Efficient Consistency Proofs for Generalized Queries on a
Committed Database

Rafail Ostrovsky Charles Rackoff Adam Smith
UCLA University of Toronto MIT
rafai |l @s. ucl a. edu rackof f @s. t or ont 0. edu asmth@sail.mt. edu
July 20, 2004
Abstract

A consistent query protocgcQp) allows a database owner to publish a very short strimghich
commitsher and everybody else to a particular datab@seo that any copy of the database can later
be used to answer queries and give short proofs that the amaweeconsistent with the commitment
Herecommitsmeans that there is at most one datab@sthat anybody can find (in polynomial time)
which is consistent witle. (Unlike in some previous work, this strong guarantee helds for owners
who try to cheat while creating) EfficientcqQprs for membership and one-dimensional range queries
are known [5, 17, 22]: given a query pairb € R, the server answers with all the keys in the database
which lie in the intervala, b] and a proof that the answer is correct.

This paper exploresQps for more general types of databases. We put forward a de¢aehamique
for constructingcQps for any type of query, assuming the existence of a datatate/algorithm with
certain inherent robustness properties that we defineettalliata robust algorithn We illustrate our
technique by constructing an efficient protocol ésthogonal range queriesvhere the database keys
are points inR? and a query asks for all keys in a rectangle, b1] x ... x [aq,bs]. Our data-robust
algorithm is within aO(log N) factor of the best known standard data structure (a range dige to
Bentley [2]).

We modify our protocol so that it is algarivate that is, the proofs leak no information about the
database beyond the query answers. We show a generic mtdifitaensure privacy based on zero-
knowledge proofs, and also give a new, more efficient prdtiadlored to hash trees.

Keywords: Commitment, zero-knowledge sets, authenticated datetstas, range queries, database pri-
vacy.

*Preliminary work done during the summer of 2000 when all axghwere visiting/working at Telcordia Technologies. Pre-
liminary version appeared as MIT LCS Technical Report TR;88b. 2003 [27]. Work of the first author at UCLA is partially
supported by a gift from Teradata. Conference versid@&LP 2004

Contents

1 Introduction 2
1.1 Related Work e 3
1.2 OurContributions e e 4

2 Definitions 5
2.1 Consistent Query Protocols e 5

211 Privacy e 6

3 Data-Robust Algorithms and Consistent Query Protocols 7
3.1 Data-Robust Algorithms e e e 7
3.2 Constructing Consistent Query Protocols Fmras 8

3.2.1 Pointer-Based Algorithms e 8
3.2.2 Proofof Theorem1 e 9

4 Orthogonal Range Queries 10

4.1 A Data-Robust Algorithm for Range Querieso oo oo 11
4.1.1 One-Dimensional Range Trees i i i i it e 11
4.1.2 Two-Dimensional Range Trees i i o 13

4.2 Efficient Query Protocol e 15

5 Privacy for Consistent Query Protocols 15
5.1 Privacy Via Generic Techniques o 15
5.2 Explicit-Hash Merkle TreesinBrief 16
5.3 Explicit-Hash Merkle TreesinDetail 17

5.3.1 ComplexityoftheProofs 19

5.4 Efficient Privacy for Range Queries—Theorem8 20
5.4.1 Complexityofthe Proofs 23

References 23

1 Introduction

Informally, aconsistent queryprotocol €CQP) allows a database owner to publish a short striinghich
commitsher to a particular databade, so that she can later answer queries and give short proatfidin
answers are consistent wilh. Herecommitsmeans that she cannot change her mind alibut there is
at most one database she can find (in polynomial time) whicbnsistent with: (e.g. ¢ could be a secure
hash ofD). Similarly, she can only find valid proofs for query answettsich are consistent with. The
challenge is to make both the commitment and the proofs dfistamcy as short and simple as possible.

One may also requingrivacy— that is, the proofs of consistency should not leak any m&dion on the
database beyond the query answers. Privacy is importangéxfmple, in settings in which query answers
are sold individually, or in which the database containsgeal data. Adding this requirement tacapr
brings it much closer to the traditional cryptographic antof a commitment scheme.

Below, we discuss relevant related work and then describeesults in detail.

1.1 Related Work

We discuss the related work in the context of cryptograpbionmitment protocols. These have been studied
extensively, and part of our contribution is to tie them imato algorithmic point of view. A commitment
protocol allows Alice to put a value in a virtual envelope and hand it to Bob. Bob learns nothinguab
the value kiding), but Alice can later open the envelope, without being ablesteal a different value’
(binding).

Commitment Schemes for Large Datasets. The notion of commitment has been generalized consider-
ably to allow revealing only partial information about thenemitted data, using very little communication.
Merkle [24] proposed the following protocol for committitga list of NV valuesay, ..., an: Pick a collision-
resistant hash-functionH (say from2k bits to & bits), pair up inputai, as), ..., (ax_1,ay) and apply

H to each pair. Now, pair up the resulting hash values and tdpisaprocess, constructing a binary tree
of hash values, until you get to a single root of lengthf the root of the tree is published (or sent to Bob
by Alice), the entire collection of values is now committed though not necessarily hidden—we discuss
hiding further below. To reveal any particular valwg Alice can reveal a path from the root g together
with all the siblings along the path. This requires oklibg N bits. This idea has many cryptographic
applications, including efficient signature schemes [3deflicient zero-knowledge arguments [16, 1] and
computationally sound proofs [21].

Recently Buldas, Laud and Lipmaa [4], Kilian [17] and Micatid Rabin [22] independently generalized
this idea to allow committing to aetof values. The server produces a short commitment to herfset o
(key, value) pairs which is made public. When a client makesx@mbership quergi.e. “do you have an
entry with keyz?"), the server returns the answer along with a short proobosistency. (We call a scheme
for this task acQpPfor membership queries.) A very similar data structure ifagaMerkle tree) also allows
one to also answer one-dimensiomahge queriese.g. “What keys lie between andy?” [5, 17, 22].
Merkle trees were subsequently modified to allow efficiemdaips by changing the structure to resemble a
skip list [18]. Our work generalizes these ideas to more dergueries and data structures, and provides
rigorous proofs of security.

Protocols with a Trusted Committer—Authenticated Data Structures. There is substantial work on
authenticated data structurg®5], which allow one to guarantee the consistency of maplicated copies

of a database. That work tackles a different problem frons,osince it assumes that the commitment
phase is always performed honestly. The extra assumpteppi®priate in many situations (e.g. certificate
revocation with a trusted certification authofifyand seems to allow greater efficiency: there are authenti-
cated data structure protocols for answering range quiriime O (N log? ! N) [13], as opposed to the
O(N log? N) time taken by the protocols of this paper. Indeed, our geremistruction can be viewed as a
more robust, but possibly less efficient, version of the germnstructions of authenticated data structures
[25, 19, 8, 13].

Despite the greater efficiency it affords, the assumptiomtofisted committer is problematic. As argued
in [4], a dishonest certification authority could not easig/taken to task for providing inconsistent answers
to revocation queries. There are other reasons to distnesparty generating the commitment. With a
pricing database, one may want guarantees against priéngization by the database owner. Peer-to-peer
systems, where no individual processor in the network iIg falisted, provide further motivating examples
[18]

Y hash function familyH, (-) is collision-resistanif no poly-time algorithm givens can find a pair of inputs that map to the
same output for a randomly chosen keysee Section 2).

2More generally, cryptographic commitment schemes with@rekt committer have been useful in a variety of contexbsn fr
simplifying requirements on hash functions for signatueesnes [26] to combined signature and encryption protdégls

Privacy for Committed Databases—Zero-Knowledge Sets. Micali, Rabin and Kilian [20] show how

to prove consistency of answers to membership queries \alste hiding information about unanswered
gueries. They require that consistency proofs leak nothlmout the database except the query answer—
not even the size of the database. (They call the primitizera-knowledge st They give an efficient
protocol based on the DDH assumption, with proof len@tt log M) where M is an upper bound on the
set size k is the output length of the hash function). We show how toeaahthe same result wigoly(%)
communication, under more general assumptions and for geweral types of queries. Subsequent to our
work, [15] achieved the results of [20] based on generalrapsions.

1.2 Our Contributions

This paper considersQps for types of queries beyond simple membership and rangéeguélNe give a
general framework for designing such protocols based oryalgorithms with a certain robustness prop-
erty, and illustrate our paradigm forthogonal range queriesconstructing protocols with af@ (% log N)
overhead over the fastest known standard query alogritiiesalso show how to make the protocptévate
without too much loss of efficiency.

A general paradigm for cQprs. We introducedata-robust algorithm¢bRAs). These are search algorithms
(paired with data structures) which are robust againstuptions of the data by an unboundedalicious
adversary: for any input—essentially, an arbitrary strinthe algorithm will answer all queries consistently
with one (valid) database. Although this is trivial for datauctures which incorporate no redundancy, it
becomes more challenging for more complex structures. @\@otlwant the algorithm to have to scan the
entire data structure each time it is run.)

