
Efficient Consistency Proofs for Generalized Queries on a
Committed Database�

Rafail Ostrovsky
UCLA

rafail@cs.ucla.edu

Charles Rackoff
University of Toronto

rackoff@cs.toronto.edu

Adam Smith
MIT

asmith@csail.mit.edu

July 20, 2004

Abstract

A consistent query protocol(CQP) allows a database owner to publish a very short string which
commitsher and everybody else to a particular databaseD, so that any copy of the database can later
be used to answer queries and give short proofs that the answers are consistent with the commitment.
Herecommitsmeans that there is at most one databaseD that anybody can find (in polynomial time)
which is consistent with. (Unlike in some previous work, this strong guarantee holdseven for owners
who try to cheat while creating.) Efficient CQPs for membership and one-dimensional range queries
are known [5, 17, 22]: given a query paira; b 2 R, the server answers with all the keys in the database
which lie in the interval[a; b℄ and a proof that the answer is correct.

This paper exploresCQPs for more general types of databases. We put forward a general technique
for constructingCQPs for any type of query, assuming the existence of a data structure/algorithm with
certain inherent robustness properties that we define (called adata robust algorithm). We illustrate our
technique by constructing an efficient protocol fororthogonal range queries, where the database keys
are points inRd and a query asks for all keys in a rectangle[a

1

; b

1

℄ � : : : � [a

d

; b

d

℄. Our data-robust
algorithm is within aO(logN) factor of the best known standard data structure (a range tree, due to
Bentley [2]).

We modify our protocol so that it is alsoprivate, that is, the proofs leak no information about the
database beyond the query answers. We show a generic modification to ensure privacy based on zero-
knowledge proofs, and also give a new, more efficient protocol tailored to hash trees.

Keywords: Commitment, zero-knowledge sets, authenticated data structures, range queries, database pri-
vacy.

�Preliminary work done during the summer of 2000 when all authors were visiting/working at Telcordia Technologies. Pre-
liminary version appeared as MIT LCS Technical Report TR-887, Feb. 2003 [27]. Work of the first author at UCLA is partially
supported by a gift from Teradata. Conference version inICALP 2004.

1

Contents

1 Introduction 2
1.1 Related Work 3
1.2 Our Contributions 4

2 Definitions 5
2.1 Consistent Query Protocols 5

2.1.1 Privacy .. . 6

3 Data-Robust Algorithms and Consistent Query Protocols 7
3.1 Data-Robust Algorithms 7
3.2 Constructing Consistent Query Protocols FromDRAs . 8

3.2.1 Pointer-Based Algorithms 8
3.2.2 Proof of Theorem 1 9

4 Orthogonal Range Queries 10
4.1 A Data-Robust Algorithm for Range Queries 11

4.1.1 One-Dimensional Range Trees 11
4.1.2 Two-Dimensional Range Trees 13

4.2 Efficient Query Protocol 15

5 Privacy for Consistent Query Protocols 15
5.1 Privacy Via Generic Techniques 15
5.2 Explicit-Hash Merkle Trees in Brief 16
5.3 Explicit-Hash Merkle Trees in Detail 17

5.3.1 Complexity of the Proofs 19
5.4 Efficient Privacy for Range Queries—Theorem 8 20

5.4.1 Complexity of the Proofs 23

References 23

1 Introduction

Informally, a consistent queryprotocol (CQP) allows a database owner to publish a short string which
commitsher to a particular databaseD, so that she can later answer queries and give short proofs that her
answers are consistent withD. Herecommitsmeans that she cannot change her mind aboutD — there is
at most one database she can find (in polynomial time) which isconsistent with (e.g. could be a secure
hash ofD). Similarly, she can only find valid proofs for query answerswhich are consistent withD. The
challenge is to make both the commitment and the proofs of consistency as short and simple as possible.

One may also requireprivacy– that is, the proofs of consistency should not leak any information on the
database beyond the query answers. Privacy is important, for example, in settings in which query answers
are sold individually, or in which the database contains personal data. Adding this requirement to aCQP

brings it much closer to the traditional cryptographic notion of a commitment scheme.
Below, we discuss relevant related work and then describe our results in detail.

2

1.1 Related Work

We discuss the related work in the context of cryptographic commitment protocols. These have been studied
extensively, and part of our contribution is to tie them in toan algorithmic point of view. A commitment
protocol allows Alice to put a valuea in a virtual envelope and hand it to Bob. Bob learns nothing about
the value (hiding), but Alice can later open the envelope, without being able to reveal a different valuea0

(binding).

Commitment Schemes for Large Datasets. The notion of commitment has been generalized consider-
ably to allow revealing only partial information about the committed data, using very little communication.
Merkle [24] proposed the following protocol for committingto a list ofN valuesa

1

; :::; a

N

: Pick a collision-
resistant hash-function1

H (say from2k bits tok bits), pair up inputs(a
1

; a

2

); : : : ; (a

N�1

; a

N

) and apply
H to each pair. Now, pair up the resulting hash values and repeat this process, constructing a binary tree
of hash values, until you get to a single root of lengthk. If the root of the tree is published (or sent to Bob
by Alice), the entire collection of values is now committed to, though not necessarily hidden—we discuss
hiding further below. To reveal any particular valuea

i

, Alice can reveal a path from the root toa
i

together
with all the siblings along the path. This requires onlyk logN bits. This idea has many cryptographic
applications, including efficient signature schemes [24, 6], efficient zero-knowledge arguments [16, 1] and
computationally sound proofs [21].

Recently Buldas, Laud and Lipmaa [4], Kilian [17] and Micaliand Rabin [22] independently generalized
this idea to allow committing to aset of values. The server produces a short commitment to her set of
(key; value) pairs which is made public. When a client makes amembership query(i.e. “do you have an
entry with keyx?”), the server returns the answer along with a short proof ofconsistency. (We call a scheme
for this task aCQP for membership queries.) A very similar data structure (again, a Merkle tree) also allows
one to also answer one-dimensionalrange queries, e.g. “What keys lie betweenx andy?” [5, 17, 22].
Merkle trees were subsequently modified to allow efficient updates by changing the structure to resemble a
skip list [18]. Our work generalizes these ideas to more complex queries and data structures, and provides
rigorous proofs of security.

Protocols with a Trusted Committer—Authenticated Data Structures. There is substantial work on
authenticated data structures[25], which allow one to guarantee the consistency of many replicated copies
of a database. That work tackles a different problem from ours, since it assumes that the commitment
phase is always performed honestly. The extra assumption isappropriate in many situations (e.g. certificate
revocation with a trusted certification authority2) and seems to allow greater efficiency: there are authenti-
cated data structure protocols for answering range queriesin timeO(N log

d�1

N) [13], as opposed to the
O(N log

d

N) time taken by the protocols of this paper. Indeed, our generic construction can be viewed as a
more robust, but possibly less efficient, version of the generic constructions of authenticated data structures
[25, 19, 8, 13].

Despite the greater efficiency it affords, the assumption ofa trusted committer is problematic. As argued
in [4], a dishonest certification authority could not easilybe taken to task for providing inconsistent answers
to revocation queries. There are other reasons to distrust the party generating the commitment. With a
pricing database, one may want guarantees against price discrimination by the database owner. Peer-to-peer
systems, where no individual processor in the network is fully trusted, provide further motivating examples
[18].

1A hash function familyH
�

(�) is collision-resistantif no poly-time algorithm given� can find a pair of inputs that map to the
same output for a randomly chosen key� (see Section 2).

2More generally, cryptographic commitment schemes with an honest committer have been useful in a variety of contexts, from
simplifying requirements on hash functions for signature schemes [26] to combined signature and encryption protocols[9].

3

Privacy for Committed Databases—Zero-Knowledge Sets. Micali, Rabin and Kilian [20] show how
to prove consistency of answers to membership queries whilealso hiding information about unanswered
queries. They require that consistency proofs leak nothingabout the database except the query answer—
not even the size of the database. (They call the primitive azero-knowledge set.) They give an efficient
protocol based on the DDH assumption, with proof lengthO(k logM) whereM is an upper bound on the
set size (k is the output length of the hash function). We show how to achieve the same result withpoly(k)
communication, under more general assumptions and for moregeneral types of queries. Subsequent to our
work, [15] achieved the results of [20] based on general assumptions.

1.2 Our Contributions

This paper considersCQPs for types of queries beyond simple membership and range queries. We give a
general framework for designing such protocols based on query algorithms with a certain robustness prop-
erty, and illustrate our paradigm fororthogonal range queries, constructing protocols with anO(k logN)

overhead over the fastest known standard query alogrithms.We also show how to make the protocolsprivate
without too much loss of efficiency.

A general paradigm for CQPs. We introducedata-robust algorithms(DRAs). These are search algorithms
(paired with data structures) which are robust against corruptions of the data by an unbounded,malicious
adversary: for any input—essentially, an arbitrary string— the algorithm will answer all queries consistently
with one (valid) database. Although this is trivial for datastructures which incorporate no redundancy, it
becomes more challenging for more complex structures. (We do not want the algorithm to have to scan the
entire data structure each time it is run.)

