Improvement of Thériault Algorithm of Index
Calculus for Jacobian of Hyperelliptic Curves of
Small Genus

Koh-ichi Nagao?
Dept. of Engineering, Kanto-Gakuin Univ.

May 20, 2004

Abstract

Gaudry present a variation of index calculus attack for solving the
DLP in the Jacobian of hyperelliptic curves. Harley and Thérialut
improve these kind of algorithm. Here, we will present a variation of
these kind of algorithm, which is faster than previous ones.
Keywords Index calculus attack, Jacobian, Hyperelliptic curve, DLP,

1 Introduction

Gaudry [3] first present a variation of index calculus attack for hyper-
elliptic curves that could solve the DLP on the Jacobian of an hyper-
elliptic curve of small genus. Later, Harley(cf. [2]) and Thériault
[1] improve this algorithm. In [1], these algorithms work in time

O(q%%“), and O(q%TfH“) respectively. Thériault’s algorithm
uses the almost-smooth divisor D = Y D(FP;) that all but one of the
P;’s are in the set B called factor base. This technique was often used in
the number field sieve factorization algorithm, which uses the almost-
smooth integer n = [] p;, that all but one of the p;’s are in the factor
base B, which is the set of small primes. In factorization algorithm, the
cost of factorizing integer is larger than that of primary testing. So, the
cost of factorizing almost-smooth integer is larger than that of normal
integer of the same size, and the number that p; € B must be one. How-
ever, for the index calculus for the Jacobian of curves, we first compute
the point of Jacobian and later consult whether it is almost smooth or
not. So that, the new algorithm that use the 2-almost smooth divisors,
that all but 2 of the P;’s are in the set B, is useful. For example, the al-
most smooth divisor of the form vy =) terms of B+D(P;), and the 2-
almost smooth divisors of the form vy, = Y terms of B+D(P;)+D(FP2),

*nagao@kanto-gakuin.ac.jp

vy = Y terms of B+D(P2)+D(P;) are given, v; —ve = Y terms of B—
D(P,), v1 — vy +v3 = Y terms of B + D(Ps) are other almost smooth
divisors. So, we can get much more almost smooth divisors from gath-
ering 2-almost smooth divisors. From this improvement, we get an

attack of a running time of O(q2*§+€).

2 Jacobian arithmetic

Let C' be a hyperelliptic curve of genus g over F, of the form y? +
h(z)y = f(z) with deg f =2¢g + 1 and degh < g.

Notation 1. Use J, for Jacc(Fy).

Further, we will assume that |J,| is odd prime number, for simplic-
ity.
Definition 1. Given Di,Ds € J, such that Dy €< Dy >, DLP for
(D1, D3) on Jy is computing X such that Dy = AD;.

For an element P = (z,y) in C(F,), put —P := (z,—h(z) — y).
Lemma 1. C(FF,) is written by the union of disjoint sets PU—PU{co},
where P := {—P|P € P}.

Proof. Since |J,| is odd prime, we have 2 }|.J;| and there are no point
P € C(F,) such that P = —P. O

Further, we will fix P.
Point of Jace can be represented uniquely by the reduced divisor
of the form

k k
> niPi=Y njco, P, €C(F,), P;i#—P;fori#j
i=1 i=1

with n; > 0 and > n; < g.

Definition 2. The reduced divisor of a point of Jacobian J, is written
by the elements of C(IF,) i.e.

k k
anpz — Znioo, P; e C(Fq)
i=1 i=1

Then the point is said to be potentially smooth point.

Let D(P) := P — oo. Note that P + (—P) ~ 200. From lemma 1,
potentially smooth point v of .J; can be represented of the form

> nD(P)

Pep

with ngf) €Zand) pep |n5§)| < g. Further, we will use this repre-

sentation to potentially smooth points.

Definition 3. A subset B of P used to define smoothness is called
factor base.

Definition 4. A point P € P\B is called large prime.
Definition 5. A divisor v of the form
> np'D(P)
PeB
is called smooth divisor.
Definition 6. A divisor v of the form

S alD(P) +nl) P,
PEB

where P’ is a large prime, is called 1-almost smooth divisor or almost
smooth divisor.
Definition 7. A divisor v of the form
S nfD(P) 4 P gl
PeB
where P', P" are large primes, is called 2-almost smooth divisor.

