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Abstract

We present the first efficient Identity-Based Encryption (IBE) scheme that is fully secure
without random oracles. We first present our IBE construction and reduce the security of our
scheme to the decisional Bilinear Diffie-Hellman (BDH) problem. Additionally, we show that our
techniques can be used to build a new signature scheme that is secure under the computational
Diffie-Hellman assumption without random oracles.

1 Introduction

Identity-Based Encryption allows for a party to encrypt a message using the recipient’s identity
as a public key. The ability to use identities as public keys avoids the need to distribute public
key certificates. This can be very useful in applications such as email where the recipient is often
off-line and unable to present a public-key certificate while the sender encrypts a message.

The first efficient and secure method for Identity-Based Encryption was put forth by Boneh and
Franklin [4]. They proposed a solution using efficiently computable bilinear maps that was shown
to be secure in the random oracle model. Since then, there have been schemes shown to be secure
without random oracles, but in a weaker model of security know as the Selective-ID model [9, 1].
Most recently, Boneh and Boyen [2] described a scheme that was proved to be fully secure without
random oracles; the possibility of such a scheme was to that point an open problem. However, their
scheme is too inefficient to be of practical use.

We present the first efficient Identity-Based Encryption scheme that is fully secure without
random oracles. The proof of our scheme makes use of an algebraic method first used by Boneh
and Boyen [1] and the security of our scheme reduces to the decisional Bilinear Diffie-Hellman
(BDH) assumption.

We additionally show that our IBE scheme implies a secure signature scheme under the compu-
tational Diffie-Hellman assumption without random oracles. Previous practical signature schemes
that were secure in the standard model relied on the Strong-RSA assumption [12, 11] or the Strong-
BDH assumption [3].

1.1 Related Work

Shamir [16] first presented the idea of Identity-Based Encryption as a challenge to the research
community. However, the first secure and efficient scheme of Boneh and Franklin[4] did not appear
until much later. The authors took a novel approach in using efficiently computable bilinear maps
in order to achieve their result.

Canetti et. al. [9] describe a weaker model of security for Identity-Based Encryption that they
term the Selective-ID model. In the Selective-ID model the adversary must first declare which
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identity it wishes to be challenged on before the global parameters are generated. The authors
provide a scheme that is provably secure in the Selective-ID model without random oracles. Boneh
and Boyen [1] improve upon this result by describing an efficient scheme that is secure in the
Selective-ID model.

Finally, Boneh and Boyen [2] describe a scheme that is fully secure without random oracles.
However, their construction is too inefficient to be of practical use.

1.2 Organization

We organize the rest of the paper as follows. In Section 2 we give our security definition. In
Section 3 we describe our complexity assumptions. In Section 4 we present the construction of
our IBE scheme and follow with a proof of security in Section 5. In Section 6 we discuss how our
scheme can be extended to a hierarchical identity-based encryption scheme and how that can be
used to achieve CCA-security. We discuss the transformation to a signature scheme in Section 7.
Finally, we conclude in Section 8.

2 Security Definitions

In this section we present the definition of semantic security against passive adversaries for Identity-
Based Encryption. This definition was first described by Boneh and Franklin [4]. Consider the
following game played by an adversary. The game has four distinct phases:

Setup The challenger generates the master public parameters and gives them to the adversary.

Phase 1 The adversary is allowed to make a query for a private key, v, where v is an identity
specified by the adversary. The adversary can repeat this multiple times for different identities.

Challenge The adversary submits a public key, v∗, and two messages M0 and M1. The adver-
sary’s choice of v∗ is restricted to the identities that he did not request a private key for in Phase
1. The challenger flips a fair binary coin,γ, and returns an encryption of Mγ under the public key
v∗.

Phase 2 Phase 1 is repeated with the restriction that the adversary cannot request the private
key for v∗.

Guess The adversary submits a guess, γ′, of γ.

Definition 1 (IBE Semantic Security). An Identity-Based Encryption scheme is (t, q, ε)-semantically
secure if all t-time adversaries making at most q private key queries have at most an ε in breaking
our scheme.

