
Improvement of Th�eriault Algorithm of Index

Cal
ulus for Ja
obian of Hyperellipti
 Curves of

Small Genus

Koh-i
hi Nagao

�

,

Dept. of Engineering, Kanto-Gakuin Univ.

May 20, 2004

Abstra
t

Gaudry present a variation of index
al
ulus atta
k for solving the

DLP in the Ja
obian of hyperellipti

urves. Harley and Th�erialut

improve these kind of algorithm. Here, we will present a variation of

these kind of algorithm, whi
h is faster than previous ones.

Keywords Index
al
ulus atta
k, Ja
obian, Hyperellipti

urve, DLP,

1 Introdu
tion

Gaudry [3℄ �rst present a variation of index
al
ulus atta
k for hyper-

ellipti

urves that
ould solve the DLP on the Ja
obian of an hyper-

ellipti

urve of small genus. Later, Harley(
f. [2℄) and Th�eriault

[1℄ improve this algorithm. In [1℄, these algorithms work in time

O(q

2�

2

g+1

+�

), and O(q

2�

4

2g+1

+�

) respe
tively. Th�eriault's algorithm

uses the almost-smooth divisor D =

P

D(P

i

) that all but one of the

P

i

's are in the set B
alled fa
tor base. This te
hnique was often used in

the number �eld sieve fa
torization algorithm, whi
h uses the almost-

smooth integer n =

Q

p

i

, that all but one of the p

i

's are in the fa
tor

base B, whi
h is the set of small primes. In fa
torization algorithm, the

ost of fa
torizing integer is larger than that of primary testing. So, the

ost of fa
torizing almost-smooth integer is larger than that of normal

integer of the same size, and the number that p

i

62 B must be one. How-

ever, for the index
al
ulus for the Ja
obian of
urves, we �rst
ompute

the point of Ja
obian and later
onsult whether it is almost smooth or

not. So that, the new algorithm that use the 2-almost smooth divisors,

that all but 2 of the P

i

's are in the set B, is useful. For example, the al-

most smooth divisor of the form v

1

=

P

terms of B+D(P

1

), and the 2-

almost smooth divisors of the form v

2

=

P

terms of B+D(P

1

)+D(P

2

),

�

nagao�kanto-gakuin.a
.jp

1

v

3

=

P

terms of B+D(P

2

)+D(P

3

) are given, v

1

�v

2

=

P

terms of B�

D(P

2

), v

1

� v

2

+ v

3

=

P

terms of B +D(P

3

) are other almost smooth

divisors. So, we
an get mu
h more almost smooth divisors from gath-

ering 2-almost smooth divisors. From this improvement, we get an

atta
k of a running time of O(q

2�

2

g

+�

).

2 Ja
obian arithmeti

Let C be a hyperellipti

urve of genus g over F

q

of the form y

2

+

h(x)y = f(x) with deg f = 2g + 1 and deg h � g.

Notation 1. Use J

q

for Ja

C

(F

q

).

Further, we will assume that jJ

q

j is odd prime number, for simpli
-

ity.

De�nition 1. Given D

1

,D

2

2 J

q

su
h that D

2

2< D

1

>, DLP for

(D

1

; D

2

) on J

q

is
omputing � su
h that D

2

= �D

1

.

For an element P = (x; y) in C(

�

F

q

), put �P := (x;�h(x) � y).

Lemma 1. C(F

q

) is written by the union of disjoint sets P[�P[f1g,

where P := f�P jP 2 Pg.

Proof. Sin
e jJ

q

j is odd prime, we have 2 6 jjJ

q

j and there are no point

P 2 C(F

q

) su
h that P = �P .

Further, we will �x P .

Point of Ja

C

an be represented uniquely by the redu
ed divisor

of the form

k

X

i=1

n

i

P

i

�

k

X

i=1

n

i

1; P

i

2 C(

�

F

q

); P

i

6= �P

j

for i 6= j

with n

i

� 0 and

P

n

i

� g.

De�nition 2. The redu
ed divisor of a point of Ja
obian J

q

is written

by the elements of C(F

q

) i.e.

k

X

i=1

n

i

P

i

�

k

X

i=1

n

i

1; P

i

2 C(F

q

):

Then the point is said to be potentially smooth point.