Definition 8. An element J € J, is called ¢ point, if the reduced
divisor representing J is smooth (resp. almost smooth, resp. 2-almost
smooth) divisor.

Further, we will consider the coefficients np of a smooth (resp.
almost smooth, resp. 2-almost smooth) divisor modulo |J,|. For a
smooth (resp. almost smooth, resp. 2-almost smooth) divisor v, put

I(v) := #{P € Bjn{Y) # 0}.

Lemma 2. Let vy, vy be smooth (resp. almost smooth, resp. 2-almost
smooth) divisors and let r1,ry be integers modulo |J,|. Then the cost

for computing r1vy + ravs is O(g*(log q)?(I(v1) + 1(v2)).

Proof. 1t requires l(v;) + l(v9)-time products and additions modulo
|7;]. Note that |J,| = ¢9. Since the cost of one elementary operation
modulo |J,| is log | J,| = (glogq)?, we have this estimation. O

3 Outline of algorithm

In this section, we present the outline of the proposed algorithm. Let
k be a real number satisfying 0 < k < 1/2g. Further in this paper, we
will use k as a parameter of this algorithm. Put

g—1+k
Y
We will fix a set of factor base B with |B| = ¢".

r:=r(k)=

Lemma 3.
1+r 29+k—1_ (g—1)+(g+ 1k
= > .
2 2g g
Proof. trivial. O

2r>1+k>1>

The whole algorithm consists of the following 7 parts.
Input C/F, hyper elliptic curve of small genus g, Dy, Ds € J, such
that Dy €< Dy > .
Output Integer A modulo |J,| such that Dy = AD;.
1 Computing all points of C(F,) and making P and fix B C P with
|Bl =4q".
2 Gathering 2-almost smooth divisors and almost smooth divisors

Computing a set V5 of 2-almost smooth points and a set V; of almost
(a=1)+(g+1)k
smooth points of J,, of the form aD; + 8D» with |V1| > 2¢ "

and |Va| > ¢*+*.

3 Computing a set of almost smooth divisor H,, with |H,,| > ¢('T7)/2.

4 Computing a set of smooth divisor H with |H| > ¢".

5 Solving linear algebra of the size q" X q"

Computing integers {rp } ne g modulo |J,|, satisfying), -y 7nh = 0 mod

| 4.

6 qumputing integers {s, }»cviuv, modulo | J, |, satisfying 3, cy. v, 00 =
0 mod |J,|.

7 Computing .

4 Gathering 2-almost smooth points and
almost smooth points

Algorithm 1 Gathering the 2-almost smooth pts and almost smooth pts

Input: C/F, curve of genus g, Dy, Dy € Jacc(F,)

Output: Vi a set of almost smooth divisors, V5 a set of 2-almost
(g=D+(g+D)k
smooth divisors such that |As| > ¢'+*, [Vi| >2¢ o, Inte-

gers {(aw, Bv) }oevyuvs such that v = a, Dy + B, D5

LV {}, Vo< {}

2: repeat

3: Let a, 8 be random numbers modulo |.J,|
4: Compute v = aJy + B.)5

5. if v is almost smooth then
6: Vi+<WViu {’U}

7 (aw, By) « (a, B)

8: end if

9: if v is 2-almost smooth then
10: Vo + Vo U {v}

11 (aw, Bu) (o, B)

12: end if

(=D +(g+Dk

13: until |43| > ¢'** and V1] > 2¢ 7
14: return V,V2,{(c, Bv) }veviuv,

Lemma 4. The probability that a point in Jy is almost smooth is

g1+ a=1)

(9 - D!

and the probability that a point is 2-almost smooth is
1

2(g —2)!

Proof. We can get above lemma similarly from proposition 3,4,5 in
[1]. For example, the probability of 2-almost smooth points is roughly
estimated by

g1 (52

(21B))*~ (2[P\B])* . 17| = (@) 2¢> 1 J1+DE=2)
2l(g — 2)! T (g = 2)lgs 2(g—2)! '

O

From this lemma, the number of the loops that |Va| > ¢'** is
estimated by

q(1+k) X 2(9 _ 2)!q(1—r)(g—2) = 2(g — 2)!q2r’

(=D +(g+Dk

and the number of the loops that |Vi] > 2¢ J is estimated by

(=D +(g+D)k

s (g = Dlg T = 2(g — 1)1g7"

Since the cost of computing Jacobian v = aD; + 8D5 is O(g*(log ¢)?)
and the cost of judging whether v is potentially smooth or not is
O(g*(log q)®), the total cost of this part is estimated by

0(g”(g — 1)!(log q)%¢°").