3 Complexity Assumptions

We briefly review the facts about groups with efficiently computable bilinear maps. We refer the
reader to previous literature [4] for more details.
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Let G, G1 be s groups of prime order p and g be a generator of G1. We say G1 has an admissible
bilinear map, e : G × G → G1, into G1 if the following two conditions hold. The map is bilinear;
for all a, b we have e(ga, gb) = e(g, g)ab. The map is non-degenerate; we must have that e(g, g) 6= 1.

3.1 Decisional Bilinear Diffie-Hellman (BDH) Assumption

The challenger chooses a, b, c, z ∈ Zp at random and then flips a fair binary coin β. If β = 1 it
outputs the tuple (g,A = ga, B = gb, C = gc, Z = e(g, g)abc). Otherwise, if β = 0, the challenger
outputs the tuple (g,A = ga, B = gb, C = gc, Z = e(g, g)z). The adversary must then output a
guess β′ of β.

An adversary, B, has at least an ε advantage in solving the decisional BDH problem if

∣∣∣∣Pr
[
B
(
g, ga, gb, gc, e(g, g)abc

)
= 1
]

− Pr
[
B
(
g, g, ga, gb, gc, e(g, g)z

)
= 1
] ∣∣∣∣ ≥ 2ε

where the probability is over the randomly chosen a, b, c, z and the random bits consumed by B.
We refer to the left hand side as PBDH and the right hand side as RBDH .

Definition 2. The decisional (t, ε)-BDH assumption holds if no t-time adversary has at least ε
advantage in solving the above game.

3.2 Computational Diffie-Hellman (DH) Assumption

The challenger chooses a, b ∈ Zp at random and outputs (g,A = ga, B = gb). The adversary then
attempts to output gab ∈ G. An adversary, B, has at least an ε advantage if

Pr
[
B
(
g, ga, gb

)
= gab

]
≥ ε

where the probability is over the randomly chosen a, b and the random bits consumed by B.

Definition 3. The computational (t, ε)-DH assumption holds if no t-time adversary has at least ε
advantage in solving the above game.

4 Construction

Our construction can be viewed as a modification of the Boneh-Boyen [1] scheme. We first present
our construction then describe its relation to the Boneh-Boyen scheme.

Let G be a group of prime order, p, for which there exists an efficiently computable bilinear
map into G1. Additionally, let e : G×G → G1 denote the bilinear map and g be the corresponding
generator. The size of the group is determined by the security parameter. Identities will be
represented as bitstrings of length n, a separate parameter unrelated to p. We can also let identities
be bitstrings of arbitrary length and n be the output length of a collision-resistant hash function,
H : {0, 1}∗ → {0, 1}n. Our construction follows.
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Setup The system parameters are generated as follows. A secret α ∈ Zp is chosen at random.
We choose a random generator, g ∈ G, and set the value g1 = gα and choose g2 randomly in G.
Additionally, the authority chooses a random value u′ ∈ G and a random n-length vector U = (ui),
whose elements are chosen at random from G. The published public parameters are g,g1, g2,u′,
and U . The master secret is gα

2 .

Key Generation Let v be an n bit string representing an identity, vi denote the ith bit of v,
and V ⊆ {1, . . . , n} be the set of all i for which vi = 1. (That is V is the set of indicies for which
the bitstring v is set to 1.) A private key for identity v is generated as follows. First, a random
r ∈ Zp is chosen. Then the private key is constructed as:

dv =

(
gα
2

(
u′
∏
i∈V

ui

)r

, gr

)
.

Encryption A message M ∈ G1 is encrypted for an identity v as follows. A value t ∈ Zp is
chosen at random. The ciphertext is then constructed as

C =

(
e(g1, g2)tM, gt,

(
u′
∏
i∈V

ui

)t)
.

Decryption Let C = (C1, C2, C3) be a valid encryption of M under the identity v. Then C can
be decrypted by dv = (d1, d2) as:

C1
e(d2, C3)
e(d1, C2)

=
(
e(g1, g2)tM

) e(gr,
(
u′
∏

i∈V ui

)t)
e(gα

2

(
u′
∏

i∈V ui

)r
, gt)

=
(
e(g1, g2)tM

) e(g,
(
u′
∏

i∈V ui

)rt)

e(g1, g2)te(
(
u′
∏

i∈V ui

)rt
, g)

= M.

