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Abstra
t. In 2003, Al-Riyami and Paterson [AP℄ proposed the 
erti�-


ateless publi
 key 
ryptography(CL-PKC) whi
h is intermediate be-

tween traditional 
erti�
ated PKC and identity-based PKC. In this pa-

per, we propose an authenti
ated 
erti�
ateless publi
 key en
ryption

s
heme. Our result improves their publi
 key en
ryption s
heme in eÆ-


ien
y and se
urity. The se
urity of the proto
ol is based on the hardness

of two problems; the 
omputational DiÆe-Hellman problem(CDHP) and

the bilinear DiÆe-Hellman problem(BDHP). We also give a formal se-


urity model for both 
on�dentiality and unforgeability, and then show

that our s
heme is provably se
ure in the random ora
le model.
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1 Introdu
tion

The traditional publi
 key 
ryptosystem has a well-established te
hnol-

ogy, publi
 key infrastru
ture(PKI), but the issues of key management

are somewhat 
omplex. The problem of PKI te
hnology are the 
erti�
ate

management in
luding revo
ation, storage, distribution and the 
ompu-

tational 
ost of 
erti�
ate veri�
ation. In 1984, Shamir [Sh℄ proposed the


on
ept of an identity-based 
ryptosystem to solve those key manage-

ment problems. The idea of identity-based 
ryptosystems is to get rid

of publi
 key 
erti�
ates by allowing the user's publi
 key to be the bi-

nary sequen
e 
orresponding to an information identifying him in a non-

ambiguous way.(E-mail address, IP address 
ombined to a user name

and so
ial se
urity number 
an be used.) Boneh-Franklin [BF1℄ [BF2℄

presented the �rst fully-fun
tional and provably se
ure identity-based en-


ryption s
heme using bilinear maps over supersingular ellipti
 
urves

in 2001. The identity-based system needs a trusted private key gener-

ator(PKG) whi
h generates the private keys of the entities using their

publi
 keys and a master se
ret key related to the global parameters

?
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for the system. Identity-based publi
 key 
ryptosystems(ID-PKC) have

an advantage in the aspe
t of the key management 
ompared with the

traditional publi
 key system. However, ID-PKC has a signi�
ant short-


oming with respe
t to the PKG. The dependen
e on the PKG who 
an

be in a privileged position by generating all user's private keys inevitably


auses the key es
row problem to the ID-PKC. The issues of key es
row

bring about several problems, for example, the invasion of a priva
y, the

dishonest PKG's masquerading as a regular user and so on.

Considering all these problems, Al-Riyami and Paterson [AP℄ intro-

du
ed a new paradigm for publi
 key 
ryptography, whi
h is 
alled a 
er-

ti�
ateless publi
 key 
ryptography(CL-PKC). They proposed the 
eti�-


ateless publi
 key en
ryption, signature, key ex
hange s
hemes and hier-

ar
hi
al CL-PKC. These s
hemes are all derived from pairings on ellipti



urves. CL-PKC system does not require the use of 
erti�
ate and does

not have the key es
row feature of ID-PKC. Thus the CL-PKC is a model

for the use of the publi
 key 
ryptography that is intermidiate between

traditional PKI and ID-PKC.

In this paper we present an authenti
ated 
erti�
ateless publi
 key

en
ryption s
heme whi
h improves the Al Riyami-Paterson's en
ryption

s
heme in eÆ
ien
y and se
urity. Our s
heme also does not require 
er-

ti�
ates and does not su�er from the key es
row property that seems to

be inherent in the identity-based PKC. To 
ir
umvent the es
row, the

users in our model use the DiÆe-Hellman key share from their ephemeral


ontributions that 
annot be known by the PKG. In this s
heme, the

long-term keys are used for non-repudiation purpose and hen
e authen-

ti
ation. Consequently, our s
heme keeps the 
on�dentiality even from

the PKG and gives the integrity. Furthermore, another advantage of our

s
heme would be damage 
ontrol, in other words, dis
losure of the mas-

ter se
ret from the PKG would not 
ompromise the 
on�dentiality of the

en
rypted plaintext.

