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Abstract

Routing is one of the most basic networking functions in rfeohd hoc networks. Hence,
an adversary can easily paralyze the operation of the nktlyoattacking the routing protocol.
This has been realized by many researchers, and severaréseouting protocols have been
proposed for ad hoc networks. However, the security of tipwetocols have mainly been ana-
lyzed by informal means only. In this paper, we argue thatdlawad hoc routing protocols can
be very subtle, and we advocate a more systematic way ofsisalfe propose a mathematical
framework in which security can be precisely defined, andimguprotocols for mobile ad hoc
networks can be analyzed rigorously. Our framework is taddor on-demand source routing
protocols, but the general principles are applicable temtypes of protocols too. Our approach
is based on the simulation paradigm, which has already beeth extensively for the analysis of
key establishment protocols, but to the best of our knowdeddas not been applied in the con-
text of ad hoc routing so far. We also propose a new on-demamate routing protocol, called
endairA, and we demonstrate the usage of our framework hymgyehat it is secure in our model.

Keywords: Mobile ad hoc networks, secure routing, provable security

*This technical report is an updated version of our earlier report thz#aed on IACR ePrint. In this new version, we
extend the adversary model to Actiyex adversaries and we allow multiple parallel protocol runs. We also slighttlifsno
the endairA protocol, and we propose a few variants of it.



1 Introduction

Routing is one of the most basic networking functions in mobile ad hoc netwdeksce, an adversary
can easily paralyze the operation of the network by attacking the routinggmio This has been
realized by many researchers, and several “secure” routing ptetbave been proposed for ad hoc
networks (see [11] for a survey). However, the security of thoe®pols have been analyzed either
by informal means only, or with formal methods that have never been indefiodehe analysis of
this kind of protocols. In this paper, we present a new attack on Ariaameeviously published
“secure” routing protocol [8]. Other attacks can be found in [4]. Sehattacks clearly demonstrate
that flaws can be very subtle, and therefore, hard to discover bynmafareasoning. Hence, we
advocate a more systematic approach to analyzing ad hoc routing protebads, is based on a
rigorous mathematical model, in which precise definitions of security carvea,gand sound proof
techniques can be developed.

Routing has two main functions: route discovery and packet forwarding former is concerned
with discovering routes between nodes, whereas the latter is about getadinpackets through the
previously discovered routes. There are different types of ad dwatting protocols. One can distin-
guish proactive (e.g., OLSR [5]) and reactive (e.g., AODV [17] an®RDE?]) protocols. Protocols of
the latter category are also called on-demand protocols. Another typessifidation distinguishes
routing table based protocols (e.g., AODV) and source routing protoeals, OSR). In this paper,
we focus on the route discovery part of on-demand source routirtgqots but we believe that the
general principles of our approach are applicable to the route discpagrof other types of protocols
too.

At a very informal level, security of a routing protocol means that it carfiope its functions
even in the presence of an adversary. Obviously, the objective ofdéersary is to prevent the
correct functioning of the routing protocol. Since we are focusing onrdlge discovery part of
on-demand source routing protocols, in our case, attacks are aiminpieviag that honest nodes
receive “incorrect” routes as a result of the route discovery praeedNVe will make it more precise
later what we mean by an “incorrect” route.

Regarding the capabilities of the adversary, we assume that it can mowat aitticks (i.e., it
can eavesdrop, modify, delete, insert, and replay messages) fronpteal nodes that have the same
communication capabilities as the nodes of the honest participants in the netmiigkneans that the
adversary is not all powerful, and it cannot fully control the communicatiche honest participants;
it can receive only those messages that were transmitted by one of its nsigdntdits transmissions
can be heard only by its neighbors. We further assume that the advikeesatompromised some iden-
tifiers by which we mean that it has compromised the cryptographic keysrthasad to authenticate
those identifiers. Thus, the adversary can appear as an honesippattiender the compromised
identities. Using the notation introduced in [8], our adversary i8etive-y-xadversary, which means
that it controlsr corrupted nodes in the network, and it can yssmpromised identifiers.

The mathematical framework that we introduce in this paper is based on tlaflesbsimulation
paradigm This has been successfully used in the analysis of some cryptogrdgbithans and
some cryptographic protocols (see Section 5 for a very brief overvielojvever, it has never been
applied in the context of ad hoc routing protocols. One of the main contrilmutbthis work is the
application of this approach in a new context. Another contribution of thikwugothe discovery of
as yet unknown attacks against previously published ad hoc routingcpts. Finally, yet another
contribution is a new on-demand source routing protocol for mobile ad éiweonks, called endairA,
which is provably secure in our model, and which may be of independen¢#&t®r practitioners.

Preliminary results of this work has been presented in [4]. However, trpHyzer, we considered



only an Active-1-1 adversary, and we did not allow parallel protogosr In this paper, we extend our
previous results to an Activg-x adversary, wherg, y > 1, and we allow the simultaneous execution
of any number of instances of the route discovery protocol. We alsemrasnew Active-1-2 attack
against Ariadne, as well as some extensions and variants of the endatokg, which have never
been published before.

The rest of the paper is organized as follows: In Section 2, we preseeiv Active-1-2 attack
on Ariadne, and motivate the need for a rigorous analysis techniqueedtio8 3, we introduce
our mathematical framework, which includes a precise definition of seclrifection 4, we present
endairA, a new on-demand source routing protocol for ad hoc nesyarkl we demonstrate the usage
of our framework by proving endairA secure. We report on some iblatek in Section 5, where we
also highlight some novelties of our modelling approach with respect to pre@pplications of the
simulation paradigm. Finally, in Section 6, we conclude the paper.

2 An Active-1-2 attack on Ariadne

We have already published attacks against Ariadne and SRP in [4]. lsdbi®n, we present a
new, as yet unpublished attack against Ariadne. Our goal is to demientted attacks against ad
hoc routing protocols can be very subtle, and therefore, difficult taderc Consequently, it is also
difficult to gain sufficient assurances that a protocol is free of flallse approach of verifying the
protocol for a few number of specific configurations can never baugstive, and thus, it is far from
being satisfactory as a method for security analysis. The attack preseniés section motivates a
more rigorous way of analyzing ad hoc routing protocols, which is the maimethadf this paper.

2.1 Operation of Ariadne with MACs

Ariadne has been proposed in [8] as a secure on-demand souticg rwtocol for ad hoc networks.
Ariadne comes in three different flavors corresponding to three diffaechniques for data authen-
tication. More specifically, authentication of routing messages in Ariadndéedrased on TESLA
[18], on digital signatures, or on MACs. We discuss Ariadne with MACs.

The initiator of the route discovery generates a route request messddeaaucasts it to its
neighbors. The route discovery message contains the identifiers of théomdiad the target, a
randomly generated request identifier, and a MAC computed over thesergkewith a key shared by
the initiator and the target. This MAC is hashed iteratively by each intermedide together with
its own identifier using a publicly known one-way hash function. The hasine¢ computed in this
way are called per-hop hash values. Each intermediate node thateetievrequest for the first time
re-computes the per-hop hash value, appends its identifier to the list t¢fielsraccumulated in the
request, and computes a MAC on the updated request with a key thatasshi#ln the target. Finally,
the MAC is appended to a MAC list in the request, and the request is redastadlhe purpose of
the per-hop hash value is to prevent removal of identifiers from thenaatied route in the route
request.