Assuming the existence of collision-resistant hash famsti anypRA which accesses memory via point-
ers can be transformed into a consistent query protocol evfren-interactive) consistency proofs have
length at mosO (kT'), wherek is the output size of the hash function dfids the running time of thera.

DRAS provide a connection between special data structures rgptbgraphic protocols. A previous
connection was given by a Micciancio [23], for data struetuwhich forget the order in which a sequence
of updates was performed. This property is quite differeminfthe one we require.

cqrpfor Orthogonal Range Queries. We present a consistent query protocol scheme that alldieseet
orthogonal range queries ihdimensions. That is, the database consists of tujes, ..., key,, value), a
query consists of intervals[ay,b1],...,[aq, bg], @and an answer is the set of all database elements whose
keys lie inside the corresponding hypercube. The servesmigtproves that it has provided all the points in
the database which match the query, but also that no othimts ex

Our consistency proofs have sigdk(m + 1) log? N), whereN is the database siz&,is the security
parameter, andh is the number of keys in the database satisfying the queeyddimputation required is
O((m+1) log? N) hash evaluations). For range queries on a single key, ostremtion reduces essentially
to that of [5, 22, 17].

Our protocol is obtained by first constructingb&A based on range trees, a classic data structure due
to Bentley [2]. Existing algorithms (in particular, the hahticated data structures of [19]) do not suffice,
as inconsistencies in the data structure can lead to irgtensiquery answers. Instead, we show how local
checks can be used to ensure that all queries are answersidtently with a single database. Fér
dimensional queries, the query timed$(m + 1) log? N), wherem is the number of hits for the query and
N is the number of keys in the database. This is withinNV of the best known (non-robust) data structure.

Privacy for Consistent Query Protocols—Generic Techniqus. Consistent query protocols will, in gen-
eral, leak information about the database beyond the aneabe query. It is possible to add privacy to
any cQpusing generic technigues: one can replace the proof of stemsiyz with a zero-knowledge proof

of knowledge ofr. Surprisingly, this leads to schemes with good asymptaiimmunication complexity,
namelyO(poly(k)). This generic transformation can hide the size of the datgbas in [20]. In partic-
ular, this means that one can buddro-knowledge seqtrotocols [20] (i.e.cQPs for membership queries)
based on general assumptions: for interactive protodadtssufficient to assume one-way functions and for
non-interactive protocols, it is sufficient to assume that-interactive zero-knowledge proof systems exist.

Privacy for Consistent Query Protocols—Efficient Construdions. The generic constructions just men-

tioned are ungainly—the use of NP reductions and probébdity checkable proofs means that the ad-
vantages only appear for extremely large datasets. We gsumpler zero-knowledge protocol tailored to

Merkle trees, which does not hide the size of the database ciitx of that protocol is to avoid NP reduc-

tions when proving zero-knowledge statements about valfidge hash function, and so the result is called
anexplicit-hash Merkle treeAs a sample application, we show how this protocol can bd tesadd privacy

to one-dimensional range trees.

Organization. Section 2 formally definesQps. Section 3 explains data-robust algorithms, and the-trans
formation frombDRAS toCcQPs. Section 4 gives ourRA for orthogonal range queries. Section 5 discusses
techniques for makingQps private. Due to lack of space, all proofs are deferred tdiutheersion.

2 Definitions

We denote by + A(x) the assignment of the (possibly randomized) output of &lyorA on inputz to
variabley. A function f (k) is negligiblein a parametek if f(k) € O(k—lc) for all integerse > 0.

A major component in all our constructions is a collisiosisgant hash function family (CRHF). This is
a family of length-reducing functions (say frod# bits to & bits) such that it is computationally infeasible
to find a collision, i.e.z # y with h(z) = h(y) for a random membék of the family. Such functions can
be constructed assuming the hardness of the discretettugaoi factoring. Formally, a family of functions
{hs : {0,1}* — {0,1}*} is a CRHF if the functiongs, ;, can be evaluated in time polynomial in and
there is a probabilistic polynomial time (PPT) key genematilgorithm such that for all polynomial-size,
randomized circuit familie§ A, }, the quantityPr[s < S(1%); (z,y) + Ak(1%,5) : hsx(z) = hsi(y)]is
negligible ink.

2.1 Consistent Query Protocols

A query structure is a tripléD, Q, Q) whereD is a set ofvalid databasesg is a set of possible queries,
and(is a rule which associates an answgip = (g, D) with every query/database pairc Q, D € D.

In acQqp, there is a server who, given a database, produces a commbitvh&eh is made public. Clients
then send queries to the server, who provides the query arsomy with a proof of consistency of the
commitment. There may also be a public random string to beigied by a trusted third party. In most of
our protocols, the third party is only required for choosthg collision-resistant hash function (and even
this can be done by the client if he is available before thalstete commitment is generated).

Definition 1. A (non-interactive)query protocolconsists of three probabilistic polynomial-time (PPT) al-
gorithms: a server setup algorithfi, an answering algorithm for the serw&, and a clientC. In some
settings, there may also be an efficient algorithrfor sampling any required public randomness.

e The setup algorithns, takes as input a valid databaBe a valuel* describing the security parameter,
and the public informatiom < %(1*). It produces a (public) commitmentand some internal state
informationstate SubsequentlyS, may be invoked with a query € Q and the setup informatiostate
as input. The corresponding output is an answer/proof(pair), wherea = Q(q, D).

5

e The clientC receives as input the unary security paramgtethe public strings, the commitment, a
queryq and an answer/proof paju, 7). C “accepts” or “rejects” the proof.

Definition 2. A query protocol isconsistentf it is complete and sound:

e Completeness: For every valid databdsend queryy, if setup is performed correctly then with over-
whelming probability,S, outputs both the correct answer and a proof which is accapt€d Formally,
forall g € Q@ and for allD € D,

Pr[o + 2(1%); (¢, state) « S,(0, D); (a,7) + S.(g, State :
C(o,c,q,a,m) = “accept” anda = Q(q, D)] > 1 — negl(k)

e (Computational) Soundness: For every non-uniform PPTradvg® S: run S to obtain a commitment
¢ along with a list of triples(g;, a;, ;). We sayS acts consistentlyf there existsD € D such that
a; = Q(q;, D) for all 7 for which ; is a valid proof. The protocol isoundif all PPT adversaries act
consistently. Formally:

Pr[o + Z(lk); (c, (q1,a1,m1),. ., (qt,at,ﬂ't)) — S; b; < C(o, ¢, qi,ai,m;) :
3D such that(a; = Q(g;, D) orb; = 0) forall i] > 1 — negl(k)

In fact, it is even more natural to require that the adverSampw” the databasé, say by requiring that
D be extractable in polynomial time from the description & #uversary. This is a more subtle property
to capture—we refer the reader to the discussion of prooksiofvledge in [10].

2.1.1 Privacy

Informally, we require that an adversarial client interagtwith an (honest) server learn no more information
from the answer/proof pairs he receives than what he gets thhe answers alone. specifically, a simulator
who has access only to the query answers should be able tbgliesable-looking proofs of consistency.
The definition comes from [17, 22, 20], though we use a cleforetulation due to [15].

Definition 3 (Computational privacy). A consistent query protocol fqfD, Q, Q) is private if there ex-
ists a PPT simulato§im, such that for every non-uniform PPT adversérythe outputs of the following
experiments are computationally indistinguishable:

o+ D18, o', stategim + Sim(1¥),

(D, states) C(0), (D, states) C(o"),
(c, state) « Ss(o D)
ate

Outputz « CSa(state) (¢, state;) Outputz «+ CSim(statesim,Q(LD)) (¢ stateg)

HereC®() denotes running with oracle access t@. The simulatoiSim has access to a query oracle
Q(-, D), butasks only queries which are askedSion by C.

Hiding Set Size. In general, a private protocol should not leak the size ofitabase [20]. Nonetheless,
for the sake of efficiency we will sometimes leakpalynomialupper boundrl" on the database size, and
call the corresponding protocosized-private [17]. This can be reflected in the definition by giving the
simulator an upper bourf@ on the size ofD as an additional input. One essentially recovers the aigin
definition by lettingT” be super-polynomial, e.g” = 2*.

30ne could imagine protecting agaimdt adversaries and thus obtaining perfect soundness. Wedepmsimputational sound-
ness since much greater efficiency is then possible.

Interactive proofs. The definitions extend to a model where consistency proef$naeractive (although
the access of the simulator to the adversarial client is rinimley).