Assuming the existence of collision-resistant hash functions, anyDRA which accesses memory via point-
ers can be transformed into a consistent query protocol whose (non-interactive) consistency proofs have
length at mostO(kT), wherek is the output size of the hash function andT is the running time of theDRA.

DRAs provide a connection between special data structures and cryptographic protocols. A previous
connection was given by a Micciancio [23], for data structures which forget the order in which a sequence
of updates was performed. This property is quite different from the one we require.

CQP for Orthogonal Range Queries. We present a consistent query protocol scheme that allows efficient
orthogonal range queries ind dimensions. That is, the database consists of tuples(key

1

; :::; key

d

; value), a
query consists ofd intervals[a

1

; b

1

℄; : : : ; [a

d

; b

d

℄, and an answer is the set of all database elements whose
keys lie inside the corresponding hypercube. The server notonly proves that it has provided all the points in
the database which match the query, but also that no others exist.

Our consistency proofs have sizeO(k(m + 1) log

d

N), whereN is the database size,k is the security
parameter, andm is the number of keys in the database satisfying the query (the computation required is
O((m+1) log

d

N) hash evaluations). For range queries on a single key, our construction reduces essentially
to that of [5, 22, 17].

Our protocol is obtained by first constructing aDRA based on range trees, a classic data structure due
to Bentley [2]. Existing algorithms (in particular, the authenticated data structures of [19]) do not suffice,
as inconsistencies in the data structure can lead to inconsistent query answers. Instead, we show how local
checks can be used to ensure that all queries are answered consistently with a single database. Ford-
dimensional queries, the query time isO((m+1) log

d

N), wherem is the number of hits for the query and
N is the number of keys in the database. This is withinlogN of the best known (non-robust) data structure.

Privacy for Consistent Query Protocols—Generic Techniques. Consistent query protocols will, in gen-
eral, leak information about the database beyond the answerto the query. It is possible to add privacy to
anyCQPusing generic techniques: one can replace the proof of consistency� with a zero-knowledge proof

4

of knowledge of�. Surprisingly, this leads to schemes with good asymptotic communication complexity,
namelyO(poly(k)). This generic transformation can hide the size of the database, as in [20]. In partic-
ular, this means that one can buildzero-knowledge setprotocols [20] (i.e.CQP’s for membership queries)
based on general assumptions: for interactive protocols, it is sufficient to assume one-way functions and for
non-interactive protocols, it is sufficient to assume that non-interactive zero-knowledge proof systems exist.

Privacy for Consistent Query Protocols—Efficient Constructions. The generic constructions just men-
tioned are ungainly—the use of NP reductions and probabilistically checkable proofs means that the ad-
vantages only appear for extremely large datasets. We give asimpler zero-knowledge protocol tailored to
Merkle trees, which does not hide the size of the database. The crux of that protocol is to avoid NP reduc-
tions when proving zero-knowledge statements about valuesof the hash function, and so the result is called
anexplicit-hash Merkle tree. As a sample application, we show how this protocol can be used to add privacy
to one-dimensional range trees.

Organization. Section 2 formally definesCQPs. Section 3 explains data-robust algorithms, and the trans-
formation fromDRAs to CQPs. Section 4 gives ourDRA for orthogonal range queries. Section 5 discusses
techniques for makingCQPs private. Due to lack of space, all proofs are deferred to thefull version.

2 Definitions

We denote byy A(x) the assignment of the (possibly randomized) output of algorithm A on inputx to
variabley. A functionf(k) is negligible in a parameterk if f(k) 2 O(

1

k

) for all integers > 0.
A major component in all our constructions is a collision-resistant hash function family (CRHF). This is

a family of length-reducing functions (say from3k bits tok bits) such that it is computationally infeasible
to find a collision, i.e.x 6= y with h(x) = h(y) for a random memberh of the family. Such functions can
be constructed assuming the hardness of the discrete logarithm or factoring. Formally, a family of functions
fh

s;k

: f0; 1g

�

! f0; 1g

k

g is a CRHF if the functionsh
s;k

can be evaluated in time polynomial ink, and
there is a probabilistic polynomial time (PPT) key generation algorithm� such that for all polynomial-size,
randomized circuit familiesfA

k

g, the quantityPr[s �(1

k

); (x; y) A

k

(1

k

; s) : h

s;k

(x) = h

s;k

(y)℄ is
negligible ink.

2.1 Consistent Query Protocols

A query structure is a triple(D;Q; Q) whereD is a set ofvalid databases,Q is a set of possible queries,
andQ is a rule which associates an answera

q;D

= Q(q;D) with every query/database pairq 2 Q;D 2 D.
In a CQP, there is a server who, given a database, produces a commitment which is made public. Clients

then send queries to the server, who provides the query answer along with a proof of consistency of the
commitment. There may also be a public random string to be provided by a trusted third party. In most of
our protocols, the third party is only required for choosingthe collision-resistant hash function (and even
this can be done by the client if he is available before the database commitment is generated).

Definition 1. A (non-interactive)query protocolconsists of three probabilistic polynomial-time (PPT) al-
gorithms: a server setup algorithmS

s

, an answering algorithm for the serverS
a

, and a clientC. In some
settings, there may also be an efficient algorithm� for sampling any required public randomness.

� The setup algorithmS
s

takes as input a valid databaseD, a value1k describing the security parameter,
and the public information� �(1

k

). It produces a (public) commitment and some internal state
informationstate. Subsequently,S

a

may be invoked with a queryq 2 Q and the setup informationstate
as input. The corresponding output is an answer/proof pair(a; �), wherea = Q(q;D).

5

� The clientC receives as input the unary security parameter1

k, the public string�, the commitment, a
queryq and an answer/proof pair(a; �). C “accepts” or “rejects” the proof�.

Definition 2. A query protocol isconsistentif it is complete and sound:

� Completeness: For every valid databaseD and queryq, if setup is performed correctly then with over-
whelming probability,S

a

outputs both the correct answer and a proof which is acceptedby C. Formally,
for all q 2 Q and for allD 2 D,

Pr[� �(1

k

); (; state) S
s

(�;D); (a; �) S

a

(q; state) :

C(�; ; q; a; �) = “accept” anda = Q(q;D)℄ � 1� negl(k)

� (Computational) Soundness: For every non-uniform PPT adversary3
~

S: run ~

S to obtain a commitment
 along with a list of triples(q

i

; a

i

; �

i

). We say ~

S acts consistentlyif there existsD 2 D such that
a

i

= Q(q

i

;D) for all i for which �
i

is a valid proof. The protocol issoundif all PPT adversaries~S act
consistently. Formally:

Pr[� �(1

k

);

�

; (q

1

; a

1

; �

1

); : : : ; (q

t

; a

t

; �

t

)

�

~

S; b

i

 C(�; ; q

i

; a

i

; �

i

) :

9

~

D such that(a
i

= Q(q

i

;

~

D) or b
i

= 0) for all i℄ � 1� negl(k)

In fact, it is even more natural to require that the adversary“know” the database~D, say by requiring that
~

D be extractable in polynomial time from the description of the adversary. This is a more subtle property
to capture—we refer the reader to the discussion of proofs ofknowledge in [10].

2.1.1 Privacy

Informally, we require that an adversarial client interacting with an (honest) server learn no more information
from the answer/proof pairs he receives than what he gets from the answers alone. specifically, a simulator
who has access only to the query answers should be able to givebelievable-looking proofs of consistency.
The definition comes from [17, 22, 20], though we use a cleanerformulation due to [15].

Definition 3 (Computational privacy). A consistent query protocol for(D;Q; Q) is private if there ex-
ists a PPT simulatorSim, such that for every non-uniform PPT adversary~C, the outputs of the following
experiments are computationally indistinguishable:

� �(1

k

); �

0

;

0

; state

Sim

 Sim(1

k

);

(D; state

~

C

)

~

C(�); (D; state

~

C

)

~

C(�

0

);

(; state) S

s

(�;D);

Outputz ~

C

S

a

(�;state)

(; state

~

C

) Outputz ~

C

Sim(�;state

Sim

;Q(�;D))

(

0

; state

~

C

)

Here ~

C

O(�) denotes running~C with oracle access toO. The simulatorSim has access to a query oracle
Q(�;D), butasks only queries which are asked toSim by ~

C.

Hiding Set Size. In general, a private protocol should not leak the size of thedatabase [20]. Nonetheless,
for the sake of efficiency we will sometimes leak apolynomialupper boundT on the database size, and
call the corresponding protocolssize-T -private [17]. This can be reflected in the definition by giving the
simulator an upper boundT on the size ofD as an additional input. One essentially recovers the original
definition by lettingT be super-polynomial, e.g.T = 2

k.
3One could imagine protecting againstall adversaries and thus obtaining perfect soundness. We consider computational sound-

ness since much greater efficiency is then possible.

6

Interactive proofs. The definitions extend to a model where consistency proofs are interactive (although
the access of the simulator to the adversarial client is moretricky).

3 Data-Robust Algorithms and Consistent Query Protocols

In this section, we describe a general framework for obtaining secure consistent query protocols, based on
designing efficient algorithms which are “data-robust”. That is for any static data structure – even adver-
sarially corrupted – the algorithm will answer all queries consistently with one (valid) database. Assuming
the availability of a collision-resistant hash function, we show that any such algorithm which accesses its
input by “following” pointers can be transformed into a consistent query protocol whose (non-interactive)
consistency proofs have complexity at most proportional tothe complexity of the algorithm. (In fact, the
transformation works for arbitrary algorithms at an additional multiplicative cost oflogN , whereN is the
size of the database).