When the target receives the request, it verifies the per-hop hashidnmputing the initiator’'s
MAC and the per-hop hash value of each intermediate node. Then it getiBeMAC of each in-
termediate node. If all these verifications are successful, then the ¢ggetates a route reply and
sends it back to the initiator via the reverse of the route obtained from the reguest. The route
reply contains the identifiers of the target and the initiator, the route obtaioedtfre request, and
the MAC of the target on all these elements that is computed with a key shatbd tgrget and the



initiator. Each intermediate node passes the reply to the next node on th¢tosaals the initiator)
without any modification. When the initiator receives the reply, it verifies tH&CNf the target. If
the verification is successful, then it accepts the route returned in the reply

Although Ariadne does not specify it explicitly, we will nonetheless assuraedach node also
performs the following verifications when processing route requestaurtd reply messages:

e When a nodev receives a route request for the first time, it verifies if the last identifier o
the accumulated route in the request corresponds to a neighkorlbho identifiers can be
found in the accumulated route, thewerifies if the identifier of the initiator corresponds to a
neighboring node.

e When a node receives a route reply, it verifies if its identifier is included in the route caire
the reply. In addition, it also verifies if the preceding identifier (or if themedgpreceding iden-
tifier, then the identifier of the initiator) and the following identifier (or if there dsfallowing
identifier, then the identifier of the target) in the route correspond to neigldio.

If these verifications fail, then the message is dropped. Note, howeatithih intermediate nodes
cannot verify the MACs of the preceding nodes in the route requesth@lAC of the target in the
route reply, because they do not possess the necessary keyd .for tha

2.2 The attack

Let us consider now the network configuration illustrated in Figure 1. \&fras that the adversary
controls two nodes (represented by the black nodes in the figure), Uméstonly a single corrupted
identifier Z (hence, it is an Active-1-2 adversary). We explain the attack wherdAeias used with
standard MACs, but it also works if TESLA is used, or when digital sigreestare used and intermedi-
ate nodes do not verify the signature list in the route request (which issamrgption that is compliant
with the description of Ariadne in [8]).
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Figure 1: Part of a configuration where an Active-1-2 attack agairiatlAe is possible

S initiates a route discovery process towdrd The first adversarial node receives the following

route I’equest:
msgy = (rreq, S, T, id, ha, (A), (maca))

The adversary does not append the MACZao the request, instead, it putg on the MAC list, and
re-broadcasts the following request:

msgs = (rreq, S, T, id, ha, (A,Z),(maca,ha))

Recall that the intermediate nodes cannot verify the MACs in the request.dim that MAC func-
tions based on cryptographic hash functions (e.g., HMAC [13]) outpatsh value as the MAC, and
therefore 4 looks like a MAC. Hence will not detect the attack, and the following request arrives
to the second adversarial node:

msgs = (rreq, S, T, id, H(C,...,H(B,ha)), (A, Z,B,...,C),(maca, ha, macg, ..., macc))
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The adversary removeB, ..., C' from the node list and the corresponding MACs from the MAC
list. The adversary can do this in the following way: By recognizing ident#ién the accumulated
route, the adversary knows that the request passed through tlaelfiessarial node. By looking at the
position of identifierZ in the node list, the adversary will know whefg is on the MAC list. From
ha, the adversary computés, = H(Z, h4) and a MAC on(rreq, S, T, id,hz, (A, Z), macy), and
re-broadcasts the following request:

msgy = (rreq, S7 Ta Zd7 th (A,Z), (macA,macZ))

Since the per-hop hash value and both MACs are corregtsiyy, 7" will receive a correct request,
and returns the following reply:

msgs = (rrep, T, S, (A, Z, D), macr)
When the reply reaches the second adversarial node, it will forwartbtlowing message t6'":
msgg = (rrep, T, S, (A, Z,B,...,C,Z,D), macr)

Note thatB, ..., C cannot verify the MAC inmsgg. In addition, their identifiers are in the route
carried by the reply, and the preceding and following identifiers belongeiornieighbors. Therefore,
each of them forwards the reply. Finally, when the first adversarid meceives the reply, it removes
B,...,C and one of theZ’s from the node list:

msg, = (rrep, T, S, (A, Z, D), macr)

In this way, S receives the route reply th@tsent. This means that the MAC verifies correctly &hd
accepts the routeS, A, Z, D, T'), which is non-existent.

It must be noted that imsgg, the compromised identifief appears twice in the node list. Note,
however, that Ariadne does not specify that intermediate nodes shoed#f the node list in the reply
for repeating identifiers. If each honest node checks only that its oamtifebr is in the list and that
the preceding and following identifiers belong to its neighbors, then the attadis. Moreover, a
slightly modified version of the attack would work even if the intermediate noklesked repeating
identifiers in the reply. In that case, the second adversarial node vgeuald the following reply
towardssS:

msgg = (rrep, T, S, (A, X, B,...,C,Z,D), macr)

where X can be any identifier that is different from the other identifiers in the noteWsth non-
negligible probability, X is a neighbor ofB, and thus,B will pass the reply on, so that the first
adversarial node can overhear it. Then, the adversary can removeetttifiersX, B, ..., C, and
send the reply containing the node list, Z, D) to A. A will process the reply, because it con-
tains no repeating identifiers audis its neighbor. Alternatively, the first adversarial node may send
information about the neighborhood Bfto the second adversarial node in a proprietary way.

2.3 Some notes on the attack

The attack presented in the previous subsection is very powerful (roarerful than the attack pub-
lished in [4]), because despite the usage of the per-hop hash mech#resatversary manages to

YIn fact, the probability thak is a neighbor of3 is greater tham z /N, whereN is the number of nodes in the network
andn g is the number oB’s neighbors.



shorten a discovered route, and therefore, the initiator will probabfempttds short route over others.
In other words, the adversary is able to divert the communication bet$/@ed1 through itself, and
then control it.

One can notice that the attack can be prevented by not appending the sbih@rited by the
intermediate nodes to the route request, but rather updating a single MACMele: precisely, in
this modified version of Ariadne, the route request re-broadcast bytthiatermediate nodé; would
have the following form:

(rreq, S, T, id, (Fy,...,Fi_1, F;), macg,)

wheremacr, is a MAC computed by; with the key that it shares with' on the route request that it
received:
(rreq, S, T, id, (F1,...,Fi_1), macp,_,)

with the convention thatracr, = macs.

Besides being more robust than the original version, this modified ver§iémniadne has two
other advantages. First, there is no need anymore for the per-hoprieastanism, since the MACs
computed by the intermediate nodes can play the same role as the per-haplhashn the original
protocol. Second, route requests are shorter, because they amtaih@a per-hop hash value and they
contain only a single MAC instead of a MAC list. Note, however, that such eattive updating would
not work with digital signatures, because neittienor S would be able to re-generate the signatures
of the intermediate nodes, which would be necessary for the verificatihegbute request. When
MACs are used, this is not a problem, because each intermediate node kesethat it shares with
T, and thus,T" can re-generate the MACs computed by the intermediate nodes, one aft¢éhehe
which, at the end, makes it possible to verify the last MAC received in thie nequest.