3 Data-Robust Algorithms and Consistent Query Protocols

In this section, we describe a general framework for ohtgirsiecure consistent query protocols, based on
designing efficient algorithms which are “data-robust”.aTts for any static data structure — even adver-
sarially corrupted — the algorithm will answer all queriemsistently with one (valid) database. Assuming
the availability of a collision-resistant hash functione whow that any such algorithm which accesses its
input by “following” pointers can be transformed into a cistesnt query protocol whose (hon-interactive)
consistency proofs have complexity at most proportionahtéocomplexity of the algorithm. (In fact, the
transformation works for arbitrary algorithms at an adudfidl multiplicative cost ofog NV, whereN is the
size of the database).

3.1 Data-Robust Algorithms

Suppose a programmer records a database on disk in a staistdacture which allows efficient queries.
The data structure might contain redundant information,ef@ample to allow searching on two different
fields. If the data structure later becomes corrupted, thidasesjuent queries to the structure might be
mutually inconsistent: for example, if entries are sortedwo fields, some entry might appear in one of the
two lists but not the other. A data-robust algorithm presentch inconsistencies.

Suppose we have a query struct(f® Q, 2). A data-robust algorithmpRA) for these consists of two
polynomial-timé algorithms(T, A): First, a setup transformatidfi : D — {0, 1}* which takes a database
D and makes it into a static data structure (i.e. a bit strifigy 7'(D) which is maintained in memory.
Second, a query algorithm which takes a query € Q and an arbitrary “structures ¢ {0,1}* and
returns an answer. The structifeneedn’t be the output aF for any valid databas®.

Definition 4. The algorithmgT, A) form adata-robust algorithnfor (D, Q, Q) if:

e Termination A terminates in polynomial time oall input pairs(q, 5‘), even whenS is not an output
fromT.

» SoundnessThere exists a functio™ : {0,1}" — D such thafor all inputs S, the databas® = T*(S)
satisfiesA(q, S) = Q(q, D) for all queriesy.
(There is no need to give an algorithm fBt; we only need it to be well-defined.)

e CompletenessFor all D € D, we haveT*(T (D)) = D.
(That is, on inpuy andT'(D), the algorithmA returns the correct answé(q, D).)

We only allow A read access to the data structure (although the algorithm magaserate space of its
own). MoreoverA is statelessit shouldn't have to remember any information between ¢atimns.

The running time of A. There is a naive solution to the problem of designingra: A could scan the
corrupted structuré in its entirety, decide which databagethis corresponds to, and answer queries with
respect toD. The problem, of course, is that this requires at least fitieze on every queryrecall that
A is stateless). Hence the task of designing robust algositisnmost interesting when there are natural
sub-lineartime algorithms; the goal is then to maintain efficiency whalso achieving robustness. In our

“We assume for simplicity that the algorithms are deterrtimithis is not strictly necessary.

setting, efficiency means the running-time of the algorithron correctinputs, in either a RAM or pointer-
based model. On incorrect inputs, an adversarially-chgseicture could, in general, makkwaste time
proportional to the size of the structu$ethe termination condition above restricts the adversamfdoing
too much damage (such as setting up an infinite loop, etc).

Error model. Although the design abrRAs is an algorithmic question, the error model is a cryptolgiap
one. Much work has been done on constructing codes and wlatéuses which do well against randomly
placed errors, or errors which are limited in number (withde fields of error-correcting codes, fault-
tolerant computation and fault-tolerant data structurd$pwever, in this setting, there are no such lim-
itations on how the adversary can corrupt the data structWe only require that the algorithm answer
consistently for any given input structure. Our error madehore similar to that of property testing and
probabilistically checkable proofs, where the goal is &t t@hether a given string is close to a “good”
string; however, we only require computational soundnessch allows us to use different (and simpler)
techniques.

3.2 Constructing Consistent Query Protocols FronDRAS

Given abRA which works in a pointer-based memory model, we can obtainyptagraphically secure
consistent query protocol of similar efficiency. InfornyalhDRA is pointer-based if it operates by following
pointer in a directed acyclic graph with a single source &eetion 3.2.1 for details). Most common search
algorithms fit into this model.

Theorem 1. Let (T, A) be aDRA for query structurg D, Q,) which fits into the pointer-based framework
of Section 3.2.1. Suppose that on inpugdT (D) (correctly formed), the algorithm examine$ memory
blocks and a total of bits of memory, using time steps. Assuming the availability of a public collision
resistant hash function, there exists a consistent quetopol for (D, Q, Q) which has proof length + kb

on queryq. The server’'s computation on each queryi& + t + kb).

To get a consistent query protocol fronb&Aa, we essentially build a Merkle tree (or graph, in fact)
which mimics the structure of the data, replacing pointeith Wwashes of the values they point to. The
client runs the query algorithm starting from hash of thequeisource in the graph (that hash value is the
public commitment). When the query algorithm needs to ol pointer, the server merely provides the
corresponding pre-image of the hash value. Details are ¢tid®e3.2.2. If we run this transformation on
data-structures which are not data-robust, we still obaainntersting guarantee: the resulting protocol is
secure as long as the server generating the commitment éstiorhis is essentially the transformation of
[13, 19].

The remainder of this section contains the details and pobdtheorem 1. We first specify what we
mean by a pointer-based framework and then proof the theorem

3.2.1 Pointer-Based Algorithms

We say a pair of algorithm§r", A) is pointer-basedf

1. A expects its input data structuse= T'(D) to be arooteddirected graph of memory blocks. That is,
the output of the setup algorithiiis always the binary representation of a directed graphh Bade
in the graph has a list of outgoing edges as well as some assdaata.

2. A accesses its inpuf and uses node names in a limited way:
e A can get the contents of a noden the graph by issuing the instructigat(«). This returns the

associated datdata, and a list of outgoing edges y, va,u; - - - » Un, u-

8

e A always starts out by getting the contents of the root of thalgrby issuing the instruction
getroot().

e The only operationsA performs on node names are (a) getting the contents of a ande(b)
comparing two node names for equality.

e The only node names whicl uses are those obtained from the outgoing edge lists retume
calls togetroot() andget(-).

For exampleS could be a sequence of blocks separated by a distinguistzedatlr,S = b1# . .. #b,,.
Each blockb; would consist of some data (an arbitrary string) and “pasiteeach of which is the index (in
the stringS) of the start of another blodk;. The root of the graph could be the first block by convention.

Finally, we need some simple robustness properties of thishgrepresentation (which can be satisfied
by the example representation above). We assume:

3. The binary representation of the graph is such that whémnfed an improperly formed inpuf (i.e.
one which is not an output df), then the behaviour gfet(-) andgetroot is not “too bad”:

e Whenget(u) or getroot() is called, if the corresponding part of the input string i$ well-formed

(i.e. is not a tuple of the forrfdatay,, v1 4, V2,4, - - - » Un,), then the call will return a distinguished
value L.

e Both get(-) andgetroot() always terminate in time linear in the length of the corrdpséructure
S.

Many common search algorithms can be cast in this pointeed&ramework. For example, the algo-
rithm for searching in a binary tree takes as input a treegkvitiexplores from the root by following pointers
to right and left children of successive nodes. Indeed, astrabh search algorithms for basic dynamic data
types can be viewed in this way. Moreover, any algorithmgtesi for a RAM machine can also be cast in
this framework at an additional logarithmic cost: if thealomemory space &7, simply build a balanced
tree of pointers of heighbg IV, where the-th leaf contains the data stored at locatidn memory.

3.2.2 Proof of Theorem 1

Let (T, A) be abRrA for query structur€D, Q, Q) which fits into the pointer-based framework described
above. For simplicity, suppose that a correctly formedcstme (i.e. an output df’) never contains a pointer
cycle, that is, the resulting graph is acydlic.

Proof. The idea is to construct a “hash graph” which mimicks the datactureT (D), replacing pointers
with hash values from the CRHF. L&l be a publicly available, randomly chosen member of a CRHF
with security parametet. Depending on the setting, we can either assumefhe common knowledge
(in which case there is no need for public randomness), oesgkcitly that a trusted third party output a
description off (in which case the distributiol (1*) is the key generator for the CRHF).

Setup algorithm. The server setup algorithi$, is as follows: on inputD, runT to getS = T (D). View
S as a directed graph, with memory blocks as nodes and poedezdges. This graph can be topologically
sorted (by assumption: no pointer cycles). There is a sisglece, the query algorithm’s starting memory
block (i.e. the root of the graph) Now proceed from sinks to the source by adding a hash vadliedd.,) at
each node:: For a sink, attach the hash of its binary representatias;stbasicallyh,, = H(data,). When

5This restriction is not necessary. General graphs can beldgiat a logarithmic cost by building a tree over the memory
structure.