Let D(P) := P �1. Note that P + (�P) � 21. From lemma 1,

potentially smooth point v of J

q

an be represented of the form

X

P2P

n

(v)

P

D(P)

with n

(v)

P

2 Z and

P

P2P

jn

(v)

P

j � g. Further, we will use this repre-

sentation to potentially smooth points.

2

De�nition 3. A subset B of P used to de�ne smoothness is
alled

fa
tor base.

De�nition 4. A point P 2 PnB is
alled large prime.

De�nition 5. A divisor v of the form

X

P2B

n

(v)

P

D(P)

is
alled smooth divisor.

De�nition 6. A divisor v of the form

X

P2B

n

(v)

P

D(P) + n

(v)

P

0

P

0

;

where P

0

is a large prime, is
alled 1-almost smooth divisor or almost

smooth divisor.

De�nition 7. A divisor v of the form

X

P2B

n

(v)

P

D(P) + n

(v)

P

0

P

0

+ n

(v)

P

00

P

00

;

where P

0

; P

00

are large primes, is
alled 2-almost smooth divisor.

De�nition 8. An element J 2 J

q

is
alled
 point, if the redu
ed

divisor representing J is smooth (resp. almost smooth, resp. 2-almost

smooth) divisor.

Further, we will
onsider the
oeÆ
ients n

P

of a smooth (resp.

almost smooth, resp. 2-almost smooth) divisor modulo jJ

q

j. For a

smooth (resp. almost smooth, resp. 2-almost smooth) divisor v, put

l(v) := #fP 2 Bjn

(v)

P

6= 0g:

Lemma 2. Let v

1

; v

2

be smooth (resp. almost smooth, resp. 2-almost

smooth) divisors and let r

1

; r

2

be integers modulo jJ

q

j. Then the
ost

for
omputing r

1

v

1

+ r

2

v

2

is O(g

2

(log q)

2

(l(v

1

) + l(v

2

)).

Proof. It requires l(v

1

) + l(v

2

)-time produ
ts and additions modulo

jJ

q

j. Note that jJ

q

j

:

= q

g

. Sin
e the
ost of one elementary operation

modulo jJ

q

j is log jJ

q

j = (g log q)

2

, we have this estimation.

3 Outline of algorithm

In this se
tion, we present the outline of the proposed algorithm. Let

k be a real number satisfying 0 < k < 1=2g. Further in this paper, we

will use k as a parameter of this algorithm. Put

r := r(k) =

g � 1 + k

g

:

We will �x a set of fa
tor base B with jBj = q

r

.

3

Lemma 3.

2r > 1 + k > 1 >

1 + r

2

=

2g + k � 1

2g

>

(g � 1) + (g + 1)k

g

:

Proof. trivial.

The whole algorithm
onsists of the following 7 parts.

Input C=F

q

hyper ellipti

urve of small genus g, D

1

; D

2

2 J

q

su
h

that D

2

2< D

1

> :

Output Integer � modulo jJ

q

j su
h that D

2

= �D

1

.

1 Computing all points of C(F

q

) and making P and �x B � P with

jBj = q

r

.

2 Gathering 2-almost smooth divisors and almost smooth divisors

Computing a set V

2

of 2-almost smooth points and a set V

1

of almost

smooth points of J

q

, of the form �D

1

+�D

2

with jV

1

j > 2q

(g�1)+(g+1)k

g

and jV

2

j > q

1+k

.

3 Computing a set of almost smooth divisorH

m

with jH

m

j > q

(1+r)=2

.

4 Computing a set of smooth divisor H with jH j > q

r

.

5 Solving linear algebra of the size q

r

� q

r

Computing integers fr

h

g

h2H

modulo jJ

q

j, satisfying

P

h2H

r

h

h � 0 mod

jJ

q

j.

6 Computing integers fs

v

g

v2V

1

[V

2

modulo jJ

q

j, satisfying

P

v2V

1

[V

2

s

v

v �

0 mod jJ

q

j.