Here, we will estimate the required storage. Note that the bit-length

of one relative smooth point is 2g logg. So, the storage for V7, the set
.. . (g=D)+(g+1)k
of almost smooth divisors, is O(g loggq g) and the storage

for V5, the set of 2-almost smooth divisors, is O(g logqq(1+k)). From
(=D +(g+Dk

lemma 3, we have g loggq" ™ >> glogqq g . So the total
required storage can be estimated by

O(g log g).

5 Elimination of large prime (Flame work)

Let E be a set of smooth divisors, and let F' be a set of 2-almost
smooth divisors or a set of smooth divisors. Note that element e € E
and f € F are written by

e = Z ngﬁ)P + ngﬁl)Pl,
PeB

PeB
Put sup(e) := {P1} and sup(f) := {P>,(P;)}. When P € sup(e) N
sup(f), put

¢(e, f,P) = nl()f)e —nle .

P

Trivially, ¢(e, f, P) is almost smooth divisor, if F' is a set of 2-almost
smooth divisors and ¢(e, f, P) is smooth divisor, if F'is a set of almost
smooth divisors and e is not of the form constant times f.

Definition 9.
¢(e, f,P) if P € sup(a) Nsup(b) and e # Const x f
eQf = .
0 otherwise.
EQF :=Uccp,ser eQf.

Lemma 5. EQF is a set of almost smooth (resp. smooth) divisors, if
F is a set of 2-almost smooth (resp. almost smooth) divisors.

Proof. Trivial! O

We will estimate the size of EQF.
Lemma 6. The size of EQF is estimated by

|E||F|/q if F is 2-almost smooth

|[EQF| = {%|E||F|/q if F is almost smooth

Proof. Let e € E, f € F be randomly chosen elements. Put P :=

sup(e). if F'is a set of 2-almost smooth divisors (resp. almost smooth
divisors), the probability that P € sup(f) is ﬁ = < (resp. |P{B\ =

37), and the size is estimated by + x |E[|F|(resp.5; x |E||F]). O

In order to compute EQF', we use this algorithm.

Algorithm 2 Heartsuit operator

Input: F, F
Output: EQF
: set P\B = {Rl,RQ,--aR\P\B|}
: fori=1,2,..,|P\B| do
o stfi] « {}
od

: for all e € E do

P = sup(e)

Compute 7 s.t. P =R;
st[i] « st[i] U {e}

©

o
Vo {}
: for all f € F do
for all P € sup(f) do
Compute ¢ s.t. P =R;
if st[i] #) then
for all e € st[i] s.t. e # Const x f do
Ve VU {dle, f, P)}
od
end if
od
: od

: return H

DO DD = = R e e s e e
TR NPa s R

We will estimate the cost and the storage for computing EQF'.

Lemma 7. Put ¢; := max{l(e)le € E} and ¢ := max{l(f)|f € F}.
Assume that |E| << q. Then the cost of computing EQF is

O(ci(log ¢)°|E) + O((log)?|F'|) + O((c1 + e2)(log 0)*| E|| F|/q)
. and the required storage is

O(c1logq|E|) + O((c1 + c2)logq|E||F|/q).

Proof. The required storage for st[i] is O(c; log¢|E|) and the required
storage for V' is O((¢1 + ¢2)logq |E||F|/q), since |V| = |E||F|/q and
max{l(v)|lv € V} = ¢1 + ¢» from lemma 2.

Note that the cost of the routine ” Computing index i” is log ¢ log |P\B| =
O((log q)?). Also note that |[EQF| = O(|E||F|/q) and remark that
the probability of st[i] # 0 is very small, since|E| << . Thus, we
see that the cost of the 1st loop is O(ecy(logq)?|E|), the cost of the
part ”Computing index i” of the 2nd loop is O((log q)?|F|), and the
cost of the part ”Computing the elements of VV” of the 2nd loop is
O((c1 + ¢2)(logq)?|E||F|/q) from lemma 2.

