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Abstract 

This paper proposes a key exchange protocol with mutual authentication, which 

requires only 0.1 modular multiplications for online computations. This online 

computation is ten times faster than that of conventional protocols. The message size 

of the proposed protocol is about half (50%~66%) that of the previous protocols. In 

addition to its efficiency in online computation and bandwidth, the paper provides a 

formal proof to guarantee the security of the proposed protocol. Possessing of both 

secure and efficient properties makes the proposed protocol suitable for the low power 

mobile communications. 

1. Introduction 

The L-MAKEP (linear mutual authentication key exchange protocol) proposed in 

[1] is a key exchange protocol specially designed for the wireless communications 

between a low power mobile device (client) and a powerful base station (server). The 

goal of the L-MAKEP is to make the computational complexity as efficient as 

possible at the client end without decreasing the strength of security. Consequently, 

the server sides do most of the computations. It is a good idea in the environment of 

the wireless communications, especially in the case of a lower power client end. 

However, there are flaws in L-MAKEP. The scheme in [2] successfully mounted an 

unknown key-share attack [3-6] on this protocol and proposes an improved protocol.  



 

A scenario of unknown key-share attack proposed in [3-4] is as follows. Assume that 

an account holder U (user U) initiates a session communication with a bank server S, 

and an adversary E mounts an unknown key share attack on this session. As a result of 

the attack, user U believes that a session key is shared with the server S and server S 

believes that the session key is shared with the adversary E. Although adversary E 

does not obtain the session key, this attack could cause problem. For example, if user 

U initiates the protocol to deposit an electronic fund in his account, the deposit will 

eventually be made to the adversary E’s account. The protocol L-MAKEP and its 

improvement in [2] are also insecure under the attack of middle-man as shown by the 

scheme in [7]. The work in [7] also proposes an improved protocol to resist the 

attacks of middle-man and unknown key-share; we call the protocol I-MAKEP.  

This paper proposes an efficient and secure key exchange protocol for mobile 

communications. Although both participants are authenticated through the public key 

cryptography, the online computational cost for client side is only 0.1 modular 

multiplications. This computational complexity is ten times faster than that of the 

protocols L-MAKEP and I-MAKEP. The message size for the proposed protocol is 

3712 bits while the message size for the protocol L-MAKEP is 7328 bits and for the 

protocol I-MAKEP is 5600 bits (Section 3 will show the details.). Moreover, the 

proposed protocol consists of only three messages while L-MAKEP and I-MAKEP 

consist of four messages (two round trips). The savings in computations, bandwidth, 

and messages is valuable for key exchange protocols, especially in the environment of 

wireless communications with low power mobile devices. In addition, the paper 

provides a formal proof to show that breaks the security of the proposed protocol is to 

solve the difficulty of the factoring problem. Thus the proposed protocol not only 

resists to the attacks mentioned above but also resists to other potential attacks. 

The organization of this paper is as follows. Section 2 presents the new protocol 

and describes the notation used in the paper. Section 3 compares the computational 

cost and message size between the proposed protocol, L-MAPEP, and I-MAKEP. In 

Section 4, the security of the new protocol is investigated and proven. Finally, Section 

5 concludes the paper. 



 

2. Protocol proposed 

This section presents an efficient and secure key exchange protocol with mutual 

authentication (ES-MAKEP). The protocol is inspired by the concept of chameleon 

hash function in [8]. We first describe the cryptographic settings for the protocol.  

Let εPK() denote an asymmetric encryption function and δSK() be the corresponding 

decryption function. Similarly, EK() represents a symmetric encryption function and 

DK() is the decryption function so that m = DK(EK(m)). Both the encryption functions 

εPK() and EK() are assumed to be secure in the model of adaptive chosen ciphertext 

attack [9-11]. In this attack model, an adversary is given a decryption oracle to 

decrypt the ciphertexts adaptively chosen by the adversary except the one that he is 

trying to decrypt. The identification of a client entity U (user U) is denoted by IDU 

and the identification of a server S is represented by IDS. Server S has a private key 

SKS and the corresponding public key PKS. The public key and secret key of user U 

are selected in the following way. User U randomly chooses four large prime numbers 

p, q, p’, and q’ such that p = 2 p’ + 1 and q = 2 q’ + 1. Then, he or she randomly 

selects an element g of order λ(n) from the multiplicative group*
nZ , where n = p q and 

λ(n) = lcm(p - 1, q - 1). Thus user U has the private key (p, q) and the public key (g, 

n). In addition, x || y denotes that string x concatenates string y, |n| represents bit 

length of n, r∈R G denotes that r is a random number selected from the set G, and l 

indicates the length of session keys, e.g. 160 bits for a typical value suggested in [12]. 