4.1 Efficiency

If the value of e(g1, g2) is cached then encryption requires on average n
2 (and at most n) group

operations in G, two exponentiations in G, one exponentiation in G1, and one group operation
in G1. Decryption requires two bilinear map computations, one group operation in G1 and one
inversion in G1.

4.2 Similarity to Boneh-Boyen

Our construction is a modification of Boneh and Boyen’s [1] in that that for an identity v we
evaluate u′

∏
i∈V ui whereas in their scheme they evaluate u′gv

1 , where v is interpreted as an integer.
(We technically are referring to the first scheme presented in Boneh-Boyen [1] when only a level
one hierarchy is used. Although, our scheme can be extended to be a hierarchical scheme in an
analogous manner.) In the next section we show that, remarkably, this small modification is all
that is needed to make the scheme fully secure.
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5 Security

We now prove the security of our scheme.

Theorem 1. Our IBE- scheme is (t, q, ε) secure assuming the decisional (t+O(ε−2 ln(ε−1)λ−1 ln(λ−1)),
ε

32(n+1)q ) BDH assumption holds, where λ = 1
8(n+1)q .

Proof. Suppose there exists a (t, q, ε)-adversary, A against our scheme. We construct a simulator,
B, to play the decisional BDH game. The simulator will take BDH challenge (g,A = ga, B =
gb, C = gc, Z) and outputs a guess, β′, as to whether the challenge is a BDH tuple. The simulator
runs A executing the following steps.

5.1 Simulator Description

Setup The simulator first sets an integer, m = 4q, and chooses an integer, k, uniformly at random
between 0 and n. It then chooses a random n-length vector, −→x = (xi), where the elements of −→x
are chosen uniformly at random from the integers between 0 and m − 1 and a value, x′, chosen
uniformly at random between 0 and m − 1. Let X∗ denote the pair (x′,−→x ) Additionally, the
simulator chooses a random y′ ∈ Zp and an n-length vector, −→y = (yi), where the elements of −→y
are chosen at random in Zp. These values are all kept internal to the simulator.

Again, for an identity v we will let V ⊆ {1, . . . , n} be the set of all i for which vi = 1 For
ease of analysis we define three functions. We define F (v) = (p −mk) + x′ +

∑
i∈V xi and define

J(v) = y′ +
∑

i∈V yi. Finally, we define a binary function K(v) as

K(v) =

{
0, if x′ +

∑
i∈V xi ≡ 0 (mod m)

1, otherwise.

The simulator assigns g1 = A and g2 = B. It then assigns the public parameters u′ =
gp−km+x′

2 gy′ and U as ui = gxi
2 gyi . From the perspective of the adversary the distribution of

the public parameters is identical to the real construction.

Phase 1 The adversary, A, will issue private key queries. Suppose the adversary issues a query
for an identity v. If K(v) = 0 the simulator aborts and randomly chooses its guess β′ of the
challenger’s value β.

Otherwise, the simulator chooses a random r ∈ Zp. Using the technique described by Boneh
and Boyen [1] it constructs the private key, d, as

d = (d0, d1) =

(
g
−J(v)
F (v)

1 (u′
∏
i∈V

ui)r, g
−1

F (v)

1 gr

)
.

Let r̃ = r − a
F (v) . Then we have

d0 = g
−J(v)
F (v)

1 (u′
∏

i∈v ui)r

= g
−J(v)
F (v)

1 (gF (v)
2 gJ(v))r

= ga
2(gF (v)

2 gJ(v))−
a

F (v) (gF (v)
2 gJ(v))r

= ga
2(u′

∏
i∈V ui)

r− a
F (v)

= ga
2(u′

∏
i∈V ui)r̃.
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Additionally, we have

d1 = g
−1

F (v)

1 gr = g
r− a

F (v) = gr̃.

