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1 Introduction

The miniaturization of electronics and recent developments in biometric and screen technologies
will permit a pervasive presence of embedded systems. This - and the inclusion of networking
capabilities and IP addresses in many handheld devices - will foster the widespread deployment
of personal mobile equipment.

As mobile devices proliferate and their diversity grows, it is surprising to discover how few
are appropriately secured against the risks associated with potential sensitive date exposure.

Mobile equipment fulfills a steadily growing variety of functions: holding personal data,
interacting with other devices in local environment, communicating with remote systems, repre-
senting the person by making decisions, and processing data according to pre-established policies
or by means of auto-learning procedures, to name a few.

From a software design perspective, modern mobile devices are real miniature computers em-
barking advanced software components linker, a loader, a Java virtual machine, remote method
invocation modules, a bytecode verifier, a garbage collector, cryptographic libraries, a complex
protocol stack plus numerous other specialized software and hardware components (e.g. a digital
camera, a biometric sensor, wireless modems etc.).

Consequently, mobile devices need essentially the same types of security measures as en-
treprise networks – access control, user authentication, data encryption, a firewall, intrusion
prevention and protection from malicious code.

However, the fundamental security difference inherent to mobile devices is the lack of physical
access control. Mobile devices are designed for use outside the physical confines of the office
or factory. Consequently, handheld devices and smart phones are often used precisely where
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they’re most vulnerable – in public places, lobbies, taxis, airplanes – where risks include loss;
probing or downloading of data by unauthorized persons; and frequently, theft and analysis of
the device itself. Hence, in addition to logical security measures, mobile devices must embark
protective mechanisms against physical attacks.

Note that inappropriate protection does not endanger only the mobile equipment but the
entire infrastructure: mobile devices are increasingly Internet-connected as salespeople log on
from hotel rooms and as field workers carry handheld devices with wireless networking. Of
course, Internet activity exposes mobile devices to all the risks faced by an enterprise network
including penetration and theft of important secrets. With fast processors and large memory, our
mobile equipment carries current and critical data that may lead to financial loss if compromised.
But the problem doesn’t end there – these same devices generally also contain log-on scripts,
passwords and user credentials that can be used to compromise the company network itself [1, 2].

This work attempts to overview these diverse aspects of mobile device security. We will
describe mobile networks’ security (WLAN and WPAN security, GSM and 3GPP security)
and address platform security issues such as bytecode verification for mobile equipment and
protection against viruses and Trojan horses in mobile environment - with a concrete J2ME
implementation example. Finally we will turn to hardware attacks and briefly survey the physical
weaknesses that can be exploited to compromise mobile equipment.

2 WLAN and WPAN security

When wireless communication protocols where first designed security wasn’t among the primary
goals. Most specifications included an optional basic protection for confidentiality, but weak
algorithms were chosen for integrity and authentication. In the following subsections we will
report security requirements and attacks in wireless local and personal area networks.

2.1 802.11 and Wi-Fi

The Wi-Fi alliance is a nonprofit international association formed in 1999 to certify interoperabil-
ity of Wireless Local Area Network (WLAN) products based on the IEEE 802.11 specification.
Since the first weaknesses in 802.11 communications were discovered, companies that wanted
security relied on Virtual Private Networks (VPNs) rather than the wireless mean’s security
features. The Wi-Fi Alliance was concerned that lack of strong wireless security would hinder
the use of Wi-Fi devices. For this reason in April 2003 it published the Wi-Fi Protected Access
security requirements based on IEEE enhanced security draft status at that time [5].

2.1.1 802.11 security features

The only security services defined in the 802.11 original standard [3] were authentication and
encryption. Key distribution had to be managed by the developer or the user and integrity was
included for protection against transmission errors but not active attacks.

For authentication, Open System Authentication and Shared Key Authentication were sup-
ported. In both cases authentication could be replayed due to the lack of counters in packet
transmission [12]. Moreover, Open System Authentication is a null authentication, successful



whenever the recipient accepts to use this mode for authentication. A challenge response pro-
tocol was executed in Shared Key Authentication, but key distribution was not defined and the
response was calculated based on WEP, the Wired Equivalent Protocol broken in 2001.

Initially WEP was the only algorithm designed for encryption. It is based on the stream
cipher RC4, which outputs a key sequence given an initialization vector (IV) and a secret key
as input. Ciphertext is obtained as the ex-or of the key sequence and the plaintext. Two key
distribution schemes were defined, but for key mapping the key exchange between the source and
destination station was out of the scope of the specification and when the default key system is
used one out of 4 possible default keys must be chosen, greatly limiting the key space. In WEP
there exists a large class of weak keys for which the first output bits can be easily determined.
Moreover, because of the specific construction of the WEP key from a secret part and an
initialization vector, if the same secret key is used with numerous different initialization vectors,
an attacker can reconstruct the secret key with minimal effort [8], [9], [10]. Eavesdropping on
a communication [11] is possible because initialization vector update is unspecified and often
weak, and because wrap-around is many times neglected.

For integrity protection, a Checksum Redundancy Check was calculated. However CRCs
don’t allow detection of active attacks as they are non-keyed linear functions. Due to the weak
integrity protection, a station can be thwarted to decrypt messages sent to a victim and redirect
them towards the attacker[12].

2.1.2 802.11i security enhancements

In the year 2000, the 802.11i Working Group (WG) was created to enhance 802.11 security. The
802.11i standard was completed in June 2004.

802.11i working group main accomplishments concern the inclusion in the specification of
strong authentication, secure encryption, addition of integrity protection mechanisms against
active attacks and key generation and distribution.