The following steps describe the details of the protocol ES-MAKEP.  

 

1. User U randomly selects three numbers rUK, rUR and rUF, i.e. rUK, rUF ∈R {0, 1}l and 

rUR ∈R Zλ(n). Compute the quantities 
UKrC1 = )( UKPK r

S
ε  and CMT = URUF rrg || mod 

n, i.e. encrypt the random number rUK and calculate the commitment of rUF and rUR. 

Then, user U sends server S message M1 = {
UKrC1 , CMT, IDU} to ask for initiating 

a new session. 

2. On receiving the message M1, server S decrypts the ciphertext
UKrC1 to obtain rUK. S 

also selects a random numbers rSK ∈R {0, 1}l, calculates the session key σSU = rSK  



 

⊕ rUK, and encrypts the random number rUK, i.e.
UKrC2 = )( UKrE

SUσ . Then, server 

S sends M2 = {rSK, UKrC2 } to challenge user U. 

3. Upon receiving the challenge message M2, U calculates the session key σUS = rUK 

⊕ rSK and decrypts the ciphertext
UKrC2 to obtain a random number r’ UK, i.e. r’ UK = 

US
Dσ (

UKrC2 ) = 
US

Dσ (
SU

Eσ (rUK)). Note that σSU is equal to σUS if messages M1 

and M2 are successfully transmitted. User U authenticates server S by checking rUK 

= r’ UK. After authenticating server S, U constructs a response message as follows. 

  3.1. Compute the quantities SF = h(rUK, rSK, IDU, IDS) and C3 = )( UIDE
SUσ . 

3.2. Solve for SR in equation (1). 

2|n| rUF + rUR = 2|n| SF + SR mod λ(n) 

SR = 2|n| (rUF - SF)+ rUR mod λ(n)                                (1) 

  U sends the response message M3 = {C3, SR} to server S.  

4. S computes the quantities SF = h(rUK, rSK, IDU, IDS) and CMT’ = RF SSg ||  mod n. S 

authenticates user U by verifying CMT = CMT’ .  

For easy reading, the message flows are listed below. 

 

U�S: M1 = {
UKrC1 , CMT, IDU}, where

UKrC1 = )( UKPK r
S

ε and CMT = URUF rrg || . 

S�U: M2 = {r SK, UKrC2 }, where
UKrC2 = )( UKrE

SUσ and σSU = rUK  ⊕ rSK. 

U�S: M3 = {C3, SR}, where C3 = )( UIDE
SUσ , 2|n| rUF + rUR = 2|n| SF + SR and SF = 

h(rUK, rSK, IDU, IDS).  

3. Performance 

For each step in the protocols ES-MAKEP, L-MAKEP, and I-MAKEP, the 

computations and message sizes are displayed in Table 1, 2 and 3. The cost of 

computations is further divided into two parts: online and offline computations. To 

simplify the estimation of message sizes and computations, we have assumed that the 

asymmetric encryption is a 1024-bit RSA encryption with a low exponent public key 

e = 3, the symmetric encryption outputs a stream of 160-bit and IDU is a 160-bit 



 

encoding. Also, the cost of additions, hash operations, and symmetric encryption and 

decryption are not included. For a practical cryptographic settings [12], |n|= 1024 bits 

and |rUF| = |SF| = 160 bits, the computational cost (software implementation) for 

solving SR is estimated to be only about 0.1 modular multiplications of two 1024-bit 

numbers modulo a 1024-bit modulus [8]. Note that computing SR involves only a 

reduction of a 1184-bit number to a 1024-bit number while computing a modular 

multiplication of two 1024-bit numbers requires a conventional multiplication and a 

reduction of a 2048-bit number to a 1024-bit number. For easy comparison, the 

message flows of protocols L-MAKEP and I-MAKEP are listed below. 

 

The message flows of L-MAKEP: The server S has published a public key PKS, large 

prime p and a primitive element g∈ *
pZ .  

U�S: M1 = {IDU, 12 −iag , iag 2 , SigTA(IDU, 12 −iag , iag 2 )}, where a2i-1, a2i ∈R Zp-1, and 

SigTA(m) is a signature of a trusted authority (TA) on the message m. Server S 

should verify the signature SigTA(IDU, 12 −iag , iag 2 ).  

S�U: M2 = {r S}, where rS ∈R Zp-1. 

U�S: M3 = {x, y}, where x = )( UPK r
S

ε , y = (a2i-1(x ⊕ rS) + a2i) mod (p – 1), and rU 

∈R {0, 1}160. User U computes the response message M3 and server S verifies it 

by checking gy = )(12 Si rxag ⊕−  iag 2 mod p.  

