string [f(�

n;0

); f(�

n;1

); : : : ; f(�

n;g

n�1

)℄, where �

n;0

; �

n;1

; : : : ; �

n;g

n�1

are or-

dered lexi
ographi
ally. Given Theorem 2, from now on, we 
onsider the RSTT

�

,

where we �rst list the representative elements �

n;i

with even weights in lexi
o-

graphi
al order for i = 0 to

g

n

2

� 1. Then we put the elements in the order su
h

that �

n;i

= �

n;i�

g

n

2

for i =

g

n

2

to g

n

� 1. In the rest of the do
ument, we will

use only this ordering (permutation) and by abuse of notations, apply (RSTT,

RSTT

�

) and (

n

A;

n

A

�

) as same thing unless spe
i�
ally mentioned.

3.2 Improved Walsh Transform Computation

The fa
t that

n

A

�

is of this form redu
es the number of operations needed to


al
ulate the Walsh spe
tra for an RSBF. For notation purposes, divide the

RSTT into two partitions, �

1

and �

2

, su
h that RSTT = f0; 1g

g

n

= f0; 1g

g

n

=2

k

f0; 1g

g

n

=2

= �

1

k �

2

. We de�ne a one-to-one mapping

�

�

: �

1

k �

2

= f0; 1g

g

n

2

k f0; 1g

g

n

2

�! �

�

1

k �

�

2

= (�1)

f0;1g

g

n

2

k (�1)

f0;1g

g

n

2

;

i.e., if �

1

i

= 0 then �

�

1

i

= 1

0

= +1, otherwise �

�

1

i

= (�1)

1

= �1.

Then we 
an de�ne

w

1

= �

�

1

n

H; w

2

= �

�

2

n

H (2)

and W

f

(!) = ((w

1

+w

2

) k (w

1

�w

2

)). In the following, we will sometimes refer

to w

1

and w

2

as partial Walsh transform, or just pWT. To 
ompute the Walsh

transform using the matrix

n

A, g

2

n

operations must be done. In the 
ase when

n

H is used, the number of operations is instead 2 �

�

g

n

2

�

2

+ g

n

=

g

2

n

2

+ g

n

� g

2

n

:

3.3 Plateaued RSBFs

A Boolean fun
tion on odd number of variables is said to be plateaued [1, 15℄

if its Walsh transform takes only the three values 0 and ��, where � is some

positive integer. We 
all � the amplitude of the fun
tion.

Following the notation (2) from Subse
tion 3.2, for plateaued RSBFs we get,

w

1

i

+ w

2

i

= 0 or � �;w

1

i

� w

2

i

= 0 or � �: (3)

There are only 9 valid pairs (w

1

i

; w

2

i

) ful�lling (3) and they are listed in Table 1.

This means that w

1

i

and w

2

i

2 f0; � �=2; � �g, i.e., they 
an only take 5

values. The partition of the matrix

n

A

�

as in Theorem 2 and Table 1 give us

the following result.

Proposition 2. Consider an RSBF on odd number of variables represented by

the RSTT (�

1

k �

2

).

1. If it is plateaued then the fun
tions with RSTT (�

2

k �

1

), (�

1

k �

2

), (�

2

k

�

1

), (�

1

k �

2

), (�

2

k �

1

), (�

1

k �

2

) and (�

2

k �

1

) are also plateaued.

2. If it is 
orrelation immune (respe
tively resilient) then the fun
tions with

RSTT (�

2

k �

1

), (�

1

k �

2

), and (�

2

k �

1

) are also 
orrelation immune

(respe
tively resilient).



Table 1. Possible values for w

1

i

and w

2

i

when sear
hing for plateaued RSBFs.

w

1

i

+ w

2

i

w

1

i

� w

2

i

w

1

i

w

2

i

0 0 0 0

0 +� +�=2 ��=2

0 �� ��=2 +�=2

+� 0 +�=2 +�=2

+� +� +� 0

+� �� 0 +�

�� 0 ��=2 ��=2

�� +� 0 ��

�� �� �� 0

3.4 Ne
essary 
ondition for balan
ed plateaued RSBFs

Based on the above dis
ussion, we now present 
on
rete results on ne
essary


onditions for existen
e of balan
ed plateaued RSBFs.