For authentication, 802.11i WG decided to use 802.1x [4], a protocol initially developed
for point to point wired communication but adaptable to wireless transmission as well. 802.1x
defines end-to-end authentication between a station all the way to the authentication server
using EAP methods. 802.1x also favors key distribution as after a successful authentication
both ends, the station and the authentication server, share a secret key called Pairwise Master
Key (PMK). Since wireless data exchange takes place between a station and an access point,
802.11i requests a 4-way authentication to occur after execution of the 802.1x protocol to verify
the freshness of the communication between the station and the access point. The transfer
of the PMK from the authentication server to the access point is out of the scope of 802.11i.
Nevertheless, 802.11i defines a key hierarchy to derive encryption and integrity keys from the
PMK.

802.11i supports 4 possibilities for encryption, that is no encryption, WEP, TKIP and CCMP.
For each new encryption algorithm supported an integrity function was designed. When TKIP is
chosen, integrity is obtained by using a Message Integrity Check (MIC) called Michael. CCMP
provides simultaneously confidentiality and integrity.

TKIP and its related algorithm Michael were designed to solve problems encountered in
WEP without requiring users to upgrade the hardware that grants them wireless connection.
RC4 remains the core of TKIP, but a software modification in WLAN card MAC sections allows
to address WEP weaknesses. Main modifications include use of longer initialization vectors, IV
update on a per-packet basis and modification of the key mixing function. Michael is known



to be vulnerable to brute force attacks, but it is the best compromise using legacy hardware.
Countermeasures must be accounted for to reduce attacks on Michael.

CCMP requires a hardware update and should be used for maximum security. It is based
on AES encryption algorithm used in counter mode for encryption. Integrity is provided by the
calculation of a cipher block chaining message authentication code (CBC - MAC).

WPA supports 802.1x and pre-shared key authentication schemes. It supports both WEP
and TKIP for data encryption, together with Michael for data integrity in the latter case.
Key hierarchy is as defined in 802.11i draft 3.0. Wi-Fi Alliance will adopt the 802.11i final
specification as WPA version 2. WPA is both backward and forward compatible: it is designed
to run on existing Wi-Fi devices and should work with WPA2 devices as well.

2.2 802.15.1 and Bluetooth

In 1998, the Bluetooth Special Interest Group and IEEE 802.15.1 working group developed a
technology for Wireless Personal Area Network (WPAN) communications.

The Bluetooth specification security features are based on secret key cryptographic algo-
rithms. Authentication and encryption algorithms were specified, but no integrity protection
was included.

Key generation functions and a challenge response mechanism for authentication are based
on a 128-bit block cipher called SAFER-SK128. Until today, no weaknesses in SAFER have
been published.

There are two possible ways to calculate the key that will be used by the devices for authen-
tication, but the specifications state that using a device unit key for authentication purposes is
insecure. A unit key is a semi-permanent key associated to a device, once it is disclosed device
impersonation is possible for the lifetime of the unit key. Authentication based on device unit
key was initially designed for constrained resource devices, and is maintained in the current
specification for compatibility reasons. The authentication key should be computed as a combi-
nation key, that is a dynamic key whose value is determined by both peers and whose lifetime
is generally shorter than that of a unit key.

Once the 128-bit encryption key is calculated, it is used to seed the stream cipher that
generates the key sequence, with which the transmitted plaintext is ex-ored. Although an
attack described in [6] demonstrates the reduction of the encryption key entropy space, the
pre-computation effort to perform the attack is high enough to consider this attack of lesser
relevance. Weaknesses in the cipher are also mentioned in [7], but the author himself defines
the attacks not of practical relevance.

The main weakness in Bluetooth is in the paring mechanism, that is the procedure that allows
two devices to share a same PIN. All Bluetooth keys, that is the initialization, authentication
and encryption keys, are calculated based on the shared PIN. The PIN can be retrieved by
performing a simple off-line attack and compromising the PIN leads to breaking Bluetooth’s
security. Since the PIN is the only secret in key generation and since generally 4 digit PIN
codes are used, an attacker may find the PIN by recording a communication and exhaustively
testing all 9999 possible PIN values. The attacker will know he’s found the correct PIN when
the calculated text sequence matches the recorded one.

Bluejacking is a much talked about security breach affecting Bluetooth communications. It
involves sending a victim a message during the pairing phase. If the victim is thwarted into
continuing the data exchange with the attacker until the handshake operation is concluded,
pairing between the two devices will be obtained without the victim realizing it.



3 GSM and 3GPP security

The 3rd Generation Partnership Project (3GPP) is a follow-up project of the Global System
for Mobile Communications (GSM). This third generation of mobile networks implements the
UMTS (Universal Mobile Telecommunications System) standard. From a security perspective,
3GPP addresses a number of weaknesses and flaws in GSM and adds new features which allow
to secure new services expected to be offered by UMTS networks [18].

3.1 GSM - Global System for Mobile Communications

GSM is one of the most widely used mobile telephone system. As communication with a mobile
phone occurs over a radio link it is susceptible to attacks that passively monitor the airways
(radio paths). The GSM specification addresses three key security requirements:

1. Authentication - To correctly identify the user for billing purposes and prevent fraudulent
system use.

2. Confidentiality - To ensure that data (i.e. a conversation or SMS message) transmitted
over the radio path is private.

3. Anonymity - To protect the caller’s identity and location.

There are three proprietary algorithms used to achieve authentication and confidentiality.
These are known as A3, A5 and A8. A3 is used to authenticate the SIM (Subscriber Identity
Module) 1 for access to the network. A5 and A8 achieve confidentiality by scrambling the data
sent across the airways. Anonymity is achieved by use of temporary identities (TMSI).

The process of authentication and confidentiality will now be explained in more detail. For
a detailed account on the implementation of A3/5/8 we refer the reader to [19, 21].