7 Computing �.

4

4 Gathering 2-almost smooth points and

almost smooth points

Algorithm 1 Gathering the 2-almost smooth pts and almost smooth pts

Input: C=F

q

urve of genus g, D

1

; D

2

2 Ja

C

(F

q

)

Output: V

1

a set of almost smooth divisors, V

2

a set of 2-almost

smooth divisors su
h that jA

2

j > q

1+k

, jV

1

j > 2q

(g�1)+(g+1)k

g

, Inte-

gers f(�

v

; �

v

)g

v2V

1

[V

2

su
h that v = �

v

D

1

+ �

v

D

2

1: V

1

 fg, V

2

 fg

2: repeat

3: Let �; � be random numbers modulo jJ

q

j

4: Compute v = �J

1

+ �J

2

5: if v is almost smooth then

6: V

1

 V

1

[fvg

7: (�

v

; �

v

) (�; �)

8: end if

9: if v is 2-almost smooth then

10: V

2

 V

2

[fvg

11: (�

v

; �

v

) (�; �)

12: end if

13: until jA

2

j > q

1+k

and jV

1

j > 2q

(g�1)+(g+1)k

g

14: return V

1

,V

2

,f(�

v

; �

v

)g

v2V

1

[V

2

Lemma 4. The probability that a point in J

q

is almost smooth is

1

(g � 1)!

q

(�1+r)(g�1)

and the probability that a point is 2-almost smooth is

1

2(g � 2)!

q

(�1+r)(g�2)

:

Proof. We
an get above lemma similarly from proposition 3,4,5 in

[1℄. For example, the probability of 2-almost smooth points is roughly

estimated by

(2jBj)

g�2

(2jPnBj)

2

2!(g � 2)!

� jJ

q

j

:

=

(q

r

)

g�2

q

2

2!(g � 2)!q

g

=

1

2(g � 2)!

q

(�1+r)(g�2)

:

From this lemma, the number of the loops that jV

2

j > q

1+k

is

estimated by

q

(1+k)

� 2(g � 2)!q

(1�r)(g�2)

= 2(g � 2)!q

2r

;

5

and the number of the loops that jV

1

j > 2q

(g�1)+(g+1)k

g

is estimated by

2q

(g�1)+(g+1)k

g

� (g � 1)!q

(1�r)(g�1)

= 2(g � 1)!q

2r

:

Sin
e the
ost of
omputing Ja
obian v = �D

1

+ �D

2

is O(g

2

(log q)

2

)

and the
ost of judging whether v is potentially smooth or not is

O(g

2

(log q)

3

), the total
ost of this part is estimated by

O(g

2

(g � 1)!(log q)

3

q

2r

):

Here, we will estimate the required storage. Note that the bit-length

of one relative smooth point is 2g log q. So, the storage for V

1

, the set

of almost smooth divisors, is O(g log q q

(g�1)+(g+1)k

g

) and the storage

for V

2

, the set of 2-almost smooth divisors, is O(g log q q

(1+k)

). From

lemma 3, we have g log q q

(1+k)

>> g log q q

(g�1)+(g+1)k

g

. So the total

required storage
an be estimated by

O(g log q q

(1+k)

):

5 Elimination of large prime (Flame work)

Let E be a set of smooth divisors, and let F be a set of 2-almost

smooth divisors or a set of smooth divisors. Note that element e 2 E

and f 2 F are written by

e =

X

P2B

n

(e)

P

P + n

(e)

P

1

P

1

;

f =

X

P2B

n

(f)

P

P + n

(f)

P

2

P

2

(+n

(f)

P

3

P

3

):

Put sup(e) := fP

1

g and sup(f) := fP

2

; (P

3

)g. When P 2 sup(e) \

sup(f), put

�(e; f; P) := n

(f)

p

e� n

(e)

p

f:

Trivially, �(e; f; P) is almost smooth divisor, if F is a set of 2-almost

smooth divisors and �(e; f; P) is smooth divisor, if F is a set of almost

smooth divisors and e is not of the form
onstant times f .

De�nition 9.

e~f :=

�

�(e; f; P) if P 2 sup(a) \ sup(b) and e 6= Const� f

; otherwise:

E~F := [

e2E;f2F

e~f:

Lemma 5. E~F is a set of almost smooth (resp. smooth) divisors, if

F is a set of 2-almost smooth (resp. almost smooth) divisors.

Proof. Trivial!

6

We will estimate the size of E~F .

