
Improvement of Th�eriault Algorithm of Index

Calulus for Jaobian of Hyperellipti Curves of

Small Genus

Koh-ihi Nagao

�

,

Dept. of Engineering, Kanto-Gakuin Univ.

May 20, 2004

Abstrat

Gaudry present a variation of index alulus attak for solving the

DLP in the Jaobian of hyperellipti urves. Harley and Th�erialut

improve these kind of algorithm. Here, we will present a variation of

these kind of algorithm, whih is faster than previous ones.

Keywords Index alulus attak, Jaobian, Hyperellipti urve, DLP,

1 Introdution

Gaudry [3℄ �rst present a variation of index alulus attak for hyper-

ellipti urves that ould solve the DLP on the Jaobian of an hyper-

ellipti urve of small genus. Later, Harley(f. [2℄) and Th�eriault

[1℄ improve this algorithm. In [1℄, these algorithms work in time

O(q

2�

2

g+1

+�

), and O(q

2�

4

2g+1

+�

) respetively. Th�eriault's algorithm

uses the almost-smooth divisor D =

P

D(P

i

) that all but one of the

P

i

's are in the set B alled fator base. This tehnique was often used in

the number �eld sieve fatorization algorithm, whih uses the almost-

smooth integer n =

Q

p

i

, that all but one of the p

i

's are in the fator

base B, whih is the set of small primes. In fatorization algorithm, the

ost of fatorizing integer is larger than that of primary testing. So, the

ost of fatorizing almost-smooth integer is larger than that of normal

integer of the same size, and the number that p

i

62 B must be one. How-

ever, for the index alulus for the Jaobian of urves, we �rst ompute

the point of Jaobian and later onsult whether it is almost smooth or

not. So that, the new algorithm that use the 2-almost smooth divisors,

that all but 2 of the P

i

's are in the set B, is useful. For example, the al-

most smooth divisor of the form v

1

=

P

terms of B+D(P

1

), and the 2-

almost smooth divisors of the form v

2

=

P

terms of B+D(P

1

)+D(P

2

),

�

nagao�kanto-gakuin.a.jp

1

v

3

=

P

terms of B+D(P

2

)+D(P

3

) are given, v

1

�v

2

=

P

terms of B�

D(P

2

), v

1

� v

2

+ v

3

=

P

terms of B +D(P

3

) are other almost smooth

divisors. So, we an get muh more almost smooth divisors from gath-

ering 2-almost smooth divisors. From this improvement, we get an

attak of a running time of O(q

2�

2

g

+�

).

2 Jaobian arithmeti

Let C be a hyperellipti urve of genus g over F

q

of the form y

2

+

h(x)y = f(x) with deg f = 2g + 1 and deg h � g.

Notation 1. Use J

q

for Ja

C

(F

q

).

Further, we will assume that jJ

q

j is odd prime number, for simpli-

ity.

De�nition 1. Given D

1

,D

2

2 J

q

suh that D

2

2< D

1

>, DLP for

(D

1

; D

2

) on J

q

is omputing � suh that D

2

= �D

1

.

For an element P = (x; y) in C(

�

F

q

), put �P := (x;�h(x) � y).

Lemma 1. C(F

q

) is written by the union of disjoint sets P[�P[f1g,

where P := f�P jP 2 Pg.

Proof. Sine jJ

q

j is odd prime, we have 2 6 jjJ

q

j and there are no point

P 2 C(F

q

) suh that P = �P .

Further, we will �x P .

Point of Ja

C

an be represented uniquely by the redued divisor

of the form

k

X

i=1

n

i

P

i

�

k

X

i=1

n

i

1; P

i

2 C(

�

F

q

); P

i

6= �P

j

for i 6= j

with n

i

� 0 and

P

n

i

� g.

De�nition 2. The redued divisor of a point of Jaobian J

q

is written

by the elements of C(F

q

) i.e.

k

X

i=1

n

i

P

i

�

k

X

i=1

n

i

1; P

i

2 C(F

q

):

Then the point is said to be potentially smooth point.