We note that the authors of Ariadne also come across this modified versibe pfotocol in
[9]. However, they mention it only as an optimization that reduces overlagabinot as a significant
modification that increases the security of the protocol.

3 The proposed framework

We follow the so called simulation-based approach to define and provedhstgef ad hoc rout-
ing protocols. In this approach, two models are constructed for the platoder investigation: a
real-world mode] which describes the operation of the protocol with all its details in a particular
computational model, and adeal-world model which describes the protocol in an abstract way
mainly focusing on the services that the protocol should provide. Onéhaalaof the ideal-world
model as a description of a specification, and the real-world model a<apdes of an implemen-
tation. Both models contain adversaries. The real-world adversary iaragy process, while the
abilities of the ideal-world adversary are usually constrained. The idedthadversary models the
tolerable imperfectionsf the system; these are attacks that are unavoidable or very costly taldefe
against, and hence, they should be tolerated instead of being completely tduifiae protocol is
said to be secure if the real-world and the ideal-world models are equivalegre the equivalence is
defined as some form of indistinguishability (e.g., statistical or computatiomat) fihe point of view
of the honest protocol participants. Technically, security of the prbisgaroven by showing that
the effects of any real-world adversary on the execution of the reabgol can besimulatedby an
appropriately chosen ideal-world adversary in the ideal-world model.

In the rest of this section, we describe the construction of the real-worighand the ideal-world
model, we give a precise definition of security, and briefly discuss soowd fgchniques, which can
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be used to prove that a given routing protocol satisfies our definitiorbaym the description of the
models by introducing two important notions: the notion of a configuration artcbflea plausible
route.

3.1 Configurations and plausible routes

We model the ad hoc network as an undirected g@H E), whereV is the set of vertices, anél is
the set of edges. Each vertex represents a node, and there is detgdgen two vertices if the corre-
sponding nodes established a wireless link between themselves by sultcessning the neighbor
discovery protocol. We assume that some of the nodes are under thel od@tn adversary; we call
them corrupted nodes. We assume that corrupted nodes have the samargcation capabilities
as the non-corrupted nodes in the network. We denote the set of vexticesponding to corrupted
nodes by *, and thus, we have™* C V.

If two corrupted nodes are neighbors, then they can share informately f(e.g., by sending
encrypted messages to each other). In effect, neighboring corroptess can appear as a single
node to the other nodes. Hence, without loss of generality, we assumethatted nodes are not
neighbors inG; if they were, we could merge them into a single corrupted node that wouddiirzt
the neighbors of the original nodes.

Nodes are identified by identifiers in the neighbor discovery protocolimride routing proto-
col. We assume that the identifiers are authenticated during neighbor eligcand therefore, the
possibility of a Sybil attack [6] is excluded. We also assume that wormholdsafé detected at the
neighbor discovery level, which means that nodes that are not withinatheHs radio range are not
able to run the neighbor discovery protocol successfully. Hence dipesanE represent pure radio
links.

We assume that the adversary has compromised some identifiers, by whitiearethat the
adversary has compromised the cryptographic keys that are ngcesaathenticate those identifiers.
We assume that all the compromised identifiers are distributed to all the calngdes, and they are
used in the neighbor discovery protocol and in the routing protocol. Oottie hand, we assume that
each non-corrupted node uses a single and unique identifier, which iempromised. We denote
the set of all identifiers by, and the set of the compromised identifiersiby

Let £ : V — 2F be a labelling function, which assigns to each vertegia set of identifiers in
such a way that for every vertexc '\ V*, L(v) is a singleton, and it contains the non-compromised
identifier¢ € L\ L* that is used by the non-corrupted node represented by vertexd for every
vertexv € V*, L(v) containsall the compromised identifiers ib*.

A configurationis a triplet(G(V, E), V*, £). Figure 2 illustrates a configuration, where the solid
black vertices are the vertices In*, and each vertex is labelled with the set of identifiers that
assigns to it. Note that the verticeslitt are not neighboring.

We make the assumption that the configuration is static (at least during the timealintteat
is considered in the analysis). Thus, we view the route discovery paieafouting protocol as a
distributed algorithm that operates on this static configuration. The algorithm isy the nodes with
the aim of finding routes (i.e., sequence of identifiers assigned to the garti€§, while of course,
each node has only a partial knowledge of the configuration.

Intuitively, the minimum that one may require from the route discovery paheofouting protocol
is that it returns only existing routes. Our definition of routing security is lamlthis intuition. Now,
we make it more precise what we mean by an existing route.

If there was no adversary, then a sequefcés, ..., ¢, (n > 2) of identifiers would be an
existing route given that each of the identifiérsés, . . ., £, are different, and there exists a sequence
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Figure 2: lllustration of a configuration. Corrupted nodes are reptedeby solid black vertices.
Labels on the vertices are identifiers used by the corresponding nddeesthat corrupted nodes are
not neighboring.

v1,v2,. .., v, Of vertices inV such that(v;,v;+1) € Eforalll < i < nandL(v;) = {¢;} for all
1< <n.

However, the situation is more complex due to the adversary that can usentipeoenised iden-
tifiers in L*. Essentially, we must take into account that the adversary can alwayaterthe ex-
ecution of the routing protocol using the compromised identifiers locally withimgles corrupted
node. Hence, the adversary can always extend any route thaspiassegh a corrupted node with
any sequence of compromised identifiers. This is a fact that our definitisecarity must tolerate,
since otherwise we cannot hope that any routing protocol will satisfy is dlbservation leads to the
following definition:

Definition 1 (Plausible route) Let(G(V, E), V*, £) be a configuration. A sequenég /s, .. ., ¢, of
identifiers is a plausible route with respect(@(E, V'), V*, L) if each of the identifier§;, /o, ..., ¢,
is different, and there exists a sequengeuvs, ..., v (2 < k < n) of vertices inV and a sequence
j1, 42, ..., ji Of positive integers such that

1 j1+jo+...+r=mn,
2. (UZ’,UH_l) ek (1 <i < ki),

3. {g]i+1,£Ji+2, . 7€Ji+ji} - E(UZ) (1 <1< k?), whereJ; = ji+g2+ ...+ 7i-1 if i > 1and
J;=0ifi = 1.

Intuitively, the definition above requires that the sequeficés, ..., ¢, of identifiers can be
partitioned intok sub-sequences (condition 1) in such a way that each of the resultitiiopar
is a subset of the identifiers assigned to a verteXirfcondition 3), and in addition, these ver-
tices form a path inG (condition 2). As an example let us consider again the configuration in
Figure 2. It is easy to verify thatA, X,Y,G,C) is a plausible route, because it can be parti-
tioned into{A},{X,Y},{G},{C}, and these partitions can be assigned to neighboring nodes in
the graph. On the other han@, X, G, D, H) is non-plausible, because it can only be partitiched
into {A},{X},{G},{D},{H}, and the partition§ G} and{D} cannot be assigned to neighboring
vertices in the graph.

Note that a non-compromised identifier must always form a separetéguebecause of the last condition in Defini-
tion 1.



