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Abstrat. In 2003, Al-Riyami and Paterson [AP℄ proposed the erti�-

ateless publi key ryptography(CL-PKC) whih is intermediate be-

tween traditional erti�ated PKC and identity-based PKC. In this pa-

per, we propose an authentiated erti�ateless publi key enryption

sheme. Our result improves their publi key enryption sheme in eÆ-

ieny and seurity. The seurity of the protool is based on the hardness

of two problems; the omputational DiÆe-Hellman problem(CDHP) and

the bilinear DiÆe-Hellman problem(BDHP). We also give a formal se-

urity model for both on�dentiality and unforgeability, and then show

that our sheme is provably seure in the random orale model.

Keywords : erti�ateless publi key enryption, on�dentiality, unforgeability.

1 Introdution

The traditional publi key ryptosystem has a well-established tehnol-

ogy, publi key infrastruture(PKI), but the issues of key management

are somewhat omplex. The problem of PKI tehnology are the erti�ate

management inluding revoation, storage, distribution and the ompu-

tational ost of erti�ate veri�ation. In 1984, Shamir [Sh℄ proposed the

onept of an identity-based ryptosystem to solve those key manage-

ment problems. The idea of identity-based ryptosystems is to get rid

of publi key erti�ates by allowing the user's publi key to be the bi-

nary sequene orresponding to an information identifying him in a non-

ambiguous way.(E-mail address, IP address ombined to a user name

and soial seurity number an be used.) Boneh-Franklin [BF1℄ [BF2℄

presented the �rst fully-funtional and provably seure identity-based en-

ryption sheme using bilinear maps over supersingular ellipti urves

in 2001. The identity-based system needs a trusted private key gener-

ator(PKG) whih generates the private keys of the entities using their

publi keys and a master seret key related to the global parameters

?
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for the system. Identity-based publi key ryptosystems(ID-PKC) have

an advantage in the aspet of the key management ompared with the

traditional publi key system. However, ID-PKC has a signi�ant short-

oming with respet to the PKG. The dependene on the PKG who an

be in a privileged position by generating all user's private keys inevitably

auses the key esrow problem to the ID-PKC. The issues of key esrow

bring about several problems, for example, the invasion of a privay, the

dishonest PKG's masquerading as a regular user and so on.

Considering all these problems, Al-Riyami and Paterson [AP℄ intro-

dued a new paradigm for publi key ryptography, whih is alled a er-

ti�ateless publi key ryptography(CL-PKC). They proposed the eti�-

ateless publi key enryption, signature, key exhange shemes and hier-

arhial CL-PKC. These shemes are all derived from pairings on ellipti

urves. CL-PKC system does not require the use of erti�ate and does

not have the key esrow feature of ID-PKC. Thus the CL-PKC is a model

for the use of the publi key ryptography that is intermidiate between

traditional PKI and ID-PKC.

In this paper we present an authentiated erti�ateless publi key

enryption sheme whih improves the Al Riyami-Paterson's enryption

sheme in eÆieny and seurity. Our sheme also does not require er-

ti�ates and does not su�er from the key esrow property that seems to

be inherent in the identity-based PKC. To irumvent the esrow, the

users in our model use the DiÆe-Hellman key share from their ephemeral

ontributions that annot be known by the PKG. In this sheme, the

long-term keys are used for non-repudiation purpose and hene authen-

tiation. Consequently, our sheme keeps the on�dentiality even from

the PKG and gives the integrity. Furthermore, another advantage of our

sheme would be damage ontrol, in other words, dislosure of the mas-

ter seret from the PKG would not ompromise the on�dentiality of the

enrypted plaintext.

The seurity of our system is based on both the omputational DiÆe-

Hellman (CDH) assumption and the bilinear DiÆe-Hellman (BDH) as-

sumption. Based on those assumptions, we �rst show that our sheme is

EUF-CMA seure for integrity and then show that the sheme is IND-

CCA seure for on�dentiality.

The rest of our paper is organized as follows. In Setion 2, we give

underlying de�nitions and desribe the seurity notions of our sheme. In

Setion 3, we present our publi key enryption sheme whih is not only

provably seure against hosen iphertext attak but also is existential

unforgeable under adaptive hosen message attak in the random orale



model, assuming that the CDH problem and the BDH problem are om-

putationally hard. Furthermore, we analyze the seurity of our proposed

sheme in Setion 4. In Setion 5, we ompare the eÆieny and the seu-

rity of our proposed sheme with those of other known shemes. Finally,

we give some onlusions in Setion 6.