®There could in principle be other sources, but by assummiiohow A operates it will never access them, Saan safely
ignore them.

u is aninternal node, replace each of its poinigrsby the hash values of the nodes they point to and then set
h, to be the hash of the binary representation of the transibio@ck /., = H(datay, hy, - - -5 ho,, .)-

At the end, one obtains a hash,,; for the source. The server publishes the commitnaest h,...¢, and
storesS and the associated hash values as the internal vastdite

Query algorithm. Given a query; and the setup informatiostate the serveiS, runs the robust algorithm
A on the data structurg, and keeps track of all the memory blocks (i.e. hodes) whietaacessed by the
algorithm (by looking at calls to thget(-) instruction). Denote the set of accessed nodesspy The
answera is the output ofA; the proof of consistency is the concatenation of the “transformed” binary
representationgdata,, hy, ,,...,h) of all the nodes: € S,,as well as a description &, and where

9y Unq u

to find each node in the string

Consistency check. On inputsc, g, a, ™ (wherer consists of a the description of a set of nodgsis well
as their transformed representations), the cliewill verify the answer by runningd, using the proofr to
construct the necessary partsSf

The first step is to reconstruct the subgraph of memory block®sponding to the set of accessed nodes
Sy The clientC checks that :

e 7 is a sequence of correctly formed “transformed” binary espntations of memory blocks along with
associated hash values.

e S, forms a subgraph entirely reachable from the root (sih@tarts from the root and follows pointers,
this holds when the server is honest).

e the hash values present are consistent: for each moaed for each neighbar; ,, of v which is inS,,
check that the valug,, , attached ta. is the hash of the transformed representation; of

e the valueh,.,,; constructed from the input is indeed equal to the public commitment

Next,C runs A on this reconstructed,. It checks that all the nodes requestedgre inS, and thatA
returns the correct value

Since the hash function is collision-resistant, there Iy one such subgraph, which can be revealed
by the server. More precisely, there is one overall graphe-ctmmitted data structure — such that the
server can reveal (reachable) parts of the gfafihus the server is committed to a data structginghich
is bounded in size by the server's memory. By the propertieéseodata-robust algorithm, an honest server
will always be able to answer a query and provide a valid pofafrrectness, whereas a malicious server
can (at most) answer queries with respect to the datab’a(s@). O

4 Orthogonal Range Queries

In the case of join queries, a databd3ds a set of key/value pairs (entries) where each key is a fpoint
R?, and each query is a rectangdg, b;] x - - - x [aq, bs]. Note that these are also often calletthogonal)
range queriesand we shall adopt this terminology here for consistendy wWie computational geometry
literature. For concreteness, we consider the two-dimeasicase; the construction naturally extends to
higher dimensions. In two dimensions, each queig a rectanglgay,b1] x [a2,b2]. The query answer
Q(q, D) is a list of all the entries iD whose key(xkey, ykey) lies ing.

In this section we give a simple, efficienkA for range queries and show how to modify it to make an
efficient consistent query protocol.

"The proof of this is standard: suppose that the server catupeotwo graphs consistent with the hash of the rost A,
By induction on the distance from the root at which the twopbsadiffer, one can find a pair of strings which hash to the same
value

10

Algorithm 1. AlDRT([a,b], n,)
Input: a target rangky, b], a noden in a (possibly misformed)-DRT.
Output: a set ofkey, value) pairs.

1. if n is not properly formed (i.e. does not contain the correct Ineinof fields)then return(
2. if nis aleaf:if a, = b, = key,, andkey,, € [a, b], thenreturn{(key,,, value,,)} elsereturn()
3. if nis an internal node:

o [< left,, r < right,

e ifa, =a, <b <a, <b, =b, thenreturnA1prt ([a, b], l) U A1pRT ([a, b], 7“)
e elsereturn)

Figure 1: Data-robust algorithm;prT for querying one-dimensional range trees

4.1 A Data-Robust Algorithm for Range Queries

Various data structures for efficient orthogonal rangeigsaaxist (see [12] for a survey). The most efficient
(non-robust) solutions have query tird(m + 1) log? ! N) for d-dimensional queries. We reviemulti-
dimensional range tree@ue to Bentley [2]), and show how they can be queried rojau3the query time

of the robust algorithm i®((m + 1) log? N). It is an interesting open question to find a robust algorithm
which does as well as the best non-robust algorithms.

4.1.1 One-Dimensional Range Trees

Multidimensional range trees are built recursively fronealimensional range trees (denotedRT),
which were also used by [5, 22, 17]. IneDRT, (key, value) pairs are stored in sorted order as the leaves of
a (minimum-height) binary tree. An internal nodestores the minimum and maximum keys which appear
in the subtree rooted at (denoteda,, andb,, respectively). For a ledf we takea; = b; to be the value of
the key; key stored at. Additionally, leaves store the valwalue; associated t&ey;.

Setup. Given adatabasP = {(key,value;),..., (keyy,valuey)}, the setup transformatidhy prt con-
structs a minimum-height tree based on the sorted keyshélirttervalga,,, b,] can be computed using a
single post-order traversal.

Robust queries. It is easy to see that EDRT allows efficient range queries when it is correctly formed
(given the rootn of a tree and a target intervgl, b], descend recursively to those children whose intervals
overlap with[a, b]). However, in our setting we must also ensure that the gueeieirn consistent answers
even when the data structure is corrupted. The data steuateimvill use is exactly the one above. To ensure
robustness we will modify the querying algorithm to checkifwonsistencies.

Assume that we are givenraotedgraph where all nodes have an associated intervJal,, b,], and all
nodes have outdegree either 0 or 2leaf [is any node with outdegree 0. A leaf is additionally assunoed t
have to extra fieldkey, andvalue;. Consider the following definitions:

Definition 5. A noden is consistenif its interval agrees with those of its children. That isthié children
arel andr respectively, then the node is consistent,if= a; < b; < a, < b, = b,. Moreover, we should
havea,, = b, for a node if and only if it is a leaf.

11

A path from the root to a node onsistentf n is consistent and all nodes on the path to the root are
also consistent.

Definition 6. A leafl in a1-DRT is valid if there is a consistent path from the root/'to

In order to query a (possibly misformed}DRT in a robust manner, we will ensure that the query
algorithm A returnsexactlythe set of valid leaves whose keys lie in the target range. “moemal” (i.e.
correctly formed)1-DRT, every leaf is valid, and so the algorithm will return thereat answer. In a
corrupted structure, the algorithm will always answer ¢gtastly with the database consisting of the set of
points appearing at valid leaves. Thus for any sthghe databasé’*(S‘) consists of the data at all the
valid leaves one finds whefiis considered as the binary encoding of a graph.

Algorithm 1 (A1prT) Will query a1-DRT robustly. When it is first called, the argumentwill be the
root of the graph. Essentially;prT runs the ordinary (non-robust) search algorithm, checkihgodes it
passes to ensure that they are consistent (Definition Ssdichecks that it never visits the same node twice
(in such a case, it must be that the graph the algorithm reseis input is not a tree).

The algorithmA;prT Operates in the “pointer-based” model. Thus the first nodetioh the algorithm
is called is obtained through a call getroot(). The neighbours of an internal nodeare its two children
left,, andright,,. For clarity of the algorithm, we have not explicitly incled calls toget(-) in the description
of the algorithm.

The following lemma proves that one-dimensional rangestratong with the algorithmi;prT, form a
DRA for range queries.

Lemma 2. The algorithmA;prt Will return exactly the set of valid leaves whose keys arehanttarget
range. In the worst case, the adversary can force the quévi¢aske timeO(s) wheres is the total size of
the data structure. Conversely, given a collectiom\oéntries there is a tree such that the running time of
the algorithm isO((m + 1) log N)), wherem is the number of points in the target range. This tree can be
computed in tim& (N log N) and takesD () space to store.

Proof. On one hand, the algorithm is complete, since in a correctlnéd tree every node will pass the
consistency checks, and so the algorithm will return exabik set of leaves whose keys are in the target
range.

Before proving robustness, it is important to note thatdree some kinds of misformed data we don't
have to worry about. First, we can assume that all nodes arecatly formed (i.e. have the correct number
of fields and the correct types of data) since incorrectlynfenl nodes will be ignored by the algorithm. Thus
we can assume that the algorithm is indeed given some kindaphgas input, although it isn’t necessarily
a tree. Moreover, we can assume all nodes in the graph hadegvee either 2 or 0.

The proof of robustness follows from the properties of cstesit nodes, which in turn follow from the
definitions. For any node which is on a consistent path from the root:

1. The consistent path from the root is unique.
2. No valid leavesnsiden’s subtree have keysutsiden'’s interval.

3. If another node’ is on a consistent path from the root, dag', b,/] N [a,, b,] # 0, thenn' is either
an ancestor or a descendantdfthus one of the two intervals includes the other).