3.1.1 Authentication

Authentication is achieved using a basic challenge-response mechanism between the SIM and
the network. The actual A3 authentication algorithm used is the choice of the individual GSM
network operators, although some parameters (input, output and key length) are specified so
that interoperability can be achieved between different networks.

A3 is implemented in the SIM card and the Authentication Center (AuC) or the Home Local
Register (HLR) 2. A3 takes a 128 bit value Ki (subscriber i’s specific authentication key) and
128 bit RAND random number (challenge sent by the network) as input data. It produces a
32 bit output value SRES, which is a S igned RESponse to the networks challenge. The SIM
and the network both have knowledge of Ki and the purpose of the authentication algorithm is
for the SIM to prove knowledge of Ki in such a way that Ki is not disclosed. The SIM must
respond correctly to the challenge to be authenticated and allowed access to the network. The
authentication procedure is outlined in the following steps:

1The SIM associates the phone with a particular network. It contains the details (Ki and IMSI) necessary to
access a particular account.

2HLR is a database that resides in a local wireless network. It contains service profiles and checks the identity
of local subscribers.



1. The process is initiated by the user wanting to make a call from his mobile (Mobile Station
or MS) or go on standby to receive calls.

2. The Visitor Location Register (VLR) 3 establishes the identity of the SIM. This is deter-
mined through a 5 digit temporary identity number known as the Temporary Mobile Sub-
scriber Identity (TMSI). The TMSI is used in place of the International Mobile Subscriber
Identity (IMSI). The IMSI is a unique number that identifies the subscriber worldwide. If
the IMSI was used then this would enable an adversary to gain information about a sub-
scribers details and location. The TMSI is frequently updated (every time the user moves
to a new Location Area (LA) and/or after a certain time period) to stop an adversary from
gaining such information. Note that there are situations where the IMSI will be used, for
example on the first use of the mobile after purchase.

3. The VLR sends a request for authentication to the Home Location Register (HLR). This
request will contain the SIM’s IMSI (as the IMSI and the related TMSI should be stored
in the VLR).

4. The HLR generates a 128 bit random RAND challenge and sends it to the MS via the
VLR.

5. Using Ki (128 bits) which is stored in the HLR and RAND (128 bits), the HLR then
calculates SRESHLR (32 bits) using the A3 authentication algorithm. SRESHLR is then
sent to the VLR.

6. Using Ki (128 bits) which is stored in the SIM and RAND (128 bits) that is received as a
challenge, the SIM calculates SRESSIM (32 bits) using the A3 authentication algorithm.
SRESSIM is then sent to the VLR.

7. If SRESHLR = SRESSIM , then the SIM is authenticated and allowed access to the
network.

8. If SRESHLR 6= SRESSIM , an authentication rejected signal is sent to the SIM and access
to the network is denied.

3.1.2 Confidentiality

Once the user has been successfully authenticated to the network, he can make calls and use
the services he is subscribed to. It is necessary to encrypt the data that is transmitted over the
airways, so that if it is intercepted, it will not be intelligible and in effect useless to an adversary.

The algorithm used to encrypt the data to be transmitted is called the ciphering algorithm
A5. The key Kc used in this algorithm is generated by the cipher key generation algorithm A8.
In a similar fashion to the A3 authentication algorithm, A8 takes RAND and Ki and produces
a 64 bit output value that is then used as the ciphering key Kc. A5 is a type of stream cipher
that is implemented in the mobile station (MS) (as opposed to the SIM, where A3 and A8 are
implemented). It takes Kc as input and produces a key stream KS as output. The key stream
is ex-ored (modulo 2 addition) with the plaintext Pi, which is organised in 114 bit blocks. The
resulting ciphertext block is then transmitted over the airways 114 bits at a time.

The process of authentication and enciphering is depicted in figure 1.

3The VLR is a network database that holds information about roaming wireless customers.



Figure 1: GSM Authentication and Ciphering

3.1.3 Limitations/Flaws of GSM

A number of weaknesses exist with GSM. One such flaw lies in the process of authentication.
GSM only considers authentication as one way, i.e. the SIM authenticates itself to the network
but the network does not authenticate itself to the SIM. This oversight enables an adversary to
pretend to be a network by setting up a false base station with the same Mobile Network Code
as the subscribers network. The adversary is thus in a position to engage in illegal interaction
with the subscriber. Additionally the adversary can also partake in a man in the middle attack.

GSM only provides access security; it does not protect against active attacks. To give a few
examples, user traffic and signalling information within the networks is done in clear text. In
other words, except for the radio channel (i.e. the channel between the mobile equipment and
the base station) data and voice encryption is turned off. Thus in particular, cipher keys and
authentication tokens are sent in clear over the network, so that calls can be intercepted and
users or network elements can be impersonated.

Another weakness with GSM lies in a particular implementation of the A3/A8 authentication
4 and cipher key generation algorithm COMP128. COMP128 is a type of keyed hash function.
It takes 128 bit key and 128 bit random number as input (Ki and RAND as before), and
produces a 96 bit digest as output. The first 32 bits are used as a response (SRES ) back to

4A3 and A8 are implemented as one algorithm, namely COMP128.