Theorem 3. For n odd, if there exist an n-variable balan
ed plateaued RSBF

with amplitude � = 2

k

, then the following 
ondition must be satis�ed:

There exist k

0

1

: : : k

0

n

and k

00

1

: : : k

00

n

, k

�

i

2 [0 : : :

d

n;i

2

℄, and � 2 f0; 1g, su
h that

P

n

t=1

t � k

0

t

=

��+2

n

4

;

P

n

t=1

t � k

00

t

=

���+2

n

4

.

Proof. If the fun
tion (�

1

k �

2

) is balan
ed, then from Table 1, the partial

Walsh transform (pWT) for the �rst 
olumn must be f0;

��

2

g, i.e., (�

�

1

�

n

H)[0℄ =

� �

�

2

; (�

�

2

�

n

H)[0℄ = �� �

�

2

, for � 2 f0; 1g. In the �rst 
olumn there are

d

n;t

2

groups of size t. Let for k

0

t

of them �

�

1

get (+1), and for the rest (

d

n;t

2

� k

0

t

)

it will be (-1). Then pWT for the �rst 
olumn is expressed as (�

�

1

�

n

H)[0℄ =

P

n

t=1

[t � k

0

t

� (

d

n;t

2

� k

0

t

) � t℄ = � �

�

2

) 2

P

n

t=1

k

0

t

� t =

��

2

+

P

n

t=1

t �

d

n;t

2

)

P

n

t=1

t � k

0

t

=

��+2

n

4

; for k

0

t

= [0 : : :

d

n;t

2

℄:

The similar expression for (�

�

2

�

n

H)[0℄ is

P

n

t=1

t � k

00

t

=

���+2

n

4

; for k

00

t

=

[0 : : :

d

n;t

2

℄. ut

Now we present the result for non existen
e of (9; 3; 5; 240) RSBF, whi
h has

been posed as an open question in [13℄.

Theorem 4. A (9; 3; 5; 240) RSBF 
an not exist.

Proof. Note that this fun
tion is plateaued [11℄. Thus we analyze 9-variable

balan
ed plateaued fun
tions for � = 2

5

and for this we need to study the

9

H matrix. Sin
e 2

9

= 512, for a balan
ed fun
tion to exist, it must be that

1 � k

1

+ 3 � k

3

+ 9 � k

9

=

�� �2

5

+512

4

following Theorem 3 and we get the only

solution k

0

1

= 1; k

0

3

= 0; k

0

9

= 15 and k

00

1

= 0; k

00

3

= 1; k

00

9

= 13 for � = 1.

Let us now 
onsider the value of W

f

(011011011), whi
h must be any one of

0;�32. Let W

f

(011011011) = w

1

i

+ w

2

i

. From Table 1 we get that w

1

i

; w

2

i


an

take values 0;�16. To get the exa
t values of w

1

i

; w

2

i

one needs to look at the



last but one 
olumn of the matrix

9

H. The matrix is as follows.

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 5 1 1 5 1 1 1 1 1 �3 �3 1 �3 1 5 �3 �3 �3 �7 1 1 1 1 1 �3 �3 �3 �3 5