O

6 Computing H,,

In this section, we will construct H,, a set of almost smooth divisors
|H,| > 2q01+7)/2,

Algorithm 3 Computing H,,

. (g=D)+(g+1)k
Input: V; a set of almost smooth divisors s.t. |Vi| > 2¢ g ,

Vs a set of 2-almost smooth divisors s.t. |Va| > ¢(1+*)
Output: Integer m > 0 and H,, a set of almost smooth divisors s.t.
|Hm| > 2q(1+r)/2
: H+«W
i1
: repeat
v+ +
H;, + H; @Vz
. until |H;| > 2¢(1+7)/2
m < i
: return m,H,,

PP gl

From lemma 6, the size of H; is estimated by
(g—D+(gi+Dk
g .

|Hi| = |Hi| % (¢")' " =2q

So, solving the equation M = (1 + r(k))/2 for i, we have
the following.

Lemma 8. m is estimated by

1-k

29k

Further, we will assume m = O(5). Note that {I(v)|v € Ui<m H;} <
mg. From lemma 7, the cost for computing H,, is

m x (0((log ¢)*¢"" ™) + O(mg(log q)>¢"'+7/?)))

and the required storage is

O(mglogqq+m/?).

7 Computing H

r

In this section, we compute H a set of smooth divisors for |H| > ¢".

Algorithm 4 Computing H

Input: H,, a set of almost smooth divisors s.t. |H,,| > 2¢{'+7)/?
Output: H a set of smooth divisors s.t. |H| > ¢".

1: H + H,OH,,

2: return H

From lemma 6, the size of H is estimated by
|H| = |H7n|2/2‘1 =2q".
Note that {I(v)|v € UixmH} < 2mg. From lemma 7, the cost for
computing H is
O((log ¢)*¢"*"/%) + O(mg(log)*q")
and the required storage is

O(mglogqq+m/?).

8 Two ways representation of h € H

An element h € H is written by the form
=Y aD(P),
PeB

since it is a smooth divisor. Moreover, form its construction, we see
easily that
I(h) = #{P € B|ayy) # 0} < 2mg.
Set B = {Rl, R2, ,R|B‘}
Definition 10.

Put vec(h) := (a%?,a%?, ...,a%’l)m)-

The computation of h(= vec(h)) means the set of pairs {(a%?, R)}

for non-zero ag? . Note that the required storage for one h is O(m g log q).

On the other hands, form its construction, h is written by linear
sum of 2m elements of V; U V5. i.e.

h=> bMv, #{o|b #0} =2m.

veEVIUV

Definition 11.
Put v(B) = {(6",0) |B) #0}.

Note that the required storage for one v(h) is O(mlogq).
Important Remark By little modifying the algorithm 3,4 , we can
obtain both representations of h of the forms vec(h) and v(h). (The
order of the cost and the order of the storage for computing H is
essentially the same.)

Further, we will assume that the computations of vec(h) and v(h)
are done.

9 Linear algebra

In this section, we will solve the linear algebra and finding a linear
relation of H.

Algorithm 5 Linear algebra

Input: H a set of smooth divisors such that |H| > ¢"
Output: Integers {yn}nemr modulo |J,| s.t. >, - yah = 0 mod |J,]
1: Set H = {hl,h2, ;h|H|}
2: Set matrix M = (*vec(hy),' vec(hz), ...," vec(hyq)))
3: Solve linear algebra of M and compute (y1,%2,...,|m|) such that
I yivec(h;) =0
4: return {v;}

Note that the elements of matrix is integers modulo |.J,| = ¢9. So
the cost of elementary operation modulo J, is O(g*(log q)?).

M is a sparse matrix of the size ¢" x ¢". Note that the number
of non-zero elements in one column is 2mg. So, using [4] [5], we can
compute { v;}. Its cost is

O(g*(logq)* - 2mg - ¢"q") = O(mg® (log ¢)*¢*")
and the required storage is
O(log(¢’)mg-q") = O(mg*logq q").
(The required storage for sparse linear algebra is essentially the storage

for non-zero data. Note that the bit length of integer modulo |J,] is
log(q9), the number of nonzero elements of one row is mg.)