3.2 Real-world model

The real-world model that corresponds to a configuratiotf = (G(V, E), V*, £) and adversaryl

is denoted b;sysrceojl'f,A, and it is illustrated on the left side of Figure 3ysrc‘j)a7lbf7A consists of a set
{My,...,M,, Ay,..., An, H,C} of interacting Turing machines, where the interaction is realized
via common tapes. Eadl; represents a non-corrupted device that corresponds to a velexuf,

and eachd; represents a corrupted deviceliri. H is an abstraction of higher-layer protocols run by
the honest parties, ard models the radio links represented by the edgek.irAll machines apart
from H are probabilistic.
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Figure 3: Interconnection of the machineSsmfc‘j;j'Lf’A (on the left side) and i@ysig‘;;}A (on the right
side)

Each machine is initialized with some input data, which determines its initial state.dltioad
the probabilistic machines also receive some random input (the coin flipsusduaeduring the op-
eration). Once the machines have been initialized, the computation begingnaidinines operate
in a reactive manner, which means that they need to be activated in orderféonp some compu-
tation. When a machine is activated, it reads the content of its input tapEs®sges the received
data, updates its internal state, writes some output on its output tapes, embtagk to sleep (i.e.,
starts to wait for the next activation). Reading a message from an inpairéapoves the message
from the tape, while writing a message on an output tape means that the misssagended to the
current content of the tape. Note that each tape is considered as am tayp for one machine and
an input tape for another machine. The machines are activatedimasby a hypotheticscheduler
(not illustrated in Figure 3). In each round, the scheduler activates tokines in the following or-
der: Ay,..., A, H,My,...,M,,C. Infact, the order of activation is not important, apart from the



requirement thaf’ must be activated at the end of the round. Thus, the round endsbegas back
to sleep.
Now, we describe the operation of the machines in more detail:

e MachineC': This machine is intended to model the broadcast nature of radio communications
Its task is to read the content of the output tape of each madijrend A; and copy it on the
input tapes otll the neighboring machines, where the neighbor relationship is determined by
the configuratiortonf. Clearly, in order foiC to be able to work, it needs to be initialized with
some random input, denoted by, and configuratioronf.

e Machine H: This machine models higher-layer protocols (i.e., protocols above the routing
protocol) and ultimately the end-users of the non-corrupted deviéésan initiate a route
discovery process at any maching by placing a requesl;, ¢+,) On tapereq;, wherec; is
a sequence number used to distinguish between different requests 8éntand/;,,. € L is
the identifier of the target of the discovery. A response to this requeseigually returned
via taperes;. The response has the forfn;, routes), wherec; is the sequence number of
the corresponding request, angtes is the set of routes found. In some protocoisytes is
always a singleton, in others it may contain several routes. If no routalfdhenroutes = (.

In addition toreq; andres;, H can access the tapest;. These tapes model an out-of-band
channel through which the adversary can instruct the honest pariigiidte route discovery
processes. The messages read feam have the form(¢;,;, {14, ), Wherel;,;, {4, € L are the
identifiers of the initiator and the target, respectively, of the route disgaeguested by the
adversary. Whett] reads(l;y;, £1.,) from ext;, it places a request;, £;4,) in req; Wherei is
the index of the machingf; that has identifief,,,; assigned to it (see also the description of how
the machines\/; are initialized). In order for this to worki needs to know which identifier
is assigned to which machin¥;; it receives this information as an input in the initialization
phase.

e MachineM; (1 < i < n): These machines represent the non-corrupted nodes, which belong to
the vertices i/ \ V*. The operation of\/; is essentially defined by the routing algorithiv;
communicates with via its input tapereg; and its output tapees;. Through these tapes, it
receives requests frof for initiating route discoveries and sends the results of the discoveries
to H, as described above.

M; communicates with the other protocol machines via its output éapgand its input tape
in;. Both tapes can contain messages of the fosmilr, rcur, msg), wheresndr € L is the

identifier of the sender,cor € L U {x} is the identifier of the intended receiverfieaning a
broadcast message), amdg € M is the actual protocol message. Hekd,denotes the set of
all possible protocol messages, which is determined by the routing pratodet investigation.

When); is activated, it first reads the contentiefy,. For each request;, /., ) received from

H, it generates a route requestg, updates its internal state according to the routing protocol,
and then, it places the messag¥ M;), x, msg) in out;, whereL(M;) denotes the identifier
assigned to the node that is representedgy

When all the requests found ireq; have been processed; reads the content af:;. For
each messagendr, rcur, msg) found onin;, M; checks ifsndr is its neighbor andcur €
{L(M;), x}. If these verifications fail, thef/; ignoresmsg. Otherwise M; processegsg and
updates its internal state. The way this is done depends on the particuiagrprotocol in
guestion.
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We describe the initialization af/; after describing the operation of machinés

e MachineA; (1 < j < m): These machines represent the corrupted devices, which belong to
the vertices inV*. Regarding its communication capabilitie$; is identical to any machine
M;, which means that it can read from} and write onout; much in the same way a¥/;
can read from and write oin; and out;, respectively. In particular, this means that the
cannot eavesdrop messages that were transmitted by devices that aegghbors of4;. It
also means that “rushing” is not allowed in our model (i4. must send its messages in a given
round before it receives the messages of the same round from othbmes)c We intend to
extend our model and study the effect of “rushing” in our future work.

While its communication capabilities are similar to that of the non-corrupted devigemay
not follow the routing protocol faithfully. In fact, we place no restrictions the operation
of A; apart from being polynomial-time in the security parameter (e.g., the key sitteeof
cryptographic primitives used in the protocol) and in the size of the netvietkthe number of
nodes). This allows us to consider arbitrary attacks during the analysgarticular,A; may
delay or delete messages that it would send if it followed the protocol filithfa addition, it
can modify messages and generate fake ones.

In addition,A; may send out-of-band requestsiaoy writing onext; as described above. This
gives the power to the adversary to specify who starts a route discpvecgss and towards
which target. Here, we make the restriction that the adversary initiates adisatery only
between non-corrupted nodes, or in other words, for each regygst:,.) that A; places on
6£L‘tj, binis Liar € L \ L* holds.

Note that eacl; can write several requests eft ;, which means that we allow several parallel
runs of the routing protocol. On the other hand, we restrict eagho write on ext; only
once, at the very beginning of the computation (i.e., before receivingresgages from other
machines). This essentially means that we assume that the advensanyagaptiveit cannot
initiate new route discoveries as a function of previously observed messalfe intend to
extend our model with adaptive adversaries in our future work.

As it can be seen from the description above, e&thshould know its own assigned identifier,
and those of its neighbors i@@. M; receives these identifiers in the initialization phase. Similarly,
eachA; receives the identifiers of its neighbors and thelsedf compromised identifiers.

In addition, the machines may need some cryptographic material (e.g., pubhlrisate keys)
depending on the routing protocol under investigation. We model the distribaf this material
as follows. We assume a functidn which takes only random input;, and it produces a vector
I(r1) = (Kpub, K1, - - - , Kn, £*). The component,,; is some public information that becomes known
to all A; and allM;. x; becomes known only td/; (1 < i < n), andx* becomes known to alf;

(1 < j < m). Note that the initialization function can model the out-of-band exchangeit@lin
cryptographic material of both asymmetric and symmetric cryptosystems. lotimef cases,,,,
contains the public keys of all nodes, whitg contains the private key that corresponds to the non-
compromised identifie£(M;), andx* contains the private keys corresponding to the compromised
identifiers inL*. In the latter cases,,; is empty,x; contains the symmetric keys known Ad;, and

x* contains the symmetric keys known to the adversary (i.e4Aall

Finally, all M; and allA; receive some random input in the initialization phase. The random input
of M; is denoted by;, and that of4; is denoted by;f.