the network’s request for authentication. The remaining 64 bits are used as the session key
(Kc) for voice encryption using the A5 algorithm. The first main flaw with COMP128 is that
it was a proprietary encryption system developed behind closed doors. The problem with this
kind of approach is that the algorithm is never subject to public scrutiny and so vulnerabilities
and possible design flaws in the protocol are not given the opportunity to be identified. The
proof of this is the fact that COMP128 has been cryptanalysed and reversed engineered [24].
Since the COMP128 algorithm was exposed a number of weaknesses have been found. One such
weakness is that it is susceptible to a collision attack. This attack plays on a weakness in the
second round of the algorithm that allows using carefully chosen RAND values (approximately
217)5 to determine Ki. COMP128 is also vulnerable to a type of power analysis attack [20]
known as a partition attack [22]. This type of attack is a form of side channel attack that
manipulates information that leaks naturally6 from the SIM during its operation. The part of
COMP128 that this attack exploits is in the table look up operations. COMP128 consists of
8 rounds, where each round consists of 5 levels of table look-up. The five look-up operations
are performed modulo 512, 256, 128, 64 and 32 respectively. COMP128 is optimized for 8 bit
processors by operating on one byte at a time. However, in the first look-up operation a 9 bit
value is required to be accessed (modulo 512). This requires that the 9 bit value be split into two
8 bit values. This split can then be identified as a correlation between the power consumption
and the internal instruction that the SIM is performing and effectively identify a number of key
bits. By recursively repeating this process the key Ki can be reconstructed and recovered. This
attack only requires 8 chosen plaintext values (RAND) and can be performed in a matter of
minutes. Once an adversary is in possession of Ki he is capable of cloning [24] the SIM and can
take on a person’s identity and illegally bill his account.

Some of the flaws just described can be combined to perform an extremely destructive attack
known as over the air cracking. Firstly an adversary imitates a legitimate GSM network. The
mobile phone is paged by its TMSI to establish a radio connection. Once the connection is
established, the attacker sends a request for the IMSI (this is within the right of a “legitimate”
network). The attacker can then keep challenging the MS with carefully chosen RANDs so as to
exploit flaws in the COMP128 algorithm. To each RAND the mobile phone will respond with
a different SRES, which the attacker will collect and store. This process will be repeated until
the attacker has gained enough information to learn Ki. Now the attacker has Ki and IMSI in
their possession. This enables an attacker to impersonate the user, and make and receive calls
and SMS messages in their name. They can also eavesdrop, since RANDs from the legitimate
network to the legitimate user can be monitored, and thus combined with the known Ki can be
used to determine the Kc used for voice and signaling data encryption. An intelligence expert
confirmed that this procedure was effectively and regularly used by at least one intelligence
service during the past decade.

Last but not least, GSM networks lack the flexibility to quickly upgrade and improve security
elements such as the cryptographic algorithms. For instance, the encryption algorithm A5/3
and the authentication and key generation algorithm GSM-MILENAGE are already available,
but have not been widely deployed yet.

This section mentions the most serious weaknesses with GSM, we refer the reader to [21,
23] for more details on attacks. These shortcomings have enabled a number of powerful and
successful attacks to be made against GSM. The experience gained from isolating and rectifying

5Compared to a brute force attack that requires testing 2128 values for K.
6Timing, power consumption and electromagnetic emanations are types of side information that leak naturally

form the SIM if proper countermeasures are not implemented.



these weaknesses have contributed to the evolution of a more secure mobile telephone technology
3GPP.

3.2 3GPP - 3rd Generation Partnership Project

3GPP specifications address both access security implementing mutual user and network au-
thentication, and network security with strong user data, voice, and signalling data encryption
and authentication.

3.2.1 Authentication and Key Agreement Protocol

The basic building block of 3GPP Security is its authentication and key agreement protocol
(AKA) [13, 14]. Improving over GSM networks, UMTS networks provide over-the-air mutual
authentication of the user to the network and of the network to the user, but also strong data
and voice encryption and signalling data authentication between the mobile equipment and
the radio network controller. In order to achieve these objectives, a similar approach to GSM
is adopted. The telecommunications operator provides the end user with personal security
credentials (i.e. an identity and a secret key), contained in a so-called USIM (User Services
Identity Module), which in most cases takes the form of a smart card inserted into the mobile
station (or MS). This USIM holds in particular a secret key (K) shared with the Authentication
Center AuC of the operator; using this secret key and the AKA protocol, authentication tokens
and encryption keys are derived by the USIM from a random challenge (RAND) sent by the
network to the mobile equipment. Mutual authentication is achieved by a challenge response
protocol in which the USIM receives the authentication token which allows it to check whether
the network is genuine, and has to compute an authentication response RES (to be compared to
the expected value XRES ) for the network to gain access. The USIM also generates ciphering
(CK ) and integrity keys (IK ) and makes them available to the mobile terminal. In addition,
the network has to send a fresh sequence number (SQN ), which provides evidence that the
session keys and authentication tokens have not been used before and will not be used again.
These sequence numbers have to remain within a certain range from previous sequence numbers
in order to be considered valid. If at some point a sequence number is out of range, a special
re-synchronization procedure enables to securely reset the sequence numbers and to take up new
calls. An authentication management field allows the network to define which algorithms are
used in which security function. Finally, an anonymity key (AK) is optionally used to conceal
the sequence numbers – and therefore the identity of the subscriber – from an opponent. In
figure 2, we provide a graphical overview of the procedure for generating authentication vectors
(AV) in the basic AKA protocol. The example algorithm set for implementing security functions
f1 to f5 in 3GPP networks is called MILENAGE [17].

3.2.2 Network Security

Once the user is authenticated to the network and access security is guaranteed, user data and
signalling messages need to be protected in the network. A first phase of encryption and integrity
checking is performed between the mobile terminal and the radio network controller on the radio
link up to the security node. Encryption and data integrity computations are performed by the
mobile equipment itself using one-time session keys derived by the USIM from the network
challenge, UMTS encryption function f8 and integrity function f9, both standardized algorithms
based on the block cipher KASUMI [15]. The function f8 may be used for encrypting user data
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Figure 2: Authentication vector generation

as well as signalling messages between the mobile terminal and the radio network controller,
whereas function f9 is only meant for integrity of signalling messages. In order to avoid the
re-use of keystream and message authentication codes, both f8 and f9 use a time-dependent
parameter COUNT. f8 also takes into account the bearer identity and manages the direction of
the transmission with a DIRECTION field. f9 uses an additional fresh random value provided
by the network to generate each new MAC.