9 1 5 1 1 1 1 �3 1 �3 1 1 �7 1 �3 1 �3 �3 �3 5 1 �3 �3 �3 1 5 1 1 �3 5

9 1 1 5 �3 1 �3 1 �3 �3 �3 1 �3 �3 �3 �3 5 5 1 �3 1 1 �3 1 1 �3 1 1 9 5

9 5 1 �3 1 �7 �3 1 �3 �3 1 �3 5 1 �3 1 1 1 5 5 1 1 �3 1 1 1 �3 �3 �3 1

9 1 1 1 �7 5 �3 �3 �3 1 1 �3 5 1 1 �3 �3 �3 1 1 �3 1 5 1 �3 1 1 1 �3 5

9 1 1 �3 �3 �3 1 �3 1 �3 �3 5 1 5 5 1 1 1 1 �3 5 1 1 �7 �3 �3 1 1 �3 1

9 1 �3 1 1 �3 �3 1 �3 5 1 �3 �3 1 5 5 1 1 �3 5 �3 �3 1 �3 �3 �3 1 1 9 1

9 1 1 �3 �3 �3 1 �3 1 5 5 5 1 �3 �3 1 1 1 1 �3 �3 �7 1 1 5 �3 1 1 �3 1

9 1 �3 �3 �3 1 �3 5 5 1 5 1 �3 �3 1 �3 1 1 �3 1 1 5 1 �3 1 1 1 �7 �3 1

9 �3 1 �3 1 1 �3 1 5 5 1 �3 �3 1 �3 1 1 1 5 �3 1 1 �3 1 �7 1 �3 5 �3 1

9 �3 1 1 �3 �3 5 �3 5 1 �3 1 5 �3 1 1 1 1 �3 1 �3 1 �3 1 �3 5 �3 �3 9 1

9 1 �7 �3 5 5 1 �3 1 �3 �3 5 1 �3 �3 1 1 1 1 5 �3 1 1 1 �3 �3 1 1 �3 1

9 �3 1 �3 1 1 5 1 �3 �3 1 �3 �3 1 5 1 1 1 5 �3 �7 1 �3 1 1 1 5 �3 �3 1

9 1 �3 �3 �3 1 5 5 �3 1 �3 1 �3 5 1 �3 1 1 �3 1 1 �3 1 5 1 1 �7 1 �3 1

9 5 1 �3 1 �3 1 5 1 �3 1 1 1 1 �3 �3 �3 �3 �3 �3 �3 1 1 1 �3 1 5 5 9 �3

9 �3 �3 5 1 �3 1 1 1 1 1 1 1 1 1 �3 �7 1 1 1 5 �3 �3 5 �3 �3 5 �3 �3 1

9 �3 �3 5 1 �3 1 1 1 1 1 1 1 1 1 �3 1 �7 1 1 �3 5 �3 �3 5 �3 �3 5 �3 1

9 �3 �3 1 5 1 1 �3 1 �3 5 �3 1 5 �3 �3 1 1 1 �3 1 �3 5 �3 1 1 �3 �3 9 1

9 �7 5 �3 5 1 �3 5 �3 1 �3 1 5 �3 1 �3 1 1 �3 1 1 �3 1 �3 1 1 1 1 �3 1

9 1 1 1 1 �3 5 �3 �3 1 1 �3 �3 �7 1 �3 5 �3 1 1 5 1 5 1 �3 1 1 1 �3 �3

9 1 �3 1 1 1 1 �3 �7 5 1 1 1 1 �3 1 �3 5 �3 �3 1 5 �3 �3 1 5 1 1 �3 �3

9 1 �3 �3 �3 5 1 1 1 1 �3 �3 1 �3 1 1 �3 �3 5 1 5 �3 �3 �3 5 1 1 1 9 �3

9 1 �3 1 1 1 �7 �3 1 �3 1 1 1 1 5 1 5 �3 �3 �3 1 �3 �3 5 1 5 1 1 �3 �3

9 1 1 1 1 �3 �3 �3 5 1 �7 �3 �3 1 1 �3 �3 5 1 1 �3 1 5 1 5 1 1 1 �3 �3

9 �3 5 �3 1 1 �3 �3 �3 1 1 5 �3 1 1 1 �3 �3 1 1 1 5 1 5 1 �3 �3 �3 9 �3

9 �3 1 1 �3 1 1 1 1 1 �3 �3 1 5 �7 5 5 �3 �3 1 1 1 1 1 1 �3 5 �3 �3 �3

9 �3 1 1 �3 1 1 1 1 �7 5 �3 1 �3 1 5 �3 5 �3 1 1 1 1 1 1 �3 �3 5 �3 �3

3 �1 �1 3 �1 �1 �1 3 �1 �1 �1 3 �1 �1 �1 3 �1 �1 3 �1 �1 �1 3 �1 �1 3 �1 �1 �1 �1

9 5 5 5 1 5 1 1 1 1 1 1 1 1 1 �3 1 1 1 1 �3 �3 �3 �3 �3 �3 �3 �3 �3 �7

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Let us represent the last but one 
olumn of the matrix

9

H as a 
olumn matrix

C. Thus w

1

i

= �

�

1

C and w

2

i

= �

�

2

C, where �

�

1

; �

�

2

are as given in Subse
tion 3.2.

