
FRMAC, a Fast Randomized

Message Authentication Code

Éliane Jaulmes1 and Reynald Lercier2

1 DCSSI Crypto Lab, 51 Bd de Latour Maubourg, F-75700 Paris 07 SP, France
eliane.jaulmes@wanadoo.fr,

2 CELAR, Route de Laillé, F-35570 Bruz, France
reynald.lercier@m4x.org

Abstract. We revisit the randomized approach followed in the design of the RMAC
message authentication code in order to construct a MAC with similar properties, but
based on Wegman-Carter’s ε-universal hash families instead of a classical CBC chain.
This yields a new message authentication code called FRMAC whose security bounds
are, as in RMAC, beyond the birthday paradox limit. With efficient hash functions
in software, the performance of FRMAC for large messages is similar to those of the
fastest previously known schemes. FRMAC can also be more efficient for small messages.
Furthermore, due to relaxed requirements about the nonces in the security proof, the
implementation of FRMAC in real applications tends to be easier.

Keywords: Block Ciphers, Message Authentication Codes.

1 Introduction

When shared symmetric keys are available, MACs (message authentication codes) are methods
of choice for protecting the integrity of information. In this field of research, Wegman-Carter’s
approach yields efficient provably secure constructions [7, 8]. It consists in using, first, a keyed
efficient hash function hk, member of a so-called ε-almost delta universal family, in order to
reduce the messageM to a fixed size, and then, in adding modulo two the hash result and the
image of a nonce R by a keyed pseudo-random function fK . That is, the resulting MAC can be
expressed as fK(R)⊕ hk(M).
The most efficient of these MACs currently known on software targets for large messages is
the UMAC-2000 scheme due to Black, Halevi, Krawczyk, Krovetz, and Rogaway (see [21] for a
performance comparison of older constructions in software or [12] for a recent proposal). This
MAC is an evolution of an older design based on CBC-MAC or HMAC [6] and was submitted
by its authors to the NESSIE european project [23]. The UMAC-2000 hash families, UHash 16
or UHash 32, are especially well conceived. They are incredibly efficient on modern computers,
easily parallelizable and their collision probabilities can be easily tuned to the user needs.
A nice feature of Wegman-Carter’s MACs is that their security proofs are easily understandable.
They mainly state that the forgery probability of an attacker can not exceed the sum of two
terms. The first one is the advantage to distinguish a family F of functions with n-bit outputs
from perfect pseudo-random functions. The second one is the number of forgery attempts,

denoted q, times the collision probability ε. This yields a bound of the form Adv
prf
F (A) +

q(ε+1/2n) [6]. The first term depends on F . For a secure cryptographic family of permutations

of {0, 1}n, as for instance the AES block cipher [22], one can assume that Adv
prf
F (A) '

q2/2n+1 [2]. The second term is nearly the same as the advantage of an attacker whose strategy
consists in checking whether a randomly generated tag is the correct one for a message M.
Despite the undeniable simplicity of the underlying theory, a few difficulties may arise when we
try to implement such a MAC in practical applications. We list two of them below.

– It is crucial in the security proof that all nonces be distinct. If, for instance, a nonce R
is used for the tag TM of a message M and for the tag TN of another message N , then
any other tag T ′

M for M with nonce R′ 6= R can be forged into a tag for N with nonce
R′, that is T ′

N = T ′
M ⊕ TM ⊕ TN . In an application where several users share the same

key, it can be a real difficulty to ensure the uniqueness of the nonces. Each user may for
instance concatenate its identity and a counter but, first, an attacker can easily ascertain
the number of messages which have been sent during a session, and second, the application
has to manage very carefully a database of identities. It would be much more satisfactory,
since in this case there is no need of a database, to use (pseudo-)random nonces. However,
in order to avoid any repetition, the number of messages can not exceed

√
2n when R is a

n-bit nonce.
– A second complication is that the families of functions that we have got in practice are

most of the time n-bit permutations. We would expect that tags of n-bits yield a forgery

probability equal to q/2n after q attempts. Unfortunately, due to the Adv
prf
F (A) term, q

can not exceed
√

2n. In other words, with a 1/2128-almost delta universal family of hash
functions with 128-bit outputs, we have to use the 256-bit block version of Rijndael and
random nonces of size 256 bits in order to get a security bound which corresponds to the
128-bit size of the tags. It would have been more efficient to use the 128-bit block cipher
AES for this level of security. Let us note that there exist solutions in the literature to build
families of pseudo-random-function upon families of permutations [4, 1], but it is not clear
to the authors how efficient it can be in practice.

We observe that the randomized approach followed in the RMAC construction [11, 10] seems to
overcome these two difficulties if we assume an additional, but classical, security requirement
on the block cipher (resistance to XORn related key attacks). Especially, it yields slightly better
security bounds, since they are beyond the birthday paradox limit, even with random nonces.
Unfortunately, RMAC is not an efficient software MAC. So, FRMAC, the MAC that we study
in this paper, combines the best part of both approaches. It consists, as in the Wegman-Carter
approach, in using at first a hash function in order to reduce the message to a fixed size and
then, as in RMAC, in applying a randomized permutation to the hash result. Although, for large
messages, performance results may be the same as those of UMAC-2000, for small messages
they can be slightly better, since a block cipher with a smaller block size can be used. Thus,
for a given security bound, we are able to relax the requirements on nonces without any loss of
performance.