The se
urity of our system is based on both the 
omputational DiÆe-

Hellman (CDH) assumption and the bilinear DiÆe-Hellman (BDH) as-

sumption. Based on those assumptions, we �rst show that our s
heme is

EUF-CMA se
ure for integrity and then show that the s
heme is IND-

CCA se
ure for 
on�dentiality.

The rest of our paper is organized as follows. In Se
tion 2, we give

underlying de�nitions and des
ribe the se
urity notions of our s
heme. In

Se
tion 3, we present our publi
 key en
ryption s
heme whi
h is not only

provably se
ure against 
hosen 
iphertext atta
k but also is existential

unforgeable under adaptive 
hosen message atta
k in the random ora
le



model, assuming that the CDH problem and the BDH problem are 
om-

putationally hard. Furthermore, we analyze the se
urity of our proposed

s
heme in Se
tion 4. In Se
tion 5, we 
ompare the eÆ
ien
y and the se
u-

rity of our proposed s
heme with those of other known s
hemes. Finally,

we give some 
on
lusions in Se
tion 6.

2 Preliminaries

2.1 Ba
kgrounds

We �rst review the admissible bilinear map, whi
h is the mathemati
al

primitive that plays on 
entral role in our publi
 key en
ryption s
heme.

Bilinear map. Let G

1

denote an additive group of prime order q and G

2

a multipli
ative group of the same order. Let P be a generator of G

1

.

Assume that the dis
rete logarithm problem (DLP) is hard in both G

1

and G

2

.

A mapping ê : G

1

� G

1

�! G

2

satisfying the following properties is


alled an admissible bilinear map.

1. Bilinear: ê(aP; bQ) = ê(P;Q)

ab

for all P;Q 2 G

1

and a; b 2 Z

q

�

.

2. Non-degenerate: ê does not send all pairs of points in G

1

� G

1

to the

identity in G

2

. (Hen
e, if P is a generator of G

1

then ê(P; P ) is a generator

of G

2

.)

3. Computable: There exists an eÆ
ient algorithm to 
ompute ê(P;Q) for

all P;Q 2 G

1

.

Typi
ally the map ê will be derived from either Weil or Tate pairings

on an ellipti
 
urve over a �nite �eld. The se
urity of our s
heme is based

on the diÆ
ulty of 
omputational DiÆe-Hellman Problem(CDHP) and

Bilinear DiÆe-Hellman Problem(BDHP). Now we give formal des
rip-

tions of su
h hard problems.

Computational DiÆe-Hellman Problem. Given P; aP; bP for some a; b 2

Z

q

�

, 
ompute abP .

Computational DiÆe-Hellman Assumption. There exists no algorithm

running in expe
ted polynomial time whi
h 
an solve the CDH problem

with non-negligible probability.

Bilinear DiÆe-Hellman Problem. Let G

1

; G

2

be two groups of prime order

q. Let ê : G

1

� G

1

�! G

2

be an admissible bilinear map and let P be a

generator of G

1

. The BDH problem in < G

1

; G

2

; ê > is as follows : Given

< P; aP; bP; 
P > for some a; b; 
 2 Z

q

�

, 
ompute W = ê(P; P )

ab


2 G

2

.

Algorithm A has advantage � in solving BDHP in < G

1

; G

2

; ê > if

Pr[ A (P, aP, bP, 
P) = ê(P; P )

ab


℄ � �



where the probability is over the random 
hoi
e of a; b; 
 in Z

q

�

, and the

random bits of A.

Bilinear DiÆe-Hellman Parameter Generator. As in [BF1℄, [BF2℄, a

randomized algorithm IG is a BDH parameter generator if IG takes a

se
urity parameter k > 0, runs in time polynomial in k, and outputs the

des
ription of an admissible pairing ê : G

1

� G

1

�! G

2

.