The computation ends whefi reaches one of its final states. This happens wHereceives
a response to each of the requests that it placed on the tape§l < i < n). The output of
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sysrce;!f,A is the sets of routes found in these responses. We will denote the outmnt@‘y;fﬂ(r),
wherer = (r7,7r1,...,7rn,75,..., 75, 7). In addition, Outrea'ﬁA will denote the random variable

con,

describingOm;‘fﬁif’A(r) whenr is chosen uniformly at random.

3.3 Ideal-world model

The ideal-world model that corresponds to a configuratiety = (G(V, E), V*, £) and adversary
A is denoted bysysicdoe;}'m, and it is illustrated on the right side of Figure 3. One can see that the ideal-
world model is very similar to the real-world one. Just like in the real-world dage as well, the
machines are interactive Turing machines that operate in a reactive mandéhey are activated by
a hypothetic scheduler in rounds. The tapes work in the same way as tivethéaeal-world model.
There is only a small (but important) difference between the operatiddaind /;, and that ofC”
andC. Below, we will focus on this difference.

Our notion of security is related to the requirement that the routing protdoalld return only
plausible routes. The differences between the operatidd/aind}/;, andC’ andC', will ensure that
this requirement is satisfied in the ideal-world model. In fact, the ideal-worldeinedneant to be
ideal exactly in this sense.

The main idea is the following: Sina@’ is initialized with conf, it can easily identify and mark
those route reply messages that contain non-plausible routes. A matkedeply is processed by
each machin@// in the same way as a non-marked one (i.e., the machines ignore the marlegt) exc
for the machine that initiated the route discovery process to which the maskéal neply belongs.
The initiator first performs all the verifications on the route reply that théimguprotocol requires,
and if the message passes all these verifications, then it also checks ifdbagaés marked as non-
plausible. If so, then it drops the message, otherwise it continues piogés.g., returns the received
route toH). This ensures that in the ideal-world model, every route reply that cadaion-plausible
route is caught and filtered out by the initiator of the route discovery

Now, we describe the operation df/ andC” in more detail:

e Machinel/ (1 < i < n): The main difference betweel/ andM; is that)M is prepared to
process messages that contaplausibility flag The messages that are placed on tapdave
the form (sndr, rcur, (msg, pf)), wheresndr, rcur, andmsg are defined in the same way as
in the real-world model, angdf € {true, false, undef} is the plausibility flag, which indicates
whethermsg is a route requespf{ = undef), or itis a route reply and it contains only plausible
routes pf = true) or it contains a non-plausible routgf(= false). When machine\// reads
(sndr, rcor, (msg, pf)) from in}, it verifies if sndr is its neighbor andcvr € {L(M]), x}.
If these verifications are successful, then it performs the verificatiemgined by the routing
protocol onmsg (e.g., it checks digital signatures, MACs, the route or route segmentiin
etc.). In addition, ifmsg is a route reply that belongs to a route discovery that was initiated
by M/, then M/ also checks ifpf = false. If so, thenM/ dropsmsg, otherwise it continues
processing it. Ifmsg is not a route reply of// is not the initiator, therpf is ignored. The
messages generated by have no plausibility flag attached to them, and they are placed in
out;.

e MachineC”: Just likeC', C’ copies the content of the output tape of ed¢hand A; onto the

30f course, marked route reply messages can also be dropped darlieg the execution of the protocol for other
reasons. What we mean is that if they are not caught earlier, then theyigely removed at latest by the initiator of the
route discovery to which they belong.
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input tapes of the neighboring machines. However, before copyingsag&sndr, rcvr, msg)
on any tapen;, C’ attaches a plausibility flagf to msg. This is done in the following way:

— if msg is a route request, thetf’ setspf to undef;

— if msg is a route reply and all routes carried bysg are plausible with respect to the
configurationconf, thenC’ setspf to true;

— otherwiseC” setspf to false.

Note thatC’ does not attach plausibility flags to messages that are placed on thestgpes
Hence, the input and the output tapes ofAjlcontain messages of the same format as in the
real-world model, which makes it easy to “plug” a real-world adversary tinéoideal-world
model.

Before the computation begins, each machine is initialized with some input dats.isTdone
in the same way as in the real-world model. The computation ends Whexaches one of its final
states. This happens whéhreceives a response to each of the requests that it placed on thedgpes
1 <4 < n. The output ofsysfoe;}A is the sets of routes returned in these responses. We will denote

the output byOut'Se2 (), wherer = (r7,r1,...,7n, 75, ..., 75, 7c). Outises; 4 will denote the
random variable describingutise} 4(r) whenr is chosen uniformly at random.

3.4 Definitions of routing security

Now, we are ready to introduce our definition of secure routing:

Definition 2 (Statistical security) A routing protocol is said to be statistically secure if, for any con-
figuration conf and any real-world adversaryl, there exists an ideal-world adversad/, such that
Outlsa: 4 = Out? ,, where= means “statistically indistinguishable”.

Two random variables are statistically indistinguishable if fhedistance of their distributions
is negligibly small. In fact, it is possible to give a weaker definition of secuwtyere instead of
statistical indistinguishability, we require computational indistinguishability. Taralom variables
are computationally indistinguishable if no feasible algorithm can distinguishdasiples (although
their distribution may be completely different). Clearly, statistical indistinguiityalmplies compu-
tational indistinguishability, but not vice versa, therefore, computatice@lrity is a weaker notion.
In this paper, we will only use the concept of statistical security.

Intuitively, statistical security of a routing protocol means that the effeanyg real-world adver-
sary in the real-world model can ls@mulated“almost perfectly” by an ideal-world adversary in the
ideal-world model. Since, by definition, no ideal-world adversary camesehthat a non-plausible
route is accepted in the ideal-world model, it follows that no real-world adwgrcan exist that can
achieve that a non-plausible route is accepted with non-negligible probabilitg real-world model,
because if such a real-world adversary existed, then no ideal-warddsaty could simulate it “almost
perfectly”. In other words, if a routing protocol is statistically securentitean return non-plausible
routes only with negligible probability in the real-world model. This negligible pbiliig is related
to the fact that the adversary can always forge the cryptographic pémife.g., generate a valid
digital signature) with a very small probability.
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3.5 Proof technique

In order to prove the security of a given routing protocol, one has totfiechppropriate ideal-world
adversaryA’ for any real-world adversaryl such that Definition 2 is satisfied. Due to the con-
structions of our models, a natural candidatedis = A. This is because for any configuration
conf, the operation ofsys's2l. , can easily besimulatedby the operation ofysii% , assuming
that the two systems were initialized with the same random inpunh order to see this, let us as-
sume for a moment that no message is dropped due to its plausibility flag fa&ag Sysifoeﬁ},A-

