
Key Recovery Method for CRT Implementation of RSA

Matthew Campagna, Amit Sethi,
{matthew.campagna, amit.sethi}@pb.com

Secure Systems
Pitney Bowes, Inc.

Abstract

This paper analyzes a key recovery method for RSA signature gener-
ation or decryption implementations using the Chinese Remainder The-
orem (CRT) speed up. The CRT-based RSA implementation is common
in both low computing power devices and high speed cryptographic accel-
eration cards. This recovery method is designed to work in conjunction
with a side-channel attack where the CRT exponents are discovered from
a message decryption or signature generation operation, the public expo-
nent is assumed small and the public modulus is unknown. Since many
RSA implementations use the small, low hamming weight public exponent
65537 this turns out to be a realistic method. An algorithm for recovering
the private key, modulus and prime factorization candidates is presented
with a proof of correctness. Runtime estimates and sample source code is
given.

1 Introduction

The basic problem that we address in this paper, is that of recovering all RSA pa-
rameters, given only the private CRT-RSA exponents, and a message-signature
pair (m,s) (or a plaintext-ciphertext pair). We make an assumption about the
public exponent, if it is not known. Specifically, we will assume that the public
exponent is relatively small, in an exhaustible space.

There are several scenarios in which this method of key recovery would be
useful. One scenario is where an adversary performs a side-channel attack on a
device to recover the CRT-RSA exponents, but does not know any other public
or private key information. Note that this is very likely, since a single power
trace is sufficient to reveal exponents in many devices. One power trace does
not usually reveal information about any other parameters, however. Other
scenarios where our method is useful, include loss of public keys, and loss of
legitimate private key records.

1

1.1 RSA

RSA is a popular public-key encryption scheme, and a signature scheme. It
was designed in 1978 by R.L. Rivest, A. Shamir, and L. Adleman. We will
only discuss the signature scheme here. The encryption scheme is similar. The
algorithms in this section are slightly modified versions of the algorithms in [3].

To generate an RSA key, we do the following:

Algorithm 1.1 RSA Key Generation

INPUT: Bitlength of modulus, k.
OUTPUT: Public key (e,N), and private key (d,N).

1 Generate prime p of bitlength ⌊k/2⌋

2 Generate prime q of bitlength k − ⌊k/2⌋

3 Compute N ← p · q

4 Select e to be an integer, where GCD(e, (p − 1) · (q − 1)) = 1

5 Compute d such that e · d ≡ 1 (mod (p − 1) · (q − 1))

6 Return ((e,N), (d,N))

In practice, e is often a small and low density integer. A small and low density
public key provides computational efficiencies during the encrypt and verify
RSA algorithms.

To sign a message, we use the following algorithm, where h is a hashing algo-
rithm, such as SHA1:

Algorithm 1.2 RSA Sign

INPUT: Private Key (d,N), and message to be signed, m.
OUTPUT: s, signature of m using private key (d,N).

1 s ← h(m)d (mod N)

2 Return (s)

To verify a signature s, we use the following algorithm:

2

Algorithm 1.3 RSA Verify

INPUT: Public Key (e,N), and message-signature pair to be verified (m, s).
OUTPUT: V ALID or INV ALID.

1 hm′ ← se (mod N)

2 If h(m) = hm′, Return V ALID
Else, Return INV ALID

The RSA algorithm is believed to be secure if the problem of factoring large
integers is “hard”. That is, given a large number n with two large prime factors
p and q, it must be computationally infeasible to find p and q. Otherwise, an
adversary could factor n, and then easily find d ≡ e−1 (mod (p− 1) · (q− 1)) to
obtain the private key. Currently, an efficient algorithm for factoring integers
does not exist. However, we do not know whether there is a simpler method of
finding d, given the public key. That is, we do not know whether factoring is
necessary to find the private key.

Even though the RSA algorithm is assumed mathematically secure, specific
implementations may not be secure. “Side-channel” attacks against implemen-
tations are possible. These attacks do not attack the algorithm directly using
mathematical techniques, but instead use information (such as power consump-
tion or electromagnetic emissions) leaked from an implementation in order to
derive information about the private key.

The exponentiation is the most time-consuming operation in RSA. The Chinese
Remainder Theorem is used to obtain an approximate 4-fold increase in signing
speed.

The public exponent is frequently chosen to be quite small to speed up verifi-
cation, since exponentiation is the most time-consuming operation in RSA. To
obtain an approximately 4-fold increase in signing speed, the Chinese Remainder
Theorem (CRT) is often used.

1.2 Chinese Remainder Theorem

The Chinese Remainder Theorem provides a method for solving certain sys-
tems of congruence relations. One of the many applications of the theorem, is
speeding up RSA signature generation.