Bilinear DiÆe-Hellman Assumption. We say a BDH parameter generator

IG, satis�es the BDH assumption if the following is negligible in k for all

probabilisti
 polynomial time algorithm A :

Pr [ (G

1

; G

2

; ê) IG (1

k

) ; P  G

1

; a; b; 
 Z

q

�

: A (G

1

; G

2

; ê, P,

aP, bP, 
P)= ê(P; P )

ab


℄

For the remainder of the paper we make use of some �xed BDH parameter

generator IG that satis�es the BDH assumption, and use the symbols

G

1

; G

2

; ê; q to represent the 
onstituents of its output.

2.2 Se
urity Notions

In the next se
tion, we prove 
on�dentiality and unforgeability of our

s
heme in the random ora
le model based on the BDH assumption, CDH

assumption and the Fujisaki-Okamoto transformation [FO℄. We �rst give

the formal de�nitions of 
on�dentiality and unforgeability for our purpose.

2.2.1 Con�dentiality

We say that a s
heme is IND-CCA se
ure if no polynomially bounded

adversary has a non-negligible advantage against the 
hallenger in the

following game.

Setup The 
hallenger takes a se
urity parameter k and runs the Setup

algorithm to obtain parameters and a master key s. It gives the adversary

parameters with the value s su
h that P

pub

= sP .

Although our s
heme is no longer ID based, a third party (PKG)

issuing the long-term private keys of 
ommuni
ating parties exists in the

system. To avoid the misbehavior of the PKG, our se
urity model is

strengthened more than the se
urity models of other en
ryption s
hemes

to handle adversaries. In short, we assume that the adversary 
an a

ess

to the master-key.

Phase 1 The adversary issues queries q

1

; q

2

; � � � ; q

m

where q

i

is one of ;

Extra
tion query of the form ID

I

. On re
eiving su
h a query, the 
hal-

lenger runs Extra
t(ID

I

) and responds with S

I

= x

I

d

I

, where d

I

is a

long-term private key generated by the PKG.



En
ryption query of the form (ID

I

; ID

J

;M). On re
eiving su
h a query,

the 
hallenger runs Extra
t(ID

I

) = S

I

followed by En
rypt(S

I

; ID

J

;M).

The response is the resulting 
iphertext.

De
ryption query of the form (ID

I

; ID

J

; C) On re
eiving su
h a

query the 
hallenger runs Extra
t(ID

J

) followed by De
rypt(ID

I

; S

J

; C).

The response is the plaintext M .

These queries may be asked adaptively, that is, ea
h query q

i

may

depend on the replies q

1

; q

2

; � � � ; q

i�1

.

Challenge On
e the adversary de
ides that Phase 1 is over it outputs two

equal length plaintexts M

0

;M

1

2 M and two identities, ID

A

and ID

B

,

on whi
h it wishes to be 
hallenged. The only 
onstraint is that ID did not

appear in any extra
tion query in Phase 1. The 
hallenger pi
k a random

bit b 2 f0; 1g and runs Extra
t(ID

A

) followed by En
rypt(S

A

; ID

B

;M

b

).

It returns the resulting 
iphertext C

�

to the adversary.

Phase 2 During this phase, the adversary may make more queries q

m+1

; � � � ; q

n

of the types des
ribed in Phase 1 with the restri
tion below.

{ The Extra
tion query ID

A

and ID

B

are not permitted.

{ The De
ryption query (ID

A

; ID

B

; C

�

) is not permitted

These queries may be asked adaptively in Phase 2.

Guess Finally, A outputs a bit b

0

2 f0; 1g and wins the game if b = b

0

.

We refer to su
h an adversary A as an IND-CCA atta
ker. We de�ne

the advantage of A to be Adv(A) = jPr[b = b

0

℄ -

1

2

j. The probability is

over the random bits used by the 
hallenger and the adversary.

2.2.2 Unforgeability

We say that a s
heme is se
ure against 
iphertext forgery if no polynomially-

bounded adversary has a non-negligible advantage in the following game.

Setup The 
hallenger takes a se
urity parameter k and runs the Setup

algorithm to obtain parameters and a master key s. It gives the adversary

parameters with the value s su
h that P

pub

= sP .