The values k

0

1

; k

00

1


orrespond to the top most element of C, whi
h is 1 and the

values k

0

3

; k

00

3


orrespond to the last but one element of C, whi
h is �1. The

values of k

0

9

; k

00

9


orrespond to the other 28 values in the 
olumn matrix C, where

twenty one many values are �3 and seven many values are 9. Let k

0

9

= a

0

+ b

0

and k

00

9

= a

00

+b

00

, where a

0

; a

00


orrespond to the values �3 and b

0

; b

00


orrespond

to the values 9. Now w

1

i

= �

�

1

C = 1�1+(�1)�(�1)+(2a

0

�21)�(�3)+(2b

0

�

7)� 9 = 2� 6a

0

+ 18b

0

. Also, we have a

0

+ b

0

= k

0

9

= 15. Thus the only possible

solution is a

0

= 12; b

0

= 3 and in that 
ase w

1

i

= �16. Similarly, w

2

i

= �

�

2

C =

(�1)� 1+1� (�1)+ (2a

00

� 21)� (�3)+ (2b

00

� 7)� 9 = �2� 6a

00

+18b

00

. Also,

we have a

00

+ b

00

= k

00

9

= 13. Thus the only possible solution is a

00

= 9; b

00

= 4 and

in that 
ase w

2

i

= 16. Hen
e W

f

(011011011) = w

1

i

+w

2

i

= 0. From Theorem 2,

it follows that if W

f

(011011011) = w

1

i

+ w

2

i

then W

f

(001001001) = w

1

i

�w

2

i

.

Thus, W

f

(001001001) = �32 6= 0. Hen
e, from de�nition, the fun
tion 
an not

be 3-resilient. This proves that there 
an not be any (9; 3; 5; 240) RSBF. ut

We have 
he
ked the ne
essary 
ondition is satis�ed for � = 2

n+1

2

for odd


omposite n = 15; 21 and 25. For n = 15, the solutions are k

0

1

= 1; k

0

3

= 0; k

0

5

=

1; k

0

15

= 550 and k

00

1

= 0; k

00

3

= 1; k

00

5

= 2; k

00

15

= 541 when � = 1. For n = 21, the

solutions are k

0

1

= 0; k

0

3

= 1; k

0

7

= 1; k

0

21

= 24990 or k

0

1

= 0; k

0

3

= 1; k

0

7

= 4; k

0

21

=

24989 or k

0

1

= 0; k

0

3

= 1; k

0

7

= 7; k

0

21

= 24988 and k

00

1

= 1; k

00

3

= 0; k

00

7

= 2; k

00

21

=

24941 or k

00

1

= 1; k

00

3

= 0; k

00

7

= 5; k

00

21

= 24940 or k

00

1

= 1; k

00

3

= 0; k

00

7

= 8; k

00

21

=

24939 when � = 1. For n = 25, the solutions are k

0

1

= 1; k

0

5

= 1; k

0

25

= 335626

and k

00

1

= 0; k

00

5

= 2; k

00

25

= 335462 when � = 1. Note that there is no solution with

� = 0. It will be interesting to �nd out some general solution pattern for odd


omposite n's from the ne
essary 
ondition of Theorem 3, whi
h is done for odd

prime n's in Corollary 3 below. Further we need to study the other 
olumns of



the matrix

n

H as in the proof of Theorem 4 if we like to prove the non existen
e

results for these 
ases.

Corollary 3. For a balan
ed plateaued RSBF on n � 3 variables, n prime, �


an only be (+1), i.e., pWT must take the value ��=2. Further, the ne
essary


ondition of Theorem 3 is always satis�ed for n prime and � = 2

n+1

2

.