Theorem 1.1 Let m1,m2, . . . ,mn be distinct positive integers such that GCD(mi,mj) =
1 if i 6= j. Then, for any integers a1, a2, · · · , an, the simultaneous congruences

x ≡ a1 (mod m1)

3

x ≡ a2 (mod m2)

...

x ≡ an (mod mn)

always have a solution. Moreover, if x = x0 is one solution, then the complete
solution is x ≡ x0 (mod m1m2 . . . mn) [1]. The solution [4] is

x0 ≡ a1b1
M

m1
+ . . . + anbn

M

m1
(mod M)

where
M = m1m2 . . . mn

and the bi are determined from

bi
M

mi
≡ 1 (mod mi)

Garner’s Algorithm is an efficient implementation of the Chinese Remainder
Theorem, and can be used to find solutions to systems of congruences. The
following algorithm has been obtained from [2]:

Algorithm 1.4 Garner’s Algorithm

INPUT: A positive integer M =
∏n

i=1 mi > 1, with GCD(mi,mj) = 1 for all
i 6= j, and a(x) = (a1, a2, . . . , an).
OUTPUT: The integer x in radix b representation.

1 For i from 2 to n do:

1.1 Ci ← 1

1.2 For j from 1 to (i − 1) do:

1.2.1 u ← m−1
j (mod mi) (Using the Euclidean Algorithm)

1.2.2 Ci ← u · Ci (mod mi)

2 u ← a1, x ← u

3 For i from 2 to n do:

3.1 u ← (vi − x)Ci (mod mi)

3.2 x ← x + u ·
∏i−1

j=1 mj

4 Return(x)

4

1.3 CRT-RSA

Now, we will consider a way of speeding up signature generation, using the
Chinese Remainder Theorem. Using this method, we store the private key in
a different format. The public key is still (e,N), but the private key is now
(dp, dq, p, q), where dp ≡ d (mod (p − 1)), and dq ≡ d (mod (q − 1)). As in the
previous RSA Sign/Verify algorithms, h represents a hashing function.

Algorithm 1.5 CRT-RSA Sign

INPUT: Private Key (dp, dq, p, q), and message m to be signed.
OUTPUT: Signature s of m using private key (dp, dq, p, q).

1 sp ← h(m)dp (mod p)

2 sq ← h(m)dq (mod q)

3 Solve the following two congruences mod pq using Garner’s Algorithm:
s ≡ sp (mod p)
s ≡ sq (mod q)

4 Return (s)

Similarly, we can make decryption faster by performing two smaller exponentia-
tions, instead of directly computing m ≡ cd (mod N). Once we have computed
Mp and Mq, we can efficiently combine the solutions using Garner’s Algorithm
to get the required result.

2 Key Recovery Method

We start this section under the assumption that the CRT exponents dp and dq

have been recovered via side channel analysis. If the public key information is
known (e,N) it is straight forward to recover the factorization of N and the full
private key. We can compute mp ≡ cdp (mod N) for some c ≡ me (mod N).
Then p = gcd(m − mp, N). Similarly we can recover q. This is clear since

5

m ≡ cd (mod N) =⇒ m ≡ cd (mod p) (1)

≡ cdp+k·(p−1) (mod p)

≡ cdpc(p−1)k (mod p)

≡ cdp(1)k (mod p)

≡ cdp (mod p)

Also, mp ≡ cdp (mod n) =⇒ mp ≡ cdp (mod p) since n = pq, m ≡ mp (mod p).
So, m − mp = t · p for some t, hence m − mp and n, have a common factor p.

Next we present an algorithm which produces a set of candidates for the public
key exponent and prime factorization given the CRT exponents dp and dq, and
an upper bound for the public exponent e. We show given a message-signature
pair or plaintext-ciphertext pair it is a trivial matter to test the candidates for
the correct solution.

2.1 Prime Candidate Recovery Algorithm

Algorithm 2.1 Constructing Prime Candidate Set Algorithm

INPUT: CRT exponents dp, dq > 0, and an upper bound u for e
OUTPUT: Prime factors and public exponent set {(e1, p1, q1), . . . (ek, pk, qk)}

1 Set i ← 0, and j ← 3

2 Compute d1p ← dp · j − 1

3 Set k ← 3

4 Compute h and r such that d1p = kh + r

5 If r = 0

5.1 Set p ← h + 1

5.2 If p is a prime

5.2.1 Compute d1q ← dq · j − 1

5.2.2 Set l ← 3

5.2.3 Compute h and r such that d1q = lh + r

5.2.4 If r = 0

6

5.2.4.1 Set q ← h + 1

5.2.4.2 If q is a prime Set ei ← j, pi ← p, qi ← q, i ← i + 1

5.2.5 Set l ← l + 1

5.2.6 If l < j Go to 5.2.3

6 Set k ← k + 1

7 If k < j Go to 4

8 Set j ← j + 2

9 If j ≤ u Go To 2

10 Return {(e1, p1, q1), . . . , (ek, pk, qk)}

We now analyze the correctness of this prime factor recovery method, the ap-
proximate runtime complexity, and the probabilistic cardinality of the candidate
set.