Atta
k During this phase the adversary makes the queries des
ribed below

to the 
hallenger.

Extra
tion query of the form ID

I

On re
eiving su
h a query the 
hallenger

runs Extra
t(ID

I

) and responds with S

I

= x

I

d

I

, where d

I

is a long-term

private key generated by the PKG.

En
ryption query of the form (ID

I

; ID

J

;M) On re
eiving su
h a query

the 
hallenger runs Extra
t(ID

I

) followed by En
rypt(S

I

; ID

J

;M). The

response is the resulting 
iphertext.

De
ryption query of the form (ID

I

; ID

J

; C) On re
eiving su
h a query

the 
hallenger runs Extra
t(ID

J

) followed by De
rypt(ID

I

; S

J

; C). The



response is the resulting plaintextM. (Sometimes the adversary is noti-

�ed that the issued 
iphertext is invalid.)

Forge The adversary attempts to output any valid 
iphertext C from a

sender A to a re
eiver B, provided it has not queried the private keys

of A and B in the previous step. The adversary wins if the 
iphertext is

valid.

We 
all su
h an adversary an EUF-CMA atta
ker.

3 An Authenti
ated 
erti�
ateless en
ryption s
heme

Our s
heme 
an be naturally divided four distin
t algorithms : Setup, Key

Extra
tion, En
rypt, De
rypt

Setup: Given a se
urity parameter k, the algorithm works as follows:

(1) Run IG on input k to generate a prime q, two groups G

1

; G

2

of order

q, and an admissible bilinear map ê : G

1

�G

1

�! G

2

. Choose an arbitrary

generator P 2 G

1

.

(2) Pi
k a random s 2 Z

q

�

and set P

pub

= sP .

(3) Choose 
ryptographi
 hash fun
tions H

1

: f0; 1g

�

�! G

�

1

, H

2

:

G

�

1

�! f0; 1g

n

, H

3

: f0; 1g

n

� G

2

�! f0; 1g

n

, H

4

: f0; 1g

n

�f0; 1g

n

�!

Z

q

�

and H

5

: f0; 1g

n

�! f0; 1g

n

.

Then, output the system parameters< G

1

; G

2

; q; ê; P; P

pub

;H

1

;H

2

;H

3

;

H

4

;H

5

> and the master key s. The message spa
e isM = f0; 1g

n

. The


iphertext spa
e is C = G

1

� f0; 1g

n

� f0; 1g

n

.

Key Extra
tion : For a given string ID 2 f0; 1g

�

, the algorithm does ;

(1) Compute Q

ID

= H

1

(ID) 2 G

�

1

.

(2) Pi
k a random x

ID

2 Z

q

�

, set publi
 keys X

ID

= x

ID

P and Y

ID

=

x

ID

Q

ID

.

(3) Set the private keys d

ID

to be d

ID

= sQ

ID

and then set S

ID

=

x

ID

d

ID

= x

ID

sQ

ID

, where s is the master key.

En
rypt : To en
rypt M 2M, do the following ;

(1) Choose a random � 2 f0; 1g

n

.

(2) Set r = H

4

(�;M).

(3) Compute x

A

X

B

= T .

(4) Set the 
iphertext to be C =< rQ

A

; � �H

3

(H

2

(T ); ê(d

A

; Y

B

)

r

);M �

H

5

(�) >; where Y

B

= x

B

Q

B

is the publi
 key of the re
eiver.

De
rypt : Let C =< U; V;W >2 C. To de
rypt this 
iphertext using the

private key S

B

= x

B

d

B

, perform the followings.

(1) Compute x

B

X

A

= T

(2) Compute V �H

3

(H

2

(T ); ê(U; S

B

)) = �, where S

B

= x

B

d

B

.

(3) Compute W �H

5

(�) =M



(4) Set r = H

4

(�;M) and test if U = rQ

A

. If not, reje
t the 
iphertext.

(5) Output M as the de
ryption of C.