2 Preliminaries

2.1 Bakgrounds

We �rst review the admissible bilinear map, whih is the mathematial

primitive that plays on entral role in our publi key enryption sheme.

Bilinear map. Let G

1

denote an additive group of prime order q and G

2

a multipliative group of the same order. Let P be a generator of G

1

.

Assume that the disrete logarithm problem (DLP) is hard in both G

1

and G

2

.

A mapping ê : G

1

� G

1

�! G

2

satisfying the following properties is

alled an admissible bilinear map.

1. Bilinear: ê(aP; bQ) = ê(P;Q)

ab

for all P;Q 2 G

1

and a; b 2 Z

q

�

.

2. Non-degenerate: ê does not send all pairs of points in G

1

� G

1

to the

identity in G

2

. (Hene, if P is a generator of G

1

then ê(P; P ) is a generator

of G

2

.)

3. Computable: There exists an eÆient algorithm to ompute ê(P;Q) for

all P;Q 2 G

1

.

Typially the map ê will be derived from either Weil or Tate pairings

on an ellipti urve over a �nite �eld. The seurity of our sheme is based

on the diÆulty of omputational DiÆe-Hellman Problem(CDHP) and

Bilinear DiÆe-Hellman Problem(BDHP). Now we give formal desrip-

tions of suh hard problems.

Computational DiÆe-Hellman Problem. Given P; aP; bP for some a; b 2

Z

q

�

, ompute abP .

Computational DiÆe-Hellman Assumption. There exists no algorithm

running in expeted polynomial time whih an solve the CDH problem

with non-negligible probability.

Bilinear DiÆe-Hellman Problem. Let G

1

; G

2

be two groups of prime order

q. Let ê : G

1

� G

1

�! G

2

be an admissible bilinear map and let P be a

generator of G

1

. The BDH problem in < G

1

; G

2

; ê > is as follows : Given

< P; aP; bP; P > for some a; b;  2 Z

q

�

, ompute W = ê(P; P )

ab

2 G

2

.

Algorithm A has advantage � in solving BDHP in < G

1

; G

2

; ê > if

Pr[ A (P, aP, bP, P) = ê(P; P )

ab

℄ � �



where the probability is over the random hoie of a; b;  in Z

q

�

, and the

random bits of A.

Bilinear DiÆe-Hellman Parameter Generator. As in [BF1℄, [BF2℄, a

randomized algorithm IG is a BDH parameter generator if IG takes a

seurity parameter k > 0, runs in time polynomial in k, and outputs the

desription of an admissible pairing ê : G

1

� G

1

�! G

2

.

Bilinear DiÆe-Hellman Assumption. We say a BDH parameter generator

IG, satis�es the BDH assumption if the following is negligible in k for all

probabilisti polynomial time algorithm A :

Pr [ (G

1

; G

2

; ê) IG (1

k

) ; P  G

1

; a; b;  Z

q

�

: A (G

1

; G

2

; ê, P,

aP, bP, P)= ê(P; P )

ab

℄

For the remainder of the paper we make use of some �xed BDH parameter

generator IG that satis�es the BDH assumption, and use the symbols

G

1

; G

2

; ê; q to represent the onstituents of its output.

2.2 Seurity Notions

In the next setion, we prove on�dentiality and unforgeability of our

sheme in the random orale model based on the BDH assumption, CDH

assumption and the Fujisaki-Okamoto transformation [FO℄. We �rst give

the formal de�nitions of on�dentiality and unforgeability for our purpose.

2.2.1 Con�dentiality

We say that a sheme is IND-CCA seure if no polynomially bounded

adversary has a non-negligible advantage against the hallenger in the

following game.

Setup The hallenger takes a seurity parameter k and runs the Setup

algorithm to obtain parameters and a master key s. It gives the adversary

parameters with the value s suh that P

pub

= sP .

Although our sheme is no longer ID based, a third party (PKG)

issuing the long-term private keys of ommuniating parties exists in the

system. To avoid the misbehavior of the PKG, our seurity model is

strengthened more than the seurity models of other enryption shemes

to handle adversaries. In short, we assume that the adversary an aess

to the master-key.