First we show that under the assumption that the odd public exponent e is
3 ≤ e ≤ u, and the RSA factors p and q are true primes, the returning set
contains the triplet (e, p, q) where e is the public exponent and p and q are the
prime factors of the RSA modulus. It is clear from the algorithm description
that j will eventually be set to e. Now by construction dp ≡ d (mod p − 1),
from this it follows that e · dp − 1 ≡ 0 (mod p − 1), since

dp ≡ d (mod p − 1)

=⇒ e · dp ≡ e · d (mod p − 1)

=⇒ e · dp ≡ 1 (mod p − 1)

=⇒ e · dp − 1 ≡ 0 (mod p − 1).

Therefore e · dp − 1 = t · (p − 1) for some 0 < t < e. Hence when j = e and
k = t Step (4) will be satisfied; and we will enter the loop defined within Step
5.b. Now, for a similar argument, e · dq − 1 = s · (q − 1) for some 2 < s < e.
Hence when j = e, k = t and l = s the causal solution (e, p, q) will be placed in
the solution set. This satisfies the requirement that the algorithm will return
a non-empty solution set under the assumptions above and that it will contain
the correct RSA parameters (e, p, q).

So now let’s consider the probabilistic size of the candidate set. Let S =
{(ei, pi, qi)} produced by the algorithm. For any given j, k and l, we need
to consider the probability of contributing to this set. Given d1p = dp · j − 1,

7

what is the probability that k divides d1p evenly. This is fairly straight forward
probability of 1/k. Now given the instance that d1p = k ·h for some h ∈ N what
is the probability that h + 1 is a prime number. This is governed by the Prime
Number Theorem that has as a consequence that the probability that a random
number n is prime is roughly 1/log(n). In our case we estimate this value to
1/log(dp) since h + 1 ≈ dp in size. Similarly for l we have a 1/l probability
that d1q = l · h, for some h ∈ N and a probability of 1/log(h + 1) that h + 1 is
prime, which we can estimate by 1/log(dq). Thus for any given j, k and l the
probability that it contributes a candidate is:

Pr((j, k, l) contributes to S) ≈

(

1

k

)(

1

log(dp)

)(

1

l

) (

1

log(dq)

)

=

(

1

l · k · log(dp) · log(dq)

)

These facts can be used to estimate the cardinality of our solution set S. We now
have an estimate for the probability of being included in the solution set, if we
sum these probabilities over all experiments we get an approximate cardinality
of our candidate set.

|S| ≈

⌊u/2⌋
∑

j=1

(

2j+1
∑

k=3

1

k
·

1

log(dp)

) (

2j+1
∑

l=3

1

l
·

1

log(dq)

)

=

(

1

log(dp) · log(dq)

) ⌊u/2⌋
∑

j=1

(

2j+1
∑

k=3

1

k

) (

2j+1
∑

l=3

1

l

)

≈

(

1

log(dp) · log(dq)

) ⌊u/2⌋
∑

j=1

(log(2j + 1) − 3/2)2

Now if we assume u = 65537, and p and q are 512-bits, we can further approxi-
mate the cardinality of S:

8

|S| ≈

(

1

log(dp) · log(dq)

) 32768
∑

j=1

(log(2j + 1) − 3/2)2

≈

(

1

log(2512)

)2 32768
∑

j=1

(log(2j + 1) − 3/2)2

≈

(

2450944

125948

)

≈ 19

This value is a very reasonable set to subject to obvious secondary testing. It
should be noted that each triplet (ei, pi, qi) in S can be used to define valid RSA
public and private keys (ei, Ni = pi · qi) and di such that the CRT exponent
equations dp ≡ di (mod pi − 1) and dq ≡ di (mod qi − 1) hold. If we are given
a valid message-signature (m, s), we can test the candidates by computing the
corresponding public key (ei, Ni) and testing h(m) ≡ sei (mod Ni), where h
is the hashing function used to generate the signature. Clearly, the causal
candidate will pass this test; and all the non-causal values will fail with almost
certain probability.