Subsequently, a second phase of message encryption and authentication is provided directly
within the global network between different operators and within the networks of the operators.
A global public key infrastructure allows the Key Administration Center of each network to
generate a public key pair and to store public keys from other networks, exchanged as part of
the roaming agreements. Each Key Administration Center can then generate shared session
keys and distribute these keys to different network entities within its own network, as well
as to the Key Administration Center of another network, which in turn distributes the same
shared session keys to its own network entities. These session keys are then used with standard
symmetric encryption and data authentication algorithms within the networks.

This feature completes the second evolution with respect to GSM networks, for which no
encryption of signalling messages and user traffic is available. All cryptographic algorithms
mentioned in the context of 3GPP have been evaluated and are publicly available.

4 Mobile Platform Layer Security

Mobile terminals run a variety of operating systems, which, for most of them, are proprietary
and remain hidden for the end user. In the hight end segment of the terminal market, the
operating systems are no longer buried in the hardware and the consumer can choose between
Symbian, PalmOS and Windows Mobile. However, these so-called smart terminals represent
a small fraction of the deployed equipments. For the vast remaining majority the only way
to download and execute software is to target the mobile edition of the Java Virtual Machine



(aka as J2ME/CLDC/MIDP or MIDP for short) that is generally provided. Consequently, this
section is entirely focused on the Java environment for mobile devices.

4.1 Bytecode Verification for Mobile Equipment

The Java architectures for mobile equipments [26] allow new applications, called applets, to
be downloaded into mobile devices. While bringing considerable flexibility and extending the
horizons of mobile equipment usage this post issuance feature raises major security issues. Upon
their loading, malicious applets can try to subvert the Java Virtual Machine’s (JVM) security
in a variety of ways. For example, they might try to overflow the stack, hoping to modify
memory locations which they are not allowed to access, cast objects inappropriately to corrupt
arbitrary memory areas or even modify other programs (Trojan horse attacks). While the
general security issues raised by applet download are well known [35], transferring Java’s safety
model into resource-constrained mobile devices such as smart-cards, handsets or PDAs appears
to require the devising of delicate security-performance trade-offs.

When a Java class comes from a distrusted source, there is a way to ensure that no harm
will be done by running it. The method consists in running the newly downloaded code in
a completely protected environment (sandbox). Java’s security model is based on sandboxes.
The sandbox is a neutralization layer preventing access to unauthorized resources (hardware
and/or software). In this model, applets are not compiled to machine language, but rather to a
virtual-machine assembly-language called byte-code.

In a JVM, the sandbox relies on access control. Nevertheless an ill-formed class file could be
able to bypass it. Therefore, there are two basic manners to check the correctness of a loaded
class file.

The first is to interpret the code defensively [27]. A defensive interpreter is a JVM with
built-in dynamic runtime verification capabilities. Defensive interpreters have the advantage of
being able to run standard class files resulting from any Java compilation chain but appear to
be slow: the security tests performed during interpretation slow-down each and every execution
of the downloaded code and the memory complexity of these tests is not negligible either. This
renders defensive interpreters relatively unattractive for mobile equipments where resources are
severely constrained and where, in general, applets are downloaded rarely and run frequently.

Another method consists in a static analysis of the applet’s byte-code called byte-code veri-
fication, the purpose of which is to make sure that the applet’s code is well-typed to detect stack
over/underflow, ... This is necessary to ascertain that the code will not attempt to violate Java’s
security policy by performing ill-typed operations at runtime, or by changing some system data.
(e.g. forging object references from integers or calling directly API private methods). Today’s
de facto verification standard is Sun’s algorithm [33].

In the rest of this section we recall Java’s security model and the cost of running Sun’s
verification, and we briefly overview mobile-equipment-oriented alternatives to Sun’s algorithm.

4.2 Java Security

The Java Virtual Machine (JVM) Specification [33] defines the executable file structure, called
the class file format, to which all Java programs are compiled. In a class file, the executable
code of methods (Java methods are the equivalent of C functions) is found in code-array struc-
tures. The executable code and some method-specific runtime information (namely, the maximal



operand stack size Smax and the number of local variables Lmax claimed by the method) consti-
tute a code-attribute. We briefly overview the general stages that Java code goes through upon
download.

To begin with, the classes of a Java program are translated into independent class files at
compile-time. Upon a load request, a class file is transferred over the network to its recipient
where, at link-time, symbolic references are resolved. Finally, upon method invocation, the
relevant method code is interpreted (run) by the JVM.

Java’s security model is enforced by the class loader restricting what can be loaded, the
class file verifier guaranteeing the safety of the loaded code and the security manager and access
controller restricting library methods calls so as to comply with the security policy. Class loading
and security management are essentially an association of lookup tables and digital signatures
and hence do not pose particular implementation problems. Byte-code verification, on which
we focus this section, aims at predicting the runtime behavior of a method precisely enough to
guarantee its safety without actually having to run it.

4.2.1 Byte-Code Verification

Byte-code verification [30] is a load-time phase where the method’s run-time behavior is proved
to be semantically correct.

The byte-code is the executable sequence of bytes of the code-array of a method’s code-
attribute. The byte-code verifier processes units of method-code stored as class file attributes.
An initial byte-code verification pass breaks the byte sequence into successive instructions,
recording the offset (program point) of each instruction. Some static constraints are checked to
ensure that the byte-code sequence can be interpreted as a valid sequence of instructions taking
the right number of arguments.