The 
onsisten
y is easy to verify by the bilinearity. We have ê(d

A

; Y

B

)

r

= ê(sQ

A

; x

B

Q

B

)

r

= ê(rQ

A

; x

B

Q

B

)

s

= ê(rQ

A

; x

B

sQ

B

) = ê(U; x

B

d

B

) =

ê(U; S

B

).

The re
eiver 
an be 
onvin
ed of the origin of the en
rypted message

by 
he
king if the 
ondition rQ

A

= U holds. Even if the re
eived message

would be en
rypted under the wrong publi
 key, the re
eiver 
ould dete
t

the error by testing the �nal 
ondition.

4 Se
urity Analysis of our S
heme

4.1 Proof of Integrity

The following theorem shows that our s
heme is se
ure against 
iphertext

forgery without key es
row, assuming the BDH problem on G

1

and G

2

is

hard and the CDH problem on G

1

is hard.

Theorem 1. Let the hash fun
tions H

1

;H

2

;H

3

;H

4

and H

5

be random

ora
les. Then our s
heme is a 
iphertext-unforgeable publi
 key en
ryption

assuming the BDHP and the CDHP are hard in groups generated by IG.

Con
retely, suppose A is a polynomially-bounded adversary that 
an forge

a 
iphertext with advantage � and makes at most q

E

extra
tion queries

and at most q

H

1

; q

H

2

; q

H

3

queries to the hash fun
tions H

1

;H

2

and H

3

respe
tively. Then there exists a polynomially bounded algorithm B that

solves the BDHP and the CDHP with advantage �=

�

q

H

1

2

�

2

q

D

.

Proof. Algorithm B has as input random and uniformly distributed in-

stan
es (P; aP; bP; 
P ), (P; xP; yP ) of the BDHP and CDHP respe
tively.

For �nding the value ê(P; P )

ab


and xyP with A's assistan
e, B has 
on-

trol over the hash fun
tions H

1

;H

2

and H

3

. To respond to these hash

queries, B maintains a list L

H

1

that stores information on H

1

-queries, a

list L

H

2

that stores information on H

2

-queries and a list L

H

3

that stores

information on H

3

-queries. All lists are initially empty. For simpli
ity, we

assume that all H

1

-queries are distin
t (as replies 
an be 
a
hed) and that

any query involving an ID

A

is pre
eded by the H

1

-query for ID

A

. There

are several assumptions we may make out A's behavior when intera
ting

with the de
ryption ora
le.

� Before A gives its guess, A issues a de
ryption query on it.

� A does not issue de
ryption queries on 
iphertexts it has re
eived

from the en
ryption ora
le or 
iphertexts it 
an 
ompute be
ause it has

previously asked for the private key of the sender or re
eiver.



� Given the above assumptions, we may assume that after every de-


ryption query on a 
iphertext, if the answer is a plaintext (i.e. the 
i-

phertext it queried is valid) then A stops and outputs this 
iphertext.

B works by intera
ting with A as follows.

Setup : At the beginning of the game, B gives A the system parameters

< G

1

; G

2

; q; ê; P; P

pub

;H

1

;H

2

;H

3

;H

4

;H

5

> with the value s su
h that

P

pub

= sP .

H

1

-queries : B 
hooses two random numbers I; J between 1 and q

H

1

with

I 6= J . When A asks a polynomially bounded number of H

1

-queries on

identities of his 
hoi
e. B responds as follows.

(i) At the Ith H

1

-queries, B answers b

I

Q

I

, where Q

I

is an arbitrary publi


value. Pre
isely, if ID

A

does not already appear on the list and ID

A

is

the Ith distin
t H

1

-query made by A, then B 
hooses b

I

2 Z

q

�

, adds

< ID

I

; b

I

Q

I

; b

I

;?> to the list L

H

1

and answers H

1

(ID

I

) = b

I

Q

I

.

(ii) At the J th H

1

-query, B answers b

J

Q

J

, where Q

J

is an arbitrary

publi
 value. Pre
isely, if ID

A

does not already appear on the list and

ID

A

is the J th distin
t H

1

-query made by A then B 
hooses b

J

2 Z

q

�

,

adds < ID

J

; b

J

Q

J

; b

J

;?> to the list L

H

1

and answers H

1

(ID

J

) = b

J

Q

J

.