Proof. For n prime, in the �rst 
olumn of

n

H we have 1 row with (+1) and

2

n�1

�1

n

rows with values (+n). With � = 0 we require �

�

1

su
h that pWT = 0,

i.e., (k � n� 1) must be 0, for some k. For prime n � 3 there is no su
h k.

Now we prove the se
ond part. For n prime, d

n;1

= 2 and d

n;n

=

2

n

�2

n

. Thus

we get an equation of the form 1 � k

1

+ n � k

n

=

��+2

n

4

= �2

n�3

2

+ 2

n�2

, where

k

1

2 [0; 1℄ and k

n

2 [0; : : : ;

2

n�1

�1

n

℄. We show that it is always possible to get an

integer solution for k

1

; k

n

.

Note that for n > 3 prime, nj2

n�1

� 1, i.e., nj(2

n�1

2

+ 1)(2

n�1

2

� 1).

If nj(2

n�1

2

+ 1), then nj2

n�3

2

(2

n�1

2

+ 1), i.e., nj2

n�3

2

+ 2

n�2

. Thus for � = 1,

we take k

0

1

= 0. Also, nj2

n�3

2

+ 2

n�2

� (2

n�1

2

+ 1), i.e., nj � 2

n�3

2

+ 2

n�2

� 1.

Thus for � = �1, we take k

00

1

= 1.

If nj(2

n�1

2

�1), then nj2

n�3

2

(2

n�1

2

�1), i.e., nj�2

n�3

2

+2

n�2

. Thus for � = �1,

we take k

00

1

= 0. Also, nj � 2

n�3

2

+ 2

n�2

+ (2

n�1

2

� 1), i.e., nj2

n�3

2

+ 2

n�2

� 1.

Thus for � = 1, we take k

0

1

= 1. ut

Existen
e of (n;

n�3

2

;

n+1

2

; 2

n�1

� 2

n�1

2

) fun
tions for odd n is an important

open question in Boolean fun
tion literature [10, 11, 13℄. These fun
tions are

plateaued with � = 2

n+1

2

. The only results available are for n = 5; 7 as des
ribed

in [9℄. Corollary 3 shows that the ne
essary 
ondition is satis�ed for any odd

prime n when we sear
h in the 
lass of RSBFs. This gives a partial theoreti
al

justi�
ation why su
h fun
tions were available in the RSBF 
lass for n = 5; 7

as observed in [12℄. Thus it will be interesting to target the problem for n = 11

also.

4 Sear
h Strategy

Based on the theoreti
al results dis
ussed so far, we present how these results


an be used for a
tual sear
h for RSBFs with 
ertain 
ryptographi
 properties.

It has been observed in [13℄ that to sear
h for (9; 3; 5; 240) one needs to 
he
k for

2

43

many RSBFs. Though we have already proved theoreti
ally that su
h RSBF

does not exist, we now show that the sear
h 
an be redu
ed to 2

34

only. This

sear
h also produ
es the [9; 3; 5; 240℄ fun
tions and we implement the sear
h to

get the 
omplete list of [9; 3; 5; 240℄ RSBFs. Apart from the theoreti
al results,

we exploit nontrivial software implementation to make the sear
h mu
h faster.

This is important sin
e the sear
h spa
e be
omes larger for higher number of

variables and best possible software implementation is required for a
tual sear
h.



The algorithm uses only the matrix

n

H in the sear
h. The idea behind the

algorithm is very simple and it 
an be used to �nd plateaued RSBFs for a desired

Walsh transform, e.g., m-resilient or mth order 
orrelation immune.

The �rst step of the algorithm is to sear
h the 
omplete set of �

1

's su
h that

w

1

= �

�

1

�

n

H only take values from the set w

1

i

2 f0;��=2;��g. Note that in

the positions where the Walsh transform must be zero, the 
orresponding values

of the pWT must be w

1

i

2 f0;��=2g, three valued only. Let us denote this set

of �

1

's by S

�

1

. From (2) and Table 1 we see that w

2

= �

2

�

n

H is 
al
ulated in

the same way and has the same restri
tions, so it means that S

�

2

= S

�

1

.