This simulator will be able to perform this computation iff F (v) 6= 0 mod p. For ease of
analysis the simulator will only continue (not abort) in the sufficient condition where K(v) 6= 0. (If
we have K(v) 6= 0 this implies F (v) 6= 0 mod p since we can assume p > nm for any reasonable
values of p, n, and m).

Challenge The adversary next will submit two messages M0,M1 ∈ G1 and an identity, v∗. If
x′+

∑
i∈V∗ xi 6= km the simulator will abort and submit a random guess for β′. Otherwise, we have

F (v∗) ≡ 0 (mod p) and the simulator will flip a fair coin, γ, and construct the ciphertext

T = (ZMγ , C, CJ(v∗)).

Suppose that the simulator was given a BDH tuple, that is Z = e(g, g)abc. Then we have

T =
(
e(g, g)abcMγ , gc, gcJ(v∗)

)
=

(
e(g1, g2)cMγ , gc, (u′

∏
i∈V∗

ui)c

)
.

We see that T is a valid encryption of Mγ .
Otherwise, we have that Z is a random element of G. In that case the ciphertext will give no

information about the simulator’s choice of γ.

Phase 2 The simulator repeats the same method it used in Phase 1.

Guess Finally, the adversary A outputs a guess γ′ of γ.

Artificial Abort At this point the simulator is still unable to use the output from the adversary.
An adversary’s probability of success could be correlated with the probability that the simulator
needs to abort. This stems from the fact that two different sets of q private key queries may
cause the simulator to abort with different probabilities. In the worst case we might worry that
Pr[γ = γ′|abort]− 1

2 = 0 (or some negligible value) in the simulation even if Pr[γ = γ′]− 1
2 = ε for

some non-negligible ε.
The simulator corrects for this by forcing all possible sets of queries of the adversary to cause

the simulator to abort with (almost) the same probability (1-λ), where (1-λ) is a lower bound on
any set of private key queries causing an abort before this stage.

Let −→v = v1, . . . vq denote the private key queries made in Phase 1 and Phase 2 and let v∗ denote
the challenge identity and we let V∗ ⊆ {1, . . . , n} be the set of all i for which v∗i = 1. (All of these
values are defined at this point in the simulation.) First, we define the function τ(X ′,−→v , v∗), where
X ′ is a set of simulation values x′, x1, . . . , xn, as

τ(X ′,−→v , v∗) =

{
0, if (

∧q
i=1 K(vi) = 1) ∧ x′ +

∑
i∈V∗ xi = km

1, otherwise.

The function τ(X ′,−→v , v∗) will evaluate to 0 if the private key and challenge queries −→v , v∗ will
not cause an abort for a given choice of simulation values, X ′. We can now consider the probability
over the simulation values for a given set of queries, −→v , v∗, as η = PrX′ [τ(X ′,−→v , v∗) = 0].
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The simulator samples O(ε−2 ln(ε−1)λ−1 ln(λ−1)) times the probability η by choosing a random
X ′ and evaluating τ(X ′,−→v , v∗) to compute an estimate η′. We emphasize that the sampling does
not involve running the adversary again. Let λ = 1

8nq , be the lower bound on the probability of
not aborting for any set of queries. (We show how to calculate λ below.) Then if η′ ≥ λ the
simulator will abort with probability η′−λ

η′ (not abort with probability λ
η′ ) and take a random guess

β′. Otherwise, the simulator will not abort.
If the simulator has not aborted at this point it will take check to see if the adversary’s guess,

γ′ = γ. If γ′ = γ then the simulator outputs a guess β′ = 1, otherwise it outputs β = 0.
This concludes the description of the simulator.

5.2 Analysis

Our simulator is difficult to analyze directly since it might abort before all of the queries are made.
For ease of exposition we now describe a second simulation, which we will use to reason about the
output distribution of the first simulation.

Setup The simulator chooses the secret key gα
2 as in the construction and then chooses X∗,−→y as

in the first simulation and derives u′, U in the same way. It then runs the adversary.

Phase 1 The simulator responds to private key queries by using the master key as in the con-
struction, in this way all queries can be answered.