A corollary of these properties is thad node will be visited twice by the algorithihis is because the
algorithm expects intervals to shrink at each recurisve, gtad so it will never follow a link which leads to
a node earlier on in the current recursion stack. Moreokiergtcan never be two distinct paths by which the
algorithm arrives at a node: because the algorithm is always checking for consistetheyfwo ancestors

12

n' andn” of n would have to be consistent nodes with overlapping intsp@dntradicting the properties
above.

Hence, the algorithm will visit valid leaves at most onced amver visit invalid leaves. Moreover, it will
visit all the valid leaves in the target interval (by inspe). Thus runningd;prt On a stringS procudes

answers consistent with',r7(S), the set of data points stored at valid leaves in the grapfesepted by
S. O

4.1.2 Two-Dimensional Range Trees

Here, the database is a collection of trip{ekey, ykey, value), where the pairgxkey, ykey) are all distinct

(they need not differ in both components). The data stractartwo-dimensional range tree (denofed

DRT), is an augmented version of the one above. The skeletoh-BRT (called theprimary tree), which

is constructed using thekey’s of the data as its key values. Each node in the primary taseah attached
1-DRT called itssecondanytree:

e Each leafl of the primary tree (which corresponds to a singtey valuea; = b;) stores all entries with
thatxkey value. They are stored in tHeDRT tree; which is constructed usingkey’s as its key values.

e Eachinternal node (which corresponds to an intenjal,, b,] of xkey’s) stores d.-DRT tree,, containing
all entries withxkey’s in [a,,, b,]. Again, this “secondary” tree is organized yey’s.

The setup algorithi>prT creates 2-DRT given a database by first sorting the data on thexkey,
creating gprimary tree for those keys, and creating a secondary tree base@ gkethfor each of nodes in
the primary tree. In -DRT, each point is stored times, wherei is its depth in the primary tree. Hence,
the total storage can be ma@¢N log N) by choosing minimum-height trees.

Searching in a2-DRT. The natural recursive algorithm for range queries in thiscstire takes time
O(log? N) [12]: Given a target range(®), b®)] x [a), b®)] and an internal node, there are three cases:
if [a®),5®)] N [ay,,b,] = 0, then there is nothing to do; j&*), 5] D [a,, b,], then perform a search on
the second-level tree attachedrtaising the target range¥), b¥)]; otherwise, recursively explongs two
children.

Based on the natural query algorithm, we can constrasta A,prT by adding the following checks:

¢ All queries made to the 1-D trees (both primary and secondag/made robustly following Algorithm 1
(A1prT), i.€. Checking consistency of each explored node.

e For every point which is retrieved in the query, make surs firesent and valid in all the secondary 1-D
trees which are on the path to the root (in the primary tree).

The following definition capturegalidity, which is enforced by the checks above:

Definition 7. A point p = (xkey, ykey, value) in a (corruptedR-DRT is 2-valid if

1. p appears at a valid leaf in the secondafPRT tree; belonging to deaf [of the primary tree with key
valuexkey = a; = b;.

2. For every (primary) node on the path td from the root of the primary tree, is consistent ang is a
valid leaf in the (one-dimensional) treese,,.

Now given a (possibly corrupte@DRT and a poinp = (xkey, ykey, value), itis easy to check whether
or notp is 2-valid: one first searches for a |dafith key xkey in the primary tree, exploring only consistent
nodes. Then, for each nodeon the path fromni to the root (including and the root), one checks to ensure
thatp appears as a valid leaf in theee,,.

13

Algorlthm 2. A2DRT([a(I), b(z)] X [a(y), b(y)], ’I’L)
Input: a target rangg(?), b(*)] x [a¥), b¥)], a noden in a2-DRT.
Output: a set ofxkey, ykey, value) triples.

1. if nis not properly formed (i.e. does not contain the correct Inemnof fields),
then return(.

2. Check for consistency (if check fails, retuihn

e if nis aleafthen checka,, = b, = key,,
e if nis an internal nodehen checka,, = ajeft, < bieft, < Gright, < bright, = bn

3. (@) if [an, by] N [a®,b®)] = § then return()
(b) if [an,b,] C [a®),b®)] then
o B+ AlDRT([a(y), b(y)], treen)
e Remove elements d® for whichxkey ¢ [ay, by]
e if n is an internal node:
For each poinp in B, check thap is 2-valid in eithedeft,, or right,,.

If the check fails, remove from B.
e ReturnB

(c) Otherwise
B A2DRT< (@™, 5] N [aiete, , bretr,,]) x [a®), b®)], |eftn>
U A2DRT< (@™, 5] N [aright, , bright 1) x [a®), b®)], rightn)

e Remove elements d® which are not valid leaves afee,,.
e ReturnB

Figure 2: Data-robust algorithm,prT for querying two-dimensional range trees

For robust range queries, we obtain AlgorithmA§rT). As before, the idea is to return only those
points which are 2-valid. Thus, for an arbitrary strifg the induced databasBr(S) is the collec-
tion of all 2-valid points in the graph represented $y The following lemma shows that the algorithms
(ToprT, A2prT) fOrm abRrA for two-dimensional range queries with query complexity(m + 1) log? N)
(wherem is the number of points in the target range).

Lemma 3. Algorithm 2 (A,prT) Will return exactly the set of 2-valid points which are irttarget range. On
arbitrary inputs, A,prT terminates in worst-case tim@(L), whereL is the total size of the data structure.

Conversely, given a collection &f entries there is a tree such that the running time of the athjor
AoprT is O((m+1) log? N), wherem is the number of points in the target range. This tree can epded
intime O(N log? N) and takesD(N log N) space to store.

Proof. (sketch) As in the one-dimensional case, the algorithmmeller explore the same node twice, and
so we may think of the corrupted input to the algorithm as a. tidoreover, since the algorithm is checking
for proper formatiing of nodes, we can assume that this gecapkists of a number of “primary” nodes with
secondary trees dangling off them. Finding the running tiriéne algorithm on well-constructed inputs is
a straightforward exercise.

14

On one hand, one can see by inspection that any 2-valid pothkitarget range will be output by the
algorithm, since all the checks will be passed. Moreoveryala point outside the target range will be
output.

On the other hand, consider any point that is output by theriafigm. It must have appeared in the set
B at stage 3(b) of the algorithm for some nodeThus it is a valid leaf irtree,,. Moreover, it must be valid
in eitherleft,, or right,,, because of the checks made at step 3(b). This means theteatlavhich is a
descendant af such thap is a valid point intree; and in all the trees of the nodes on the path froto /.
Finally, as the recursion exits (in step 3(c)), the algonitwill verify that p appears at a valid leaf in all the
nodes on the path from the root.#0 Thusp must be a 2-valid point. O

Remark 1. As mentioned above, more efficient data structures anditliges for planar orthogonal queries
exist [12], but it is not clear how to make them robust witheaaising the query time back tO((m +
1)log? N). This is an interesting open question.

One can use similar ideas to make robust range queriesdimensional keys, wheré > 2. The
structure is built recursively, as in the 2-D case. Althotigé algorithm is polylogarithmic for any fixed
dimension, the exponent increases:

Lemma 4. There exists @RA for d dimensional range queries such that queries run in tioigm -+
1)1log? N), and the data structure requirg3(N log? N') preprocessing and(N log? ! N) storage.

4.2 Efficient Query Protocol

Given this algorithm, the (non-private) query protocol barconstructed as in Section 3.2: the server creates
atree as in the previous section. For each key/value patoimputes a hash valug.,. He now works his
way up through the various levels of the tree, computing tehhvalues of nodes as the hash of the tuple
(min, max, left child’s hash value, right child’s hash valua given key will appear roughljog N times in

the tree; the same valug,., should be used each time.

To answer a range query, the server runs the algorithm ofrénéqus section. He need only send the
hash values and intervals of nodes on the “boundary” of thgrsyh (in memory) which was explored,
i.e. the leaves and the siblings of the nodes on their pattigetooot (the information corresponding to the
interior nodes can be reconstructed from the boundary nod@ess yields the following:

Theorem 5 (Two dimensions).Assuming the existence of collision-resistant hash fansti there is a
consistent query protocol for two-dimensional range gegnivith commitment size and non-interactive
consistency proofs of length at méstk (m + 1) log? N), wherem is the number of keys in the query range,
andk is the security parameter (output size of the hash function)

For higher dimensions, our construction yields proofs ngth O (k(m + 1) log? N).

5 Privacy for Consistent Query Protocols

5.1 Privacy Via Generic Techniques

One can construct privateQprs (Definition 3) with good asymptotic complexity using gaogechniques,

as follows. Universal argumentsdue to Barak and Goldreich [1], allow one to give an intdvagtzero-
knowledge argument of knowledge of an NP statement of arlifpolynomial length, using only a fixed,
poly(k) number of bits of communication. This allows one to handiEteary query structures (as long as
answering queries takes at most polynomial time): the sexds the answer to a query, and then proves

15

interactively that it “knows” a stringr which the client would accept as a valid proof of consisteridyis
approach even hides the set size of the database as in [, thie universal argument leaks only a super-
polynomial bound on the length of the statement being provémfortunately, the known construction of
universal arguments is cumbersome, even by the standantieafetical cryptography, since it uses the
machinery of probabilistically checkable proofs.