3.1 Data-Robust Algorithms

Suppose a programmer records a database on disk in a static data structure which allows efficient queries.
The data structure might contain redundant information, for example to allow searching on two different
fields. If the data structure later becomes corrupted, then subsequent queries to the structure might be
mutually inconsistent: for example, if entries are sorted on two fields, some entry might appear in one of the
two lists but not the other. A data-robust algorithm prevents such inconsistencies.

Suppose we have a query structure(D;Q; Q). A data-robust algorithm (DRA) for these consists of two
polynomial-time4 algorithms(T;A): First, a setup transformationT : D ! f0; 1g

� which takes a database
D and makes it into a static data structure (i.e. a bit string)S = T (D) which is maintained in memory.
Second, a query algorithmA which takes a queryq 2 Q and an arbitrary “structure”~S 2 f0; 1g� and
returns an answer. The structure~S needn’t be the output ofT for any valid databaseD.

Definition 4. The algorithms(T;A) form adata-robust algorithmfor (D;Q; Q) if:

� Termination A terminates in polynomial time onall input pairs(q; ~S), even when~S is not an output
from T .

� SoundnessThere exists a functionT �

: f0; 1g

�

! D such thatfor all inputs ~

S, the databaseD = T

�

(

~

S)

satisfiesA(q; ~S) = Q(q;D) for all queriesq.

(There is no need to give an algorithm forT �; we only need it to be well-defined.)

� CompletenessFor allD 2 D, we haveT �

(T (D)) = D.

(That is, on inputq andT (D), the algorithmA returns the correct answerQ(q;D).)

We only allowA readaccess to the data structure (although the algorithm may useseparate space of its
own). Moreover,A is stateless: it shouldn’t have to remember any information between invocations.

The running time of A. There is a naive solution to the problem of designing aDRA: A could scan the
corrupted structure~S in its entirety, decide which databaseD this corresponds to, and answer queries with
respect toD. The problem, of course, is that this requires at least linear time on every query(recall that
A is stateless). Hence the task of designing robust algorithms is most interesting when there are natural
sub-lineartime algorithms; the goal is then to maintain efficiency while also achieving robustness. In our

4We assume for simplicity that the algorithms are deterministic; this is not strictly necessary.

7

setting, efficiency means the running-time of the algorithmA oncorrect inputs, in either a RAM or pointer-
based model. On incorrect inputs, an adversarially-chosenstructure could, in general, makeA waste time
proportional to the size of the structure~S; the termination condition above restricts the adversary from doing
too much damage (such as setting up an infinite loop, etc).

Error model. Although the design ofDRAs is an algorithmic question, the error model is a cryptographic
one. Much work has been done on constructing codes and data-structures which do well against randomly
placed errors, or errors which are limited in number (witness the fields of error-correcting codes, fault-
tolerant computation and fault-tolerant data structures). However, in this setting, there are no such lim-
itations on how the adversary can corrupt the data structure. We only require that the algorithm answer
consistently for any given input structure. Our error modelis more similar to that of property testing and
probabilistically checkable proofs, where the goal is to test whether a given string is close to a “good”
string; however, we only require computational soundness,which allows us to use different (and simpler)
techniques.

3.2 Constructing Consistent Query Protocols FromDRAs

Given aDRA which works in a pointer-based memory model, we can obtain a cryptographically secure
consistent query protocol of similar efficiency. Informally, aDRA is pointer-based if it operates by following
pointer in a directed acyclic graph with a single source (seeSection 3.2.1 for details). Most common search
algorithms fit into this model.

Theorem 1. Let (T;A) be aDRA for query structure(D;Q; Q) which fits into the pointer-based framework
of Section 3.2.1. Suppose that on inputsq andT (D) (correctly formed), the algorithmA examinesbmemory
blocks and a total ofs bits of memory, usingt time steps. Assuming the availability of a public collision-
resistant hash function, there exists a consistent query protocol for(D;Q; Q) which has proof lengths+ kb

on queryq. The server’s computation on each query isO(s+ t+ kb).

To get a consistent query protocol from aDRA, we essentially build a Merkle tree (or graph, in fact)
which mimics the structure of the data, replacing pointers with hashes of the values they point to. The
client runs the query algorithm starting from hash of the unique source in the graph (that hash value is the
public commitment). When the query algorithm needs to follow a pointer, the server merely provides the
corresponding pre-image of the hash value. Details are in Section 3.2.2. If we run this transformation on
data-structures which are not data-robust, we still obtainan intersting guarantee: the resulting protocol is
secure as long as the server generating the commitment is honest. This is essentially the transformation of
[13, 19].

The remainder of this section contains the details and proofof Theorem 1. We first specify what we
mean by a pointer-based framework and then proof the theorem.

3.2.1 Pointer-Based Algorithms

We say a pair of algorithms(T;A) is pointer-basedif

1. A expects its input data structureS = T (D) to be arooteddirected graph of memory blocks. That is,
the output of the setup algorithmT is always the binary representation of a directed graph. Each node
in the graph has a list of outgoing edges as well as some associated data.

2. A accesses its inputS and uses node names in a limited way:

� A can get the contents of a nodeu in the graph by issuing the instructionget(u). This returns the
associated datadata

u

and a list of outgoing edgesv
1;u

; v

2;u

; : : : ; v

n

u

;u

.

8

� A always starts out by getting the contents of the root of the graph by issuing the instruction
getroot().
� The only operationsA performs on node names are (a) getting the contents of a node,and (b)

comparing two node names for equality.
� The only node names whichA uses are those obtained from the outgoing edge lists returned by

calls togetroot() andget(�).

For example,S could be a sequence of blocks separated by a distinguished character,S = b

1

: : :#b

n

.
Each blockb

i

would consist of some data (an arbitrary string) and “pointers”, each of which is the index (in
the stringS) of the start of another blockb

j

. The root of the graph could be the first block by convention.
Finally, we need some simple robustness properties of this graph representation (which can be satisfied

by the example representation above). We assume:

3. The binary representation of the graph is such that whenA is fed an improperly formed input~S (i.e.
one which is not an output ofT), then the behaviour ofget(�) andgetroot is not “too bad”:

� Whenget(u) or getroot() is called, if the corresponding part of the input string is not well-formed
(i.e. is not a tuple of the form(data

u

; v

1;u

; v

2;u

; : : : ; v

n

u

;u

)), then the call will return a distinguished
value?.
� Both get(�) andgetroot() always terminate in time linear in the length of the corrupted structure

~

S.

Many common search algorithms can be cast in this pointer-based framework. For example, the algo-
rithm for searching in a binary tree takes as input a tree, which it explores from the root by following pointers
to right and left children of successive nodes. Indeed, almost all search algorithms for basic dynamic data
types can be viewed in this way. Moreover, any algorithm designed for a RAM machine can also be cast in
this framework at an additional logarithmic cost: if the total memory space isN , simply build a balanced
tree of pointers of heightlogN , where thei-th leaf contains the data stored at locationi in memory.

3.2.2 Proof of Theorem 1

Let (T;A) be aDRA for query structure(D;Q; Q) which fits into the pointer-based framework described
above. For simplicity, suppose that a correctly formed structure (i.e. an output ofT) never contains a pointer
cycle, that is, the resulting graph is acyclic.5

Proof. The idea is to construct a “hash graph” which mimicks the datastructureT (D), replacing pointers
with hash values from the CRHF. LetH be a publicly available, randomly chosen member of a CRHF
with security parameterk. Depending on the setting, we can either assume thatH is common knowledge
(in which case there is no need for public randomness), or askexplicitly that a trusted third party output a
description ofH (in which case the distribution�(1k) is the key generator for the CRHF).

Setup algorithm. The server setup algorithmS
s

is as follows: on inputD, runT to getS = T (D). View
S as a directed graph, with memory blocks as nodes and pointersas edges. This graph can be topologically
sorted (by assumption: no pointer cycles). There is a singlesource, the query algorithm’s starting memory
block (i.e. the root of the graph)6. Now proceed from sinks to the source by adding a hash value (calledh

u

) at
each nodeu: For a sink, attach the hash of its binary representation; this is basicallyh

u

= H(data

u

). When
5This restriction is not necessary. General graphs can be handled at a logarithmic cost by building a tree over the memory

structure.
6There could in principle be other sources, but by assumptionon howA operates it will never access them, soS can safely

ignore them.

9

u is an internal node, replace each of its pointersv

i;u

by the hash values of the nodes they point to and then set
h

u

to be the hash of the binary representation of the transformed blockh
u

= H(data

u

; h

v

1;u

; : : : ; h

v

n

u

;u

).
At the end, one obtains a hashh

root

for the source. The server publishes the commitment = h

root

, and
storesS and the associated hash values as the internal variablestate.