The more closely related approach that the authors are aware of in this field is the construction
fK(hk(M), R). When all nonces R are supposed to be distinct, a security proof can be, for
instance, found in [6], where hk is a hash function with output length proportional to the size
of M and fK is a CBC-MAC or a HMAC function. On the other hand, nothing seemed to be
really known before this paper when collisions among the nonces are authorized.

The paper is composed of three parts. At first, we describe the mode of operations FRMAC
(Sect. 2), then we analyze our construction in a quite general setting (Sect. 3) and finally, we
take advantage of the generality of the security proof to propose extensions (Sect. 4). Some of
them may be interesting for hardware targets.

2

Notations:

– M represents a message, that is a bit string. Its size is denoted |M| or m. The concatenation
of two messages M and N is denoted M||N .

– H represents a family of 2d hash functions. A function in the family is denoted h. The
output of the hash functions has size n bits.

– F represents a family of functions. Elements of the family are denoted f . Likewise, Π
represents a family of permutations and a permutation in the family is denoted π.

– Let (n, ν) be two integers. The set Rand(n, ν) represents the set of all functions from {0, 1}n
to {0, 1}ν .

– Let n be an integer. The set Perm(n) represents the set of all permutations of {0, 1}n.
– Let (k, n) be two integers. The set FPerm(k, n) represents the set of all families of 2k

permutations of {0, 1}n.

2 Fast Randomized MACs

2.1 Almost-Universal Families of Hash Functions

In the definition below, εm is a monotonic increasing function from N to [1/2n,∞[.

Definition 1. A family H of 2d hash functions is an εm-almost universal family (or εm-AU)
of hash functions if, for all M 6= N in {0, 1}m, |{h ∈ H | h(M) = h(N)}| 6 εm2d.

When εm = ε is a constant, H is a classical ε-AU family of hash functions. In the cryptographic
context, many families of ε-AU hash functions with fixed output length are εm-almost universal.
Often, εm = (cm + d)e/2n with c, d, e suitable positive constants.
Let now Π be a family of permutations of Perm(n), indexed by an r-bit block R. An element
of this family is denoted πR. The MAC that we study here is given by

FRMACΠ(M) = (πR(h(M)), R) , (1)

where R is an r-bit block randomly chosen for the MAC generation. The family Π and the
function h are secret. In order to verify a MAC C = (T,R) corresponding to a message M, we
check whether T = πR(h(M)).

2.2 Fast Randomized MACs in Software

We focus in the paper on efficient MACs in software. Of course, the time needed for MACs
generations or verifications depends on the size of the messages.

– For large messages, the costly part is the computation of h. The fastest such functions known
for pentium microprocessors are the UHash 16e family of hash functions used in UMAC-
2000 [15, 23]. Krovetz proved that these functions are εe-almost universal for ε = 3/216 +
1/218 + 1/228 and messages of size smaller than 264 bits. For the purpose of completeness,
we consider in the following a slight modification of these functions, the UH16e functions,
whose performance is similar to that of UMAC but which are easier to describe and analyze.
We refer to [15] for complete details about the UHash 16e family of hash functions. With
these settings, we obtain

FRMACE(M) = (EK⊕R(UH16e
k(M)), R) ,

where K and k are two secret keys of 32e-bit and 16920e-bit sizes respectively, EK is a
block cipher with 16e-bit blocks and R is a randomly chosen block of size 16e bits, padded
to 32e bits with zeroes.

3

– For small messages (few bytes), the costly part is the computation of πR. The smaller the
block size of this permutation is, the better the performance is. In our construction, the
block size can be close to log2(1/ε) (cf. Sect. 3).

For a detailed description of the UH16e hash functions see appendix A.

Proposition 1. Hash family UH16e is εe
m-AU with εm = 1/215 + 3/224 + m/2142.

Remark 1. In some applications, the key size of the hash functions can be prohibitive. This size
can be significantly decreased with other efficient εm-AU hash families, like the HASH127 [5]
or POLYR [14] families. Otherwise, like UMAC, a Toeplitz approach, due to Krawczyk [13],
enables to save key materials between iterations of the functions UH161

k(M).

Security Results. For messages M of size m at most 2118 bits, since in this case εm <
1/215 + 1/222, Proposition 1 and Theorem 2 show that codes (TM, R) of size 32e computed
with FRMACE , where E is a block cipher with a 16e-bit block size and a 32e-bit key size yields
a security bound close to L(2e + 2e−7 + 1)(16e + 1)/216e (L is the total size, in bits, of the
messages which form the queries of the attacker).
For e = 4, we have 64-bit tags and one can use an efficient 64-bit block cipher (for instance
some of the 64-bit block ciphers considered by the NESSIE european project [23]) in order to
have a security bound of L/253. For e = 8, one can use the 256-bit key size version of the 128-bit
block cipher AES to obtain a security bound of L/2112.