(iii) For H

1

(ID

e

) where e 6= I; J , B 
hooses b

e

; �

e

2 Z

q

�

and adds <

ID

e

; b

e

P; b

e

; �

e

> to the list L

H

1

and answers H

1

(ID

e

) = b

e

P .

H

2

-queries : A H

2

-query on ID

A

; ID

B

is handled as follows ;

(i) If ID

A

and ID

B

are not the identities ID

I

and ID

J

then B 
omputes

�

A

�

B

P adds < ID

A

; ID

B

; �

A

�

B

P; h

2

> to the list L

H

2

and answers h

2

.

(ii) In the 
ase ID

A

and ID

B

are the identities ID

I

and ID

J

, B 
hooses

z 2 Z

q

�

, adds < ID

I

; ID

J

; zP; h

2

>to the list L

H

2

and answers h

2

=

H

2

(zP ).

H

3

-queries : A 
an issue a H

3

-query request for (h

2

; U; ID

A

; ID

B

) at any

time. B runs the H

3

-simulation algorithm to respond A's query as follows.

(i) In the 
ase of ID

A

= ID

I

, and ID

B

= ID

J

, L

H

2

is examined for an

entity of the form < ID

A

; ID

B

; �P; h

2

> for some �.

� If su
h entities are found, L

H

2

must 
ontain < ID

I

; ID

J

; zP; h

2

>.

Now B 
hooses d

�

2 G

1

�

randomly, 
omputes ê(U; d

�

) = w and h

3

=

H

3

(h

2

; w), adds the tuple < ID

I

; ID

J

; U; (h

2

; w); h

3

> to the list L

H

3

,

and then answers h

3

.

� Otherwise, B 
hooses a random z

0

2 Z

q

�

and then adds < ID

I

; ID

J

; z

0

P; h

2

0

>

to the list L

H

2

. Similarly, B repeats the remaining pro
ess with the new tu-

ple in the L

H

2

-list, until obtaining a tuple < ID

I

; ID

J

; U; (h

2

0

; w

0

); h

3

0

>.

(ii) In 
ase ID

A

6= ID

I

; ID

B

6= ID

J

, B sear
hes a tuple < ID

A

; ID

B

; �P; h

2

>

for some � in the list L

H

2

.



� If su
h a tuple is found, B exe
utes the same pro
ess in 
ase (i). B 
om-

putes w

00

= ê(U;�

B

d

B

). B 
ould obtain �

B

d

B

= �

B

sb

B

P from the L

H

1

-

list be
ause ID

B

6= ID

J

. He puts the tuple < ID

A

; ID

B

; U; (h

2

; w

00

); h

3

00

>

in the list L

H

3

and answers h

3

00

.

� Otherwise, B 
hooses a random z

�

2 Z

q

�

, adds < ID

A

; ID

B

; z

�

P; h

2

�

>

to the L

H

2

-list and 
omputes w

�

= ê(U;�

B

�

d

B

). With (h

2

�

; w

�

), B sim-

ulates the H

3

-ora
le and then obtains h

3

�

= H

3

(h

2

�

; w

�

). It adds <

ID

A

; ID

B

; U; (h

2

�

; w

�

); h

3

�

> to the list L

H

3

and answers h

3

�

.

Key extra
tion query : When A asks a key extra
tion query on ID

B

,

(i) If ID

A

= ID

I

or ID

J

, then B fails and stops.

(ii) If ID

A

6= ID

I

; ID

J

, then the list L

H

1

must 
ontain < ID

A

; b

A

P; b

A

; �

A

>.

The de
ryption key 
orresponding to ID

A

is �

A

sQ

A

= �

A

sb

A

P = �

A

b

A

sP .

It is 
omputed by B and returned to A.

En
ryption query : At any time, A 
an perform En
rypt query for a

plaintext M and identities ID

A

and ID

B

.