Lemma 6. The size of E~F is estimated by

jE~F j =

�

jEjjF j=q if F is 2-almost smooth

1

2

jEjjF j=q if F is almost smooth

Proof. Let e 2 E, f 2 F be randomly
hosen elements. Put P :=

sup(e). if F is a set of 2-almost smooth divisors (resp. almost smooth

divisors), the probability that P 2 sup(f) is

2

jPnBj

:

=

1

q

(resp.

1

jPnBj

:

=

1

2q

), and the size is estimated by

1

q

� jEjjF j(resp:

1

2q

� jEjjF j).

In order to
ompute E~F , we use this algorithm.

Algorithm 2 Heartsuit operator

Input: E, F

Output: E~F

1: set PnB = fR

1

; R

2

; ::; R

jPnBj

g

2: for i = 1; 2; ::; jPnBj do

3: st[i℄ fg

4: od

5: for all e 2 E do

6: P = sup(e)

7: Compute i s.t. P = R

i

8: st[i℄ st[i℄ [feg

9: od

10: V fg

11: for all f 2 F do

12: for all P 2 sup(f) do

13: Compute i s.t. P = R

i

14: if st[i℄ 6= ; then

15: for all e 2 st[i℄ s.t. e 6= Const� f do

16: V V [f�(e; f; P)g

17: od

18: end if

19: od

20: od

21: return H

We will estimate the
ost and the storage for
omputing E~F .

Lemma 7. Put

1

:= maxfl(e)je 2 Eg and

2

:= maxfl(f)jf 2 Fg.

Assume that jEj << q. Then the
ost of
omputing E~F is

O(

1

(log q)

2

jEj) +O((log q)

2

jF j) +O((

1

+

2

)(log q)

2

jEjjF j=q)

. and the required storage is

O(

1

log qjEj) +O((

1

+

2

) log qjEjjF j=q):

7

Proof. The required storage for st[i℄ is O(

1

log q jEj) and the required

storage for V is O((

1

+

2

) log q jEjjF j=q), sin
e jV j

:

= jEjjF j=q and

maxfl(v)jv 2 V g =

1

+

2

from lemma 2.

Note that the
ost of the routine "Computing index i" is log q log jPnBj =

O((log q)

2

). Also note that jE~F j = O(jEjjF j=q) and remark that

the probability of st[i℄ 6= ; is very small, sin
ejEj << q. Thus, we

see that the
ost of the 1st loop is O(

1

(log q)

2

jEj), the
ost of the

part "Computing index i" of the 2nd loop is O((log q)

2

jF j), and the

ost of the part "Computing the elements of V " of the 2nd loop is

O((

1

+

2

)(log q)

2

jEjjF j=q) from lemma 2.

6 Computing H

m

In this se
tion, we will
onstru
t H

m

a set of almost smooth divisors

jH

m

j > 2q

(1+r)=2

.

Algorithm 3 Computing H

m

Input: V

1

a set of almost smooth divisors s.t. jV

1

j > 2q

(g�1)+(g+1)k

g

,

V

2

a set of 2-almost smooth divisors s.t. jV

2

j > q

(1+k)

Output: Integer m > 0 and H

m

a set of almost smooth divisors s.t.

jH

m

j > 2q

(1+r)=2

1: H

1

 V

1

2: i 1

3: repeat

4: i++

5: H

i

 H

i�1

~V

2

6: until jH

i

j > 2q

(1+r)=2

7: m i

8: return m,H

m

From lemma 6, the size of H

i

is estimated by

jH

i

j = jH

1

j � (q

k

)

i�1

= 2q

(g�1)+(g i+1)k

g

:

So, solving the equation

(g�1)+(g i+1)k

g

= (1 + r(k))=2 for i, we have

the following.

Lemma 8. m is estimated by

1� k

2gk

:

Further, we will assumem = O(

1

gk

). Note that fl(v)jv 2 [

i�m

H

i

g �

mg. From lemma 7, the
ost for
omputing H

m

is

m� (O((log q)

2

q

(1+k)

) +O(mg(log q)

2

q

(1+r)=2

)))

8

and the required storage is

O(mg log q q

(1+r)=2

):

7 Computing H

In this se
tion, we
ompute H a set of smooth divisors for jH j > q

r

.

Algorithm 4 Computing H

Input: H

m

a set of almost smooth divisors s.t. jH

m

j > 2q

(1+r)=2

Output: H a set of smooth divisors s.t. jH j > q

r

.