Let D(P) := P �1. Note that P + (�P) � 21. From lemma 1,

potentially smooth point v of J

q

an be represented of the form

X

P2P

n

(v)

P

D(P)

with n

(v)

P

2 Z and

P

P2P

jn

(v)

P

j � g. Further, we will use this repre-

sentation to potentially smooth points.

2

De�nition 3. A subset B of P used to de�ne smoothness is alled

fator base.

De�nition 4. A point P 2 PnB is alled large prime.

De�nition 5. A divisor v of the form

X

P2B

n

(v)

P

D(P)

is alled smooth divisor.

De�nition 6. A divisor v of the form

X

P2B

n

(v)

P

D(P) + n

(v)

P

0

P

0

;

where P

0

is a large prime, is alled 1-almost smooth divisor or almost

smooth divisor.

De�nition 7. A divisor v of the form

X

P2B

n

(v)

P

D(P) + n

(v)

P

0

P

0

+ n

(v)

P

00

P

00

;

where P

0

; P

00

are large primes, is alled 2-almost smooth divisor.

De�nition 8. An element J 2 J

q

is alled point, if the redued

divisor representing J is smooth (resp. almost smooth, resp. 2-almost

smooth) divisor.

Further, we will onsider the oeÆients n

P

of a smooth (resp.

almost smooth, resp. 2-almost smooth) divisor modulo jJ

q

j. For a

smooth (resp. almost smooth, resp. 2-almost smooth) divisor v, put

l(v) := #fP 2 Bjn

(v)

P

6= 0g:

Lemma 2. Let v

1

; v

2

be smooth (resp. almost smooth, resp. 2-almost

smooth) divisors and let r

1

; r

2

be integers modulo jJ

q

j. Then the ost

for omputing r

1

v

1

+ r

2

v

2

is O(g

2

(log q)

2

(l(v

1

) + l(v

2

)).

Proof. It requires l(v

1

) + l(v

2

)-time produts and additions modulo

jJ

q

j. Note that jJ

q

j

:

= q

g

. Sine the ost of one elementary operation

modulo jJ

q

j is log jJ

q

j = (g log q)

2

, we have this estimation.

3 Outline of algorithm

In this setion, we present the outline of the proposed algorithm. Let

k be a real number satisfying 0 < k < 1=2g. Further in this paper, we

will use k as a parameter of this algorithm. Put

r := r(k) =

g � 1 + k

g

:

We will �x a set of fator base B with jBj = q

r

.

3

Lemma 3.

2r > 1 + k > 1 >

1 + r

2

=

2g + k � 1

2g

>

(g � 1) + (g + 1)k

g

:

Proof. trivial.

The whole algorithm onsists of the following 7 parts.

Input C=F

q

hyper ellipti urve of small genus g, D

1

; D

2

2 J

q

suh

that D

2

2< D

1

> :

Output Integer � modulo jJ

q

j suh that D

2

= �D

1

.

1 Computing all points of C(F

q

) and making P and �x B � P with

jBj = q

r

.

2 Gathering 2-almost smooth divisors and almost smooth divisors

Computing a set V

2

of 2-almost smooth points and a set V

1

of almost

smooth points of J

q

, of the form �D

1

+�D

2

with jV

1

j > 2q

(g�1)+(g+1)k

g

and jV

2

j > q

1+k

.

3 Computing a set of almost smooth divisorH

m

with jH

m

j > q

(1+r)=2

.

4 Computing a set of smooth divisor H with jH j > q

r

.

5 Solving linear algebra of the size q

r

� q

r

Computing integers fr

h

g

h2H

modulo jJ

q

j, satisfying

P

h2H

r

h

h � 0 mod

jJ

q

j.

6 Computing integers fs

v

g

v2V

1

[V

2

modulo jJ

q

j, satisfying

P

v2V

1

[V

2

s

v

v �

0 mod jJ

q

j.