Query algorithm. Given a queryq and the setup informationstate, the serverS
a

runs the robust algorithm
A on the data structureS, and keeps track of all the memory blocks (i.e. nodes) which are accessed by the
algorithm (by looking at calls to theget(�) instruction). Denote the set of accessed nodes byS

q

. The
answera is the output ofA; the proof of consistency� is the concatenation of the “transformed” binary
representations(data

u

; h

v

1;u

; : : : ; h

v

n

u

;u

) of all the nodesu 2 S

q

,as well as a description ofS
q

and where
to find each node in the string�.

Consistency check. On inputs; q; a; � (where� consists of a the description of a set of nodesS

q

as well
as their transformed representations), the clientC will verify the answer by runningA, using the proof� to
construct the necessary parts ofS.

The first step is to reconstruct the subgraph of memory blockscorresponding to the set of accessed nodes
S

q

. The clientC checks that :

� � is a sequence of correctly formed “transformed” binary representations of memory blocks along with
associated hash values.

� S

q

forms a subgraph entirely reachable from the root (sinceA starts from the root and follows pointers,
this holds when the server is honest).

� the hash values present are consistent: for each nodeu, and for each neighborv
i;u

of u which is inS
q

,
check that the valueh

v

i;u

attached tou is the hash of the transformed representation ofv

i;u

.

� the valueh
root

constructed from the input� is indeed equal to the public commitment.

Next,C runsA on this reconstructedS
q

. It checks that all the nodes requested byA are inS
q

and thatA
returns the correct valuea.

Since the hash function is collision-resistant, there is only one such subgraphS
q

which can be revealed
by the server. More precisely, there is one overall graph – the committed data structure – such that the
server can reveal (reachable) parts of the graph7. Thus the server is committed to a data structure~

S which
is bounded in size by the server’s memory. By the properties of the data-robust algorithm, an honest server
will always be able to answer a query and provide a valid proofof correctness, whereas a malicious server
can (at most) answer queries with respect to the databaseT

�

(

~

S).

4 Orthogonal Range Queries

In the case of join queries, a databaseD is a set of key/value pairs (entries) where each key is a pointin
R

d , and each query is a rectangle[a
1

; b

1

℄� � � � � [a

d

; b

d

℄. Note that these are also often called(orthogonal)
range queries, and we shall adopt this terminology here for consistency with the computational geometry
literature. For concreteness, we consider the two-dimensional case; the construction naturally extends to
higher dimensions. In two dimensions, each queryq is a rectangle[a

1

; b

1

℄ � [a

2

; b

2

℄. The query answer
Q(q;D) is a list of all the entries inD whose key(xkey; ykey) lies in q.

In this section we give a simple, efficientDRA for range queries and show how to modify it to make an
efficient consistent query protocol.

7The proof of this is standard: suppose that the server can produce two graphs consistent with the hash of the root = h

root

.
By induction on the distance from the root at which the two graphs differ, one can find a pair of strings which hash to the same
value

10

Algorithm 1. A

1DRT

([a; b℄; n;)

Input: a target range[a; b℄, a noden in a (possibly misformed)1-DRT.
Output: a set of(key; value) pairs.

1. if n is not properly formed (i.e. does not contain the correct number of fields)then return;

2. if n is a leaf:if a
n

= b

n

= key

n

andkey
n

2 [a; b℄, then returnf(key
n

; value

n

)g elsereturn;

3. if n is an internal node:

� l left

n

, r right

n

� if a
n

= a

l

� b

l

< a

r

� b

r

= b

n

then returnA
1DRT

([a; b℄; l) [A

1DRT

([a; b℄; r)

� elsereturn;

Figure 1: Data-robust algorithmA
1DRT

for querying one-dimensional range trees

4.1 A Data-Robust Algorithm for Range Queries

Various data structures for efficient orthogonal range queries exist (see [12] for a survey). The most efficient
(non-robust) solutions have query timeO((m + 1) log

d�1

N) for d-dimensional queries. We reviewmulti-
dimensional range trees(due to Bentley [2]), and show how they can be queried robustly. The query time
of the robust algorithm isO((m + 1) log

d

N). It is an interesting open question to find a robust algorithm
which does as well as the best non-robust algorithms.

4.1.1 One-Dimensional Range Trees

Multidimensional range trees are built recursively from one-dimensional range trees (denoted1-DRT),
which were also used by [5, 22, 17]. In a1-DRT, (key; value) pairs are stored in sorted order as the leaves of
a (minimum-height) binary tree. An internal noden stores the minimum and maximum keys which appear
in the subtree rooted atn (denoteda

n

andb
n

respectively). For a leafl, we takea
l

= b

l

to be the value of
thekey

l

key stored atl. Additionally, leaves store the valuevalue
l

associated tokey
l

.

Setup. Given a databaseD = f(key

1

; value

1

); : : : ; (key

N

; value

N

)g, the setup transformationT
1DRT

con-
structs a minimum-height tree based on the sorted keys. All the intervals[a

n

; b

n

℄ can be computed using a
single post-order traversal.

Robust queries. It is easy to see that a1-DRT allows efficient range queries when it is correctly formed
(given the rootn of a tree and a target interval[a; b℄, descend recursively to those children whose intervals
overlap with[a; b℄). However, in our setting we must also ensure that the queries return consistent answers
even when the data structure is corrupted. The data structure we will use is exactly the one above. To ensure
robustness we will modify the querying algorithm to check for inconsistencies.

Assume that we are given arootedgraph where all nodesn have an associated interval[a

n

; b

n

℄, and all
nodes have outdegree either 0 or 2. Aleaf l is any node with outdegree 0. A leaf is additionally assumed to
have to extra fieldskey

l

andvalue
l

. Consider the following definitions:

Definition 5. A noden is consistentif its interval agrees with those of its children. That is, ifthe children
arel andr respectively, then the node is consistent ifa

n

= a

l

� b

l

< a

r

� b

r

= b

n

. Moreover, we should
havea

n

= b

n

for a node if and only if it is a leaf.

11

A path from the root to a node isconsistentif n is consistent and all nodes on the path to the root are
also consistent.

Definition 6. A leaf l in a1-DRT is valid if there is a consistent path from the root tol.

In order to query a (possibly misformed)1-DRT in a robust manner, we will ensure that the query
algorithmA returnsexactlythe set of valid leaves whose keys lie in the target range. In a“normal” (i.e.
correctly formed)1-DRT, every leaf is valid, and so the algorithm will return the correct answer. In a
corrupted structure, the algorithm will always answer consistently with the database consisting of the set of
points appearing at valid leaves. Thus for any string~

S, the databaseT �

(

~

S) consists of the data at all the
valid leaves one finds when~S is considered as the binary encoding of a graph.

Algorithm 1 (A
1DRT

) will query a1-DRT robustly. When it is first called, the argumentn will be the
root of the graph. Essentially,A

1DRT

runs the ordinary (non-robust) search algorithm, checkingall nodes it
passes to ensure that they are consistent (Definition 5). It also checks that it never visits the same node twice
(in such a case, it must be that the graph the algorithm receives as input is not a tree).

The algorithmA
1DRT

operates in the “pointer-based” model. Thus the first node onwhich the algorithm
is called is obtained through a call togetroot(). The neighbours of an internal noden are its two children
left

n

andright
n

. For clarity of the algorithm, we have not explicitly included calls toget(�) in the description
of the algorithm.

The following lemma proves that one-dimensional range trees, along with the algorithmA
1DRT

, form a
DRA for range queries.

Lemma 2. The algorithmA

1DRT

will return exactly the set of valid leaves whose keys are in the target
range. In the worst case, the adversary can force the queriesto take timeO(s) wheres is the total size of
the data structure. Conversely, given a collection ofN entries there is a tree such that the running time of
the algorithm isO((m + 1) logN), wherem is the number of points in the target range. This tree can be
computed in timeO(N logN) and takesO(N) space to store.

Proof. On one hand, the algorithm is complete, since in a correctly formed tree every node will pass the
consistency checks, and so the algorithm will return exactly the set of leaves whose keys are in the target
range.

Before proving robustness, it is important to note that there are some kinds of misformed data we don’t
have to worry about. First, we can assume that all nodes are correctly formed (i.e. have the correct number
of fields and the correct types of data) since incorrectly formed nodes will be ignored by the algorithm. Thus
we can assume that the algorithm is indeed given some kind of graph as input, although it isn’t necessarily
a tree. Moreover, we can assume all nodes in the graph have outdegree either 2 or 0.

The proof of robustness follows from the properties of consistent nodes, which in turn follow from the
definitions. For any noden which is on a consistent path from the root:

1. The consistent path from the root is unique.

2. No valid leavesinsiden’s subtree have keysoutsiden’s interval.

3. If another noden0 is on a consistent path from the root, and[a

n

0

; b

n

0

℄ \ [a

n

; b

n

℄ 6= ;, thenn0 is either
an ancestor or a descendant ofn (thus one of the two intervals includes the other).

A corollary of these properties is thatno node will be visited twice by the algorithm. This is because the
algorithm expects intervals to shrink at each recurisve step, and so it will never follow a link which leads to
a node earlier on in the current recursion stack. Moreover, there can never be two distinct paths by which the
algorithm arrives at a noden: because the algorithm is always checking for consistency,the two ancestors

12

n

0 andn00 of n would have to be consistent nodes with overlapping intervals, contradicting the properties
above.