1: H H

m

~H

m

2: return H

From lemma 6, the size of H is estimated by

jH j = jH

m

j

2

=2q = 2q

r

:

Note that fl(v)jv 2 [

i�m

Hg � 2mg. From lemma 7, the
ost for

omputing H is

O((log q)

2

q

(1+r)=2

) +O(mg(log q)

2

q

r

)

and the required storage is

O(mg log q q

(1+r)=2

):

8 Two ways representation of h 2 H

An element h 2 H is written by the form

h =

X

P2B

a

(h)

P

D(P);

sin
e it is a smooth divisor. Moreover, form its
onstru
tion, we see

easily that

l(h) = #fP 2 B j a

(h)

P

6= 0g � 2mg:

Set B = fR

1

; R

2

; :::; R

jBj

g.

De�nition 10.

Put ve
(h) := (a

(h)

R

1

; a

(h)

R

2

; :::; a

(h)

R

jBj

):

The
omputation of h(= ve
(h)) means the set of pairs f(a

(h)

R

i

; R

i

)g

for non-zero a

(h)

R

i

. Note that the required storage for one h isO(mg log q).

On the other hands, form its
onstru
tion, h is written by linear

sum of 2m elements of V

1

[V

2

. i.e.

h =

X

v2V

1

[V

2

b

(h)

v

v; #fv j b

(h)

v

6= 0g = 2m:

9

De�nition 11.

Put v(h) := f(b

(h)

v

; v) j b

(h)

v

6= 0g:

Note that the required storage for one v(h) is O(m log q).

Important Remark By little modifying the algorithm 3,4 , we
an

obtain both representations of h of the forms ve
(h) and v(h). (The

order of the
ost and the order of the storage for
omputing H is

essentially the same.)

Further, we will assume that the
omputations of ve
(h) and v(h)

are done.

9 Linear algebra

In this se
tion, we will solve the linear algebra and �nding a linear

relation of H .

Algorithm 5 Linear algebra

Input: H a set of smooth divisors su
h that jH j > q

r

Output: Integers f

h

g

h2H

modulo jJ

q

j s.t.

P

h2H

h

h � 0 mod jJ

q

j

1: Set H = fh

1

; h

2

; :::; h

jHj

g

2: Set matrix M = (

t

ve
(h

1

);

t

ve
(h

2

); :::;

t

ve
(h

jHj

))

3: Solve linear algebra of M and
ompute (

1

;

2

; :::;

jHj

) su
h that

P

jHj

i=1

i

ve
(h

i

) =

~

0

4: return f

i

g

Note that the elements of matrix is integers modulo jJ

q

j

:

= q

g

. So

the
ost of elementary operation modulo J

q

is O(g

2

(log q)

2

).

M is a sparse matrix of the size q

r

� q

r

. Note that the number

of non-zero elements in one
olumn is 2mg. So, using [4℄ [5℄, we
an

ompute f

i

g. Its
ost is

O(g

2

(log q)

2

� 2mg � q

r

q

r

) = O(mg

3

(log q)

2

q

2r

)

and the required storage is

O(log(q

g

)mg � q

r

) = O(mg

2

log q q

r

):

(The required storage for sparse linear algebra is essentially the storage

for non-zero data. Note that the bit length of integer modulo jJ

q

j is

log(q

g

), the number of nonzero elements of one row is mg.)

10 Computing s

v

Remember that ea
h element h 2 H is of the form h =

P

v2V

1

[V

2

b

(h)

v

v.

In the previous se
tion, we found f

h

g su
h that

P

h2H

h

h � 0 mod

10

jJ

q

j. So, put

s

v

:=

X

h2H

h

b

(h)

v

mod jJ

q

j for all v 2 V

1

[V

2

and we have

X

v2V

1

[V

2

s

v

v � 0 mod jJ

q

j:

Algorithm 6 Computing s

v

Input: V

1

,V

2

,H ,f

h

g

h2H

s.t.