7 Computing �.

4

4 Gathering 2-almost smooth points and

almost smooth points

Algorithm 1 Gathering the 2-almost smooth pts and almost smooth pts

Input: C=F

q

urve of genus g, D

1

; D

2

2 Ja

C

(F

q

)

Output: V

1

a set of almost smooth divisors, V

2

a set of 2-almost

smooth divisors suh that jA

2

j > q

1+k

, jV

1

j > 2q

(g�1)+(g+1)k

g

, Inte-

gers f(�

v

; �

v

)g

v2V

1

[V

2

suh that v = �

v

D

1

+ �

v

D

2

1: V

1

 fg, V

2

 fg

2: repeat

3: Let �; � be random numbers modulo jJ

q

j

4: Compute v = �J

1

+ �J

2

5: if v is almost smooth then

6: V

1

 V

1

[fvg

7: (�

v

; �

v

) (�; �)

8: end if

9: if v is 2-almost smooth then

10: V

2

 V

2

[fvg

11: (�

v

; �

v

) (�; �)

12: end if

13: until jA

2

j > q

1+k

and jV

1

j > 2q

(g�1)+(g+1)k

g

14: return V

1

,V

2

,f(�

v

; �

v

)g

v2V

1

[V

2

Lemma 4. The probability that a point in J

q

is almost smooth is

1

(g � 1)!

q

(�1+r)(g�1)

and the probability that a point is 2-almost smooth is

1

2(g � 2)!

q

(�1+r)(g�2)

:

Proof. We an get above lemma similarly from proposition 3,4,5 in

[1℄. For example, the probability of 2-almost smooth points is roughly

estimated by

(2jBj)

g�2

(2jPnBj)

2

2!(g � 2)!

� jJ

q

j

:

=

(q

r

)

g�2

q

2

2!(g � 2)!q

g

=

1

2(g � 2)!

q

(�1+r)(g�2)

:

From this lemma, the number of the loops that jV

2

j > q

1+k

is

estimated by

q

(1+k)

� 2(g � 2)!q

(1�r)(g�2)

= 2(g � 2)!q

2r

;

5

and the number of the loops that jV

1

j > 2q

(g�1)+(g+1)k

g

is estimated by

2q

(g�1)+(g+1)k

g

� (g � 1)!q

(1�r)(g�1)

= 2(g � 1)!q

2r

:

Sine the ost of omputing Jaobian v = �D

1

+ �D

2

is O(g

2

(log q)

2

)

and the ost of judging whether v is potentially smooth or not is

O(g

2

(log q)

3

), the total ost of this part is estimated by

O(g

2

(g � 1)!(log q)

3

q

2r

):

Here, we will estimate the required storage. Note that the bit-length

of one relative smooth point is 2g log q. So, the storage for V

1

, the set

of almost smooth divisors, is O(g log q q

(g�1)+(g+1)k

g

) and the storage

for V

2

, the set of 2-almost smooth divisors, is O(g log q q

(1+k)

). From

lemma 3, we have g log q q

(1+k)

>> g log q q

(g�1)+(g+1)k

g

. So the total

required storage an be estimated by

O(g log q q

(1+k)

):

5 Elimination of large prime (Flame work)

Let E be a set of smooth divisors, and let F be a set of 2-almost

smooth divisors or a set of smooth divisors. Note that element e 2 E

and f 2 F are written by

e =

X

P2B

n

(e)

P

P + n

(e)

P

1

P

1

;

f =

X

P2B

n

(f)

P

P + n

(f)

P

2

P

2

(+n

(f)

P

3

P

3

):

Put sup(e) := fP

1

g and sup(f) := fP

2

; (P

3

)g. When P 2 sup(e) \

sup(f), put

�(e; f; P) := n

(f)

p

e� n

(e)

p

f:

Trivially, �(e; f; P) is almost smooth divisor, if F is a set of 2-almost

smooth divisors and �(e; f; P) is smooth divisor, if F is a set of almost

smooth divisors and e is not of the form onstant times f .

De�nition 9.

e~f :=

�

�(e; f; P) if P 2 sup(a) \ sup(b) and e 6= Const� f

; otherwise:

E~F := [

e2E;f2F

e~f:

Lemma 5. E~F is a set of almost smooth (resp. smooth) divisors, if

F is a set of 2-almost smooth (resp. almost smooth) divisors.

Proof. Trivial!

6

We will estimate the size of E~F .