As this ends normally, the receiver assumes that the analyzed file complies with the general
syntactical description of the class file format.

Then, a second verification step ascertains that the code will only manipulate values which
types are compatible with Java’s safety rules. This is achieved by a type-based data-flow analysis
which abstractly executes the method’s byte-code, by modelling the effect of the successive byte-
codes on the types of the variables read or written by the code.

4.2.2 The Semantics of Type Checking

A natural way to analyze the behavior of a program is to study its effect on the machine’s
memory. At runtime, each program point can be looked upon as a memory instruction frame
describing the set of all the runtime values possibly taken by the JVM’s stack and local variables.

Since run-time information, such as actual input data is unknown before execution starts,
the best an analysis may do is reason about sets of possible computations. An essential notion
used for doing so is the collecting semantics defined in [28] where, instead of computing on a
full semantic domain (values), one computes on a restricted abstract domain (types).

For reasoning with types, one must precisely classify the information expressed by types.
A natural way to determine how (in)comparable types are is to rank all types in a lattice L.
A brief look at the toy lattice depicted below suffices to find-out that animal is more general
than fly, that int and spider are not comparable and that cat is a specific animal. Hence,



knowing that a variable is designed to safely contain an animal, one can infer that no harm can
occur if during execution this variable would successively contain a cat, a fly and an insect.
However, should the opposite be detected (e.g. an instruction would attempt to use a variable
supposed to contain an animal as if it were a cat) the program should be rejected as unsafe.

The most general type is called top and denoted >. > represents the potential simultaneous
presence of all types, i.e. the absence of (specific) information. By definition, a special null-
pointer type (denoted null) terminates the inheritance chain of all object descendants.

Formally, this defines a pointed complete partial order (CPO) ¹ on the lattice L .

>
↙ ↘

int Object

↓ ↓
null animal

↙ ↘
cat insect

↓ ↙ ↓ ↘
null spider bee fly

↓ ↓ ↓
null null null

Stack elements and local variable types are hence tuples of elements of L to which one can
apply point-wise ordering.

The verification process described in [33] §4.9, is an (iterative data-flow analysis) abstract
interpretation algorithm that attempts to build an abstract description of the JVM’s memory
for each program point. A byte-code is safe if the construction of such an abstract description
succeeds.

Denoting by Nblocks the number of branches in a method, a straightforward implementation
of [33] §4.9 allocates Nblocks frames, each of size Lmax + Smax.

Lmax and Smax are determined by the compiler and appear in the method’s header. This
results in an O((Lmax + Smax) × Nblocks) memory-complexity. In practice, the verification of
moderately complex methods would frequently require a few thousands of bytes.

4.2.3 Memory Economic Verification Approaches for Mobile Equipments

While the time and space complexities of this algorithm suit personal computers, the memory
complexity of Sun’s algorithm appears unadapted for mobile devices, where RAM is a significant
cost-factor.

This limitation gave birth to a number of innovating workarounds where, in each case,
memory was reduced at the expense of another system resource (transmission, computation
etc.) or by transforming Sun’s standard class file format to render it easier to verify:

• Leroy [31, 32] devised a verification scheme that relies on off-card code transformations
whose purpose is to facilitate on-card verification by eliminating the memory-consuming
fix-point calculations of Sun’s original algorithm.

• Proof carrying code [37] (PCC) is a technique by which a side product of the verification,
namely the final type information inferred at the end of the verification process (fix-point),
is sent along with the byte-code to allow a straight-line verification of the applet. This
extra information causes some transmission overhead, but the memory needed to verify a



code becomes essentially equal to the RAM necessary to run it. A PCC off-card proof-
generator is a rather complex software.

• Variable-wise verification [34] is a technique where variables are verified in turn rather
than in parallel, re-using the same RAM space. This trades-off computations for memory.

• Externalization [29] consists in securely exporting intermediate verification variables to
distrusted terminals. This trades-off transmission for memory.

We refer the reader to the bibliography for a more detailed information on these techniques.

4.3 Troyan Horses in Mobile Environment

A Trojan horse is a malevolent piece of code hidden in a program that performs normal tasks.
When started, this program behaves as expected by the user and then stealthily executes the
Trojan horse payload. Popular games and sharewares, especially if they are downloaded from
the Internet are good vectors for Trojan horses.

Worms, which are self-propagating pieces of malicious software who propagate from one
computer to another via a network link, have become very common in the past few years on
PC even if their payloads have often been non-destructive. The first worm for smart phone
showed-up recently targeting Symbian terminals and propagating itself via Bluetooth links [39].
Java Virtual machines are immune, by design, to this kind of attacks, so we will only discuss
Trojan horses in the following.

The ultimate goal of a Trojan horse can just be a denial of service or a hacker’s demonstration
of power as in most of currently existing worms and viruses in the PC world. But some attractive
targets can motivate an attacker on a mobile equipment. Nowadays these devices are fully
merged in our life-style and they abound in credentials, personals information like contacts or
to-do lists, let alone our real time position on the earth.

To demonstrate the potential wrongdoing and stealthiness of a Trojan horse we have imple-
mented a prototype on a mainstream GSM phone. We have taken advantage of the fact that a
java application for the J2ME/CLDC/MIDP environment (a MIDlet) is capable of taking the
full graphic control of the handset screen, i.e. the programmer can control each and every pixel
of the screen surface. The consequence is that a MIDlet can mimic the look-and-feel of any
application including the system ones. In our example, the Trojan horse is lurking in a popular
game called Tic Tac Toe and is aimed at capturing the SIM card’s PIN that is entered by the
user when the phone is switched-on. Figure 3 shows the general scheme of the attack.