One can gain some simplicity and efficiency by starting frofman-private) efficientQp, and replacing
each proof of consistency with an ordinary zero-knowledge argument of knowledg&AK) of = (for
example, see Goldreich [10], Chapter 4.7.3). If a publicdoan string is available, one can also use non-
interactive zero-knowledge proofs of knowled®@ZKPK).

This approach will typically leak some bound on the sef the database, since both Ordin@ZKAK's
andNIZKPK’s may leak a polynomial upper bound on the lenght of the state being proven. One can
avoid that leakage if the original proofs take time and comitation poly(log N'), as with membership
and orthogonal range queries. ReplaciMgwith the upper boun@*, we once again again ggbly (k)
communication.

We summarize this discussion in Theorem 6. If we considesgieeific case o€ QPs for membership
queries, then the theorem says thato-knowledge sgirotocols [20] can be constructed based on general
assumptions, such as the existence of non-interactivekrenwledge proof systems. A different proof of
this specific statement was later given by Healy et al. [15].

Theorem 6. (a) Assume that there exists a collision-resistant hashlyanror any query structure with
polynomial complexity, there existspaivate CQP with a constant number of rounds of interaction and
poly(k) communication.

(b) Given a public random string, argQpPwith proofs of length{(N') can be made siz&+-private with
no additional interaction at @oly(k ¢(N)) multiplicative cost in communication, assuming non-iattive
zero-knowledge proof systems exist.

5.2 Explicit-Hash Merkle Trees in Brief

Although the asymptotics of Theorem 6 are good, the use cérgeNP reductions means that the advan-
tages only appear for large datasets. We therefore cohstrapler protocols tailored to Merkle trees.

The basic Merkle tree commitment scheme leaks informatlooutathe committed values, since a
collision-resistant function cannot hide all informatiabout its inpuf At first glance, this seems easy
to resolve: one can replace the valugsat the leaves of the tree with hiding commitmenitéq;). This
doesn’t work, since there is may be additional structuré¢ovglues:y, ..., ay which is revealed when one
reveals a path in the tree. For exampleciors for range queries, the entries are stored in sorted order.
Revealing the path to a particular value then reveals itk iathe data set. The problem gets even more
complex when we want to reveal a subset of the values, as veetbdnide not only whether paths go left or
right at each branching in the tree, but whether or not difiepaths overlap.

A generic solution is to provide a hiding commitment to theagtion of each node on the path, and
then give a zero-knowledge proof that the committed strangansistent with the public hash value (the
root of the hash tree). The main bottleneck is in proving that H(z), given commitments’(x) and
C(y). Itis not known how to do that without going through eithengral NP reductions or oblivious circuit
evaluation protocols, both of which are extremely ineffiti@hen applied to a circuit as complex as a hash
function. This seems to be a fundamental problem with pyivafcMerkle-tree commitments: revealing
the hash values reveals structural information about @ @®nd not revealing them and instead proving
consistency using generic ZK techniques kills efficiency.

8There are limited ways in which hash functions may hide imfaion, as discussed by Canetti, Micciancio and Reingdld [3
That definition of privacy is not strong enough for our segtin

16

The challenge, then, is to provide zero-knowledge proasdrset, ..., a; is a subset of the committed
values, without going through oblivious evaluation of seomplicated circuits. We present a modification
of Merkle trees where one reveals all hash-function inpuput pairs explicitly, yet retains privacy. We call
our construction aixplicit-Hash Merkle TreeThe construction is explained below, in Section 5.3.

Lemma 7. Assuming the existence of collision-resistant hash fam#ind homomorphic perfectly-hiding
commitment schemesxplicit-hash Merkle treesallow proving (in zero-knowledge) the consistencyt of
paths (of lengthl = log N) usingO(d - t? - k?) bits of communication, whereis the security parameter.
The protocol uses 5 rounds of interaction. It can be reduoeatldingle message in the random oracle model.

To illustrate the technique, we apply it to one-dimensiaralge queries. The main drawback of the
resulting protcol is that the server needs to maintaing stetween invocations; we denote fiyhe number
of previous queries.

Theorem 8. There exists an efficiersjze4V-private consistent query protocol for 1-D range queries. For
the t-th query to the server, we obtain proofs of si2§(t + m) - s - k2 - log N), wheres is the maximum
length of the keys used for the data, ands the total number of points returned on range queries made s
far. The protocol uses 5 rounds of interaction and requiresammon random string. The protocol can be
made non-interactive in the random oracle model.

The remainder of this section gives the details of the residbve. The proof of Lemma 7 can be found
in Section 5.3. The final subsection (Section 5.4) gives afbTheorem 8.

5.3 Explicit-Hash Merkle Trees in Detalil

As mentioned above, Merkle trees allow one to commit to aelargmber of values via a short commitment,
and to reveal some subse, ..., a; of those values very efficiently, by showing a path from thet rio
that particular value. We explain how to modify that scheméitde the remaining committed values,
while leaving the hash function evaluations explicit, ingthout going through oblivious evaluation of such
complicated circuits. The goal of this section, then, isnovp Lemma 7.

Server storage. LetC(-) be a non-interactive commitment scheme to messages afaaytiéngth. It will
be convenient to assume th@f-) is homomorphic, that is given commitmentsitq andms, it is possible
to produce a commitment ta; + my (°). Such schemes exist based on a number of assumptions, such
as the hardness of discrete logarithm extraction (e.g. rBede scheme [28]). Leld be selected from a
collision-resistant hash function family.

We will build a hash tree based on commitments to nodes, shtitel server will actually commit to
commitments of the nodes in the tree. Moreover, rather thane £xplicit hash values in the tree we will
store commitments to those values. Specifically, for eadkenadn the tree, we will define three values:

e The basic string representatian, is the information stored at the node
e Ahash pre-image for: ¢, is a particular commitment to the valug via the commitment shcenm@(-).
e The corresponding hash valug; = H(c,) is the hash value fat which we will store at the parent of.

For a leafl, we haver; = q;, and¢; is a commitment'(q;). For an internal node, we havez,, =
(H (cieft,,), H (cright,,)), andc, is a component-wise commitmenttpusingC(-), i.e.
cr < (C(H (citt,), C(H (cright,,)))-

The public commitment is the valug,,s = H(z!.,,;)-

root

Definition 8. For two stringsz andy, we sayy < z if y is the hash of some valid commitmentaitpi.e. if
there are random coinssuch thayy = H(C(z;w).

®In fact, we only need to be able to prove the equality of two kuited strings without revealing them.

17

Protocol outline. Suppose the server now wants to reveghlues from the tree. Let = log N be the
depth of the tree. For each leato be revealed, the server finds the corresponding spath., ngy wheren,

is the root anch, is [. He sends to the client the datg plus fresh commitments to the values andy,.

He then proves that these form a consistent path in two stages

1. For each of the paths, Server sends = C(zy,),...,uq = C(zy,) andv; = C(yn,),...,v4 =

2. The server proves that each of the paif; is a commitment to a pair;, y; such thaty; < z;.

3. The server proves that the committed nodes actually fopatla, that is for every > 1, the server
shows that one of thg, appears as one of the components of; .

4. The server proves that the first node is indeed the root byping the commitment; to reveal the
public commitment string;oo¢.

The first proof is the trickiest, since we wish to use only @iphash function evaluation (never oblivi-
ous) but also not reveal any information on possible ratatioetween the various paths.

Proving that y; <t z;. There are paths of lengthl for which this must simultaneousely be proven. At the
very least, the server will have to reveal the hash pre-imdgeall the nodes in thosepaths. However,
depending on how the paths overlap, there may be far fewer #hauch nodes (and hence hash pre-
images), and any repetitions will be easy to detect. Thassénver will additionally send enough “dummy
pre-images” so that the total number of committed nodesndédito be in the hash tree is exacttyy The
dummy values are other hash pre-images present in the legsH-wormally:

1.1. Let{n™,...,n(*)} be the union of the nodes on alpaths ¢ < td). We pad this set withd — s other
nodesng1, ..., nyq (arbitrary nodes will work) to get a set &f nodes.

Letc), ..., c*) be the corresponding pre-images, 6! = ¢, .
2. Server sendc(V, ..., c(*)} to the client in random order.

3. Repeat the following cut-and-choose protacdimes:

1. Server chooses a permutatior— S;4, and sends fresh commitmenfs; = C(z,,;) to all td nodes
nl), as well as commitment§/(y, ;) to the hash valueg ;, = H(c!)). These commitments are
permuted according te before sending.