Lemma 6. The size of E~F is estimated by

jE~F j =

�

jEjjF j=q if F is 2-almost smooth

1

2

jEjjF j=q if F is almost smooth

Proof. Let e 2 E, f 2 F be randomly hosen elements. Put P :=

sup(e). if F is a set of 2-almost smooth divisors (resp. almost smooth

divisors), the probability that P 2 sup(f) is

2

jPnBj

:

=

1

q

(resp.

1

jPnBj

:

=

1

2q

), and the size is estimated by

1

q

� jEjjF j(resp:

1

2q

� jEjjF j).

In order to ompute E~F , we use this algorithm.

Algorithm 2 Heartsuit operator

Input: E, F

Output: E~F

1: set PnB = fR

1

; R

2

; ::; R

jPnBj

g

2: for i = 1; 2; ::; jPnBj do

3: st[i℄ fg

4: od

5: for all e 2 E do

6: P = sup(e)

7: Compute i s.t. P = R

i

8: st[i℄ st[i℄ [feg

9: od

10: V fg

11: for all f 2 F do

12: for all P 2 sup(f) do

13: Compute i s.t. P = R

i

14: if st[i℄ 6= ; then

15: for all e 2 st[i℄ s.t. e 6= Const� f do

16: V V [f�(e; f; P)g

17: od

18: end if

19: od

20: od

21: return H

We will estimate the ost and the storage for omputing E~F .

Lemma 7. Put

1

:= maxfl(e)je 2 Eg and

2

:= maxfl(f)jf 2 Fg.

Assume that jEj << q. Then the ost of omputing E~F is

O(

1

(log q)

2

jEj) +O((log q)

2

jF j) +O((

1

+

2

)(log q)

2

jEjjF j=q)

. and the required storage is

O(

1

log qjEj) +O((

1

+

2

) log qjEjjF j=q):

7

Proof. The required storage for st[i℄ is O(

1

log q jEj) and the required

storage for V is O((

1

+

2

) log q jEjjF j=q), sine jV j

:

= jEjjF j=q and

maxfl(v)jv 2 V g =

1

+

2

from lemma 2.

Note that the ost of the routine "Computing index i" is log q log jPnBj =

O((log q)

2

). Also note that jE~F j = O(jEjjF j=q) and remark that

the probability of st[i℄ 6= ; is very small, sinejEj << q. Thus, we

see that the ost of the 1st loop is O(

1

(log q)

2

jEj), the ost of the

part "Computing index i" of the 2nd loop is O((log q)

2

jF j), and the

ost of the part "Computing the elements of V " of the 2nd loop is

O((

1

+

2

)(log q)

2

jEjjF j=q) from lemma 2.

6 Computing H

m

In this setion, we will onstrut H

m

a set of almost smooth divisors

jH

m

j > 2q

(1+r)=2

.

Algorithm 3 Computing H

m

Input: V

1

a set of almost smooth divisors s.t. jV

1

j > 2q

(g�1)+(g+1)k

g

,

V

2

a set of 2-almost smooth divisors s.t. jV

2

j > q

(1+k)

Output: Integer m > 0 and H

m

a set of almost smooth divisors s.t.

jH

m

j > 2q

(1+r)=2

1: H

1

 V

1

2: i 1

3: repeat

4: i++

5: H

i

 H

i�1

~V

2

6: until jH

i

j > 2q

(1+r)=2

7: m i

8: return m,H

m

From lemma 6, the size of H

i

is estimated by

jH

i

j = jH

1

j � (q

k

)

i�1

= 2q

(g�1)+(g i+1)k

g

:

So, solving the equation

(g�1)+(g i+1)k

g

= (1 + r(k))=2 for i, we have

the following.

Lemma 8. m is estimated by

1� k

2gk

:

Further, we will assumem = O(

1

gk

). Note that fl(v)jv 2 [

i�m

H

i

g �

mg. From lemma 7, the ost for omputing H

m

is

m� (O((log q)

2

q

(1+k)

) +O(mg(log q)

2

q

(1+r)=2

)))

8

and the required storage is

O(mg log q q

(1+r)=2

):

7 Computing H

In this setion, we ompute H a set of smooth divisors for jH j > q

r

.