Hence, the algorithm will visit valid leaves at most once, and never visit invalid leaves. Moreover, it will
visit all the valid leaves in the target interval (by inspection). Thus runningA

1DRT

on a string~S procudes
answers consistent withT �

1DRT

(

~

S), the set of data points stored at valid leaves in the graph represented by
~

S.

4.1.2 Two-Dimensional Range Trees

Here, the database is a collection of triples(xkey; ykey; value), where the pairs(xkey; ykey) are all distinct
(they need not differ in both components). The data structure, a two-dimensional range tree (denoted2-
DRT), is an augmented version of the one above. The skeleton is a1-DRT (called theprimary tree), which
is constructed using thexkey’s of the data as its key values. Each node in the primary tree has an attached
1-DRT called itssecondarytree:

� Each leafl of the primary tree (which corresponds to a singlexkey valuea
l

= b

l

) stores all entries with
thatxkey value. They are stored in the1-DRT tree

l

which is constructed usingykey’s as its key values.

� Each internal noden (which corresponds to an interval[a

n

; b

n

℄ of xkey’s) stores a1-DRT tree

n

containing
all entries withxkey’s in [a

n

; b

n

℄. Again, this “secondary” tree is organized byykey’s.

The setup algorithmT
2DRT

creates a2-DRT given a database by first sorting the data on the keyxkey,
creating aprimary tree for those keys, and creating a secondary tree based on the ykey for each of nodes in
the primary tree. In a2-DRT, each point is storedd times, whered is its depth in the primary tree. Hence,
the total storage can be madeO(N logN) by choosing minimum-height trees.

Searching in a 2-DRT. The natural recursive algorithm for range queries in this structure takes time
O(log

2

N) [12]: Given a target range[a(x); b(x)℄� [a

(y)

; b

(y)

℄ and an internal noden, there are three cases:
if [a(x); b(x)℄ \ [a

n

; b

n

℄ = ;, then there is nothing to do; if[a(x); b(x)℄ � [a

n

; b

n

℄, then perform a search on
the second-level tree attached ton using the target range[a(y); b(y)℄; otherwise, recursively exploren’s two
children.

Based on the natural query algorithm, we can construct aDRA A

2DRT

by adding the following checks:

� All queries made to the 1-D trees (both primary and secondary) are made robustly following Algorithm 1
(A

1DRT

), i.e. checking consistency of each explored node.

� For every point which is retrieved in the query, make sure it is present and valid in all the secondary 1-D
trees which are on the path to the root (in the primary tree).

The following definition capturesvalidity, which is enforced by the checks above:

Definition 7. A point p = (xkey; ykey; value) in a (corrupted)2-DRT is 2-valid if

1. p appears at a valid leaf in the secondary1-DRT tree

l

belonging to aleaf l of the primary tree with key
valuexkey = a

l

= b

l

.

2. For every (primary) noden on the path tol from the root of the primary tree,n is consistent andp is a
valid leaf in the (one-dimensional) treetree

n

.

Now given a (possibly corrupted)2-DRT and a pointp = (xkey; ykey; value), it is easy to check whether
or notp is 2-valid: one first searches for a leafl with keyxkey in the primary tree, exploring only consistent
nodes. Then, for each noden on the path froml to the root (includingl and the root), one checks to ensure
thatp appears as a valid leaf in thetree

n

.

13

Algorithm 2. A

2DRT

([a

(x)

; b

(x)

℄� [a

(y)

; b

(y)

℄; n)

Input: a target range[a(x); b(x)℄� [a

(y)

; b

(y)

℄, a noden in a2-DRT.
Output: a set of(xkey; ykey; value) triples.

1. if n is not properly formed (i.e. does not contain the correct number of fields),
then return;.

2. Check for consistency (if check fails, return;):

� if n is a leafthen checka
n

= b

n

= key

n

� if n is an internal node,then checka
n

= a

left

n

� b

left

n

< a

right

n

� b

right

n

= b

n

3. (a) if [a
n

; b

n

℄ \ [a

(x)

; b

(x)

℄ = ; then return;

(b) if [a
n

; b

n

℄ � [a

(x)

; b

(x)

℄ then

� B A

1DRT

([a

(y)

; b

(y)

℄; tree

n

)

� Remove elements ofB for which xkey 62 [a

n

; b

n

℄

� if n is an internal node:
For each pointp in B, check thatp is 2-valid in eitherleft

n

or right
n

.
If the check fails, removep fromB.

� ReturnB

(c) Otherwise

�

B A

2DRT

�

([a

(x)

; b

(x)

℄ \ [a

left

n

; b

left

n

℄)� [a

(y)

; b

(y)

℄; left

n

�

[A

2DRT

�

([a

(x)

; b

(x)

℄ \ [a

right

n

; b

right

n

℄)� [a

(y)

; b

(y)

℄; right

n

�

� Remove elements ofB which are not valid leaves oftree
n

.
� ReturnB

Figure 2: Data-robust algorithmA
2DRT

for querying two-dimensional range trees

For robust range queries, we obtain Algorithm 2 (A

2DRT

). As before, the idea is to return only those
points which are 2-valid. Thus, for an arbitrary string~S, the induced databaseT �

2DRT

(

~

S) is the collec-
tion of all 2-valid points in the graph represented by~S. The following lemma shows that the algorithms
(T

2DRT

; A

2DRT

) form aDRA for two-dimensional range queries with query complexityO((m+ 1) log

2

N)

(wherem is the number of points in the target range).

Lemma 3. Algorithm 2 (A
2DRT

) will return exactly the set of 2-valid points which are in the target range. On
arbitrary inputs,A

2DRT

terminates in worst-case timeO(L), whereL is the total size of the data structure.
Conversely, given a collection ofN entries there is a tree such that the running time of the algorithm

A

2DRT

isO((m+1) log

2

N), wherem is the number of points in the target range. This tree can be computed
in timeO(N log

2

N) and takesO(N logN) space to store.

Proof. (sketch) As in the one-dimensional case, the algorithm willnever explore the same node twice, and
so we may think of the corrupted input to the algorithm as a tree. Moreover, since the algorithm is checking
for proper formatiing of nodes, we can assume that this graphconsists of a number of “primary” nodes with
secondary trees dangling off them. Finding the running timeof the algorithm on well-constructed inputs is
a straightforward exercise.

14

On one hand, one can see by inspection that any 2-valid point in the target range will be output by the
algorithm, since all the checks will be passed. Moreover, novalid point outside the target range will be
output.

On the other hand, consider any point that is output by the algorithm. It must have appeared in the set
B at stage 3(b) of the algorithm for some noden. Thus it is a valid leaf intree

n

. Moreover, it must be valid
in either left

n

or right
n

, because of the checks made at step 3(b). This means there is aleaf l which is a
descendant ofn such thatp is a valid point intree

l

and in all the trees of the nodes on the path fromn to l.
Finally, as the recursion exits (in step 3(c)), the algorithm will verify that p appears at a valid leaf in all the
nodes on the path from the root. ton. Thusp must be a 2-valid point.

Remark 1. As mentioned above, more efficient data structures and algorithms for planar orthogonal queries
exist [12], but it is not clear how to make them robust withoutraising the query time back toO((m +

1) log

2

N). This is an interesting open question.

One can use similar ideas to make robust range queries ond-dimensional keys, whered � 2. The
structure is built recursively, as in the 2-D case. Althoughthe algorithm is polylogarithmic for any fixed
dimension, the exponent increases:

Lemma 4. There exists aDRA for d dimensional range queries such that queries run in timeO((m +

1) log

d

N), and the data structure requiresO(N log

d

N) preprocessing andO(N log

d�1

N) storage.

4.2 Efficient Query Protocol

Given this algorithm, the (non-private) query protocol canbe constructed as in Section 3.2: the server creates
a tree as in the previous section. For each key/value pair, hecomputes a hash valueh

key

. He now works his
way up through the various levels of the tree, computing the hash values of nodes as the hash of the tuple
(min, max, left child’s hash value, right child’s hash value). A given key will appear roughlylogN times in
the tree; the same valueh

key

should be used each time.
To answer a range query, the server runs the algorithm of the previous section. He need only send the

hash values and intervals of nodes on the “boundary” of the subgraph (in memory) which was explored,
i.e. the leaves and the siblings of the nodes on their paths tothe root (the information corresponding to the
interior nodes can be reconstructed from the boundary nodes). This yields the following:

Theorem 5 (Two dimensions).Assuming the existence of collision-resistant hash functions, there is a
consistent query protocol for two-dimensional range queries with commitment sizek and non-interactive
consistency proofs of length at mostO(k(m+1) log

2

N), wherem is the number of keys in the query range,
andk is the security parameter (output size of the hash function).

For higher dimensions, our construction yields proofs of lengthO(k(m+ 1) log

d

N).

5 Privacy for Consistent Query Protocols

5.1 Privacy Via Generic Techniques

One can construct privateCQPs (Definition 3) with good asymptotic complexity using generic techniques,
as follows. Universal arguments, due to Barak and Goldreich [1], allow one to give an interactive, zero-
knowledge argument of knowledge of an NP statement of arbitrary polynomial length, using only a fixed,
poly(k) number of bits of communication. This allows one to handle arbitrary query structures (as long as
answering queries takes at most polynomial time): the server sends the answer to a query, and then proves

15

interactively that it “knows” a string~� which the client would accept as a valid proof of consistency. This
approach even hides the set size of the database as in [20], since the universal argument leaks only a super-
polynomial bound on the length of the statement being proven. Unfortunately, the known construction of
universal arguments is cumbersome, even by the standards oftheoretical cryptography, since it uses the
machinery of probabilistically checkable proofs.