(i) If ID

A

= ID

I

and ID

B

= ID

J

, B 
hooses random values r 2

Z

q

�

; � 2 f0; 1g

n

; �

B

2 Z

q

�

, 
omputes U

0

= rQ

A

= rb

I

Q

I

; V

0

=

� � H

3

(H

2

(zP ); ê(U

0

; �

B

sb

J

Q

J

));W

0

= M � H

5

(�) and then answers

C

0

= < U

0

; V

0

;W

0

>.

(ii) If ID

A

6= ID

I

; ID

B

6= ID

J

, B 
omputes the private key 
orresponding

to ID

A

. So the 
iphertext is 
omputed as des
ribed by the PKC algorithm.

De
ryption query : Suppose A issues an de
ryption query for a 
iphertext

C =< U; V;W > between identities ID

A

and ID

B

.

(i) If ID

A

= ID

I

; ID

B

= ID

J

, L

H

3

-list is examined for an entry of the

form < ID

I

; ID

J

; U; (h

2

; w); h

3

>. If su
h an entry is present, p = (h

2

; w)

is added to the list L

p

. A is noti�ed that C is invalid, even if C is valid.

(ii) If ID

A

6= ID

I

; ID

B

6= ID

J

, the list L

H

3

must 
ontain the entry

< ID

A

; ID

B

; U; (h

2

; w

00

); h

3

00

> and so �

B

sb

B

P is a de
ryption key for

ID

B

. Then the 
iphertext is de
rypted as outlined in the des
ription of

the PKC algorithm. If it is valid, the plaintext is given to A (and A wins).

Eventually, A terminates. Any output is ignored. Now if L

p

is empty,

then B fails. Otherwise B outputs a random element of L

p

.

Analysis. The probability that A never issues a key extra
tion query on

one of the guessed ID is at least 1=

�

q

H

1

2

�

. (We 
all any identity that the

asked ID is equal to one of values ID

I

; ID

J

a guessed identity.) If A has

submitted a valid 
iphertext then with a probability greater than 1=

�

q

H

1

2

�

,

A has su

essfully forged as 
iphertext between the guessed identities (but

is returned that the 
iphertext is invalid). If p = (H

2

(xyP ); ê(P; P )

ab


) is

not in the L

p

-list then A's view is independent of a 
orre
t forgery. Hen
e



the probability that A queries H

3

(p) is at least �. If this happens then B


annot fail and then outputs the 
orre
t value with probability at least

1

q

D

. We then have Adv(B) � �=

�

q

H

1

2

�

2

q

D

. �

4.2 Proof of Se
urity for Message Con�dentiality

The se
urity of our s
heme relies on the intra
tability of the BDHP and

the CDHP. We 
an state a theorem similar to Theorem 1.

Theorem 2. Let the hash fun
tions H

1

;H

2

;H

3

;H

4

and H

5

be random

ora
les. We assume our s
heme is 
iphertext-unforgeable. Then our s
heme

is a 
hosen 
iphertext se
ure publi
 key en
ryption (IND-CCA) assuming

the BDHP and the CDHP are hard in groups generated by IG. Con
retely,

suppose A is a polynomially bounded IND-CCA adversary with advantage

� and makes at most q

E

extra
tion queries, at most q

D

de
ryption queries

and at most q

H

1

; q

H

2

; q

H

3

queries to the hash fun
tions H

1

;H

2

and H

3

respe
tively, then there exists a polynomially bounded algorithm B that

solves the BDHP and the CDHP with advantage �=q

H

2

�

q

H

1

2

�

2

.

Proof. The proof follows the similar steps to the proof of Theorem 1, but

di�ers in the de
ryption query: sin
e we assume our s
heme is 
iphertext

unforgeable, the de
ryption ora
le's operation must be 
hanged. H

1

;H

2

and H

3

hash queries are treated by B as in the proof of Theorem 1. To

simulate En
ryption and Key extra
tion queries by A, B a
ts exa
tly as

in the proof of Theorem 1. So we only make mention of the de
ryption

queries.

Phase 1 : Whenever A issues a de
ryption query, it is noti�ed that the

given 
iphertext is invalid. By the hypothesis of 
iphertext-unforgeability,

A 
annot distinguish between this simulation of a de
ryption ora
le and

a real one.