2. Client answers with a challenge bit— {0, 1}.
3. If b =0, the server:

1. Sendsr proves that for each of thiel nodesn/), ¢! ;) andc¥) are commitments to the same value.
(This is easy since the commitment scheme is homomorphic.)

2. opens all commitments 9,;, (client verifiesy, ;, = H(c\9))).

If b =1, the server:

1. Shows that each of the commitmentsis equivalent to one of the commitments;, and that the
commitmenty; is equivalent to the corresponding committed hash valug,).

At the end of this proof, the client should be convinced tretheof the commitment pair&.;, v;)
corresponds to one of the valu€®, and that the underlying pai;, y; satisfiesy; < z;.

18

Proving that the path is consistent. We now have pairs of commitments, v; which hide valid pairs
Tn;, Yn;» Wherey,, = H(C(zy,;)) for some valid commitment of,;. We can easily prove that;, v,
corresponds to the root by openingand checking it is equal to the public commitmens,;.

The server must nhow prove that for each d, either:

e n;41 is the left child ofn;, which means thaty,,,, = y|eftni), or:
e n;;1 is the right child ofn;, which means thalty,,,,, = yright,)-

To prove this, one uses a classic cut-and-choose proof:etiverscommits to a permutation 9fs,,
andy,ightni. Depending on the client’s challenge, the server eithergedhat the two values were a correct
permutation of the real values (this requires only showimgadity, which is easy with homomorphic com-
mitments), or proves that one of the valueg,is, ,. Repeating thig times will lower the soundness error
of the proof to2*.

5.3.1 Complexity of the Proofs

One can see by inspection that the communication complekityis proof is dominated by the proofs that
y; < x;. Each phase of the cut-and-choose protocol requires tittimgmO (¢dk) bits, and so the overall
communication complexity i©(t2dk?) bits.

Round complexity. The protocol consists of a number/ofround cut-and-choose proofs. Because these
proofs are not interdependent, we can run them all in p&raitbout losing zero-knowledge, so long as we
use the same random coins for each of the proofs, i.e. at eadk the client sends only a single challenge
bit, which is used in all the proofs. (This is not true of ZK pfein general, but it is true for our protocol.)
Thus, we easily obtain &round protocol.

This can actually be improved substantially. As a first olestion, we can collapse therounds of in-
teraction together in order to obtain a 3-round protocolattih, all challenges are sent simultaneously. This
protocol is no longer provably zero-knowledge, but doeainetitness-indistinguishabilitythis property is
preserved by parallel repetition of protocols, see [10]).

Next, we can use various transformations to obtain a zeogvlatge proof.

5-round zero-knowledge based on perfect trapdoor commisn@ne can use standard folklore techniques
to transform the 3-round, public coin witness-indistirgiidble proof of knowledge into a ZK proof
of knowledge. This increases the complexity to 5 rounds, ragdires an additional assumption of
perfectly hiding trapdoor commitment schemes (which exdsted on the discrete log assumption and
the hardness of factoring). In the first round, the servedsé¢ne parameters for a perfectly-hiding
trapdoor commitment scheme. The client responds with a domant to the challenges he will use
in the protocol. They then run the 3-round protocol, usirggdgbmmitted challenges. Along with his
response to the challenges, the server sends the trapdoionation for the commitment scheme.

Non-interactive zero-knowledge based on a random ordickerandom oracle is available, then we can in
fact use the Fiat-Shamir technigue to remove interactionptetely without losing zero-knowledge,
since our underlying proofs require only public coins. Tthes is to replace the verifier's challenges
with the output of the call to the random oracle on the firstsage of the protocol. We refer the
reader to [11] for a discussion of the transformation andirtitations (in the context of signature
schemes).

As a final note, it isot sufficient to transform our protocol to obtain a zero-knalge proof of the exis-
tence of a withess — since the commitments involved are amyputationally sound, a proof of knowledge
iS necessary.

19

5.4 Efficient Privacy for Range Queries—Theorem 8

Given the efficient consistent query protocols for join dgeidescribed in Section 3 and Section 4, privacy
can be achieved by applying generic witness-indistingb#h or zero-knowledge proofs of knowledge, as
described in Section 5.1. However, even for our efficientqmols these will be very complex, as they will
require as the least oblivious evaluation of the circuittfash functionH.

Instead, we present efficient, private consistent queryopots for 1-D range queries, based on the
explicit-hash technique of Section 5.3. The main drawbacthat our protocol is not memoryless: the
server must remember what queries have been made so fareintorensure that no information is leaked
from a proof.

The main tool used in the construction is a sub-protocol tyhgiven commitments to valu€s(a) and
C'(b), allows the server to prove that< b.

The first step is to modify the range tree so takhtonsistency proofs have length exaetly= [log N].
Subsequently, we show how to achieve privacy efficently fentbership queries, and finally for range
querires.

Modified range tree. We start from the basic consistent query protocol for mestiprand range queries,
based on range trees. First we modify the data structuretlsliso that the length of a proof of consistency
can be calculated exactly from the number of data pointsmetlion a given query. Specifically, we ensure
thatall consistency proofs have length exactly= [log N, and that the ranges of the children of a nade
form a partition of|a,,, b,] about the splitting poinéplit,,.

¢ Instead of storing at each internal nodthe minimum and maximum keys which appear in the subtree
rooted at that node, we store a larger intefugl b,,|, which nonetheless has the property that all keys
key in the subtree satisfy,, < key < by,.

At each branching we require that the children’s intervaldifion that of their parent, and the point
at which they cut the parent’s interval is stored at the paaed denotedplit,,. Thus, the consistency
check of Algorithm 1 becomes, < b, = split, = a, < b.. If nis a leaf, the consistency check
becomesi,, < key,, < b,.

e For simplicity, we assume that keys are all integers in a kmowerval {1, ...,2° — 2}. The values
0,2% — 1 are set aside as special values, deneted andoo, respectively.

e In order to ensure that it is always possible to split interg®d thata,, < key,, < b, at the leaves, we
can require that all keys be even numbers (this at most isessthe size boundby 1).

e In every tree, we insert the valuesxo + 1 = 1 andoo — 1 = 2% — 2, so that the range stored at the
root is always in facf—oo, co].

e We assume that the number of leaves in the tree is a power dh2tall leaves are at the same depth.
This meangV = 2¢ — 2 for some integet!. This at most doubles the number of points we must store
in the database.

The consistency proof for a membership query in this newctira will always consist of exactly
nodes (whereéV = 2¢ — 2), even for queries which return “key not present”. Consisgeproofs for range
queries comprise: + 2d nodes, wheren is the number of data points in the range.

Privacy for membership queries. We first describe how to achieve privacy for membership gseand
then explain how to generalize the technique for range gseri

20

The protocol outline is the same as for explicit hashingepkithat additional range information is stored
at the internal nodes. However, in the case of range treqwdiod that the path is consistent is considerably
more complex, since it involves proving statements of thmfe < b.

Server storage. This is the same as in the explicit hashing protocol, exdegt the stringr,, contains
additional information: for internal nodes it contaimg, b, andsplit,. For leaves, we add the rangg, b,,,
plus the valuesey,, andvalue,, (note that for efficiencyyalue,, can be the hash of the value stored at the
leaf).

Moreover, all the range bounds are committetiteby-bitinstead of as a monolithic string. This will be
necessary to get fast consistency checks. If all keys aggans less tha®’, then each number will require
sk bits to be committed.

Proving y; < z;. As before, the server commits to nodes and their hash valaespairsu;, v;. The goal

is to prove that these correspond to paifsy; wherey; <1 z;. This is where the protocol requires the server
to have memory. As before, the server will send a set of pleshiish pre-images for the nodes in the path,
and prove that each node in the path corresponds to at leastf dimese hash pre-images. The problem lies
in choosing that set of possible hash pre-images. If thees@eweals only those necessary for this path,
then two different queries will reveal a lot about how the tdifierent paths overlap. Instead, the server
will always send all of the pre-images sent on the previowsygplusd new pre-images (regardless of how
many new pre-images are really necessary). Thus, antthguery, the server send$ possible pre-images,
and runs the same cut-and-choose protocol to show that theitted pairs satisfy; <1 z;.

Proving that the path is consistent. We now have pairs of commitments, v; which hide valid pairs
Zn;, Yn;- We can easily prove that;,v; correspond to the root by opening and checking it is equal
to the public commitment,.,.,;. The basic check which must be performed are essentiallgahee as in
Section 5.3, except that now we must add checks of the torm 5. We will show how to prove such
statements below. First, we give the outline of the conststehecks.