One can gain some simplicity and efficiency by starting from a(non-private) efficientCQP, and replacing
each proof of consistency� with an ordinary zero-knowledge argument of knowledge (ZKAK) of � (for
example, see Goldreich [10], Chapter 4.7.3). If a public random string is available, one can also use non-
interactive zero-knowledge proofs of knowledge (NIZKPK).

This approach will typically leak some bound on the sizeN of the database, since both OrdinaryZKAK’s
andNIZKPK’s may leak a polynomial upper bound on the lenght of the statement being proven. One can
avoid that leakage if the original proofs take time and communication poly(logN), as with membership
and orthogonal range queries. ReplacingN with the upper bound2k, we once again again getpoly(k)
communication.

We summarize this discussion in Theorem 6. If we consider thespecific case ofCQP’s for membership
queries, then the theorem says thatzero-knowledge setprotocols [20] can be constructed based on general
assumptions, such as the existence of non-interactive zero-knowledge proof systems. A different proof of
this specific statement was later given by Healy et al. [15].

Theorem 6. (a) Assume that there exists a collision-resistant hash family. For any query structure with
polynomial complexity, there exists aprivate CQP with a constant number of rounds of interaction and
poly(k) communication.

(b) Given a public random string, anyCQPwith proofs of length̀ (N) can be made size-N -private with
no additional interaction at apoly(k `(N)) multiplicative cost in communication, assuming non-interactive
zero-knowledge proof systems exist.

5.2 Explicit-Hash Merkle Trees in Brief

Although the asymptotics of Theorem 6 are good, the use of generic NP reductions means that the advan-
tages only appear for large datasets. We therefore construct simpler protocols tailored to Merkle trees.

The basic Merkle tree commitment scheme leaks information about the committed values, since a
collision-resistant function cannot hide all informationabout its input.8 At first glance, this seems easy
to resolve: one can replace the valuesa

i

at the leaves of the tree with hiding commitmentsC(a

i

). This
doesn’t work, since there is may be additional structure to the valuesa

1

; :::; a

N

which is revealed when one
reveals a path in the tree. For example, inCQPs for range queries, the entries are stored in sorted order.
Revealing the path to a particular value then reveals its rank in the data set. The problem gets even more
complex when we want to reveal a subset of the values, as we have to hide not only whether paths go left or
right at each branching in the tree, but whether or not different paths overlap.

A generic solution is to provide a hiding commitment to the description of each node on the path, and
then give a zero-knowledge proof that the committed string is consistent with the public hash value (the
root of the hash tree). The main bottleneck is in proving thaty = H(x), given commitmentsC(x) and
C(y). It is not known how to do that without going through either general NP reductions or oblivious circuit
evaluation protocols, both of which are extremely inefficient when applied to a circuit as complex as a hash
function. This seems to be a fundamental problem with privacy of Merkle-tree commitments: revealing
the hash values reveals structural information about the tree, and not revealing them and instead proving
consistency using generic ZK techniques kills efficiency.

8There are limited ways in which hash functions may hide information, as discussed by Canetti, Micciancio and Reingold [3].
That definition of privacy is not strong enough for our setting.

16

The challenge, then, is to provide zero-knowledge proofs that a seta0
1

; :::; a

0

t

is a subset of the committed
values, without going through oblivious evaluation of suchcomplicated circuits. We present a modification
of Merkle trees where one reveals all hash-function input-output pairs explicitly, yet retains privacy. We call
our construction anExplicit-Hash Merkle Tree. The construction is explained below, in Section 5.3.

Lemma 7. Assuming the existence of collision-resistant hash families and homomorphic perfectly-hiding
commitment schemes,explicit-hash Merkle treesallow proving (in zero-knowledge) the consistency oft

paths (of lengthd = logN) usingO(d � t

2

� k

2

) bits of communication, wherek is the security parameter.
The protocol uses 5 rounds of interaction. It can be reduced to a single message in the random oracle model.

To illustrate the technique, we apply it to one-dimensionalrange queries. The main drawback of the
resulting protcol is that the server needs to maintains state between invocations; we denote byt the number
of previous queries.

Theorem 8. There exists an efficient,size-N -privateconsistent query protocol for 1-D range queries. For
the t-th query to the server, we obtain proofs of sizeO((t +m) � s � k

2

� logN), wheres is the maximum
length of the keys used for the data, andm is the total number of points returned on range queries made so
far. The protocol uses 5 rounds of interaction and requires no common random string. The protocol can be
made non-interactive in the random oracle model.

The remainder of this section gives the details of the results above. The proof of Lemma 7 can be found
in Section 5.3. The final subsection (Section 5.4) gives a proof of Theorem 8.

5.3 Explicit-Hash Merkle Trees in Detail

As mentioned above, Merkle trees allow one to commit to a large number of values via a short commitment,
and to reveal some subseta0

1

; :::; a

0

t

of those values very efficiently, by showing a path from the root to
that particular value. We explain how to modify that scheme to hide the remaining committed values,
while leaving the hash function evaluations explicit, i.e.without going through oblivious evaluation of such
complicated circuits. The goal of this section, then, is to prove Lemma 7.

Server storage. LetC(�) be a non-interactive commitment scheme to messages of arbitrary length. It will
be convenient to assume thatC(�) is homomorphic, that is given commitments tom

1

andm
2

it is possible
to produce a commitment tom

1

+ m

2

(9). Such schemes exist based on a number of assumptions, such
as the hardness of discrete logarithm extraction (e.g. Pedersen’s scheme [28]). LetH be selected from a
collision-resistant hash function family.

We will build a hash tree based on commitments to nodes, that is the server will actually commit to
commitments of the nodes in the tree. Moreover, rather than store explicit hash values in the tree we will
store commitments to those values. Specifically, for each noden in the tree, we will define three values:

� The basic string representation:x
n

is the information stored at the noden.

� A hash pre-image forn:
n

is a particular commitment to the valuex
n

via the commitment shcemeC(�).

� The corresponding hash value:y
n

= H(

n

) is the hash value forn which we will store at the parent ofn.

For a leafl, we havex
l

= a

l

, and
l

is a commitmentC(a

l

). For an internal noden, we havex
n

=

(H(

left

n

);H(

right

n

)), and
n

is a component-wise commitment tox
l

usingC(�), i.e.

l

 (C(H(

left

n

)); C(H(

right

n

))).
The public commitment is the valuey

root

= H(x

0

root

).

Definition 8. For two stringsx andy, we sayy � x if y is the hash of some valid commitment tox, i.e. if
there are random coins! such thaty = H(C(x;!).

9In fact, we only need to be able to prove the equality of two committed strings without revealing them.

17

Protocol outline. Suppose the server now wants to revealt values from the tree. Letd = logN be the
depth of the tree. For each leafl to be revealed, the server finds the corresponding pathn

1

; :::; n

d

wheren
1

is the root andn
d

is l. He sends to the client the dataa
l

, plus fresh commitments to the valuesx
n

i

andy
n

i

.
He then proves that these form a consistent path in two stages.

1. For each of thet paths, Server sendsu
1

= C(x

n

1

); :::; u

d

= C(x

n

d

) andv
1

= C(y

n

1

); :::; v

d

=

C(y

n

d

).

2. The server proves that each of the pairsu

i

; v

i

is a commitment to a pairx
i

; y

i

such thaty
i

� x

i

.

3. The server proves that the committed nodes actually form apath, that is for everyi > 1, the server
shows that one of they

i

appears as one of the components ofx

i�1

.

4. The server proves that the first node is indeed the root by opening the commitmentv
1

to reveal the
public commitment stringy

root

.

The first proof is the trickiest, since we wish to use only explicit hash function evaluation (never oblivi-
ous) but also not reveal any information on possible relations between the various paths.

Proving that y
i

� x

i

. There aret paths of lengthd for which this must simultaneousely be proven. At the
very least, the server will have to reveal the hash pre-images for all the nodes in thoset paths. However,
depending on how the paths overlap, there may be far fewer than td such nodes (and hence hash pre-
images), and any repetitions will be easy to detect. Thus, the server will additionally send enough “dummy
pre-images” so that the total number of committed nodes claimed to be in the hash tree is exactlytd. The
dummy values are other hash pre-images present in the hash tree. Formally:

1. 1. Let
�

n

(1)

; :::; n

(s)

	

be the union of the nodes on allt paths (s � td). We pad this set withtd� s other
nodesn

s+1

; :::; n

td

(arbitrary nodes will work) to get a set oftd nodes.

Let (1); :::; (s) be the corresponding pre-images, i.e.

(j)

=

n

(j)

.

2. Server sends
�

(1)

; :::;

(td)

	

to the client in random order.

3. Repeat the following cut-and-choose protocolk times:

1. Server chooses a permutation� S

td

, and sends fresh commitments0
n

(j)

= C(x

n

(j)

) to all td nodes

n

(j), as well as commitmentsC(y

n

(j)

) to the hash valuesy
n

(j)

= H(

(j)

). These commitments are
permuted according to� before sending.