S�U: M4 = {Eσ(x)}, where σ = rU ⊕ y. 

 

The message flows of I-MAKEP: The server S has private key (d, p, q) and public key 

(e, g, N), where p, q are two large primes, N = p × q, g has maximum order in the 

group *
NZ , φ(N) = (p - 1) (q - 1), gcd(e, φ(N)) = 1, and e × d = 1 mod φ(N). The user 

U uses the pair (IDU, v) to register at server S and receives a certificate y = (v - IDU)d 

mod N, where v = g-x mod N and x ∈R ZN is the secret key of U.  

U�S: M1 = {IDU, y}. Server S verifies M1 by checking v = ye + IDU mod N. 

S�U: M2 = {r S}, where rS ∈R ZN. 

U�S: M3 = {u, t, s}, where u = gw mod N, t = )(k
SPKε , s = w + x h(rS, t, u), and w 

and k ∈R ZN. User U computes the response message M3 and server S verifies it 



 

by checking u = ),,( utrh Sv gs mod N. 

S�U: M4 = {h(k)}. 

 

  As shown in Table 1, the client’s online computations for ES-MAKEP, L-MAKEP, 

and I-MAKEP are 0.1, 1, and 1 MMs, respectively. Although L-MAKEP requires 

only two MMs for offline computation, this protocol requires a trusted authority to 

issue several commitments, which are the sources of the middle-man attack described 

in [7]. Table 2 and Table 3 show that among the three protocols, ES-MAKEP has the 

most efficient in computations and the least requirement in bandwidth and messages. 

 

Table 1: Client’s computations in protocols ES-MAKEP, L-MAKEP, I-MAKEP  

 ES-MAPEP L-MAKEP I-MAKEP 

 Online Offline Online Offline Online Offline 

Message M1 0 1778 MMsa 0 0 0 0 

Message M2 0 0 0 0 0 0 

Message M3 0.1 MMs 0 1 MM  2 MMsb 1 MM  1538 MMsc 

Message M4 None None 0 0 0 0 

Total 0.1 MMs 1778 MMs 1 MM  2 MMs 1 MM  1538 MMs 

 

a. Computing 
UKrC1 = )( UKPK r

S
ε requires 2 MMs and computing CMT = URUF rrg || requires 1.5 * 

(160 + 1024) = 1776 MMs, where MM denotes modular multiplications of two 1024-bit numbers 

modulo 1024-bit modulus. 

b. Encryption requires 2 MMs (assume RSA encryption and public key PKS = 3). 

c. Computations of commitment requires 1.5 * 1024 = 1536 MMs and encryption requires 2 MMs 

(public key e = 3). 

 



 

Table 2: Server’s computations in protocols ES-MAKEP, L-MAKEP, I-MAKEP  

 ES-MAKEP L-MAKEP I-MAKEP 

 Online Offline Online Offline Online Offline 

Message M1 1536 MMs 0 2 MMsd 0 2 MMse 0 

Message M2 0 0 0 0 0 0 

Message M3 1776 MMsf 0 3456 MMsg 0 3333 MMsh 0 

Message M4 None None 0 0 0 0 

Total 3312 MMs 0 3458 MMs 0 3335 MMs  

d. Verification requires 2 MMs (assume TA uses RSA cryptosystem and verification key e = 3). 

e. Computational cost of encryption requires 2 MMs (public key e = 3). 

f. Computing CMT’ = RF SSg || requires 1.5 * (160 + 1024) = 1776 MMs. 

g. Decryption requires 1.5 * 1024= 1536 MMs and verification requires 1.25 * 1.5 * 1024 = 1920 

MMs, by the technique of simultaneous multiple exponentiations [13]. 

h. Decryption requires 1.5 * 1024= 1536 MMs and verification requires 1.17* 1.5 * 1024= 1797 MMs. 

Table 3: The message sizes of protocol ES-MAKEP, L-MAKEP, I-MAKEP 

 ES-MAKEP L-MAKEP I-MAKEP 

Message M1 2208 bits 3232 bits 1184 bits 

Message M2 320 bits 1024 bits 1024 bits 

Message M3 1184 bits 2048 bits 3232 bits 

Message M4 none 1024 bits 160 bits 

Total 3712 bits 7328 bits 5600 bits 



 

4. Security analysis 

In the followings, subsection 4.1 proves that the proposed protocol ES-MAKEP is 

a mutual authentication protocol (Theorem 1 and 2) and has resistance to those 

attacks proposed in [2, 7] , subsection 4.2 proves that the protocol is a secure protocol 

(Lemma 3, 4, and 5).  

4.1 ES-MAKEP is a mutual authentication protocol 

Theorem 1. Protocol ES-MAKEP correctly authenticates user U. 