In this case,sys[f;;if 4 and sys‘fjj} 4 are essentially identical, meaning that in each step the state
of the corresponding machines and the content of the correspondies dag the same (apart from
the plausibility flagg attached to the messageSyiffOe;‘]l,A). Since the two systgms are identical,
Outie, 4(r) = OutS2 4 (r) holds for everyr, and thus, we hav@utr;f,iﬁA = Outiy 4. °

However, if some route reply messages are droppeq/élj;;} 4 due to their plausibility flags

being set tdfalse, thensys'e3'. | andsys'd®3l | may end up in different states and their further steps

conf conf,

may not match each other, since those messages are not drop@e@‘iﬁ 4 (by definition, they have
already successfully passed all verifications required by the routotgqml). We call this situation
asimulation failure In case of a simulation failure, it might be thaut(s, . ,(r) # Out'se?; 4(r).
Nevertheless, the definition of statistical security can still be satisfied, if simuli@ilares occur only
with negligible probability. Hence, when trying to prove statistical securitg, toies to prove that for
any configuratiorconf and adversary, the event of dropping a route reply j@sfoe:},A due to its
plausibility flag being set téalse can occur only with negligible probability.

Note that if the above statement cannot be proven, then the protocdiiltae secure, because
it might be possible to prove the statement for another ideal-world adyer8ay A. In practice,
however, failure of a proof in the case @df = A usually indicates a problem with the protocol,
and often, one can construct an attack by looking at where the prided.fdndeed, that is how we
discovered an Active-1-1 attack against Ariadne, which is presenfddl in

4 endairA: a provably secure on-demand source routing protocol

Inspired by Ariadne with digital signaturgsve designed a routing protocol that can be proven to be
statistically secure. We call the protocol endairA (which is the reverseiafiAe), because instead of
signing the route request, we propose that intermediate nodes shouldesiguitia reply. In the next
subsection, we describe the operation of the basic endairA protocolvepdbve it to be statistically
secure. We discuss possible extensions and variants of endairA iaciiobs4.2.

4.1 The basic endairA protocol

The operation and the messages of endairA are illustrated in Figure 4ddir&nthe initiator of the
route discovery process generates a route request, which contaiderihiers of the initiator and the
target, and a randomly generated request identifier. Each intermediad¢haadeceives the request
for the first time appends its identifier to the route accumulated so far in thesgagund re-broadcasts
the request. When the request arrives to the target, it generates agulytel he route reply contains
the identifiers of the initiator and the target, the accumulated route obtainedHeorequest, and a

“In fact, in this case the two random variables have exactly the same distibutio
®Ariadne with digital signatures is similar to Ariadne with MACs presented in Se&iwith the difference that instead
of computing MACs, the intermediate nodes digitally sign the route requéstde-broadcasting it.
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digital signature of the target on these elements. The reply is sent backinditter on the reverse of
the route found in the request. Each intermediate node that receiveplyheeasfies that its identifier
is in the node list carried by the reply, and that the preceding identifier &oftthe initiator if there
is no preceding identifier in the node list) and the following identifier (or thétetarget if there is no
following identifier in the node list) belong to neighboring nodes. Each intelateedode also verifies
that the digital signatures in the reply are valid and that they correspone foltbwing identifiers
in the node list and to the target. If these verifications fail, then the reply {gdch Otherwise, it
is signed by the intermediate node, and passed to the next node on thetowatel$ the initiator).
When the initiator receives the route reply, it verifies if the first identifier ertbute carried by the
reply belongs to a neighbor. If so, then it verifies all the signatures irethig. rif all these verifications
are successful, then the initiator accepts the route.

S — x (rreq, S, T, id, ())

A—x : (rreq, S, T, id, (A))

B—x : (rreq, S, T, id, (A, B))

T—B : (rrep, S, T, (A, B), (sigr))

B—- A (rrep, S, T, (A, B), (sigr, sigp))
A— S (rrep, S, T, (A, B), (sigr, sigp, Sig4))

Figure 4. An example for the operation and messages of endairA. The indfdtee route discovery
is S, the target isI’, and the intermediate nodes ateand B. id is a randomly generated request
identifier. sig 4, sig, andsig, are digital signatures ofl, B, and7’, respectively. Each signature is
computed over the message fields (including the signatures) that preeesigrtature.

The proof of the following theorem illustrates how the framework introduneskection 3 can be
used in practice.

Theorem 1 endairA is statistically secure if the signhature scheme is secure againstichmessage
attacks.

Proof: We provide only a sketch of the proof. We want to show that for any gardtionconf =
(G(V,E),V* L) and any adversary, a route reply message l«ysfjj}’A is dropped due to its
plausibility flag set tdfalse with negligible probability.

In what follows, we will refer to non-corrupted nodes (machines) withrtigentifiers. Let us
suppose that the following route reply is received by a non-corrugidd,,; in sysicdoe;}’A:

msg = (rrep7 giniu gtarv (ela e 7£p)7 (Sigﬂt(”‘v S?;gzp, RN Sigﬁl)>

Let us suppose thatsg passes all the verifications required by endair&,at, which means that all
signatures innsg are correct, and;,,; has a neighbor that uses the identifierLet us further suppose
thatmsg has been received with a plausibility flag sefdise, which means that,;, 41, . . ., ¢p, {1ar)
is a non-plausible route ironf. Hence,msg is dropped due to the its plausibility flag beifuse.

Recall that, by definition, corrupted nodes cannot be neighbors.diti@t each non-corrupted
node has a single and unique non-compromised identifier. It follows theay evute, including
(lini, 1, . . ., Ly, Lqr), has a uniqueneaningfupartitioning, which is the following: each non-compromised
identifier, as well as each sequence of consecutive compromised idsrdifauld form a partition.

Let P, P, ..., P, be the unique meaningful partitioning of the roqtg,;, ¢1, . .., £y, lt4r). The
fact that this route is non-plausible implies that at least one of the followingtatements holds:
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e Case 1:There exist two partition®; = {¢;} andP;; = {¢;11} such that botl{; and/;, are
non-compromised identifiers, and the corresponding non-corruptEsrase not neighbors.

e Case 2:There exist three partitiond = {¢;}, Pis1 = {{j41,...,4j+q}, @andPipo = {{j g1}
such that’; and/; 1 are non-compromised ardl, 1, . .., ¢;,, are compromised identifiers,
and the non-corrupted nodes that dsand/; ,.1 have no common corrupted neighbor.

We show that in both cases, the adversary must have forged the digitatigig of a non-corrupted
node.

In Case 1/, does not sign the route reply, since it is non-corrupted and it detecthéhiaten-
tifier that precedes its own identifer in the route does not belong to a neigHbace, the adversary
must have forgedig, , , in msg.

In Case 2, the situation is more complicated. Let us assume that the advesargt forged the
signature of any of the non-corrupted nodésmust have received

msg’ = (rrep, Linis Ciar, (1y-.-,0p), (sigy,, S14, - - -y siggﬂl))

from a corrupted neighbor, say, since/;; is compromised, and thus, a non-corrupted node would
not send out a message Wﬁ@gj+l. In order to generatewsg’, nodev* must have received

msg" = (rrep, Lini, Ciar, (01,...,4p), (sigy,, 10,5 S190, 1))

because by assumption, the adversary has not forged the signature,qf which is non-compromised.
Sincev* has no corrupted neighbor, it could have received)” only from a non-corrupted node.
However, the only non-corrupted node that would sendmost” is ¢;4,+1. This would mean that
v* is a common corrupted neighbor 6f and/; .1, which contradicts the assumption of Case 2.
This means that our original assumption cannot be true, and hence viisay must have forged
the signature of a non-corrupted node.