Challenge The simulator receives the challenge messages M0,M1. The second simulator will flip
two coins β and γ. If β = 0 then it encrypts a random message and if β = 1 it encrypts Mγ .

Phase 2 Same as Phase 1.

Guess The simulator receives a guess γ′ from the adversary. At this point the simulator has seen
as the private key queries and the challenge query (−→v , v∗). It evaluates the function τ(X∗,−→v , v∗)
and aborts if it evaluates to 1, outputting a random guess of β′.

Artificial Abort The last step is done in exactly the same way as the first simulation. This ends
the description.

We first equate the probabilities of the both simulators with the following claim.

Claim 1. The probabilities Pr[β′ = β] are the same in both the first and second simulations we
described.

Proof. The second simulation runs the adversary completely and receives all of its queries. In the
guess phase it checks if τ(X∗,−→v , v∗) = 1 and aborts if so. The check decides if there was a point
where the first simulator would have needed to abort during the simulator and take a random
guess. If so the second simulator aborts and takes a random guess itself. Additionally, all public
parameters, private key queries, and challenge ciphertexts have the same distribution up to the
point of a possible abortion. The artificial abort stages are also identical. Therefore, we can reason
that the output distributions will be the same.
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For purpose of exposition, we will now derive the success of the simulator in terms of the second
simulator. However, due to Claim 1 the discussion applies to both simulators equally.

Claim 2. The probability of the simulation not aborting by the guess phase is at least λ = 1
8(n+1)q .

Proof. We calculate a lower bound, λ as the lower bound of PrX′ [τ(X ′,−→v , v∗) = 0] for all −→v , v∗.
Without loss of generality we can assume the adversary always makes the maximum number of
queries, q. For any set of q queries v1, . . . , vq and challenge identity, v∗, we have Pr[abort] =
Pr[(

∧q
i=1 K(vi) = 1) ∧

∑
i∈V∗ xi = km]. We can then lower bound the probability of not aborting

as follows.

Pr[(
q∧

i=1

K(vi) = 1) ∧
∑
i∈V∗

xi = km] (1a)

= (1− Pr[
q∨

i=1

K(vi) = 0]) Pr[
∑
i∈V∗

xi = km|
q∧

i=1

K(vi) = 1] (1b)

≥ (1−
q∑

i=1

Pr[K(vi) = 0]) Pr[
∑
i∈V∗

xi = km|
q∧

i=1

K(vi) = 1] (1c)

= (1− q

m
) Pr[

∑
i∈V∗

xi = km|
q∧

i=1

K(vi) = 1] (1d)

=
1

n + 1
(1− q

m
) Pr[K(v∗) = 0|

q∧
i=1

K(vi) = 1] (1e)

=
1

n + 1
(1− q

m
)

Pr[K(v∗) = 0]
Pr[
∧q

i=1 K(vi) = 1]
Pr[

q∧
i=1

K(vi) = 1|K(v∗) = 0] (1f)

≥ 1
(n + 1)m

(1− q

m
) Pr[

q∧
i=1

K(vi) = 1|K(v∗) = 0] (1g)

=
1

(n + 1)m
(1− q

m
)(1− Pr[

q∨
i=1

K(vi) = 0|K(v∗) = 0]) (1h)

≥ 1
(n + 1)m

(1− q

m
)(1−

q∑
i=1

Pr[K(vi) = 0|K(v∗) = 0]) (1i)

=
1

(n + 1)m
(1− q

m
)2 (1j)

≥ 1
(n + 1)m

(1− 2
q

m
) (1k)

Equations 1d and 1g come from the fact that Pr[K(v) = 0] = 1
m for any query, v. The 1

n+1
factor of Equation 1e comes from the simulator taking a guess of k. Equation 1j is derived from
the pairwise independence of the probabilities that K(v) = 0,K(v′) = 0 for any pair of different
queries v, v′. The probabilities are pairwise independent since the sums x′+

∑
i∈V xi (mod m) and

x′ +
∑

i∈V ′ xi (mod m) will differ in at least one random xj .
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We can optimize the last equation by setting m = 4q (as we did in the simulation), where q
is the maximum number of queries. (If the adversary makes less queries the probability of not
aborting can only be greater). Solving for this gives us a lower bound λ = 1

8(n+1)q .