Phase 1 The adversary issues queries q

1

; q

2

; � � � ; q

m

where q

i

is one of ;

Extration query of the form ID

I

. On reeiving suh a query, the hal-

lenger runs Extrat(ID

I

) and responds with S

I

= x

I

d

I

, where d

I

is a

long-term private key generated by the PKG.



Enryption query of the form (ID

I

; ID

J

;M). On reeiving suh a query,

the hallenger runs Extrat(ID

I

) = S

I

followed by Enrypt(S

I

; ID

J

;M).

The response is the resulting iphertext.

Deryption query of the form (ID

I

; ID

J

; C) On reeiving suh a

query the hallenger runs Extrat(ID

J

) followed by Derypt(ID

I

; S

J

; C).

The response is the plaintext M .

These queries may be asked adaptively, that is, eah query q

i

may

depend on the replies q

1

; q

2

; � � � ; q

i�1

.

Challenge One the adversary deides that Phase 1 is over it outputs two

equal length plaintexts M

0

;M

1

2 M and two identities, ID

A

and ID

B

,

on whih it wishes to be hallenged. The only onstraint is that ID did not

appear in any extration query in Phase 1. The hallenger pik a random

bit b 2 f0; 1g and runs Extrat(ID

A

) followed by Enrypt(S

A

; ID

B

;M

b

).

It returns the resulting iphertext C

�

to the adversary.

Phase 2 During this phase, the adversary may make more queries q

m+1

; � � � ; q

n

of the types desribed in Phase 1 with the restrition below.

{ The Extration query ID

A

and ID

B

are not permitted.

{ The Deryption query (ID

A

; ID

B

; C

�

) is not permitted

These queries may be asked adaptively in Phase 2.

Guess Finally, A outputs a bit b

0

2 f0; 1g and wins the game if b = b

0

.

We refer to suh an adversary A as an IND-CCA attaker. We de�ne

the advantage of A to be Adv(A) = jPr[b = b

0

℄ -

1

2

j. The probability is

over the random bits used by the hallenger and the adversary.

2.2.2 Unforgeability

We say that a sheme is seure against iphertext forgery if no polynomially-

bounded adversary has a non-negligible advantage in the following game.

Setup The hallenger takes a seurity parameter k and runs the Setup

algorithm to obtain parameters and a master key s. It gives the adversary

parameters with the value s suh that P

pub

= sP .

Attak During this phase the adversary makes the queries desribed below

to the hallenger.

Extration query of the form ID

I

On reeiving suh a query the hallenger

runs Extrat(ID

I

) and responds with S

I

= x

I

d

I

, where d

I

is a long-term

private key generated by the PKG.

Enryption query of the form (ID

I

; ID

J

;M) On reeiving suh a query

the hallenger runs Extrat(ID

I

) followed by Enrypt(S

I

; ID

J

;M). The

response is the resulting iphertext.

Deryption query of the form (ID

I

; ID

J

; C) On reeiving suh a query

the hallenger runs Extrat(ID

J

) followed by Derypt(ID

I

; S

J

; C). The



response is the resulting plaintextM. (Sometimes the adversary is noti-

�ed that the issued iphertext is invalid.)

Forge The adversary attempts to output any valid iphertext C from a

sender A to a reeiver B, provided it has not queried the private keys

of A and B in the previous step. The adversary wins if the iphertext is

valid.

We all suh an adversary an EUF-CMA attaker.

3 An Authentiated erti�ateless enryption sheme

Our sheme an be naturally divided four distint algorithms : Setup, Key

Extration, Enrypt, Derypt

Setup: Given a seurity parameter k, the algorithm works as follows:

(1) Run IG on input k to generate a prime q, two groups G

1

; G

2

of order

q, and an admissible bilinear map ê : G

1

�G

1

�! G

2

. Choose an arbitrary

generator P 2 G

1

.

(2) Pik a random s 2 Z

q

�

and set P

pub

= sP .

(3) Choose ryptographi hash funtions H

1

: f0; 1g

�

�! G

�

1

, H

2

:

G

�

1

�! f0; 1g

n

, H

3

: f0; 1g

n

� G

2

�! f0; 1g

n

, H

4

: f0; 1g

n

�f0; 1g

n

�!