2. Client answers with a challenge bitb f0; 1g.

3. If b = 0, the server:

1. Sends� proves that for each of thetd nodesn(j), 0
n

(j)

and(j) are commitments to the same value.
(This is easy since the commitment scheme is homomorphic.)

2. opens all commitments toy
n

(j)

(client verifiesy
n

(j)

= H(

(j)

)).

If b = 1, the server:

1. Shows that each of the commitmentsu
i

is equivalent to one of the commitments0
n

(j)

and that the
commitmentv

i

is equivalent to the corresponding committed hash valueC(y

n

(j)

).

At the end of this proof, the client should be convinced that each of the commitment pairs(u
i

; v

i

)

corresponds to one of the values(j), and that the underlying pairx
i

; y

i

satisfiesy
i

� x

i

.

18

Proving that the path is consistent. We now have pairs of commitmentsu
i

; v

i

which hide valid pairs
x

n

i

; y

n

i

, wherey
n

i

= H(C(x

n

i

)) for some valid commitment ofx
n

i

. We can easily prove thatu
1

; v

1

corresponds to the root by openingv
1

and checking it is equal to the public commitmenty

root

.
The server must now prove that for eachi < d, either:

� n

i+1

is the left child ofn
i

, which means that(y
n

i+1

= y

left

n

i

), or:

� n

i+1

is the right child ofn
i

, which means that(y
n

i+1

= y

right

n

i

).

To prove this, one uses a classic cut-and-choose proof: the server commits to a permutation ofy
left

n

i

andy
right

n

i

. Depending on the client’s challenge, the server either proves that the two values were a correct
permutation of the real values (this requires only showing equality, which is easy with homomorphic com-
mitments), or proves that one of the values isy

n

i+1

. Repeating thisk times will lower the soundness error
of the proof to2�k.

5.3.1 Complexity of the Proofs

One can see by inspection that the communication complexityof this proof is dominated by the proofs that
y

i

� x

i

. Each phase of the cut-and-choose protocol requires transmitting O(tdk) bits, and so the overall
communication complexity isO(t

2

dk

2

) bits.

Round complexity. The protocol consists of a number ofk-round cut-and-choose proofs. Because these
proofs are not interdependent, we can run them all in parallel without losing zero-knowledge, so long as we
use the same random coins for each of the proofs, i.e. at each round the client sends only a single challenge
bit, which is used in all the proofs. (This is not true of ZK proofs in general, but it is true for our protocol.)
Thus, we easily obtain ak-round protocol.

This can actually be improved substantially. As a first observation, we can collapse thek rounds of in-
teraction together in order to obtain a 3-round protocol—that is, all challenges are sent simultaneously. This
protocol is no longer provably zero-knowledge, but does retain witness-indistinguishability(this property is
preserved by parallel repetition of protocols, see [10]).

Next, we can use various transformations to obtain a zero-knowledge proof.

5-round zero-knowledge based on perfect trapdoor commitments One can use standard folklore techniques
to transform the 3-round, public coin witness-indistinguishable proof of knowledge into a ZK proof
of knowledge. This increases the complexity to 5 rounds, andrequires an additional assumption of
perfectly hiding trapdoor commitment schemes (which existbased on the discrete log assumption and
the hardness of factoring). In the first round, the server sends the parameters for a perfectly-hiding
trapdoor commitment scheme. The client responds with a commitment to the challenges he will use
in the protocol. They then run the 3-round protocol, using the committed challenges. Along with his
response to the challenges, the server sends the trapdoor information for the commitment scheme.

Non-interactive zero-knowledge based on a random oracleIf a random oracle is available, then we can in
fact use the Fiat-Shamir technique to remove interaction completely without losing zero-knowledge,
since our underlying proofs require only public coins. The idea is to replace the verifier’s challenges
with the output of the call to the random oracle on the first message of the protocol. We refer the
reader to [11] for a discussion of the transformation and itslimitations (in the context of signature
schemes).

As a final note, it isnotsufficient to transform our protocol to obtain a zero-knowledge proof of the exis-
tence of a witness – since the commitments involved are only computationally sound, a proof of knowledge
is necessary.

19

5.4 Efficient Privacy for Range Queries—Theorem 8

Given the efficient consistent query protocols for join queries described in Section 3 and Section 4, privacy
can be achieved by applying generic witness-indistinguishable or zero-knowledge proofs of knowledge, as
described in Section 5.1. However, even for our efficient protocols these will be very complex, as they will
require as the least oblivious evaluation of the circuit forhash functionH.

Instead, we present efficient, private consistent query protocols for 1-D range queries, based on the
explicit-hash technique of Section 5.3. The main drawback is that our protocol is not memoryless: the
server must remember what queries have been made so far in order to ensure that no information is leaked
from a proof.

The main tool used in the construction is a sub-protocol which, given commitments to valuesC(a) and
C(b), allows the server to prove thata < b.

The first step is to modify the range tree so thatall consistency proofs have length exactlyd = dlogNe.
Subsequently, we show how to achieve privacy efficently for membership queries, and finally for range
querires.

Modified range tree. We start from the basic consistent query protocol for membership and range queries,
based on range trees. First we modify the data structure slightly so that the length of a proof of consistency
can be calculated exactly from the number of data points returned on a given query. Specifically, we ensure
thatall consistency proofs have length exactlyd = dlogNe, and that the ranges of the children of a noden

form a partition of[a
n

; b

n

℄ about the splitting pointsplit
n

.

� Instead of storing at each internal noden the minimum and maximum keys which appear in the subtree
rooted at that node, we store a larger interval[a

n

; b

n

℄, which nonetheless has the property that all keys
key in the subtree satisfya

n

< key < b

n

.

At each branching we require that the children’s intervals partition that of their parent, and the point
at which they cut the parent’s interval is stored at the parent and denotedsplit

n

. Thus, the consistency
check of Algorithm 1 becomesa

l

< b

l

= split

n

= a

r

< b

r

. If n is a leaf, the consistency check
becomesa

n

< key

n

< b

n

.

� For simplicity, we assume that keys are all integers in a known intervalf1; :::; 2s � 2g. The values
0; 2

s

� 1 are set aside as special values, denoted�1 and1, respectively.

� In order to ensure that it is always possible to split intervals so thata
n

< key

n

< b

n

at the leaves, we
can require that all keys be even numbers (this at most increases the size bounds by 1).

� In every tree, we insert the values�1+ 1 = 1 and1� 1 = 2

s

� 2, so that the range stored at the
root is always in fact[�1;1℄.

� We assume that the number of leaves in the tree is a power of 2 sothat all leaves are at the same depth.
This meansN = 2

d

� 2 for some integerd. This at most doubles the number of points we must store
in the database.

The consistency proof for a membership query in this new structure will always consist of exactlyd
nodes (whereN = 2

d

� 2), even for queries which return “key not present”. Consistency proofs for range
queries comprisem+ 2d nodes, wherem is the number of data points in the range.

Privacy for membership queries. We first describe how to achieve privacy for membership queries, and
then explain how to generalize the technique for range queries.

20

The protocol outline is the same as for explicit hashing, except that additional range information is stored
at the internal nodes. However, in the case of range trees theproof that the path is consistent is considerably
more complex, since it involves proving statements of the form a < b.

Server storage. This is the same as in the explicit hashing protocol, except that the stringx
n

contains
additional information: for internal nodes it containsa

n

; b

n

andsplit
n

. For leaves, we add the rangea
n

; b

n

,
plus the valueskey

n

andvalue
n

(note that for efficiency,value
n

can be the hash of the value stored at the
leaf).

Moreover, all the range bounds are committed tobit-by-bit instead of as a monolithic string. This will be
necessary to get fast consistency checks. If all keys are integers less than2s, then each number will require
sk bits to be committed.

Proving y

i

� x

i

. As before, the server commits to nodes and their hash values via d pairsu
i

; v

i

. The goal
is to prove that these correspond to pairsx

i

; y

i

wherey
i

� x

i

. This is where the protocol requires the server
to have memory. As before, the server will send a set of possible hash pre-images for the nodes in the path,
and prove that each node in the path corresponds to at least one of these hash pre-images. The problem lies
in choosing that set of possible hash pre-images. If the server reveals only those necessary for this path,
then two different queries will reveal a lot about how the twodifferent paths overlap. Instead, the server
will always send all of the pre-images sent on the previous query, plusd new pre-images (regardless of how
many new pre-images are really necessary). Thus, on thet-th query, the server sendstd possible pre-images,
and runs the same cut-and-choose protocol to show that the committed pairs satisfyy

i

� x

i

.

Proving that the path is consistent. We now have pairs of commitmentsu
i

; v

i

which hide valid pairs
x

n

i

; y

n

i

. We can easily prove thatu
1

; v

1

correspond to the root by openingv
1

and checking it is equal
to the public commitmenty

root

. The basic check which must be performed are essentially thesame as in
Section 5.3, except that now we must add checks of the forma < b. We will show how to prove such
statements below. First, we give the outline of the consistency checks.