Proof. If user U knows the secret key (p, q), then U can compute the quantity λ(n) = 

lcm(p - 1, q – 1), solve for SR in (1) and construct the response message M3 = {C3, 

SR}. Since 2|n| rUF + rUR = 2|n| SF + SR mod λ(n), the equation URUF rrg || = RF SSg || mod 

n is obtained. Thus server S successfully authenticates user U.  

Assume that an adversary E does not now the private key (p, q) of user U and 

successfully impersonates the user U, then E has generated the quantities SF and SR 

such that URUF rrg || = RF SSg || mod n. Thus equation (2) is obtained. 

RFURUF SSrrg |||| − = gw = 1 mod n                                      (2) 

Equation (2) implies that w is a multiple of λ(n). Since λ(n) = lcm(p - 1, q - 1) and φ(n) 

= (p – 1)(q – 1), then φ(n) divides (2w). The algorithm in [14] shows that the 

factorization of n can be computed efficiently, if any multiple of φ(n) is known. The 

public key n thus can be factored by the adversary E using the algorithm in [14]. This 

conclusion contradicts the intractable assumption of factoring problem. Therefore, if 

server S successfully authenticates user U, then U knows the private key (p, q).  □ 

 

Theorem 2. Protocol ES-MAKEP correctly authenticates server S. 

Proof. If server S knows the secret key SKS, then S can decrypt the ciphertext 
UKrC1 to 

obtain rUK, calculate the session key σSU = rUK ⊕ rSK, and generate the ciphertext 

UKrC2 = )( UKrE
SUσ . On receiving rSK, U calculates the session key σUS = rSK ⊕ rUK, 

using the stored rUK. Thus, the session keys σSU and σUS have the same quantity. 



 

Clearly, the quantity recovered by decrypting the ciphertext 
UKrC2 will be equal to 

the quantity of stored rUK. 

With overwhelming probability, S knows the secret key SKS, if user U authenticates 

server S as legal. Namely, only S can decrypt the ciphertext 
UKrC1 to obtain the 

random number rUK. This result is derived from the security of the encryption 

functions εPK() and EK(), which is assumed to be secure against the adaptive chosen 

ciphertext attack. Therefore, server S is successfully authenticated by U if and only if 

S knows the secret key SKS.        □ 

 

The attacks described in [2, 7] are performed by modifying messages intercepted 

from previous sessions. Thus by Theorem 1 and 2, the protocol ES-MAKEP is 

resistant to them. 

4.2 ES-MAKEP is a secure protocol 

This subsection investigates the security of the protocol ES-MAKEP. We adopt the 

security measure and those attack model used in [15-16]. Assume that an adversary 

with total control over the communication channels can mount parallel attacks, and is 

told the previous session keys. A key exchange protocol is secure if the following 

requirements are satisfied.  

1. If both participants honestly execute the protocol, then the session key is σ = σUS = 

σSU. 

2. No one can calculate the session key σ except participants U and S.   

3. The session key is indistinguishable from a truly random number. 

 

Lemma 3. Protocol ES-MAKEP satisfies the first security requirement. 

Proof. After mutually authenticating, both participants have agreed on the random 

numbers rUK and rSK by Theorem 1 and Theorem 2. Therefore, σ = σUS = rUK ⊕ rSK = 

σSU.     � 

 

Lemma 4. Protocol ES-MAKEP satisfies the second security requirement. 



 

Proof. User U generates the random number rUK and constructs the ciphertext 

UKrC1 = )( UKPK r
S

ε . The encryption functions εPK() and EK() are secure. Thus, only U 

and S know the quantity of rUK. Therefore, only participants U and S can calculate the 

session key σ = σUS = σSU = rUK ⊕ rSK.     � 

 

Lemma 5. Protocol ES-MAKEP satisfies the third security requirement. 

Proof. The proof is straightforward, since both the numbers rUK and rSK are randomly 

selected from the set {0, 1}l.   � 

5. Conclusions   

The paper has proposed a secure and efficient key exchange protocol. The proposed 

protocol outperforms the previous protocols L-MAKEP and I-MAKEP in the message 

round, message size, server’s computations and client’s online computation. These 

advantages make it most suitable for the environment of low power mobile 

communications. However, all the protocols ES-MAKEP, L-MAKEP, and I-MAKEP 

do not have the property of perfect forward secrecy. This strength of security requires 

that even the long term secret key is compromised, the session keys should remain to 

be safe. As can be seen from the first step in Section 2, the random number rUK and 

session key σSU is computed if server’s secret key is revealed. This suggests further 

research in providing a key exchange protocol with the perfect forward secrecy and all 

advantages of ES-MAKEP.  
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