Z

q

�

and H

5

: f0; 1g

n

�! f0; 1g

n

.

Then, output the system parameters< G

1

; G

2

; q; ê; P; P

pub

;H

1

;H

2

;H

3

;

H

4

;H

5

> and the master key s. The message spae isM = f0; 1g

n

. The

iphertext spae is C = G

1

� f0; 1g

n

� f0; 1g

n

.

Key Extration : For a given string ID 2 f0; 1g

�

, the algorithm does ;

(1) Compute Q

ID

= H

1

(ID) 2 G

�

1

.

(2) Pik a random x

ID

2 Z

q

�

, set publi keys X

ID

= x

ID

P and Y

ID

=

x

ID

Q

ID

.

(3) Set the private keys d

ID

to be d

ID

= sQ

ID

and then set S

ID

=

x

ID

d

ID

= x

ID

sQ

ID

, where s is the master key.

Enrypt : To enrypt M 2M, do the following ;

(1) Choose a random � 2 f0; 1g

n

.

(2) Set r = H

4

(�;M).

(3) Compute x

A

X

B

= T .

(4) Set the iphertext to be C =< rQ

A

; � �H

3

(H

2

(T ); ê(d

A

; Y

B

)

r

);M �

H

5

(�) >; where Y

B

= x

B

Q

B

is the publi key of the reeiver.

Derypt : Let C =< U; V;W >2 C. To derypt this iphertext using the

private key S

B

= x

B

d

B

, perform the followings.

(1) Compute x

B

X

A

= T

(2) Compute V �H

3

(H

2

(T ); ê(U; S

B

)) = �, where S

B

= x

B

d

B

.

(3) Compute W �H

5

(�) =M



(4) Set r = H

4

(�;M) and test if U = rQ

A

. If not, rejet the iphertext.

(5) Output M as the deryption of C.

The onsisteny is easy to verify by the bilinearity. We have ê(d

A

; Y

B

)

r

= ê(sQ

A

; x

B

Q

B

)

r

= ê(rQ

A

; x

B

Q

B

)

s

= ê(rQ

A

; x

B

sQ

B

) = ê(U; x

B

d

B

) =

ê(U; S

B

).

The reeiver an be onvined of the origin of the enrypted message

by heking if the ondition rQ

A

= U holds. Even if the reeived message

would be enrypted under the wrong publi key, the reeiver ould detet

the error by testing the �nal ondition.

4 Seurity Analysis of our Sheme

4.1 Proof of Integrity

The following theorem shows that our sheme is seure against iphertext

forgery without key esrow, assuming the BDH problem on G

1

and G

2

is

hard and the CDH problem on G

1

is hard.

Theorem 1. Let the hash funtions H

1

;H

2

;H

3

;H

4

and H

5

be random

orales. Then our sheme is a iphertext-unforgeable publi key enryption

assuming the BDHP and the CDHP are hard in groups generated by IG.

Conretely, suppose A is a polynomially-bounded adversary that an forge

a iphertext with advantage � and makes at most q

E

extration queries

and at most q

H

1

; q

H

2

; q

H

3

queries to the hash funtions H

1

;H

2

and H

3

respetively. Then there exists a polynomially bounded algorithm B that

solves the BDHP and the CDHP with advantage �=

�

q

H

1

2

�

2

q

D

.

Proof. Algorithm B has as input random and uniformly distributed in-

stanes (P; aP; bP; P ), (P; xP; yP ) of the BDHP and CDHP respetively.

For �nding the value ê(P; P )

ab

and xyP with A's assistane, B has on-

trol over the hash funtions H

1

;H

2

and H

3

. To respond to these hash

queries, B maintains a list L

H

1

that stores information on H

1

-queries, a

list L

H

2

that stores information on H

2

-queries and a list L

H

3

that stores

information on H

3

-queries. All lists are initially empty. For simpliity, we

assume that all H

1

-queries are distint (as replies an be ahed) and that

any query involving an ID

A

is preeded by the H

1

-query for ID

A

. There

are several assumptions we may make out A's behavior when interating

with the deryption orale.

� Before A gives its guess, A issues a deryption query on it.