P

h2H

h

h � 0

Output: fs

v

g

v2V

1

[V

2

1: for all v 2 V

1

[V

2

do

2: s

v

 0

3: od

4: for all h 2 H do

5: for all v 2 V

1

[V

2

s.t b

(h)

v

6= 0 do

6: s

v

 s

v

+

h

b

(h)

v

7: od

8: od

9: return fs

v

g

The
ost of this part is

O(g log q q

1+k

) +O(m g

2

(log q)

2

q

(1+r)=2

)

and the storage is

O(g log q q

1+k

):

11 Finding dis
reet log

In the previous se
tion, we found fs

v

g su
h that

P

s

v

v � 0 mod jJ

q

j.

In the part 2 of the algorithm, we have
omputed (�

v

; �

v

) su
h that

v = �

v

D

1

+ �

v

D

2

:

So, we have

X

v2V

1

[V

2

s

v

(�

v

D

1

+�

v

D

2

) = (

X

v2V

1

[V

2

s

v

�

v

)D

1

+(

X

v2V

1

[V

2

s

v

�

v

)D

2

� 0: mod jJ

q

j

So, �(

P

v2V

1

[V

2

s

v

�

v

)=(

P

v2V

1

[V

2

s

v

�

v

) mod jJ

q

j is required dis
reet

log.

Algorithm 7 Computing �

Input: V

1

,V

2

,f�

v

; �

v

g, fs

v

g

Output: Integer � mod jJ

q

j s.t. D

1

= �D

2

1: return �(

P

v2V

1

[V

2

s

v

�

v

)=(

P

v2V

1

[V

2

s

v

�

v

) mod jJ

q

j

11

Note that the
ost of this part is O(g

2

(log q)

2

q

1+k

).

12 Cost estimation

In this se
tion, we will estimate the
ost and the required storage of

whole algorithm under the assumption of

k =

1

log q

:

First, remember that m = O(

1

gk

) = O(

log q

g

). By a dire
t
omputation,

we have

r = r(k) =

g � 1 + k

g

= 1�

1

g

+

1

g log q

;

and

q

2r

= q

2�

2

g

� exp(

2

g

) = O(q

2�

2

g

):

From our
ost estimation, the
ost of the routine ex
ept part 2 and

part 5 is written by the form

O(g

a

(log q)

b

q

) a; b � 4;
 � 1 + k:

On the other hands, the
ost of the routine part 2 and part 5 is written

by

O(g

2

(g � 1)!(log q)

3

q

2r

) and O(mg

3

(log q)

2

q

2r

):

From lemma 3, we see 1 + k < 2r and the
ost of the whole parts
an

be estimated by

O(g

2

(g � 1)!(log q)

3

q

2r

) = O(g

2

(g � 1)!(log q)

3

q

2�

2

g

):

Similarly, we see that the required storage (dominant part is part 2

and part 7, sin
e 1 + k > 1 > (1 + r)=2 from lemma 3) is

O(g log q q

1+k

) = O(g log q q

1+k

) = O(g log q q exp(1)) = O(g log q q):

13 Con
lusion

In ASIACRYPT2003, Th�eriault presented a variant of index
al
ulus

for the Ja
obian of hyperellipti

urve of small genus, using almost

smooth divisors. Here, we improve Th�eriault's result, using 2-almost

divisors and propose an atta
k for DLP of the Ja
obian of hyperellipti

urves of small genus, whi
h works O(q

2�

2

g

+�

) running time.

12

Referen
es

[1℄ N. Th�eriault, Index
al
ulus atta
k for hyperellipti

urves of small

genus, ASIACRYPT2003, LNCS 2894, Springer-Verlag, 2003, pp. 75{

92.

[2℄ A. Enge, P. Gaudry, A general framework for subexponential dis
rete

logarithm algorithms, A
ta Arith., 102, no. 1, pp. 83{103,2002.

[3℄ P.Gaudry, An algorithm for solving the dis
rete log problem on hyper-

ellipti

urves, Euro
rypt 2000, LNCS 1807, Springer-Verlag, 2000, pp.

19{34.

[4℄ B. A. LaMa

hia, A. M. Odlyzko, Solving large sparse linear systems over

�nite �elds, Crypto '90, LNCS 537, Springer-Verlag, 1990, pp. 109{133.

[5℄ D. H. Wiedemann, Solving sparse linear equations over �nite �elds, IEEE

Trans. Inform. Theory, IT-32, no.1, pp.54{62, 1986.

13