It should be intuitively clear that if the signature scheme is secure, therdtleesary can forge
a signature only with negligible probability, and thus, a route reply messag,emf},A is dropped
due to its plausibility flag set téalse only with negligible probability. Nevertheless, we sketch how
this could be proven formally. The proof is indirect. We assume that theseaegonfiguratiorconf
and an adversary such that a route reply messagesmfoe;}ﬂ is dropped due to its plausibility flag
set tofalse with probability ¢, and then, based on that, we construct a fogehat can break the
signature scheme with probabiligyn. If € is non-negligible, then so is/n, and thus, the existence
of I’ contradicts with the assumption about the security of the signature scheme.

The construction of is the following. Letpuk be an arbitrary public key of the signature scheme.
Let us assume that the corresponding privatezkgyis not known toF’, but F has access to a signing
oracle that produces signatures on submitted messagesging’ runs a simulation ofsysij'o‘ij]lN4
where all nodes (machines) are initialized as described in the model, g¢ke¢phe public key of
a randomly selected non-corrupted ndiglés replaced withpuk. During the simulation, whenever
£; signs a message, F' submitsm to the oracle, and replaces the signature;abn m with the
one produced by the oracle. This signature verifies correctly on otagsnlater, since the public
verification key of¢; is replaced withpuk. By assumption, with probability, the simulation of
sysicdoerf},A will result in a route reply messagesg such that all signatures insg are correct anehsg
contains a non-plausible route. As we saw above, this means that thesseexis-corrupted node
such thatmsg contains the signaturﬁgéj of Z;, but¢; has never signed (the corresponding part of)
msg. Let us assume that= j. In this casesigy, is a signature that verifies correctly with the public
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key puk. Sincel; did not signed (the corresponding part ofyg, F' did not call the oracle to generate
S19y, - This means that’ managed to produce a signature on a message that verifies correctly with
puk. SinceF selected/; randomly, the probability of = j is % and hence, the success probability

of Flise/n. O

Besides being provably secure, endairA has another significamtadpaover Ariadne (and sim-
ilar protocols): it is more efficient, because it requires less cryptoggajgmputation overall from
the nodes. This is because in endairA, only the processing of the r@lyemessages involves cryp-
tographic operations, and a route reply message is processed onlysbyntbaes that are in the node
list carried in the route reply. In contrast to this, in Ariadne, the routeesgmessages need to be
digitally signed by all intermediate nodes; however, due to the way a routeseis propagated, this
means that each node in the network must sign each and every routstreque

4.2 Extensions and variants

Note that in our model presented in Section 3, we made the assumption thad &ssame static (at least
during the period of time that is analyzed). The proof of security of eAdailies on this assumption.
More precisely, in the proof, we show that if a route is returned by eAdaian honest node, then that
route must exist in the graph that represents the network with overwhelmobglplity. Moreover,
once a route has been returned, it remains valid forever, becauseatite dpes not change. This
means that under the assumption of static nodes, the basic endairA pristomil vulnerable to
replay attacks. However, if we relax this assumption, and we allow the nodesve, then the basic
protocol has a problem. In that case, when a node initiates a route digpoeeess and the adversary
receives a route request, it can replay an old route reply, and if thigtneaches the initiator, then it
will be accepted, despite the fact that it may contain outdated information (reutethat does not
exist anymore due to the mobility of the nodes).

Fortunately, we can easily extend the basic endairA protocol to mitigate thikepnoAll we need
to do is to require the target of the route discovery to insert the randameseglentifierid (received
in the route request) in the route reply. Hence, in the extended endaitécptothe route reply that
is passed from intermediate nofieto nodeF;_ looks as follows:

(rrep, S, T, id, (Fi,...,F,), (sigy, sigp, ..., sigp,))

Now, when the initiator receives a route reply, it also verifies if it reaklvack the request identifier
that it sent in the route request. This makes it practically impossible for thersaty to successfully
replay an old route reply that belongs to a previous route discovenggso®©f course, when nodes
are allowed to move, it is possible that a route reply contains a non-existénteven if there was no
attack at all. In order to alleviate this problem, the time interval within which the init@toepts a
reply with a specific request identifier should be appropriately limited.

Another problem with the basic endairA protocol is that it is vulnerable to makdioute request
flooding attacks. This is because the route request messages arehaottiaated in any way, and
hence, an adversary (even without compromising any identity) can initiate discovery processes
in the name of honest nodes. These forged route discovery precgiisiee carried out completely,
including the flooding of the route requests in the whole network, becaulgetttie impersonated
initiators can detect that they are forged. In order to prevent this, tite request can be digitally
signed by the initiator, and rate limiting techniques similar to the one used for Axiggjrcan be
applied with endairA too. Naturally, such extensions put more burden onathes, since now they
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also need to verify the initiator’s signature in each route request messdge maintain information
that is required by the rate limiting mechanism.

Finally, a practical problem of the basic endairA protocol is that it regtifte intermediate nodes
to verify every signature in the route reply, and this may turn out to be topeisive” in some
applications. One way to overcome this problem would be to require the intertmeddes to verify
only the signature of the target (this ensures that they all sign the saméhatiiee target signed) and
the initiator to verify all the signatures in the route reply (this ensures thatrthex of the signatures
corresponds to the route in the reply). In this case, however, a nompted intermediate node that
is on the node list in the reply could be used by two corrupted nodes to passges between them,
and this may lead to successful attacks.

Figure 5: A configuration where an attack against endairA would beatgeskthe intermediate nodes
verified only the signature of the target

In order to illustrate the problem, let us consider the configuration in Figureeb us assume
that the initiator isS, the target isl’, and the route reply contains the rot¢, B, Z,C). This is a
non-plausible route, becaugeandC' has no common neighbor that uses identifieNevertheless,
it is possible thatS accepts this route. In order to see this, note that the adversariabhoade send
the following message td in the name of3, after receiving the reply frorg’:

(rrep, Sa Tv Zd) (A,B,Z, 0)7 (SigT>5ings7;gZ))

B will accept this message, because the signatutéisfvalid, A is on the node list, and and B are
neighbors ofA. Thus, A will sign the reply and send it t§":

(rrep7 Sa Ta Zdv (A,B,Z, C)? (SigT75i9075igZ757;gA))

S will obviously drop this reply, since the signature®fis missing. But the other adversarial nage
will overhear the transmission df, it can remove the signature df and send the following message
to B:

(rrep7 Sa Ta Zdv (A,B,Z, C)7 (SigT787ng'7SigZ))

B will accept this route reply, sign it, and send the following messagg to
(rrep, Sa Ta Zdv (Av Ba Zv C)? (SigTv Sing Sing SZgB))
Finally, A accepts this reply again, signs it, and sends the following messé&je to

(rrep, S, T, id, (A,B,Z,C), (sigr, sigc, Sigz, Sigg, Sig4))
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Now, this reply is accepted by, although it contains a non-plausible route. Note that the above attack
is not possible when the original version of endairA is used, becausaticdlse A would not pass
on the reply at the first time, whefd's signature is missing from it.