� A does not issue deryption queries on iphertexts it has reeived

from the enryption orale or iphertexts it an ompute beause it has

previously asked for the private key of the sender or reeiver.



� Given the above assumptions, we may assume that after every de-

ryption query on a iphertext, if the answer is a plaintext (i.e. the i-

phertext it queried is valid) then A stops and outputs this iphertext.

B works by interating with A as follows.

Setup : At the beginning of the game, B gives A the system parameters

< G

1

; G

2

; q; ê; P; P

pub

;H

1

;H

2

;H

3

;H

4

;H

5

> with the value s suh that

P

pub

= sP .

H

1

-queries : B hooses two random numbers I; J between 1 and q

H

1

with

I 6= J . When A asks a polynomially bounded number of H

1

-queries on

identities of his hoie. B responds as follows.

(i) At the Ith H

1

-queries, B answers b

I

Q

I

, where Q

I

is an arbitrary publi

value. Preisely, if ID

A

does not already appear on the list and ID

A

is

the Ith distint H

1

-query made by A, then B hooses b

I

2 Z

q

�

, adds

< ID

I

; b

I

Q

I

; b

I

;?> to the list L

H

1

and answers H

1

(ID

I

) = b

I

Q

I

.

(ii) At the J th H

1

-query, B answers b

J

Q

J

, where Q

J

is an arbitrary

publi value. Preisely, if ID

A

does not already appear on the list and

ID

A

is the J th distint H

1

-query made by A then B hooses b

J

2 Z

q

�

,

adds < ID

J

; b

J

Q

J

; b

J

;?> to the list L

H

1

and answers H

1

(ID

J

) = b

J

Q

J

.

(iii) For H

1

(ID

e

) where e 6= I; J , B hooses b

e

; �

e

2 Z

q

�

and adds <

ID

e

; b

e

P; b

e

; �

e

> to the list L

H

1

and answers H

1

(ID

e

) = b

e

P .

H

2

-queries : A H

2

-query on ID

A

; ID

B

is handled as follows ;

(i) If ID

A

and ID

B

are not the identities ID

I

and ID

J

then B omputes

�

A

�

B

P adds < ID

A

; ID

B

; �

A

�

B

P; h

2

> to the list L

H

2

and answers h

2

.

(ii) In the ase ID

A

and ID

B

are the identities ID

I

and ID

J

, B hooses

z 2 Z

q

�

, adds < ID

I

; ID

J

; zP; h

2

>to the list L

H

2

and answers h

2

=

H

2

(zP ).

H

3

-queries : A an issue a H

3

-query request for (h

2

; U; ID

A

; ID

B

) at any

time. B runs the H

3

-simulation algorithm to respond A's query as follows.

(i) In the ase of ID

A

= ID

I

, and ID

B

= ID

J

, L

H

2

is examined for an

entity of the form < ID

A

; ID

B

; �P; h

2

> for some �.

� If suh entities are found, L

H

2

must ontain < ID

I

; ID

J

; zP; h

2

>.

Now B hooses d

�

2 G

1

�

randomly, omputes ê(U; d

�

) = w and h

3

=

H

3

(h

2

; w), adds the tuple < ID

I

; ID

J

; U; (h

2

; w); h

3

> to the list L

H

3

,

and then answers h

3

.

� Otherwise, B hooses a random z

0

2 Z

q

�

and then adds < ID

I

; ID

J

; z

0

P; h

2

0

>

to the list L

H

2

. Similarly, B repeats the remaining proess with the new tu-

ple in the L

H

2

-list, until obtaining a tuple < ID

I

; ID

J

; U; (h

2

0

; w

0

); h

3

0

>.

(ii) In ase ID

A

6= ID

I

; ID

B

6= ID

J

, B searhes a tuple < ID

A

; ID

B

; �P; h

2

>

for some � in the list L

H

2

.



� If suh a tuple is found, B exeutes the same proess in ase (i). B om-

putes w

00

= ê(U;�

B

d

B

). B ould obtain �

B

d

B

= �

B

sb

B

P from the L

H

1

-

list beause ID

B

6= ID

J

. He puts the tuple < ID

A

; ID

B

; U; (h

2

; w

00

); h

3

00

>

in the list L

H

3

and answers h

3

00

.