Algorithm 4 Computing H

Input: H

m

a set of almost smooth divisors s.t. jH

m

j > 2q

(1+r)=2

Output: H a set of smooth divisors s.t. jH j > q

r

.

1: H H

m

~H

m

2: return H

From lemma 6, the size of H is estimated by

jH j = jH

m

j

2

=2q = 2q

r

:

Note that fl(v)jv 2 [

i�m

Hg � 2mg. From lemma 7, the ost for

omputing H is

O((log q)

2

q

(1+r)=2

) +O(mg(log q)

2

q

r

)

and the required storage is

O(mg log q q

(1+r)=2

):

8 Two ways representation of h 2 H

An element h 2 H is written by the form

h =

X

P2B

a

(h)

P

D(P);

sine it is a smooth divisor. Moreover, form its onstrution, we see

easily that

l(h) = #fP 2 B j a

(h)

P

6= 0g � 2mg:

Set B = fR

1

; R

2

; :::; R

jBj

g.

De�nition 10.

Put ve(h) := (a

(h)

R

1

; a

(h)

R

2

; :::; a

(h)

R

jBj

):

The omputation of h(= ve(h)) means the set of pairs f(a

(h)

R

i

; R

i

)g

for non-zero a

(h)

R

i

. Note that the required storage for one h isO(mg log q).

On the other hands, form its onstrution, h is written by linear

sum of 2m elements of V

1

[V

2

. i.e.

h =

X

v2V

1

[V

2

b

(h)

v

v; #fv j b

(h)

v

6= 0g = 2m:

9

De�nition 11.

Put v(h) := f(b

(h)

v

; v) j b

(h)

v

6= 0g:

Note that the required storage for one v(h) is O(m log q).

Important Remark By little modifying the algorithm 3,4 , we an

obtain both representations of h of the forms ve(h) and v(h). (The

order of the ost and the order of the storage for omputing H is

essentially the same.)

Further, we will assume that the omputations of ve(h) and v(h)

are done.

9 Linear algebra

In this setion, we will solve the linear algebra and �nding a linear

relation of H .

Algorithm 5 Linear algebra

Input: H a set of smooth divisors suh that jH j > q

r

Output: Integers f

h

g

h2H

modulo jJ

q

j s.t.

P

h2H

h

h � 0 mod jJ

q

j

1: Set H = fh

1

; h

2

; :::; h

jHj

g

2: Set matrix M = (

t

ve(h

1

);

t

ve(h

2

); :::;

t

ve(h

jHj

))

3: Solve linear algebra of M and ompute (

1

;

2

; :::;

jHj

) suh that

P

jHj

i=1

i

ve(h

i

) =

~

0

4: return f

i

g

Note that the elements of matrix is integers modulo jJ

q

j

:

= q

g

. So

the ost of elementary operation modulo J

q

is O(g

2

(log q)

2

).

M is a sparse matrix of the size q

r

� q

r

. Note that the number

of non-zero elements in one olumn is 2mg. So, using [4℄ [5℄, we an

ompute f

i

g. Its ost is

O(g

2

(log q)

2

� 2mg � q

r

q

r

) = O(mg

3

(log q)

2

q

2r

)

and the required storage is

O(log(q

g

)mg � q

r

) = O(mg

2

log q q

r

):

(The required storage for sparse linear algebra is essentially the storage

for non-zero data. Note that the bit length of integer modulo jJ

q

j is

log(q

g

), the number of nonzero elements of one row is mg.)

10 Computing s

v

Remember that eah element h 2 H is of the form h =

P

v2V

1

[V

2

b

(h)

v

v.

In the previous setion, we found f

h

g suh that

P

h2H

h

h � 0 mod

10

jJ

q

j. So, put

s

v

:=

X

h2H

h

b

(h)

v

mod jJ

q

j for all v 2 V

1

[V

2

and we have

X

v2V

1

[V

2

s

v

v � 0 mod jJ

q

j:

Algorithm 6 Computing s

v

Input: V

1

,V

2

,H ,f

h

g

h2H

s.t.