Essentially, the above type of attack is possible because one of the cdmaglies could pass the
reply to the other one through a non-corrupted node that turns out ta beemode list. However,
such an attacklwaysrequires that the victim node processes the reply (at least) twice: oraeitvh
is used as a channel between the corrupted nodes, and once wheplytreaches it normally as one
of the nodes on the node list. Hence, the optimized version of endairAgvtheintermediate nodes
verify only the signature of the target, works only if it can be ensuredtti@intermediate nodes
process each route reply only once. They could, for instance, remmdh#é! of each processed
reply, and refuse accepting a reply with the samagain. In order to avoid an ever increasing log at
the intermediate nodes, a time intervahn be specified by the initiator in the route request. When the
request is sent, the initiator would start a timer, and it would accept routemsssages containing
only before the timer reaches The intermediate nodes would learn the value sbm the request.
They would also start a timer when they process a reply contaiiirtge first time. In addition,
they would logid, and drop every further reply containirng. Once their timers reach they could
removeid from their log, because by that time, the initiator has already timed out, and tdwou
longer accept any reply witkd. Note that this approach does not require any clock synchronization
between the nodes.

5 Related work

There are several proposals for secure ad hoc routing protoass[14] for a recent overview).
However, most of these proposals come with an informal security analyisalt the pitfalls of
informal security arguments. In this section, we report on a few exceptiaimere some attempts are
made to use formal methods for the verification of ad hoc routing protocols.

In [22], the authors try to reach a goal similar to ours but with a differgpr@ach. They pro-
pose a formal model for ad hoc routing protocols with the aim of repreggmsmder attacks (which
correspond to our notion of corrupted nodes). Their model is similar tottaerdsspaces model [7],
which has been developed for the formal verification of key exchangtegols. Routing security is
defined in terms of a safety and a liveness property. The livenesenyapquires that it is possible
to discover routes, while the safety property requires that discovetegds do not contain corrupted
nodes. In contrast to this, our definition of security allows the protocoktorm routes that pass
through corrupted nodes, because it seems to be impossible to guarahtiedbvered routes do not
contain any corrupted node given that corrupted nodes can bebeeetty and follow the routing
protocol faithfully. Our definition of security corresponds to the inforginitions given in [16] and
[8].

Another approach, presented in [15], is based on a formal methodd €HAL-ES, which uses
a weakest precondition logic to reason about security protocols. tunfaely, the work presented
in [15] is very much centered around the analysis of SRP [16], and ittig@&oeral enough. For
instance, the author defines a security goal that is specific to SRP, getecal definition of routing
security is given. In addition, the attack discovered by the author on SRR #&sreal attack, because
it essentially consists in setting up a wormhole between two non-corruptezsnadd SRP is not
supposed to defend against this. In our opinion, wormhole attacks acksattgainst the neighbor
discovery mechanism and not against routing. On the other hand, thatade of the approaches of
[15] and [22] is that they can be automated.
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We must also mention that in [16], SRP has been analyzed by its authorsBAdpgic [2].
However, BAN logic has never been intended for the analysis of routioiggols. It has been devel-
oped for verifying authentication properties, and there is no easy wagptegent the requirements
of routing security in it. In addition, BAN logic assumes that the protocol pagrts are trustworthy
[3]. This assumption does not hold in the typical case that we are inteiastenely, when there are
corrupted nodes in the network controlled by the adversary that mayhmwfthe routing protocol
faithfully. All in all, the BAN analysis of SRP in [16] was inappropriate, whishalso confirmed by
the fact that even an Active-0-1 adversary can successfully attésdat4] for details).

Another set of papers deal with provable security for cryptograggimrihms and protocols (see
Parts V and VI of [14] for a survey of the field). However, these psjpee not concerned with ad hoc
routing protocols. The papers that are the most closely related to theaapps@ used in this paper
are [1], [21], and [19]. These papers apply the simulation paradigudifferent security problems: [1]
and [21] deal with key exchange protocols, and [19] is concernedssithrity of reactive systems in
general, and secure message transmission in particular. To the beskobadedge, we are the first
who applied the notions of provable security and used the simulation-bpgezhah in the context of
routing protocols for wireless ad hoc networks. The main novelties of odtleineith respect to the
models proposed so far for the analysis of cryptographic protocotharellowing:

e Our communication model does not abstract away the multi-hop operation nétiverk. In
addition, we model the broadcast nature of radio communications, whichsaiomode to
overhear the transmission of a message that was not intended to him. Wekalsadaccount
that a radio transmission can usually be received only in a limited rangedatioeisender.

e In contrast to previous models, where the adversary has full contesltbe communications
of the honest nodes, in our model, the adversary can hear only thosageeghat were trans-
mitted by neighboring nodes, and similarly, the transmissions of the advensaheard only
by its neighbors.

e In our model, it is a hypothetic scheduler, and not the adversary, thatlates the activities
of the honest nodes. In addition, this activation is done in rounds. This keea sort of syn-
chronous model, where each participant is aware of a global time repedskey the current
round number. Howevethis knowledge has never been exploited in our analyde advan-
tage is that we can retain the simplicity of a synchronous model, without aytiwiconclusions
that are valid only in synchronous systems.

e The simulation-based approach requires the definition of an ideal-worlélmeldich focuses
onwhatthe system should do, and it is less concerned abowit is done. As a consequence,
the ideal-world model usually contains a trusted entity that provides the irdesaigices of
the system in a “magical” way. In our model, the role of this trusted entity is played’,
which marks route reply messages that contain non-plausible routes.diibadwe do not
limit the capabilities of the ideal-world adversary, but those are the same eaghbilities of a
real-world adversary. Consequently, and in contrast to other modelmlérable imperfections
(unavoidable vulnerabilities) of the system are not captured in the capahilitiee ideal-world
adversary, but they are embedded in the definition of a plausible route.
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6 Conclusion and future work

The main message of this paper is that attacks against ad hoc routing pgatandoe subtle and
difficult to discover by informal reasoning about the properties of tioégool. We demonstrated this
by presenting a novel attack on Ariadne. Another message is that it ithlgoss adopt rigorous
techniques developed for the security analysis of cryptographic algwrigimd protocols, and apply
them in the context of ad hoc routing protocols in order to gain more asmgaout their security.
We demonstrated this by proposing a simulation based framework for thatgeamalysis of on-
demand source routing protocols. The proposed framework allows ugat@ grecise definition of
security, to model the operation of a given routing protocol in the presehan adversary, and to
prove (or fail to prove) that the protocol is secure. We also propasesiv on-demand source routing
protocol, endairA, and we demonstrated the usage of the proposednioakniey proving that it is
secure in our model. Originally, we developed endairA for purely illusteapivrposes, however, it
has some noteworthy features that may inspire designers of future @itoc

In this paper, we focused on on-demand source routing protocolsurlfuture work, we intend
to extend our framework for routing table based protocols too (e.g., S\ARBJ] and ARAN [20]).
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