� Otherwise, B hooses a random z

�

2 Z

q

�

, adds < ID

A

; ID

B

; z

�

P; h

2

�

>

to the L

H

2

-list and omputes w

�

= ê(U;�

B

�

d

B

). With (h

2

�

; w

�

), B sim-

ulates the H

3

-orale and then obtains h

3

�

= H

3

(h

2

�

; w

�

). It adds <

ID

A

; ID

B

; U; (h

2

�

; w

�

); h

3

�

> to the list L

H

3

and answers h

3

�

.

Key extration query : When A asks a key extration query on ID

B

,

(i) If ID

A

= ID

I

or ID

J

, then B fails and stops.

(ii) If ID

A

6= ID

I

; ID

J

, then the list L

H

1

must ontain < ID

A

; b

A

P; b

A

; �

A

>.

The deryption key orresponding to ID

A

is �

A

sQ

A

= �

A

sb

A

P = �

A

b

A

sP .

It is omputed by B and returned to A.

Enryption query : At any time, A an perform Enrypt query for a

plaintext M and identities ID

A

and ID

B

.

(i) If ID

A

= ID

I

and ID

B

= ID

J

, B hooses random values r 2

Z

q

�

; � 2 f0; 1g

n

; �

B

2 Z

q

�

, omputes U

0

= rQ

A

= rb

I

Q

I

; V

0

=

� � H

3

(H

2

(zP ); ê(U

0

; �

B

sb

J

Q

J

));W

0

= M � H

5

(�) and then answers

C

0

= < U

0

; V

0

;W

0

>.

(ii) If ID

A

6= ID

I

; ID

B

6= ID

J

, B omputes the private key orresponding

to ID

A

. So the iphertext is omputed as desribed by the PKC algorithm.

Deryption query : Suppose A issues an deryption query for a iphertext

C =< U; V;W > between identities ID

A

and ID

B

.

(i) If ID

A

= ID

I

; ID

B

= ID

J

, L

H

3

-list is examined for an entry of the

form < ID

I

; ID

J

; U; (h

2

; w); h

3

>. If suh an entry is present, p = (h

2

; w)

is added to the list L

p

. A is noti�ed that C is invalid, even if C is valid.

(ii) If ID

A

6= ID

I

; ID

B

6= ID

J

, the list L

H

3

must ontain the entry

< ID

A

; ID

B

; U; (h

2

; w

00

); h

3

00

> and so �

B

sb

B

P is a deryption key for

ID

B

. Then the iphertext is derypted as outlined in the desription of

the PKC algorithm. If it is valid, the plaintext is given to A (and A wins).

Eventually, A terminates. Any output is ignored. Now if L

p

is empty,

then B fails. Otherwise B outputs a random element of L

p

.

Analysis. The probability that A never issues a key extration query on

one of the guessed ID is at least 1=

�

q

H

1

2

�

. (We all any identity that the

asked ID is equal to one of values ID

I

; ID

J

a guessed identity.) If A has

submitted a valid iphertext then with a probability greater than 1=

�

q

H

1

2

�

,

A has suessfully forged as iphertext between the guessed identities (but

is returned that the iphertext is invalid). If p = (H

2

(xyP ); ê(P; P )

ab

) is

not in the L

p

-list then A's view is independent of a orret forgery. Hene



the probability that A queries H

3

(p) is at least �. If this happens then B

annot fail and then outputs the orret value with probability at least

1

q

D

. We then have Adv(B) � �=

�

q

H

1

2

�

2

q

D

. �

4.2 Proof of Seurity for Message Con�dentiality

The seurity of our sheme relies on the intratability of the BDHP and

the CDHP. We an state a theorem similar to Theorem 1.

Theorem 2. Let the hash funtions H

1

;H

2

;H

3

;H

4

and H

5

be random

orales. We assume our sheme is iphertext-unforgeable. Then our sheme

is a hosen iphertext seure publi key enryption (IND-CCA) assuming

the BDHP and the CDHP are hard in groups generated by IG. Conretely,

suppose A is a polynomially bounded IND-CCA adversary with advantage

� and makes at most q

E

extration queries, at most q

D

deryption queries

and at most q

H

1

; q

H

2

; q

H

3

queries to the hash funtions H

1

;H

2

and H

3

respetively, then there exists a polynomially bounded algorithm B that

solves the BDHP and the CDHP with advantage �=q

H

2

�

q

H

1

2

�

2

.