We now can calculate the distributions PBDH and RBDH . The distribution RBDH is simply
1
2 . When the simulator is given a random element as the last term in the tuple the simulator will
either abort (and guess β′ = 1 with probability 1

2) or it will guess β′ = 1 when the adversary is
correct in guessing γ. However, the γ will be completely hidden from the adversary in this case so
the adversary will be correct with probability 1

2 .
The calculation of PBDH is somewhat more complicated. In the second simulation the adver-

sary’s view of the simulation will be identical to the real game. We want to know the probability
that the guess β′ = 1.

We then break the event into the abort and non-abort cases and see that Pr[β′ = 1] is the sum of
Pr[β′ = 1|abort] Pr[abort] and Pr[β′ = 1|abort] Pr[abort]. We observe that Pr[β′ = 1|abort] = 1

2
and that when the simulator does not abort β′ = 1 when the adversary correctly guesses γ′ = γ.
Then, we have PBDH = 1

2 + 1
2(Pr[abort|γ′ = γ] Pr[γ′ = γ]− Pr[abort|γ′ 6= γ] Pr[γ′ 6= γ]). By our

assumption, this is equal to 1
2 + 1

2(Pr[abort|γ′ = γ](1
2 + ε)− Pr[abort|γ′ 6= γ](1

2 − ε)). All that is
left to do is to both lower and upper bound the probability of not aborting in our simulation. We
state the following claim.

Claim 3. If the simulator takes takes O(ε−2 ln(ε−1)λ−1 ln(λ−1)) samples when computing the esti-
mate η′, then (1

2 + ε) Pr[abort|γ′ = γ]− (1
2 − ε) Pr[abort|γ′ = γ] ≥ 3

2λε.

We prove the claim in Appendix A.
Plugging in the claim we have PBDH ≥ 1

2 + 3
4λε. Then, 1

2(PBDH−RBDH) ≥ 3
4λε ≥ ε

32(n+1)q .
We note that if there was a way for the simulator to efficiently compute the abort probability,

η, for a given set of queries (as opposed to sampling) then we could improve the time component
of our reduction could be significantly improved in addition to simplifying our analysis.

6 Hierarchical IBE and CCA Security

In Section 4 we discussed the similarity of our scheme to the 1-level hierarchical IBE (HIBE) scheme
of Boneh and Boyen [1]. We can further take advantage of the similarity of our schemes to construct
an `-level HIBE scheme in an obvious manner. (For each level we must generate new parameters
u′ and U .)

The problem with using our techniques to construct an HIBE scheme is that the reduction
becomes inefficient for all but small values of `. In particular to construct a scheme in which any
efficient adversary has at most ε advantage it must be true that all efficient adversaries have at
most an O((nq)`ε) advantage in the decisional BDH game. The intuition behind this is that in
the simulation the setup must be “match” the challenge identity at all ` different levels in order
to not abort. (However, our reduction still provides a stronger reduction than that of Boneh and
Boyen [1] for a fully secure HIBE scheme.) For this reason we still consider the construction of a
fully secure HIBE scheme without random oracles to be an open problem.

Recent results of Canetti et al. [10], further improved upon by Boneh and Katz [6], show how to
build a CCA-secure Identity-Based encryption scheme from a 2-level HIBE scheme. We can actually
build a hybrid 2-level HIBE [15, 13] scheme that uses our scheme at the first level and the scheme of
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Boneh and Boyen [1] at the second level. Since the transformations [10, 6] only require Selective-ID
security at the second level our hybrid construction is CCA secure without any significant further
degradation in the security reduction relative to our non-hierarchical construction.

7 A Signature Scheme

Boneh and Franklin [5] describe a generic method for converting any Identity-Based Encryption
scheme into a signature scheme. The public key of the signature scheme corresponds to the global
parameters of the IBE scheme. To sign a message, M , in the signature scheme the signer gives
an IBE private key of M as the signature of M . To verify a signature of M the verifier encrypts
a random value, R, to the identity M , then attempts to decrypt the ciphertext with the private
key. The signature is accepted if the decryption successfully decrypts to R. We note that this is a
randomized verification algorithm.