Performance Results in Software. In order to compare the Wegman-Carter’s approach
EK(R) ⊕ hk(M) versus the FRMAC approach EK⊕R(h(M)), we have to compare the time
needed for one encryption with a fast 2n-bit block cipher versus one key setup for a 2n-bit key
and one encryption with a fast n-bit block cipher.
For 64-bit tags, if we refer to measurements done on pentium processors for the NESSIE euro-
pean project [24], one of the fastest 128-bit block cipher is the AES algorithm [22] while one of
the fastest 64-bit block cipher is the IDEA algorithm [16].

– From [18], the encryption of one 128-bit block with AES needs at best 16 × 14.13 ' 226
cycles.

– From [17], the encryption of one 64-bit block with IDEA needs on MMX processors (when
four encryptions are done at the same time) at best 8 × 14.13 ' 110 cycles. However,
IDEA does exhibit weak key classes of substantial size and this might yield flaws with
FRMAC [23]. But a classical Feistel ladder built over the IDEA round function (initialized
with constants instead of subkeys) provides an easy substitute for the weak IDEA key setup.
In this case, it seems reasonable to assume that the Feistel key setup is not slower than one
64-bit IDEA encryption and this yields a total amount of 220 cycles.

More generally when the size n of the tags increases, it would be very surprising that two n-bit
encryptions (among which the time for one encryption is the time of a Feistel 2n-bit key setup)
could be done faster than one 2n-bit encryption. Indeed, the security level required in full
generality for a 2n-bit encryption is higher than the security reached by two n-bit encryptions,
and higher security often results in a speed cost.

3 Provable Security

For increased generality, we analyze the security of the FRMAC construction for any εm-AU
family of hash functions.

4

3.1 Universal Hashing

In order to obtain the security proof of Sect. 3.3, we need two more precise results about εm-AU
families of hash functions.

Lemma 1 (Collision in a group of messages). Let M1, . . . , Mq be a group of q distinct
messages of sizes m1, . . .mq bits, then

Pr[∃i 6= j such that h(Mi) = h(Mj) | h R← H] 6 q

q
∑

i=1

εmi
.

Proof. Since it is always possible to number the messages differently, we can assume that the

sizes mi are in decreasing order. Let P = Pr[∃i 6= j such that h(Mi) = h(Mj) | h R← H], then

P 6

q
∑

i=1

∑

j>i

Pr[h(Mj) = h(Mi) | h R← H] 6

q
∑

i=1

∑

j>i

εmax(mj ,mi) 6 q

q
∑

i=1

εmi
(Def. 1).

ut

Lemma 2 (Collision with a reference message). Let M0, M1, . . . , Mq be a group of
q + 1 distinct messages of sizes m0, m1, . . . , mq bits, then

Pr[∃i ∈ {1, . . . , q} such that h(Mi) = h(M0) | h R← H] 6 q max
06i6q

εmi
.

Proof. Let P = Pr[∃i ∈ {1, . . . , q} such that h(Mi) = h(M0) | h R← H], then

P 6

q
∑

i=1

Pr[h(Mi) = h(M0) | h R← H] 6

q
∑

i=1

εmax(m0,mi) 6 q max
06i6q

εmi
(Def. 1) .

ut

3.2 Adversary

Before giving the security result, we first define the adversary against the FRMAC construction.

Oracles. In the general case of the FRMACΠ construction, where Π is some family of permu-
tations, the adversary can access the construction through two oracles.

– The generation oracle OG chooses a random value R ∈ {0, 1}r and computes the MAC
C = (πR(h(M)), R).

– The verification oracle OV verifies whether πR(h(M)) = T for a given triplet (M, T,R).

The adversary is allowed to ask the generation of different MACs for a single message. In this
case, since the adversary can always get rid of duplicates, we assume that a different R is chosen
each time. We also assume that the adversary never asks a clearly invalid verification query.
He thus never asks the verification of (M, T ′, R) where T 6= T ′ and where (T,R) is a MAC
generated by OG for M.

5

Parameters of the adversary. An adversary is defined through three parameters. The number
L is the total size, in bits, of the messages which form the queries to both oracles. The number
τ measures the maximal execution time of the adversary. The number µ represents a bound on
the size of code of the adversary.

Goal of the adversary. The goal of the adversary is to successfully forge a valid MAC for
a message M. When this happens, we say that the adversary wins and the security of the
construction is broken. Such an event happens when the verification oracle outputs ‘MAC
Valid’ on a request (M, T,R) where (T,R) was not an output of the generation oracle for M.

The probability of success of the adversary A is denoted Adv
forge
FRMAC(A). As seen above, this

is his probability of getting the answer ‘MAC valid’ with access to the two oracles OG and OV :

Adv
forge
FRMAC(A) = Pr[AOG,OV gets the answer ‘MAC valid’] .

We override this notation and we write Adv
forge
FRMAC(τ, µ, L) for the maximum value of the

previous advantage over all adversaries of parameters (τ, µ, L).

3.3 Security in the Information Theoretic Model

Let FRMACΠ be the construction defined in Sect. 2.1 by (1). We study, first, its security in
the information theoretic model. That is, we assume that the adversary has unlimited compu-
tational power and that his only limiting parameter is L, the total number of bits in the queries
to the oracles.

Security of FRMAC. The security of FRMACΠ in the information theoretic model is given
by Theorem 1.