Proof. The proof follows the similar steps to the proof of Theorem 1, but

di�ers in the deryption query: sine we assume our sheme is iphertext

unforgeable, the deryption orale's operation must be hanged. H

1

;H

2

and H

3

hash queries are treated by B as in the proof of Theorem 1. To

simulate Enryption and Key extration queries by A, B ats exatly as

in the proof of Theorem 1. So we only make mention of the deryption

queries.

Phase 1 : Whenever A issues a deryption query, it is noti�ed that the

given iphertext is invalid. By the hypothesis of iphertext-unforgeability,

A annot distinguish between this simulation of a deryption orale and

a real one.

Challenge : After a polynomially bounded number of queries, A hooses a

pair of identities on whih he wishes to be hallenged. When A produes

his two plaintexts M

0

;M

1

and ID

A

; ID

B

, B responds as follows.

(i) If queried identities are not guessed IDs then B fails and stops.

(ii) Otherwise, the iphertext is omputed as desribed by the IBE sheme

for any random values r 2 Z

q

�

; � 2 f0; 1g

n

;M

b

2 fM

0

;M

1

g:

B answers the hallenge C =< U; V;W >.

Phase 2 : Key extration, Enryption, Deryption query ; B responds to

these queries in the same way it did in the phase 1 of Theorem 1 (exept

deryption query). But the usual restritions on A's behavior apply in this

phase.



� If A asks the private keys of ID

I

or ID

J

before hoosing his target

identities, B fails beause he is unable to answer the question.

� If A atually hooses to be hallenged on ID

I

and ID

J

then he annot

ask the key extration query for ID

I

or ID

J

's.

� A annot make a deryption query on the hallenge iphertext for the

ombination of the hallenge identities and involving publi keys that were

used to enrypt M

b

.

Guess : Eventually, A outputs its guess b

0

for b and wins if b = b

0

. Now if

L

p

is empty then B fails. Otherwise, B outputs a random element of L

p

.

Analysis. We know that B fails if A asks the private key assoiated

to the guessed identity during the simulation. We also know that there

are

�

q

H

1

2

�

pairs of identities, at least one of them will never be the sub-

jet of a key extration query from A. Then, with the probability at least

1=

�

q

H

1

2

�

, A does not ask the key extration of the guessed identities ID

I

and ID

J

. Further, the probability A's hallenge identities are the guessed

identity pair (ID

I

; ID

J

) is 1=

�

q

H

1

2

�

. If A has never queries H

3

(p) for

p = (H

2

(xyP ); ê(P; P )

ab

) then A's view is independent of M , so in this

ase A is unable to tell that it is in a simulation, and has no advantage.

Hene, the probability that A queries H

3

(p) is at least �. If A has queries

H

3

(p) then it may be able to distinguish the simulation from the real

life, but p will be ahed on L

p

. B wins if he guesses the orret element

of L

p

to output. But, the size of this list is bounded by q

H

2

. Therefore,

Adv(B) � �=

�

q

H

1

2

�

2

q

H

2

.

5 Comparison

The following table gives a omparison between our sheme and other

shemes in terms of eÆieny and seurity properties. Seurity is indiated

as follows: Authentiation, without key Esrow, iphertext Unforgeability,

and message Confidentiality.

sheme # pairings # multi # expn Authen. Esrow Unforge Conf

BF [BF1,?℄ 2 1 1 X X X O

L [L℄ 2 0 0 O X O O

AP [AP℄ 4 1 1 O(half)

�

O O O

our sheme 2 3 1 O

��

O O O

�

The sheme satis�es only unilateral authentiation.

��

Two real-time ommuniating parties mutually assure eah other's identity.



6 Conlusions

In this paper, we proposed an authentiated publi key enryption sheme.

We provided proofs of on�dentiality and existential unforgeability un-

der the Bilinear DiÆe-Hellman and the Computational DiÆe-Hellman

assumptions.

The sheme presented in [AP℄ is somewhat similar to our onstrution.

However, our sheme satis�es mutual authentiation, while Al-Riyami and

Paterson's sheme provided only unilateral authentiation. Moreover, two

ommuniating parties in our model perform enryption/deryption by

using a DiÆe-Hellman shared seret from their ephemeral ontribution.
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