10 Computing s,

Remember that each element h € H is of the form h =37 i v, .

In the previous section, we found {v} such that 3, _, vnh = 0 mod

10

|.Jy]- So, put
Sy 1= Z yrb" mod |7, | forallv € V4 UTh
heH

and we have
E $y0 = 0 mod |J,].
veEVIUV,

Algorithm 6 Computing s,

Input: Vi,Vo,H {vn}nem s-te D ey mh =0
Output: {s,}veviuvs

1: for allv e V; UV, do

2 Sy — 0

3: od

4: for all h € H do

5: forallve ViUV, st bg,h) #0do
6

7
8
9

Sy & Sy + ’thg)h)
: od
: od
: return {s,}

The cost of this part is
O(g logq ¢"™*) + O(m ¢* (logq)*¢"'*7/?)

and the storage is

O(g logq ¢'**).

11 Finding discreet log

In the previous section, we found {s,} such that > s,v = 0 mod |J,|.
In the part 2 of the algorithm, we have computed (o, 3,) such that

v = Olle + /BvD2.

So, we have
Z 5y(awD1+BuD2) = (Z SpCy)D1+(Z Syfv)D2 = 0. mod | J;|
veEVIUV veViUVL vEVIUV,

S0, —(Xvev,uvs 50)/ (O uev,uvs SvBv) mod |Jy] is required discreet
log.

Algorithm 7 Computing A
Input: Vl,‘/%{avyﬂv}a {S‘U}
Output: Integer A mod |J,| s.t. D1 = AD,
1: return _(ZUGV1UV2 Svav)/(Zvevlqu S‘UB‘U) mod |Jq|

11

Note that the cost of this part is O(g? (logq)? ¢***).

12 Cost estimation

In this section, we will estimate the cost and the required storage of
whole algorithm under the assumption of

_ 1
~logq’

First, remember that m = O(;) = O(l"%). By a direct computation,

we have 14k))
g- 1tk _ Iy

r=r(k) = ,
(k) g g gloggq

and 5
_2
" =q¢""9 x exp(;) =0(¢"" 7).

From our cost estimation, the cost of the routine except part 2 and
part 5 is written by the form

O(g* (logq)® ¢°) a,b<4, c<1+k.
On the other hands, the cost of the routine part 2 and part 5 is written

by
O(g° (g — 1)!(log q)*¢*") and O(mg® (logq)*¢*").

From lemma 3, we see 1 + k < 2r and the cost of the whole parts can
be estimated by

O(g” (9~ Vl0g0)” ") = 05 (g — Dl(loga)’a”).

Similarly, we see that the required storage (dominant part is part 2
and part 7, since 1+ %k > 1> (14 r)/2 from lemma 3) is

O(g logqq'™) = O(glogqq'™) = O(glogqq exp(1)) = O(glogqq).

13 Conclusion

In ASTACRYPT2003, Thériault presented a variant of index calculus
for the Jacobian of hyperelliptic curve of small genus, using almost
smooth divisors. Here, we improve Thériault’s result, using 2-almost
divisors and propose an attack for DLP of the Jacobian of hyperelliptic

curves of small genus, which works O(¢®~ 57¢) running time.

12

References

[1] N. Thériault, Index calculus attack for hyperelliptic curves of small
genus, ASTACRYPT2003, LNCS 2894, Springer-Verlag, 2003, pp. 75—
92.

[2] A. Enge, P. Gaudry, A general framework for subexponential discrete
logarithm algorithms, Acta Arith., 102, no. 1, pp. 83-103,2002.

[3] P.Gaudry, An algorithm for solving the discrete log problem on hyper-
elliptic curves, Furocrypt 2000, LNCS 1807, Springer-Verlag, 2000, pp.
19-34.

[4] B. A.LaMacchia, A. M. Odlyzko, Solving large sparse linear systems over
finite fields, Crypto 90, LNCS 537, Springer-Verlag, 1990, pp. 109-133.

[6] D.H. Wiedemann, Solving sparse linear equations over finite fields, IEEE
Trans. Inform. Theory, IT-32, no.1, pp.54—62, 1986.

13