The se
ond step of the algorithm is to 
al
ulate the Walsh transform for

(�

1

k �

2

) in the spa
e S

�

1

� S

�

2

. It means that we need to save S

�

1

in a list or

in a �le.

The time 
omplexity for the �rst step to �nd S

�

1

is O(2

g

n

=2

) and the se
ond

step has the 
omplexity O(jS

�

1

j

2

), so the total time 
omplexity is O(2

g

n

=2

) +

O(jS

�

1

j

2

). Note that in this strategy we do not 
are about what degree we have

on the fun
tions, all fun
tions with desired Walsh spe
tra will be found.

Now we des
ribe how to use the proposed sear
h strategy to implement an

exhaustive sear
h for [9; 3; 5; 240℄ fun
tions. For RSBFs on 9 variables there

are g

9

= 60 groups and, hen
e, the total sear
h spa
e for these fun
tions is 2

60

.

However, in the ANF there 
an not be terms of degree 6, 7, 8 or 9 and, at least one

term of degree 5 must be present. Therefore, the sear
h spa
e does not in
lude

all RSBFs on 9 variables, instead the sear
h spa
e is of size 2

P

4

i=1

g

9;i

(2

g

9;5

�1) =

2

29

(2

14

� 1) � 2

43

. This is the 
omplexity of the algorithm when one �rst uses

the

n

B matrix and then the

n

A matrix in the sear
h [13℄, without 
onsidering

n

H. The term of degree 0 is not 
onsidered in the sear
h spa
e.

The restri
tions on Walsh spe
tra for a [9; 3; 5; 240℄ fun
tion are W

f

(!) = 0,

for 1 � wt(!) � 3 and W

f

(!) = 0 or� 32, for wt(!) = 0; wt(!) > 3. We do not

use the restri
tion that the fun
tion has a 
ertain degree, instead we only use

the matrix

n

H to redu
e the time 
omplexity. Sin
e g

9

= 60, the matrix

n

H is of

size 30 � 30. We divide the RSTT into 2 parts, �

1

and �

2

, ea
h of 30 bits, and

generate the set S

�

1

. By simulation we found that this set is of size jS

�

1

j � 2

17

so there is no memory problem with storing the 
omplete set in memory. This

will give us the total sear
h of 2

34

, whi
h is 2

9

times faster than only using

n

A

and

n

B as done in [13℄.

Table 2. Di�erent sear
h strategy 
omplexities.

Boolean fun
tions on 9 variables 2

512

RSBFs on 9 variables 2

60

Finding [9,3,5,240℄ using matri
es

n

A,

n

B [13℄ 2

43

Finding [9,3,5,240℄ using our strategy 2

34



Although the 
omplexity is redu
ed it is important to minimize the 
onstant

time needed to 
he
k ea
h 
andidate pair. For fast implementation purposes we

divide the matrix

n

H into two se
tions, H

1

and H

2

as shown in Figure 1, ea
h


ontaining 15 rows. We divide �

1

in the same way and denote the two parts

wt(!)(0 2 4 6 8

�

1a

�

1b

f0;�16g f0;�16gf0;�16;�32g

( pWT

n

H

H

1

H

2

|{z} | {z }| {z }

Fig. 1. For fast implementation purposes, the matrix

n

H is divided into se
tions.

�

1

= (�

1a

k �

1b

). For ea
h se
tion, the sum of the rows is pre
omputed for ea
h

of the 2

15

possible inputs, and these sums are stored in the tableH

fast

[2℄[2

15

℄[30℄,

having 2 se
tions with 2

15

possible inputs for ea
h, and the result is a ve
tor of

30 integers. Now to 
al
ulate the partial Walsh transform we only need 2 table

look ups and a maximum of 30 integer summations. Unne
essary 
omputation


an be avoided by 
al
ulating the values of the pWT one by one. If one value

is not valid, then we stop and sele
t the next �

1

. Sin
e W

f

(!) must be 0 for

wt(!) � 3, the pWT in these positions must be in f0;�16g. Note that the


omplement of the representative elements of weight 6 and 8 have weights 1 and

3, so in these positions pWT must also be in f0;�16g. In the rest positions,

pWT 2 f0;�16;�32g. These restri
tions 
an be seen in Table 1. When S

�

1

is

found, we try all 
ombinations for the 
artesian produ
t (S

�

1

� S

�

1

) and 
he
k

if the Walsh transform is valid for a [9; 3; 5; 240℄ fun
tion. Sin
e S

�

2

= S

�

1

, we


an use the same pre
omputed tables for fast 
al
ulation of w

2

= �

�

2

�

n

H.