Theorem 1. Let Π be a family of 2r random permutations of Perm(n). If r = n and if n > 3,

we have, with ΣL =
1

L
max

∀Mi s.t.∑
|Mi|=L

∑

i

εmi
,

Adv
forge
FRMACΠ

(τ, µ, L) 6 L

(

n + 1

2n
+ nΣL + εL

)

+
1

2n
.

It is not difficult to notice that ΣL 6 εL. Theorem 1 thus yields

Adv
forge
FRMACΠ

(τ, µ, L) 6 L (n + 1)

(

εL +
1

2n

)

+
1

2n
. (2)

In order to prove Theorem 1, we need three lemmas.

Lemma 3. Let Π be a family of 2r random permutations of Perm(n) and let A be an adversary
with access to the generation oracle of FRMACΠ . Let r = n and let No(R) represents the number
of times the value R is chosen by the oracle during the execution of the adversary. If L 6 2n/4,
the probability that a single permutation is queried more than n times is bounded by

Pr[∃R s.t. No(R) > n] 6
1

2n
.

6

Lemma 4. Let F be a family of 2r random functions of Rand(n, n). Assume that r = n and
that no value R is chosen more than n times by the generation oracle, then we have, with

ΣL =
1

L
max

∀Mi s.t.∑
|Mi|=L

∑

i

εmi
,

Adv
forge
FRMACF

(τ, µ, L) 6 L (nΣL + εL) .

Lemma 5. Let F be a family of 2r random functions of Rand(n, n), with n > 2, and let Π
be a family of 2r random permutations of Perm(n). Assume that r = n and that no value R is
chosen more than n times by the generation oracle, then we have

AdvFRMACF

FRMACΠ
(τ, µ, L) 6 L

n + 1

2n
.

Here, the advantage AdvFRMACF

FRMACΠ
(A) represents the probability, for an adversary A, of dis-

tinguishing the construction FRMACF using functions, from the construction FRMACΠ using
permutations.

Proof of the theorem 1. The proof of Theorem 1 can then be easily deduced from Lemmas 3, 4
and 5. First, we observe that, since n > 3, the inequality of Theorem 1 is obviously true for
L > 2n/4. So, from now, we assume that L 6 2n/4.

If the generation oracle chooses a single value R more than n times, we say that the adversary
wins and we stop. According to Lemma 3, this gives the adversary a probability 1/2n of winning
this way. If this event does not occur, we can apply Lemmas 5 and 4. In the following, we assume
that we are in this case.

Let A be an adversary that forges against FRMACΠ . He has a probability Adv
forge
FRMACΠ

(A)

of success. If we execute A against FRMACF and if, according to his own criteria, he is suc-
cessful, then A will either produce a valid forgery against FRMACF — and his probability

of doing so is bounded by Adv
forge
FRMACF

(τ, µ, L) — or he will have distinguished FRMACF

from FRMACΠ — and his probability of doing so is bounded by AdvFRMACF

FRMACΠ
(τ, µ, L). Thus

his probability of forging against FRMACΠ cannot exceed the sum Adv
forge
FRMACF

(τ, µ, L) +

AdvFRMACF

FRMACΠ
(τ, µ, L).

Adding the probability 1/2n of winning due to an excessive number of identical Rs, we finally
obtain the probability that the adversary wins in the case L 6 2n/4:

Adv
forge
FRMACΠ

(A) 6
1

2n
+ Adv

forge
FRMACF

(τ, µ, L) + AdvFRMACF

FRMACΠ
(τ, µ, L) .

Since this inequality stands for all adversaries of parameters (τ, µ, L), we get,

Adv
forge
FRMACΠ

(τ, µ, L) 6
1

2n
+ Adv

forge
FRMACF

(τ, µ, L) + AdvFRMACF

FRMACΠ
(τ, µ, L) ,

6
1

2n
+ L (nΣL + εL) + L

n + 1

2n
.

Since the inequality also stands for L > 2n/4, this concludes the proof of Theorem 1.
ut

7

Proof of Lemma 3. This lemma states that, with high probability, only a few messages will be
computed using the same value of R.
We have L 6 2r/4. The probability of getting more than r identical values of R is bounded by:

Pr[∃R s.t. No(R) > r] 6
∑

R

(

∑

i1<i2<···<ir

Pr[Ri1 = R] · · ·Pr[Rir
= R]

)

,

6
∑

R

((

L
r

)(

1

2r

)r)

6 2r

(

Lr

(

1

2r

)r)

,

6 2r

((

2r

4

)r (
1

2r

)r)

6
1

2r
.

With probability at most 1/2r, a value of R is shared among more than r messages. If r = n,

we get Pr[∃R s.t. No(R) > n] 6
1

2n
. ut

Proof of Lemma 4. We want to bound Adv
forge
FRMACF

(A) for all adversaries A of parameters

(τ, µ, L). The adversary wins when he gets the answer ‘MAC valid’ from the verification oracle.
We also declare that the adversary wins when he gets a collision on the outputs of the generation
oracle, that is, when he gets the same MAC for two different messages.