P

h2H

h

h � 0

Output: fs

v

g

v2V

1

[V

2

1: for all v 2 V

1

[V

2

do

2: s

v

 0

3: od

4: for all h 2 H do

5: for all v 2 V

1

[V

2

s.t b

(h)

v

6= 0 do

6: s

v

 s

v

+

h

b

(h)

v

7: od

8: od

9: return fs

v

g

The ost of this part is

O(g log q q

1+k

) +O(m g

2

(log q)

2

q

(1+r)=2

)

and the storage is

O(g log q q

1+k

):

11 Finding disreet log

In the previous setion, we found fs

v

g suh that

P

s

v

v � 0 mod jJ

q

j.

In the part 2 of the algorithm, we have omputed (�

v

; �

v

) suh that

v = �

v

D

1

+ �

v

D

2

:

So, we have

X

v2V

1

[V

2

s

v

(�

v

D

1

+�

v

D

2

) = (

X

v2V

1

[V

2

s

v

�

v

)D

1

+(

X

v2V

1

[V

2

s

v

�

v

)D

2

� 0: mod jJ

q

j

So, �(

P

v2V

1

[V

2

s

v

�

v

)=(

P

v2V

1

[V

2

s

v

�

v

) mod jJ

q

j is required disreet

log.

Algorithm 7 Computing �

Input: V

1

,V

2

,f�

v

; �

v

g, fs

v

g

Output: Integer � mod jJ

q

j s.t. D

1

= �D

2

1: return �(

P

v2V

1

[V

2

s

v

�

v

)=(

P

v2V

1

[V

2

s

v

�

v

) mod jJ

q

j

11

Note that the ost of this part is O(g

2

(log q)

2

q

1+k

).

12 Cost estimation

In this setion, we will estimate the ost and the required storage of

whole algorithm under the assumption of

k =

1

log q

:

First, remember that m = O(

1

gk

) = O(

log q

g

). By a diret omputation,

we have

r = r(k) =

g � 1 + k

g

= 1�

1

g

+

1

g log q

;

and

q

2r

= q

2�

2

g

� exp(

2

g

) = O(q

2�

2

g

):

From our ost estimation, the ost of the routine exept part 2 and

part 5 is written by the form

O(g

a

(log q)

b

q

) a; b � 4; � 1 + k:

On the other hands, the ost of the routine part 2 and part 5 is written

by

O(g

2

(g � 1)!(log q)

3

q

2r

) and O(mg

3

(log q)

2

q

2r

):

From lemma 3, we see 1 + k < 2r and the ost of the whole parts an

be estimated by

O(g

2

(g � 1)!(log q)

3

q

2r

) = O(g

2

(g � 1)!(log q)

3

q

2�

2

g

):

Similarly, we see that the required storage (dominant part is part 2

and part 7, sine 1 + k > 1 > (1 + r)=2 from lemma 3) is

O(g log q q

1+k

) = O(g log q q

1+k

) = O(g log q q exp(1)) = O(g log q q):

13 Conlusion

In ASIACRYPT2003, Th�eriault presented a variant of index alulus

for the Jaobian of hyperellipti urve of small genus, using almost

smooth divisors. Here, we improve Th�eriault's result, using 2-almost

divisors and propose an attak for DLP of the Jaobian of hyperellipti

urves of small genus, whih works O(q

2�

2

g

+�

) running time.

12

Referenes

[1℄ N. Th�eriault, Index alulus attak for hyperellipti urves of small

genus, ASIACRYPT2003, LNCS 2894, Springer-Verlag, 2003, pp. 75{

92.

[2℄ A. Enge, P. Gaudry, A general framework for subexponential disrete

logarithm algorithms, Ata Arith., 102, no. 1, pp. 83{103,2002.

[3℄ P.Gaudry, An algorithm for solving the disrete log problem on hyper-

ellipti urves, Eurorypt 2000, LNCS 1807, Springer-Verlag, 2000, pp.

19{34.

[4℄ B. A. LaMahia, A. M. Odlyzko, Solving large sparse linear systems over

�nite �elds, Crypto '90, LNCS 537, Springer-Verlag, 1990, pp. 109{133.

[5℄ D. H. Wiedemann, Solving sparse linear equations over �nite �elds, IEEE

Trans. Inform. Theory, IT-32, no.1, pp.54{62, 1986.

13