Suppose that we have a subprotocol for proving that b or a < b given two commitment€’(a) and
C'(b). Then the server can prove that the path consistent as fallow

e For each < d, we havea,,, < split,, < by,.
e For each < d, either:

— nj41 is the left child ofn;, which means thata,,,,, = a,,;) and(b,,,, = split,,) and(y,, , =

41
Yieft,,.), OI
— nj41 is the right child ofn;, which means thala,,, ., = split,,;) and(b,,,, = b,,) and(y,, , =
yrightni)'

To prove this, one uses a classic cut-and-choose proof: éh@rscommits to a permutation of
(an,;, Spl’itni,y|eftni) and (splity,;, bn,, yright,). Depending on the client’s challenge, the server ei-
ther proves the two triples were a correct permutation ofrélad values (this requires only showing
equality, which is easy with homomorphic commitments), rovps that one of the two triples is equal

to (ani+1 songyys yni+1)'

Repeating thig times will lower the soundness error of the prooftd.
e Forthe leafl = ng4, we haven; < key; < b;.

e For the leafl = ngy, the revealed query answer is correct. If the query was fluevey, we must
check thata; < key < b; and eitherkey = key,; or key # key;, depending on whether the query
answer was positive or negative.

21

Thus, we need only show how to prove that b, a < bora # b) for two committed value€’(a), C(b).

Proving a < b, a < b, a # b. Suppose we hav€'(a), C(b) for two integersa, b € {0, ...,2° — 1}. The
server wishes to prove to the client thia& b. A proof of the statement < b would proceed similarly. The
proof thata # b is in fact much easier and we leave it as an easy exercise.

1. Letaq,...,a, be the binary representation@findb,, ..., b be the binary representation iofBecause
we asked that the server commit bit-by-bit, we hé¥@), ..., C(as) andC(by), ..., C(bs).

2. LetC’() be a commitment scheme which allows one to commit to one eethalues0, 1, x}. We
only require that it be easy to prove that two commitmentseguel.1?

Suppose that the firstmost significant bits of andb are equal. Then the server sends fresh commit-
ments to the bits of andb, except that for the firstbits of each he commits teinstead.

The problem of verifying that < b can now be reduced to one of local pattern checking. There are
four sequences of committed bits. It must be thatappear in the two last sequences only when the
bits of a, b are equal, and in all other positions the bits are copietiffdly. Moreover, it must be
that the first position where's do not appear hag; = 0 andb; = 1. This means we must che@k
patterns, each on four positions.

However, pattern checking can be done with a cut-and-chpos®col: the server commits to a
permutation of all the possible patterns which apply to @gisubset of bits (in our setting, there are
always less than 20 patterns). Then he either opens all ttexms or shows that one of them matches
the positions he is checking. Repéaimes for soundness errar*.

Achieving privacy for range queries. In order to achieve privacy for range queries, we build on the
protocol above for membership queries. For each point irrdhge of the query, the server gives a proof

of membership as above. For the two endpoints, the serves giv almost-complete proof of membership:

he gives a path to the unique leaf which contains that entigmih does not prove any relation between the
endpoint and the key at that leaf. Instead, he proves thatrtteers he has given cover the entire range:

1. The leaves in the range should be contiguous. This candwempreasily by proving; = a; for
adjacent leavek !'.

2. The endpoints should be proven correct. Suppose the queryal is[a, b]. Let! be the leaf corre-
sponding to the left endpoint Let!’ be the leaf corresponding to the leftmost point in the rafde.
left endpoint is correct if either

e q; =ay anda; < a < key,, or
e by =ap andkey; < a <1y

This can be proven by a cut-and-choose as before.
The proof of correctness of the right endpoint is similar.

Note that one can save some of the complexity of the memlipepsbdfs by running all the proofs that
the various paths are in the hash tree together (see below).

1%This can be implemented by having each commitment be a p4iit cbmmitments, where a commitment@p3 represents
the bit3 and a commitment té, 3 always represents

22

5.4.1 Complexity of the Proofs

The communication complexity of the proof of membership barseen by inspection to I6&t - d - s - k?),
wheret is the number of queries so faFjs the depth of the hash tree (og V), s is the bound on the length
of the keys, and is the security parameter.

As for range queries, the complexity of the proofs can be n@ade + m) - d - s - k%), wheret is the
number of queries so far and is the total number of points returned from all queries so Kote: The
protocols of Micali et al. [20] fomembershigueries are more efficient than the protocol above. However,
their techniques do not generalize to range queries.

Round complexity Asin the discussion of explicit-hash Merkle trees, we caaiolwitness-indistinguishability
with a 3-round, public coin protocotero-knowledgéy increasing the complexity to 5 rounds, and we can
remove all interactivity if we assume the existence of a camaracle.

Acknowledgements

We thank Leo Reyzin and Silvio Micali for helpful discussson

References

[1] B. Barak and O. Goldreich. Universal Arguments.Aroc. Complexity (CCC) 2002
[2] J. L. Bentley. Multidimensional divide-and-conqu@omm. ACM23:214-229, 1980.

[3] R. Canetti, D. Micciancio and O. Reingold. Perfectly @iay Probabilistic Hash Functions. 8TOC 1998pp.
131-140.

[4] A Buldas, P. Laud and H. Lipmaa. Eliminating Counterearide with Applications to Accountable Certificate
Management]. Computer Securify2002. (Originally inCCS 2000

[5] A. Buldas, M. Roos, J. Willemson. Undeniable Replies ttdbase Queries. DBIS 2002

[6] I.B. Damgard, T. P. Pedersen, and B. Pfitzmann. On thet@xie of statistically hiding bit commitment schemes
and fail-stop signatures. GBRYPTO '93pp. 22—-26.

[7] A. De Santis and G. Persiano Zero-Knowledge Proofs ofiladge Without Interaction (Extended Abstract).
In Proc. of FOCS 19920p. 427-436.

[8] P. Devanbu, M. Gertz, C. Martel, S. Stubblebine. Autlieihird-party Data Publication. IDBSec 2000.p.
101-112.

[9] Y. Dodis and J. Hea An. Concealment and Its Applicatiandtithenticated Encryption. IBUROCRYPT 2003
May 2003.

[10] O. Goldreich. Foundations of Cryptography, Vol. 1. Gaidge University Press, 2001.
[11] S. Goldwasser and Y. Tauman. On the (In)security of tlae-Shamir Paradigm. IROCS2003.
[12] J. Goodman and J. O'Rourke, editoHandbook of Discrete and Computational Geome@RC Press, 1997.

[13] M. T. Goodrich, R. Tamassia, N. Triandopoulos and R. @ohAuthenticated Data Structures for Graph and
Geometric Searching. IRroc. RSA Conference, Cryptographers’ Tra2R03.

[14] S. Halevi and S. Micali. Practical and provably-secooenmitment schemes from collision-free hashing. In
CRYPTO '96p. 201-215.

[15] A. Healy, A. Lysyanskaya, T. Malkin, L. Reyzin. Zero-Ewledge Sets from General Assumptions. Manuscript,
March 2004.

23

[16] J. Kilian. A note on efficient zero-knowledge proofs aarduments. 1124th STOC1992.
[17] J. Kilian. Efficiently committing to databases. Teatedireport, NEC Research, 1998.
[18] P. Maniatis and M. Baker. Authenticated Append-onlyp3ksts. ArXiv e-print cs.CR/0302010, February, 2003.

[19] C. Martel, G. Nuckolls, M. Gertz, P. Devanbu, A. Kwong,Subblebine. A General Model for Authentic Data
Publication. Manuscript, 2003. http://www.cs.ucdaudsiEdevanbu/files/model-paper.pdf.

[20] S. Micali, M. Rabin and J. Kilian. Zero-Knowledge SdisProc. FOCS 2003
[21] S. Micali. Computationally Sound ProofSIAM J. Computing30(4):1253—-1298, 2000.

[22] S. Micali and M. Rabin. Accessing personal data whileserving privacy. Talk announcement (1997), and
personal communication with M. Rabin (1999).

[23] D. Micciancio. Oblivious data structures: applicatiato cryptography. liProc. STOC 1997
[24] R. Merkle A digital signature based on a conventionakgption function. INCRYPTO '87 pp. 369-378, 1988.

[25] M. Naor and K. Nissim. Certificate Revocation and Cegdife Update. Irvth USENIX Security Symposium
1998.

[26] M. Naor, M. Yung. Universal One-Way Hash Functions ahdlitt Cryptographic Applications. 181st STOC
1989.

[27] R. Ostrovsky, C. Rackoff, A. Smith. Efficient ConsistgriProofs on a Committed Database MIT LCS Technical
Report TR-887. Feb 2003. See http://www.|cs.mit.edufioakibns

[28] T.P. Pedersen. Non-Interactive and Information-Th#&o Secure Verifiable Secret SharingGRYPTO '91

24