First, we observe that all the verification requests of an adversary can be sent at the end of
his execution, without changing his probability of success. This is done as follows. When the
adversary wants to call the verification oracle during his execution, he stores instead the query
and assumes that the answer of the oracle was ‘MAC invalid’. Then, when he reaches the end
of his execution, the adversary sends all the stored queries to the verification oracle. This does
not change the probability of success. Indeed, if the answer to the verification query was ‘MAC
invalid’, nothing is changed from the adversary’s viewpoint between the two executions. If the
answer was instead ‘MAC valid’, it only delays the moment the adversary wins: the stored
query is simply executed later, at the end of all the generation queries.
In the following, we thus assume that the adversary first do all his generation queries and then
his verification queries.

We observe also that, while none of the two winning events has occurred, the adversary has only
seen outputs of different random functions on different inputs. He has thus only seen random
values. Any adaptive adversary can be replaced by a non adaptive adversary that performs as
well. The non-adaptive adversary simply precomputes his queries assuming that the answers
that he will receive are random values.
In the following, we thus assume that the adversary does not adapt his generation queries to
the answers of the oracle.

Since the adversary A is not adaptive, we can bound his probability of success assuming the
messages M are independent from h and F . We can apply Lemmas 1 and 2.
The adversary is successful if one of two events occurs.

– E1: The verification oracle outputs ‘MAC valid’.
– E2: The generation oracle outputs two identical MACs.

There are two cases to consider with E1:

– The query of the adversary is a ‘collision test’, that is the adversary asks (M, T,R) where
(T,R) was obtained for a different message M′ through the generation oracle.

8

– The query of the adversary is a ‘random guess’, that is the adversary asks (M, T,R) where
(T,R) was not obtained through the generation oracle.

In the case of ‘random guesses’, the probability of event E1 is the probability of successfully
guessing the output of a random function. Since the output size is n bits and since the adversary
gets at most L tries, we have:

Pr[E1 with ‘random guesses’] 6
L

2n
.

In the case of ‘collision tests’, let M be a message which got a MAC C = (T,R) through the
generation oracle. And let LC be the number of bits of messages tested with the tag C through
the verification oracle. The probability that the MAC C is valid for one of those messages is
equal to the probability of one of the messages having the same output than M through the
hash function h.

Pr[E1 with ‘collision tests’] 6
∑

C

Pr[One of the LC messages has same output than M] ,

6
∑

C

LC max
06i6LC

εmi
6
∑

C

LC εL 6 LεL (Lemma 2) .

Now we evaluate the probability of event E2. The probability of getting two identical MACs is
equal to the probability of simultaneously getting the same R and the same output of the hash
function. Recall that no value of R is shared among more than n messages. We get:

Pr[E2] =
∑

R

Pr[∃ collisions within a group of messages indexed by R] ,

6
∑

R

n
∑

messages in
the group

εmi
6 LnΣL (Lemma 1) .

Finally, adding the probabilities of the two events, we obtain:

Adv
forge
FRMACF

(A) 6 L (nΣL + εL) .

ut

Proof of Lemma 5. We want to bound AdvFRMACF

FRMACΠ
(A) for all adversaries A of parameters

(τ, µ, L).
The adversary tries to distinguish the FRMAC construction using functions, from the FRMAC
construction using permutations. We also say that the adversary wins if the verification oracle
outputs ‘MAC valid’. Thus, with the same arguments as in the proof of Lemma 4, we can assume
that the verification queries are all done at the end of the execution. We separately study the
probability of success of the adversary with the generation queries and with the verification
queries.
During the generation phase, the adversary tries to distinguish functions from permutations.
Each of them is called at most n times. We can apply the PRF/PRP switching lemma of [2].
Let qR denote the number of calls to either fR or πR. We get:

Pr[A wins with generation queries] 6
∑

R

q2
R

2n+1
6
∑

R

n · qR

2n+1
6

n

2n+1
×
∑

R

qR 6
nL

2n+1
.

9

During the verification phase, the adversary can do either ‘collision tests’ (he verifies a MAC
previously generated for another messageM) or ‘random guesses’ (he verifies a completely new
MAC).
In the ‘collision tests’, the difference between permutations and functions appears when the
function gives the same output on two different points. This happens with probability 1/2n for
each try. The advantage gained after at most L queries is thus bounded by L/2n.
In the ‘random guesses’, the difference between permutations and functions is that permutations
cannot give the same output on two different points. A correct guess happens with probability
1/2n for a function and with probability 1/(2n − qR) for a permutation, where qR represents
the number of known values of the permutation πR after the generation phase. Each try thus
gives an advantage 1/(2n − qR) − 1/2n. Since qR 6 n, the advantage gained after at most L
queries is bounded by L/(2n − n)− L/2n.
Summing the two contributions, we find that the adversary gains an advantage L/(2n − n) in
the verification phase.
Finally, the advantages of the generation and verification queries sum up to:

AdvFRMACF

FRMACΠ
(A) 6

L

2n − n
+

nL

2n+1
6 L

n + 1

2n
,

for n > 2. ut

3.4 Security in the Standard Model

Now we study the security of the FRMACE construction in the standard model for a block
cipher E. The adversary no longer has unlimited computational power but he can also win by
distinguishing the block cipher E from a random family of permutations.