In the case where the value e is known the set greatly reduces. We get the
following estimate for a fixed e value.

|Se| ≈

(

e
∑

k=3

1

k

1

log(dp)

) (

e
∑

l=3

1

l

1

log(dq)

)

=

(

1

log(dp) · log(dq)

)

(

e
∑

k=3

1

k

) (

e
∑

l=3

1

l

)

≈

(

(log(e) − 3/2)2

log(dp) · log(dq)

)

For the following e values and N sizes we get the following table of non-casual
cardinality of Se.

9

e log2(N) |Se|
3 512 0.000003
3 1024 0.00000088
3 2048 0.00000022

65537 512 0.0029
65537 1024 0.00073
65337 2047 0.00018

Now if the actual RSA public exponent is a small we e would expect to see the
causal primes p and q and additional prime candidates with very low probability.
As e grows the probability of course increases.

3 Conclusion

In practice the source code of the following section produced around 90 candi-
dates, roughly four times of the expected cardinality. This is largely due to the
non randomness of the actual integers d1p and the resulting values being tested
for primality. The candidate set contains many large pi and qi multiple times.

This solution raises two obvious extensions. Namely as u, the upper bound,
increases or if e is a large known value how can we expand this method to solve
for d and N , or p and q? A second obvious question is in regards to selected
CRT method. If the underlying RSA signature algorithm is not using the CRT
method and the full exponent d is recovered instead of the CRT exponents dp

and dq how can we expand this method to solve for e and N when e is small
but unknown or large but known.

10

4 Source Code

This section contains some sample source code that implements the candidate
set construction for two CRT exponents and an assumption of e < 65538.

int crt_rsa_recover()

{

rsa_key_pair keys;

csl_int dp, dq, p, q, N, a, m, c, d, r, p1, q1, dp1, dq1;

int i, count, count2, count3, l, t, j, k;

// initialize

rsa_key_init(keys);

csl_init(dp); csl_init(dq); csl_init(p); csl_init(q);

csl_init(N); csl_init(a); csl_init(m); csl_init(c);

csl_init(d); csl_init(r); csl_init(p1); csl_init(q1);

csl_init(dp1); csl_init(dq1);

// generate key pair

rsa_gen_keypair(keys, 1024);

// print out key pair

printf("RSA PARAMS:\np: "); csl_print(stdout, keys->p);

printf("\nq: "); csl_print(stdout, keys->q);

printf("\nN: "); csl_print(stdout, keys->N);

printf("\ne: "); csl_print(stdout, keys->e);

printf("\nd: "); csl_print(stdout, keys->d);

printf("\n");

// ok, now grab p-1, and q-1

csl_sub_ui(p1, keys->p, 1); csl_sub_ui(q1, keys->q, 1);

// compute d_p = d (mod(p-1)) and d_q = d (mod(q-1))

csl_mod(dp, keys->d, p1); csl_mod(dq, keys->d, q1);

// print out recovered exponents

printf("d_p = "); csl_print(stdout, dp);

printf("\nd_q = "); csl_print(stdout, dq);

// compute dp1, dq1

csl_mul(dp1, dp, keys->e); csl_mul(dq1, dq, keys->e);

csl_sub_ui(dp1, dp1, 1); csl_sub_ui(dq1, dq1, 1);

count = 0; count2 = 0; count3 = 0;

// start the generalized loop for keys->e unknown

for(j=3;j<65538;j+=2){

csl_mul_ui(dp1, dp, j); csl_sub_ui(dp1, dp1, 1);

for(k=3;k<=j;k++){

csl_set_ui(d, k); csl_div_n_qr(a, r, dp1, d);

if(r->size == 0){

++count; csl_add_ui(p, a, 1);

if((p->d[0]&0x01)&&(miller_rabin(p, 10)){

++count2; csl_mul_ui(dq1, dq, j);

csl_sub_ui(dq1, dq1, 1);

for(l=3;l<=j;l++){

csl_set_ui(d, l);

11

csl_div_n_qr(a, r, dq1, d);

if(r->size == 0){

csl_add_ui(q, a, 1);

if((q->d[0]&0x01)&&(miller_rabin(q, 10)){

++count3;

printf("candidate: (%d, ", j);

csl_print(stdout, p);

printf(", ");

csl_print(stdout, q);

printf(")\n");

} } } } } } }

printf("count: %d \t count2: %d\t count3: %d\n", count, count2, count3);

return 0;

}

References

[1] William J. Gilbert and Scott A. Vanstone. Classical Algebra. Graphic Ser-
vices, University of Waterloo, 3rd edition, 1993.

[2] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, Oct 1996.

[3] R.L. Rivest, A. Shamir, and L Adleman. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems.
http://citeseer.ist.psu.edu/rivest78method.html, 1978.

[4] Eric W. Weisstein. CRC Concise Encyclopedia of Mathematics. CRC Press,
2nd edition, 1999.

12