When the game is started for the first time the Trojan horse is activated and simulates a
phone reboot, including the vendor’s logo animation and the PIN entry. This phase is unlikely to
alert the average user that something is going wrong as she’s used to such reboots due to battery
shortage or software instability. The Trojan horse captures the user’s PIN and terminates the
MIDlet. This first phase is illustrated by the screen shots in figure 4.

In the subsequent MIDlet launches, the Trojan horse keeps quiet and the user is able to play
with a genuine looking game. Nevertheless, the Trojan horse is still waiting for a backdoor code
that reactivates it in order to display the PIN previously captured as shown in figure 5.

The lesson learnt from this school case example is that the mobile phone lacks from a trusted
path between the user and the phone operating system both for input and output. In other
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Figure 3: General scheme of a MIDlet Trojan horse

words there is no mean for the user to know if she communicates with the operating system or
a malicious software which impersonates it.

One possible solution would be to limit the screen area that a MIDlet can control and to
dedicate the remaining part to the OS that could use it to draw the user’s attention on the fact
that a MIDlet is running. Concerning the input part of the problem a dedicated key can be
pressed before entering the PIN code in order to switch to the Operating System if it was not
the foreground task. The problem with these solutions depicted on figure 6 is that they restrain
further the restricted hardware available for the developers.

5 Hardware Attacks on Mobile Equipments

The term ”hardware attack” encompasses a large variety of threats that exist because of the
physical properties of the device under consideration. As a consequence of this definition a
virtual design is not subject to such attacks and by extension a device physically out of the
attacker’s reach is also safe. By contrast, software attacks are most of the time remote attacks
on a device attached to a network but physically out of the hacker’s reach.

There are different ways to classify hardware attacks, among which is their belonging to one
of the following categories: invasive attacks, fault attacks or side-channel analysis. A device
designed to resist the above listed threats is called ”tamper-resistant”. In other words, a tamper
resistant device will withstand attempts to tamper with the device (recover information or
modify internal data or any characteristics of the device). Another feature that a device might
exhibit is ”tamper-evidence”, signifying that evidence will exist to prove tampering with the
device. At present, the only existent tamper-resistant element in a handset is the (U)SIM
(Universal Subscriber Identity Module), where tamper resistance is achieved by the appropriate
combination of hardware and software protection, counter-measures and prudent design rules.

The following paragraphs will provide an overview of handset attack targets before showing
how to perform physical attacks and describing what benefits a hacker might gain.
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Figure 4: Attack phase of a MIDlet Trojan horse

5.1 Attack Targets

Secret or sensitive data is usually the target of an attack. Secret data is unknown by the hacker
and his primary goal is to retrieve its value. Sensitive data is known by the hacker but cannot
be modified by him; his primary goal is to modify its value, preferably to replace it with a value
of his choosing. There are currently several targets in mobile equipments. The most sensitive
data elements are the user authentication key (Ki), his identification number IMSI and the
(CHV ) (Card Holder Verification) value. In addition, there are at least 3 relevant targets in the
handset: the SIM-lock mechanism, the IMEI and the software upgrade. Each of these targets is
addressed hereafter.

5.1.1 SIM-Lock

SIM-lock is a mechanism commonly used by Mobile Network Operators (MNOs) to bind subsi-
dized phones to the network [16], at least for a specified period of time. Such a binding should
usually last until the operator’s initial investment has been recouped. Nevertheless, if the sub-
scriber wants to use a different network before the specified period of time is over, he needs
to de-SIMlock his mobile. This service is not free, MNOs usually request around 115 euros to
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Figure 5: PIN recovery phase of a MIDlet Trojan horse

unlock a mobile phone. The very lucrative business coming from stolen handsets is slightly hin-
dered by the SIM-lock mechanism. Indeed, the handset must be unlocked prior to usage by its
new owner. As it is not illegal to unlock a phone, some software companies entered this business
and provide unlocking software. An example of such software GUI (Graphic User Interface) can
be seen on Figure 7.

5.1.2 IMEI

The International Mobile Equipment Identity number is the identity of the handset. It is a
unique number attributed during handset manufacturing and is registered by the Mobile Network
Operator. Thanks to IMEI, Mobile Equipment declared as stolen can be black-listed by the
MNOs. Nevertheless, there is currently no IMEI blacklist at a worldwide level, stolen phones
often leave their original country for less developed countries where people cannot afford the
price of a new handset. To use the handset in the same country it has been stolen in, the IMEI
value can also be changed to an authorized one. Some countries have voted laws that make
IMEI alteration illegal to reduce handset theft. In parallel, handset manufacturers are working
on increasing the IMEI’s security.
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Figure 6: Trusted path on GSM phone

5.1.3 Software Versions

For a given mobile equipment, multiple software and firmware versions are available. High
end versions usually add extra features and functionalities, making it lucrative for a hacker
to upgrade a software version to a higher one. The upgrade mechanism is currently slightly
protected, against unauthorized access depending on the handset model.

5.2 Hardware Attacks Description

Currently, handsets are in such a poor security state that they do not withstand basic reverse
engineering weaponry. Moreover, their security mechanism such as the SIMlock, test/debug
mode, IMEI storage and software upgrade are poorly designed and rely on obscurity rather than
strong cryptographic protocols. Breaking these mechanisms does not yet require use of advanced
attack techniques such as hardware attacks, which are at routinely researched in the industry
and university research labs.

Fortunately, mobile equipment and chipset manufacturers are working hard to cath-up and
improve the overall security level of handsets. As security will increases and software attacks
will become less practical, hardware attacks will rise.



Figure 7: Unlocking software interface.