MAC Definition. Let H be an εm-AU family of hash functions. Let E be a block cipher with
blocks of size n and keys of size k, with n 6 k. The MAC that we consider in this model is the
following:

FRMACE(M) = (EK⊕R(h(M)), R) ,

where R is an n-bit block, randomly chosen for the MAC generation. The random value R is
of size n. If k > n, the block R is padded with zeroes to perform the XOR operation.

The PRP-RKA Model. Since the adversary has access to the block cipher with different
keys, we need to use the model proposed by Bellare and Kohno in [3]. This model allows proofs
in the standard model in the case of related keys attacks:

Adv
prp-rka
XORr,E

(A) =
∣

∣

∣
Pr[K

R← {0, 1}k : AE·⊕K (·) = 1]−

Pr[K
R← {0, 1}k , Π

R← FPerm(k, n) : AΠ·⊕K (·) = 1]
∣

∣

∣
.

The attack model allows the adversary to choose an r-bit number R and then obtain the value
of the block cipher, on an input of his choice, under the key R ⊕K (if r < k, the value R is
padded with zeroes for this operation). This advantage measures the success of the adversary
in determining whether the oracle uses the block cipher E or a random family of permutations.
As before, we override this notation for all adversaries of parameters τ , µ, L. Theorem 2 gives
the security of the construction in the computational model.

10

Theorem 2. Let E be a block cipher with blocks of size n and keys of size k, with n 6 k. If
n > 3, we have,

Adv
forge
FRMACE

(τ, µ, L) 6 L (n + 1)

(

1

2n
+ εL

)

+
1

2n
+ Adv

prp-rka
XORn,E

(τ, µ, L) . (3)

The proof of this theorem derives immediately from Theorem 1 and the definition of the ad-

vantage Adv
prp-rka
XORn,E

(τ, µ, L). Indeed, if an adversary is able to forge a valid MAC against
FRMACE , he is either able to forge directly against FRMACΠ or he provides a way to distin-
guish between the two situations.
Most modern concrete block ciphers, including the AES, are designed with the goal of resisting
XORn related key attacks. Especially, for block ciphers with keys of size k two times larger than

their n-bit block, it seems reasonable to assume that Adv
prp-rka
XORn,E

(τ, µ, L) ' Adv
prp
E (τ, µ, L) '

L/2n.

4 Extensions

As noticed by Bernstein at the end of [5], many efficient εm-AU families of hash functions can
be constructed using reductions modulo secret ideals in rings.
More precisely, let R be a commutative ring with an identity element and let p be an arbitrary
injective function from a set of messages {0, 1}∗ to a subset S ofR such that, for any messagesM
and N , p(M)− p(N) ∈ S. We denote by Sm the finite subsets of S such that for any messages
M and N in {0, 1}m, p(M), p(N), p(M) − p(N) ∈ Sm and such that S1 ⊂ S2 ⊂ · · · ⊂ S.
Moreover, let I = (Ii)1,...,2d be a set of 2d distinct ideals of R. For our cryptographic purposes,
these ideals must satisfy two conditions.

Cond. 1: For any element Ii of I, the domain R/Ii is finite. We denote by 2n the power of
two greater than the cardinality of the largest such domain and by qi an arbitrary injective
function from R/Ii to {0, 1}n.

Cond. 2: There exists a monotonic increasing function εm such that,

∀z ∈ Sm, |{I ∈ I | z mod I = 0}| < εm2d .

With these notations, we consider the family H of hash functions (hi)1,...,2d defined by,

hi : {0, 1}∗ −→ {0, 1}n, M−→ qi(p(M) mod Ii) .

Lemma 6. H is an εm-AU family of hash functions.

Proof. Let M and N be two distinct messages of {0, 1}m, then

|{h ∈ H | h(M) = h(N)}| = |{i | qi(p(M) mod Ii) = qi(p(N) mod Ii)}| ,

= |{i | p(M)− p(N) mod Ii = 0}| (qi injective) ,

6 max
z∈Sm

|{i | z mod Ii = 0}| (p injective) ,

6 εm2d (Cond. 2) .

ut

11

Conditions 1 and 2 can seem, at a first glance, a little obscure. They are consequences of
mathematical properties. Cond. 1 is, for instance, true for maximal ideals in rings such that
their additive group is a finitely generated abelian group [9, Exercise 4.26 p.142], which is
generally true for usual mathematic constructions over finite fields. Cond. 2 is a corollary of
the uniqueness and the finiteness of the ideal factorization for a large class of rings. It is well
known that in Dedekind rings which occurs, for instance, in the context of the global fields
(i.e, number fields or function fields), we have unique factorizations in prime ideals [20]. For
the more general case of the noetherian rings (like multivariate polynomial algebras), we have
a similar result for primary decomposition in maximal ideals [19].

Let Fq be a finite field and log2 q = n, we give examples of such a construction in Table 1 and,
for each of them, an approximation ε̃m of the corresponding collision bound εm.