Suppose that we have a subprotocol for proving thata < b or a � b given two commitmentsC(a) and
C(b). Then the server can prove that the path consistent as follows:

� For eachi < d, we havea
n

i

< split

n

i

< b

n

i

.

� For eachi < d, either:

– n

i+1

is the left child ofn
i

, which means that(a
n

i+1

= a

n

i

) and(b
n

i+1

= split

n

i

) and(y
n

i+1

=

y

left

n

i

), or:

– n

i+1

is the right child ofn
i

, which means that(a
n

i+1

= split

n

i

) and(b
n

i+1

= b

n

i

) and(y
n

i+1

=

y

right

n

i

).

To prove this, one uses a classic cut-and-choose proof: the server commits to a permutation of
(a

n

i

; split

n

i

; y

left

n

i

) and (split

n

i

; b

n

i

; y

right

n

i

). Depending on the client’s challenge, the server ei-
ther proves the two triples were a correct permutation of thereal values (this requires only showing
equality, which is easy with homomorphic commitments), or proves that one of the two triples is equal
to (a

n

i+1

; b

n

i+1

; y

n

i+1

).

Repeating thisk times will lower the soundness error of the proof to2

�k.

� For the leafl = n

d

, we havea
l

< key

l

< b

l

.

� For the leafl = n

d

, the revealed query answer is correct. If the query was for value key, we must
check thata

l

< key < b

l

and eitherkey = key

l

or key 6= key

l

, depending on whether the query
answer was positive or negative.

21

Thus, we need only show how to prove thata < b, a � b ora 6= b) for two committed valuesC(a); C(b).

Proving a < b, a � b, a 6= b. Suppose we haveC(a); C(b) for two integersa; b 2 f0; :::; 2s � 1g. The
server wishes to prove to the client thata < b. A proof of the statementa � b would proceed similarly. The
proof thata 6= b is in fact much easier and we leave it as an easy exercise.

1. Leta
1

; :::; a

s

be the binary representation ofa andb
1

; :::; b

s

be the binary representation ofb. Because
we asked that the server commit bit-by-bit, we haveC(a

1

); :::; C(a

s

) andC(b

1

); :::; C(b

s

).

2. LetC 0

() be a commitment scheme which allows one to commit to one of three valuesf0; 1; �g. We
only require that it be easy to prove that two commitments areequal.10

Suppose that the firstt most significant bits ofa andb are equal. Then the server sends fresh commit-
ments to the bits ofa andb, except that for the firstt bits of each he commits to� instead.

The problem of verifying thata < b can now be reduced to one of local pattern checking. There are
four sequences of committed bits. It must be that�’s appear in the two last sequences only when the
bits of a; b are equal, and in all other positions the bits are copied faithfully. Moreover, it must be
that the first position where�’s do not appear hasa

i

= 0 andb
i

= 1. This means we must check2s
patterns, each on four positions.

However, pattern checking can be done with a cut-and-chooseprotocol: the server commits to a
permutation of all the possible patterns which apply to a given subset of bits (in our setting, there are
always less than 20 patterns). Then he either opens all the patterns, or shows that one of them matches
the positions he is checking. Repeatk times for soundness error2�k.

Achieving privacy for range queries. In order to achieve privacy for range queries, we build on the
protocol above for membership queries. For each point in therange of the query, the server gives a proof
of membership as above. For the two endpoints, the server gives an almost-complete proof of membership:
he gives a path to the unique leaf which contains that endpoint, but does not prove any relation between the
endpoint and the key at that leaf. Instead, he proves that theanswers he has given cover the entire range:

1. The leaves in the range should be contiguous. This can be proven easily by provingb
l

= a

l

0 for
adjacent leavesl; l0.

2. The endpoints should be proven correct. Suppose the queryinterval is[a; b℄. Let l be the leaf corre-
sponding to the left endpointa. Let l0 be the leaf corresponding to the leftmost point in the range.The
left endpoint is correct if either

� a

l

= a

l

0 anda
l

< a � key

l

, or

� b

l

= a

l

0 andkey
l

< a � b

l

This can be proven by a cut-and-choose as before.

The proof of correctness of the right endpoint is similar.

Note that one can save some of the complexity of the membership proofs by running all the proofs that
the various paths are in the hash tree together (see below).

10This can be implemented by having each commitment be a pair ofbit commitments, where a commitment to0; � represents
the bit� and a commitment to1; � always represents�.

22

5.4.1 Complexity of the Proofs

The communication complexity of the proof of membership canbe seen by inspection to beO(t � d � s � k

2

),
wheret is the number of queries so far,d is the depth of the hash tree (= logN), s is the bound on the length
of the keys, andk is the security parameter.

As for range queries, the complexity of the proofs can be madeO

�

(t+m) � d � s � k

2

�

, wheret is the
number of queries so far andm is the total number of points returned from all queries so far. Note: The
protocols of Micali et al. [20] formembershipqueries are more efficient than the protocol above. However,
their techniques do not generalize to range queries.

Round complexity As in the discussion of explicit-hash Merkle trees, we can obtainwitness-indistinguishability
with a 3-round, public coin protocol,zero-knowledgeby increasing the complexity to 5 rounds, and we can
remove all interactivity if we assume the existence of a random oracle.

Acknowledgements

We thank Leo Reyzin and Silvio Micali for helpful discussions.

References

[1] B. Barak and O. Goldreich. Universal Arguments. InProc. Complexity (CCC) 2002.

[2] J. L. Bentley. Multidimensional divide-and-conquer.Comm. ACM, 23:214–229, 1980.

[3] R. Canetti, D. Micciancio and O. Reingold. Perfectly One-Way Probabilistic Hash Functions. InSTOC 1998, pp.
131-140.

[4] A Buldas, P. Laud and H. Lipmaa. Eliminating Counterevidence with Applications to Accountable Certificate
Management.J. Computer Security, 2002. (Originally inCCS 2000.)

[5] A. Buldas, M. Roos, J. Willemson. Undeniable Replies to Database Queries. InDBIS 2002.

[6] I. B. Damgård, T. P. Pedersen, and B. Pfitzmann. On the existence of statistically hiding bit commitment schemes
and fail-stop signatures. InCRYPTO ’93, pp. 22–26.

[7] A. De Santis and G. Persiano Zero-Knowledge Proofs of Knowledge Without Interaction (Extended Abstract).
In Proc. of FOCS 1992, pp. 427-436.

[8] P. Devanbu, M. Gertz, C. Martel, S. Stubblebine. Authentic Third-party Data Publication. InDBSec 2000., p.
101–112.

[9] Y. Dodis and J. Hea An. Concealment and Its Applications to Authenticated Encryption. InEUROCRYPT 2003,
May 2003.

[10] O. Goldreich. Foundations of Cryptography, Vol. 1. Cambridge University Press, 2001.

[11] S. Goldwasser and Y. Tauman. On the (In)security of the Fiat-Shamir Paradigm. InFOCS2003.

[12] J. Goodman and J. O’Rourke, editors.Handbook of Discrete and Computational Geometry. CRC Press, 1997.

[13] M. T. Goodrich, R. Tamassia, N. Triandopoulos and R. Cohen. Authenticated Data Structures for Graph and
Geometric Searching. InProc. RSA Conference, Cryptographers’ Track, 2003.

[14] S. Halevi and S. Micali. Practical and provably-securecommitment schemes from collision-free hashing. In
CRYPTO ’96, p. 201–215.

[15] A. Healy, A. Lysyanskaya, T. Malkin, L. Reyzin. Zero-Knowledge Sets from General Assumptions. Manuscript,
March 2004.

23

[16] J. Kilian. A note on efficient zero-knowledge proofs andarguments. In24th STOC, 1992.

[17] J. Kilian. Efficiently committing to databases. Technical report, NEC Research, 1998.

[18] P. Maniatis and M. Baker. Authenticated Append-only Skip Lists. ArXiv e-print cs.CR/0302010, February, 2003.

[19] C. Martel, G. Nuckolls, M. Gertz, P. Devanbu, A. Kwong, S. Stubblebine. A General Model for Authentic Data
Publication. Manuscript, 2003. http://www.cs.ucdavis.edu/˜devanbu/files/model-paper.pdf.

[20] S. Micali, M. Rabin and J. Kilian. Zero-Knowledge Sets.In Proc. FOCS 2003.

[21] S. Micali. Computationally Sound Proofs.SIAM J. Computing, 30(4):1253–1298, 2000.

[22] S. Micali and M. Rabin. Accessing personal data while preserving privacy. Talk announcement (1997), and
personal communication with M. Rabin (1999).

[23] D. Micciancio. Oblivious data structures: applications to cryptography. InProc. STOC 1997.

[24] R. Merkle A digital signature based on a conventional encryption function. InCRYPTO ’87, pp. 369–378, 1988.

[25] M. Naor and K. Nissim. Certificate Revocation and Certificate Update. In7th USENIX Security Symposium,
1998.

[26] M. Naor, M. Yung. Universal One-Way Hash Functions and their Cryptographic Applications. In21st STOC,
1989.

[27] R. Ostrovsky, C. Rackoff, A. Smith. Efficient Consistency Proofs on a Committed Database MIT LCS Technical
Report TR-887. Feb 2003. See http://www.lcs.mit.edu/publications

[28] T.P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. InCRYPTO ’91.

24