5.2.1 Invasive Attacks

Invasive attacks are usually considered as the heaviest class of attacks in terms of equipment
cost, expertise and duration. An invasive attack requires first of all to ”open” the device. This
is not an easy task on a smart card as delicate chemistry manipulation is needed. On the other
hand, on a handset only removal of the plastic case and eventually a few screws is required. In
a smartcard such as a USIM, resistance against invasive attacks is achieved by embedding the
complete system, including the CPU (Central Processing Unit), memories and peripherals, in a
single chip. Moreover, the design usually includes additional security features such as protection
shields, glue logic design, encryption and scrambling. Such architecture will probably not reach
the handset field because combining different technologies such as a CPU, a large Flash memory
and a RAM (Random Access Memory) memory on the same chip highly increases its cost. In
a regular handset, the SoC (System On Chip) comprising the CPU and some peripherals, as
well as the external memory (usually a flash containing both the operating system and the users
personal data) can be found on same PCB (Printed Circuit Board). With such architecture,
it is currently quite easy to probe the bus between the SoC and the Flash in order to gain
access to all the data accessed by the CPU. This is a straightforward way gain access to secret
information stored in the Flash (IMEI, unblock code). Of course it will require a little bit of
reverse engineering and electronic skills since the data bus is usually 16 to 32 bits wide and
since most of the lines will be buried in the internal layers of the multi-layer PCB. Another
invasive attack consists in de-soldering the Flash memory chip in order to reprogram it with a
flash programming unit or to replace it with a new Flash. Such an operation is not possible
with a regular soldering iron because Flash memory packaging is usually of TFBGA (Thin &
Fine-pitch Ball Grid Array) type. A printed circuit board from mobile equipment with its
Flash memory removed can be seen Figure 8.a. The backside of a TFBGA Flash memory is
shown Figure 8.b. Last but not least, most handsets provide a JTAG bus or others facilities for
debug and test mode. This is a prime backdoor because with a JTAG cable and a little bit of



insider knowledge a hacker can easily access very sensitive and secret information and do almost
whatever he wants on a handset. There is no such threat on smart-cards since the debug and
test mode is completely wiped-out at the end of the manufacturing process, usually by placing
the corresponding logic on the scribe line of the wafer.

Figure 8.a: Circuit with Flash memory re-
moved

Figure 8.b: Flash desoldered & reballed

5.2.2 Side-Channel Attacks

Side-channel attacks consist in monitoring a device signal or resource-consumption, usually
without physically damaging it. The processing’s duration, power consumption, electro-magnetic
radiations and radio-frequency emission are typically the signals that might be of interest. Once
the signal has been monitored, the hacker performs its analysis in order to infer information
about a secret data processed during the acquisition’s period of time. This attack technique
may be used to retrieve secret data such as keys. Side-channel analysis is usually performed
by multiple executions of the same process in order to apply statistical analysis. Side-channel
attacks have not proliferated in the handset hacking community yet because there are no secret
keys in mobile equipment units. Nevertheless, this threat is growing with the increasing added
value services integrated into handsets and smart-phones, as well as the rise of 3GPP networks.
Indeed, we will soon witness the deployment of Digital Right Management [38] which specifies
use of a DRM agent, content encryption keys and right encryption keys. It is in the interest of
a handset malevolent owner to retrieve these keys in order to distribute protected content. It is
obvious that handset hacking will increase at the same pace as benefits that can be obtained in
return. Side-channel analysis is usually performed by the handset owner, but with contactless
side-channel radiation it is possible to perform an attack on a nearby handset without the
victim’s knowledge. When keys are stored in handsets, a remote side-channel attack example
is a hacker, physically close to his victims, retrieving authentication keys to bank accounts by
means of a radiation sensor.



5.2.3 Fault Attacks

Fault attacks are another kind of hardware attack that emerged recently. This attack relies on
a physical perturbation performed by the hacker rather then simply monitoring a side-channel.
The core of the attack lies in the exploitation of the fault induced at the software level by the
physical perturbation. There are many ways to perform a physical perturbation on an electronic
device like a handset, the perturbation means being for example an electro-magnetic field, a
power glitch or a laser beam. The exploitation technique is also variable and greatly depends on
the target, which can be a cryptographic algorithm that may disclose secret information or an
operating system sensitive process that might enable an unauthorized action such as a Midlet
installation. Once again, the threat is real and will increase depending on the sensitivity of data
stored in mobile equipment. As long as there are financial benefits in hacking a handset, the
hacker will use any means to reach his goal. We refer the reader to [40] for a deeper treatment
of fault attacks.

6 Conclusion

This chapter overviewed security features for the protection of mobile terminals and the attacks
they are vulnerable to.

System architects should keep in mind that threats should be dealt with at the design level,
the implementation level and the application use level. The previous sections provide examples
of efforts made in multiple domains, their success and failure.

A typical security breach example at the design level occurred in the GSM authentication
scheme. The lack of network authentication gave way to the possibility of setting up rogue base
stations. Mutual authentication in 3GPP will eventually solve this problem. A careful imple-
mentation that follows scrupulously security guidelines will reduce the chance of faults at the
implementation level. To mention a dangerous and widespread attack, lack of protection against
buffer overflows can cause much damage, allowing for example access to protected memory areas.
Application level attacks are probably the most prevalent. Mobile terminals are often accessed
remotely, thereby greatly increasing the possibilities of runtime attacks. Moreover, users may
exploit devices in a way they were not built for.

The large scale distribution of electronic devices and the increasing interaction among dif-
ferent technologies are not factors that will reduce security threats. Basic security rules apply
to mobile terminals as to all other electronic devices. System security is that of its weakest link
and the confidence in a system improves with the number of audits on it. Administrators should
not rely on a single protection as attacks are multiple and on multiple levels.
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