Table 1. Examples of εm-almost-universal hash families

R I Sm p(M) ε̃m

Z {(π) | π prime,
2n−1 < π < 2n}

{z ∈ R | |z| 6 2m}
∑

|Mi|=1

Mi2
i m

2n

F2[X] {(π(X)) | π(X) irreducible,
deg π(X) = n}

{z ∈ R | deg(z) 6 m}
∑

|Mi|=1

MiX
i m

2n

Fq[X] {(X − α) | α ∈ Fq} {z ∈ R | deg(z) 6
m

n
}

∑

|Mi|=n

MiX
i m

n 2n

Fq[X, Y] {(X − α, Y − β) | α, β ∈ Fq}
{

z ∈ R | deg(z) 6
m

n

}

∑

|Mij |=n

MijX
i
Y

j

√
m√

n 2n

Such a generalization combined with the security results of Sect. 3 enables the design of FRMAC
constructions which is adapted to non software targets. The reduction modulo an ideal of the
form (X − α) in F2128 , for instance, yields a (m/128× 1/2128)-AU linear hash family which is
well suited for hardware applications.

5 Conclusion

In this paper, we studied the FRMAC message authentication code, a RMAC construction in
which an ε-almost universal hash family is used instead of a CBC chain. This construction
enables random nonces. When tags and nonces are of size n bits, we show as a consequence
that the FRMAC security bound in the information theoretic model (2) is only n + 1 times
larger than the classical bound for Wegman-Carter’s MACs. Furthermore, since FRMAC takes
advantage of the resistance of most of the block ciphers to XOR-related key attacks, the security
bound in the computational model (3) is not penalized by the PRF/PRP switching overhead.
This finally yields a bound which is, as in RMAC, beyond the birthday paradox. Thus, for a
given security level, FRMAC is able to use block ciphers with smaller block sizes, without any
unicity requirement on the nonces.
In return, implementing it in real applications tends to be easier. Used with efficient hash
functions in software, FRMAC reaches a performance for large messages similar to the fastest
previously known constructions that achieve the same security level. For small messages, FR-
MAC might be even more efficient and instances with the AES yield a very secure design with
a security bound close to L/2120.

12

References

1. M. Bellare, O. Goldreich, and H. Krawzyck. Stateless Evaluation of Pseudorandom Functions:
Security beyond the Birthday Barrier. In Advances in Cryptology – CRYPTO ’99. Springer-Verlag,
August 1999.

2. M. Bellare, J. Killian, and P. Rogaway. The Security of the Cipher Block Chaining Message
Authentication Code. In Advances in Cryptology — CRYPTO’94, volume 839 of Lecture Notes in
Computer Science, pages 341–358. Springer, 1994.

3. M. Bellare and T. Kohno. A Theoretical Treatment of Related-Key Attacks: RKA–PRPs, RKA–
PRFs, and Applications. In E. Biham, editor, Advances in Cryptology — Proceedings of EURO-
CRYPT 2003, Lecture Notes in Computer Science. Springer, 2003.

4. Mihir Bellare, Ted Krovetz, and Phillip Rogaway. Luby-Rackoff Backwards: Increasing Security by
Making Block Ciphers Non-Invertible. In K. Nyberg, editor, Advances in Cryptology - EuroCrypt
’98, volume 1403, Berlin, october 1998. Springer-Verlag,. Lecture Notes in Computer Science.

5. D.J. Bernstein. Floating-Point Arithmetic and Message Authentication, March 2000. Submitted
for publication.

6. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and Secure Message
Authentication. In Advances in Cryptology – CRYPTO ’99. Springer-Verlag, August 1999.

7. J.L. Carter and M.N. Wegman. Universal classes of hash functions. Journal of computer and
system sciences, 18:143–154, 1979.

8. J.L. Carter and M.N. Wegman. New hash functions and their use in authentication and set equality.
Journal of computer and system sciences, 22(18):265–279, 1981.

9. David Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry. Number 150 in
Graduate Texts in Mathematics. Springer, 1995.

10. Éliane Jaulmes. Analyse de sécurité de schémas cryptographiques. PhD thesis, École Polytechnique,
June 2003.

11. Éliane Jaulmes, Antoine Joux, and Frédéric Valette. On the Security of Randomized CBC-MAC
beyond the Birthday Paradox Limit. A New Construction. In Joan Daemen and Vincent Rijmen,
editors, Fast Software Encryption 2002, volume 2365 of Lecture Notes in Computer Science, pages
237–251. Springer Verlag, February 2002.

12. T. Kohno, J. Viega, and D. Whiting. CWC: A high-performance conventional authenticated en-
cryption mode. In Fast Software Encryption, Lecture Notes in Computer Science. Springer-Verlag,
2004. To appear.

13. H. Krawczyk. LFSR-Based Hashing and Authentication. In Y. Desmedt, editor, Advances in
Cryptology — CRYPTO ’94, volume 839 of Lecture Notes in Computer Science, pages 129–139.
Springer, 1994.

14. T. Krovetz and P. Rogaway. Fast Universal Hashing with Small Keys and no Preprocessing: The
PolyR Construction. In D.H. Won, editor, ICIS 2000, volume 2015 of Lecture Notes in Computer
Science, pages 73–89. Springer-Verlag, 2000.

15. Theodore T. Krovetz. Software-Optimized Universal Hashing and Message Authentication. PhD
thesis, University of California Davis, September 2000.