Challenge : After a polynomially bounded number of queries, A 
hooses a

pair of identities on whi
h he wishes to be 
hallenged. When A produ
es

his two plaintexts M

0

;M

1

and ID

A

; ID

B

, B responds as follows.

(i) If queried identities are not guessed IDs then B fails and stops.

(ii) Otherwise, the 
iphertext is 
omputed as des
ribed by the IBE s
heme

for any random values r 2 Z

q

�

; � 2 f0; 1g

n

;M

b

2 fM

0

;M

1

g:

B answers the 
hallenge C =< U; V;W >.

Phase 2 : Key extra
tion, En
ryption, De
ryption query ; B responds to

these queries in the same way it did in the phase 1 of Theorem 1 (ex
ept

de
ryption query). But the usual restri
tions on A's behavior apply in this

phase.



� If A asks the private keys of ID

I

or ID

J

before 
hoosing his target

identities, B fails be
ause he is unable to answer the question.

� If A a
tually 
hooses to be 
hallenged on ID

I

and ID

J

then he 
annot

ask the key extra
tion query for ID

I

or ID

J

's.

� A 
annot make a de
ryption query on the 
hallenge 
iphertext for the


ombination of the 
hallenge identities and involving publi
 keys that were

used to en
rypt M

b

.

Guess : Eventually, A outputs its guess b

0

for b and wins if b = b

0

. Now if

L

p

is empty then B fails. Otherwise, B outputs a random element of L

p

.

Analysis. We know that B fails if A asks the private key asso
iated

to the guessed identity during the simulation. We also know that there

are

�

q

H

1

2

�

pairs of identities, at least one of them will never be the sub-

je
t of a key extra
tion query from A. Then, with the probability at least

1=

�

q

H

1

2

�

, A does not ask the key extra
tion of the guessed identities ID

I

and ID

J

. Further, the probability A's 
hallenge identities are the guessed

identity pair (ID

I

; ID

J

) is 1=

�

q

H

1

2

�

. If A has never queries H

3

(p) for

p = (H

2

(xyP ); ê(P; P )

ab


) then A's view is independent of M , so in this


ase A is unable to tell that it is in a simulation, and has no advantage.

Hen
e, the probability that A queries H

3

(p) is at least �. If A has queries

H

3

(p) then it may be able to distinguish the simulation from the real

life, but p will be 
a
hed on L

p

. B wins if he guesses the 
orre
t element

of L

p

to output. But, the size of this list is bounded by q

H

2

. Therefore,

Adv(B) � �=

�

q

H

1

2

�

2

q

H

2

.

5 Comparison

The following table gives a 
omparison between our s
heme and other

s
hemes in terms of eÆ
ien
y and se
urity properties. Se
urity is indi
ated

as follows: Authenti
ation, without key Es
row, 
iphertext Unforgeability,

and message Confidentiality.

s
heme # pairings # multi # expn Authen. Es
row Unforge Conf

BF [BF1,?℄ 2 1 1 X X X O

L [L℄ 2 0 0 O X O O

AP [AP℄ 4 1 1 O(half)

�

O O O

our s
heme 2 3 1 O

��

O O O

�

The s
heme satis�es only unilateral authenti
ation.

��

Two real-time 
ommuni
ating parties mutually assure ea
h other's identity.



6 Con
lusions

In this paper, we proposed an authenti
ated publi
 key en
ryption s
heme.

We provided proofs of 
on�dentiality and existential unforgeability un-

der the Bilinear DiÆe-Hellman and the Computational DiÆe-Hellman

assumptions.

The s
heme presented in [AP℄ is somewhat similar to our 
onstru
tion.

However, our s
heme satis�es mutual authenti
ation, while Al-Riyami and

Paterson's s
heme provided only unilateral authenti
ation. Moreover, two


ommuni
ating parties in our model perform en
ryption/de
ryption by

using a DiÆe-Hellman shared se
ret from their ephemeral 
ontribution.
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