The exa
t sear
h time required is 6064 se
onds on a 
omputer with Pentium

M 1.6 GHz pro
essor and 512MB RAM using Windows XP operating system.

In [13℄, it was estimated that the sear
h will take almost 3 years to 
omplete the

sear
h on a single Pentium 1.6 GHz 
omputer with 256 MB RAM using Linux

7.2 operating system.

Using our strategy we 
ould 
he
k that there is no resilient RSBFs with

parameters (9; 3; 5; 240) (already proved theoreti
ally) and there are 8406 
orre-



lation immune fun
tions with the same parameters [9; 3; 5; 240℄, when the term

of degree 0 is not 
onsidered. That is if we also 
onsider the 
omplement of the

fun
tions then there are 2� 8406 many fun
tions.

Let us denote the auto
orrelation value of an n-variable Boolean fun
tion

f with respe
t to the ve
tor � as �

f

(�) =

P

x2f0;1g

n

(�1)

f(x)�f(x��)

; and the

absolute indi
ator �

f

= max

�2f0;1g

n

;� 6=0

j�

f

(�)j: Low auto
orrelation value is

important for fun
tions in 
ryptographi
 appli
ations [14℄. Thus we also 
he
k

the �

f

value for these [9; 3; 5; 240℄ fun
tions.

The�

f

values of the fun
tions are 80 (4956 many out of 8406), 96 (1020), 112

(312), 136 (180), 152 (1734) and 224 (204). A few 
orrelation immune RSBFs

with these parameters have been reported re
ently using simulated annealing

based heuristi
 sear
h [2℄. We exe
ute the sear
h 
ompletely and show that the

sear
h spa
e 
an be exhaustively analysed implying that the heuristi
 method is

not required in this 
ase.

It should be noted that we have only exploited the

n

H matrix but not used

the degree restri
tions on the fun
tions. The

n

B matrix may also be used for

faster sear
h with

n

H.

Motivated by Corollary 3 and the dis
ussion after it, we also attempted

the sear
h for (11; 4; 6; 992) fun
tions. Note that these fun
tions are plateaued.

Existen
e of these fun
tions is not yet known. Sin
e g

11

= 188, the

11

H matrix

is 94� 94 and the method of sear
h that we attempt here will not work. Even if

using the degree restri
tion and use of

n

B matrix does not 
ome to mu
h help.

We attempted some heuristi
 sear
h and found an (11; 1; 6; 992) plateaued RSBF

with �

f

value 240. Heuristi
 sear
h, as attempted in [2℄ may 
ome to help in

su
h a s
enario.

5 Con
lusion

In this paper we studied the Walsh spe
tra of rotation symmetri
 Boolean fun
-

tions. The set of rotation symmetri
 Boolean fun
tions is mu
h smaller than the


omplete spa
e of Boolean fun
tions. Even then 
omplete sear
h of RSBFs is

not pra
ti
al for n � 9. Our results provide 
ombinatorial insight to the Walsh

spe
tra of the fun
tions and we show that some ne
essary 
onditions on exis-

ten
e of 
ertain kinds of fun
tions 
an be derived from them. In parti
ular, we

studied the plateaued RSBFs in this paper. The 
entral result here is to show

that the

n

A matrix 
an be written as

�

n

H

n

H

n

H �

n

H

�

after 
ertain permutations when n is odd. Further resear
h in this dire
tion is to

study these matri
es in more details and to see whether some methods 
an be

explored to analyse fun
tions on higher number of variables. It should also be

noted that the matrix stru
ture we present here 
annot be extended for n even

and studying that 
ase is also an interesting resear
h area.
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