16. X. Lai and J. L. Massey. A proposal for a new block encryption standard. In Ivan B. Damg̊ard,
editor, Advances in Cryptology - EuroCrypt ’90, pages 389–404, Berlin, 1990. Springer-Verlag.
Lecture Notes in Computer Science Volume 473.

17. Helger Lipmaa. IDEA, a cipher for multimedia architecture ? In Selected Areas in Cryptology’99,
volume 1556 of Lecture Notes in Computer Science, pages 256–268. Springer-Verlag, 1999.

18. Helger Lipmaa. Fast software implementation of SC2000. In Information Security Conference
2002, volume 2433 of Lecture Notes in Computer Science, pages 63–74. Springer-Verlag, 2002.

19. Hideyuki Matsumura. Commutative Ring Theory, volume 8 of Cambridge studies in advanced
mathematics. Cambridge University Press, 1986.

20. Jürgen Neukirch. Algebraic Number Theory, volume 322 of Grundlehren der mathematischen Wis-
senschaften. Springer, 1999.

13

21. Wim Nevelsteen and Bart Preneel. Software Performances of Universal Hash Functions. In J. Stern,
editor, Advances in Cryptology — EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer
Science, pages 24–41. Springer, 1999.

22. NIST. Specification for the Advanced Encryption Standard (AES), November 2001. Federal Infor-
mation Processing Standards publication 197.

23. B. Preneel, A. Biryukov, E. Oswald, B. van Rompay, L. Granboulan, E. Dottax, S. Murphy, A. Dent,
J. White, M. Dichtl, S. Pyka, Schafheutle, P. Serf, E. Biham, E. Barkan, O. Dunkelman, M. Ciet,
F. Sica, and H. Raddum L. Knudsen. Nessie security report. Technical report, NESSIE, October
2002. NES/DOC/ENS/WP5/D20/1.

24. B. Preneel, B. Van Rompay, S.B. Ors, A. Biryukov, L. Granboulan, E. Dottax, M. Dichtl,
M. Schafheutle, P. Serf, S. Pyka, E. Biham, E. Barkan, O. Dunkelman, J. Stolin, M. Ciet, J-J.
Quisquater, F. Sica 5 H.Raddum, and M. Parker. Performance of optimized implementations of
the nessie primitives. Technical report, NESSIE, October 2002. NES/DOC/TEC/WP6/D21/1.

A UH 16e Hash Functions

The functions UH16e
k are defined from {0, 1}∗ to {0, 1}16e, for e = 1, . . . , 16 and k = (k1, . . . , ke),

by UH161
k1

(M)|| . . . ||UH 161
ke

(M) where, for κ = (κ1, κ2, κ3),

UH161
κ(M) = IPHash 16κ3

(PHash 128κ2
(NHHash 16κ1

(M))) .

The functions IPHash 16, PHash 128 and NHHash 16 are defined as follows.

– The function NHHash 16κ is based on the NHS 16 function. Mainly, let κ = (κ1, . . . , κ1024)
be a 214-bit key, let M =M1|| . . . ||Mb where |M1| = · · · = |Mb−1| = 214, let +16 (resp.
×32) denote the signed addition (resp. multiplication) modulo 216 (resp. modulo 232), then

NHHash 16κ(M) = NHS 16κ(M1)|| . . . ||NHS 16κ(Mb−1)||NHS 16κ(Mb) ,

where, with M = M1|| . . . ||Mb such that Mi is considered as an integer in [−215, 215 − 1]
for 1024 > b > i > 1 and with Mi = 0 for i > b,

NHS 16κ(M) = (M1 +16 κ1)×32 (M2 +16 κ2) + · · ·+
(M1023 +16 κ1023)×32 (M1024 +16 κ1024) +32 |M | .

– The function PHash 128κ is more classically based on the reduction modulo the prime p128

equal to 2128 − 159. Let κ be a 128-bit key, let M||1 =M1|| . . . ||Mb where |M1| = · · · =
|Mb−1| = 120, then,

PHash 128κ(M) = κb +
b−1
∑

i=0

κiMb−i mod p128 .

– The function IPHash 16κ folds its 128-bit input into a 16-bit output. Again, let p24 be the
prime equal 224 − 3, let κ = (κ0, . . . , κ16) be a 17 × 24-bit key, let M = M1|| . . . ||M16

where |Mi| = 16, then

IPHash 16κ(M) = (κ0 +

(

16
∑

i=1

κiMi mod p24

)

mod 224)÷ 28 .

14

From [21, 15], we have the following results.

Lemma 7. Hash family NHHash 16 is εm-AU with εm = 1/215.

Lemma 8. Hash family PHash 128 is εm-AU with εm = m/2133.

Lemma 9. Hash family PHash 128 ◦NHHash 16 is εm-AU with εm = 1/215 + m/2142.

Proposition 2. Hash family UH16e is εe
m-AU with εm = 1/215 + 3/224 + m/2142.

Remark 2. The main difference between the UH16 and the UHash 16 hash families is the
PHash 128 hash family. Krovetz et al. [15, 23] propose a “ramped” strategy with, instead of
a single 128-bit prime p128, intermediate 32-bit and 64-bit primes in order to have slightly
better performance results for messages of small size.

15