In the generic transformation the security of the resulting signature scheme reduces to the se-
curity of the Identity-Based Encryption scheme. Thus, we immediately have a signature scheme
which is secure as the decisional BDH problem. However, we can use the bilinear map in order
to deterministically verify a signature and get a signature scheme that reduces to the weaker com-
putational Diffie-Hellman assumption. We note that similar techniques have been used previously.
For example, the signatures in the scheme of Boneh, Lynn, Shacham [7] correspond to private keys
of the Boneh-Franklin IBE system. We describe our signature scheme for completeness.

7.1 Construction

Let G be a group of prime order, p, for which there exists an efficiently computable bilinear map
into G1. Additionally, let e : G × G → G1 denote the bilinear map and g be the corresponding
generator. The size of the group is determined by the security parameter. We will sign messages of
n bits; again, we can use a collision-resistant hash function, H : {0, 1}∗ → {0, 1}n, to sign messages
of arbitrary length.

Setup The public key is generated as follows. A secret α ∈ Zp is chosen at random. We choose
a random generator, g, and set the value g1 = gα and choose g2 randomly in G. Additionally, the
algorithm chooses a random value u′ ∈ G and a random n-length vector U = (ui), whose elements
are chosen at random from G. The published public key is g,g1, g2,u′, and U . The secret key is gα

2 .

Signing Let M be an n-bit message to be signed and Mi denote the ith bit of M , and M ⊆
{1, . . . , n} be the set of all i for which Mi = 1. A signature of M is generated as follows. First, a
random r ∈ Zp is chosen. Then the signature is constructed as:

σM =

(
gα
2

(
u′
∏
i∈M

ui

)r

, gr

)
.

Verification Suppose we wish to check if σ = (σ1, σ2) is a signature for a message M . The
signature is accepted if e(σ1, g)/e(σ2, u

′∏
i∈M ui) = e(g1, g2).
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7.2 Security

Theorem 2. The signature scheme is (t, q, ε) existentially unforgeable assuming the decisional-
(t, ε

16(n+1)q ) BDH assumption holds, where λ = 1
8(n+1)q .

We omit the proof of this theorem, but note that it is analogous to the proof our IBE scheme.
The fact that the adversary returns a forgery results in two important differences though. First,
the forgery is used to solve the computational Diffie-Hellman problem. Secondly, since a forgery is
returned there is no need for an artificial abort stage as in the previous reduction.

Other efficient schemes that are secure against existential forgery under an adaptive chosen-
message attack [14] in the standard model depend upon the Strong-RSA assumption [12, 11] or
the Strong Diffie-Hellman assumption [3]. Additionally Boneh, Mironov, and Shoup [8] describe a
tree-based signature scheme based on the computational Diffie-Hellman assumption.

8 Conclusions

We presented the first efficient Identity-Based Encryption scheme that is secure in the full model
without random oracles. We proved our the security of our scheme by reducing it to the deci-
sional Bilinear Diffie-Hellman problem. Additionally, we showed how our Identity-Based encryption
scheme can be converted to an efficient signature scheme that depends only upon the computational
Diffie-Hellman assumption in the standard model.

This work motivates two interesting open problems. The first is to find an efficient Identity-
Based Encryption system (without random oracles) that has short public parameters. The second,
is to find an IBE system with a tight reduction in security. Such a solution would also likely permit
an efficient reduction for an analogous HIBE scheme.
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A Proof of Claim 3

In order to show that (1
2 + ε) Pr[abort|γ′ = γ] − (1

2 − ε) Pr[abort|γ′ = γ] ≥ 3
2λε we first upper

bound the term (1
2 + ε) Pr[abort|γ′ = γ].

Let η be the probability of not aborting associated for a set of private key queries and challenge
query on a particular run where γ′ = γ. The simulator will make O(ε−2 ln(ε−1)λ−1 ln(λ−1)) samples

12



to calculate η′ and we can use Chernoff bounds to show that Pr[η′ > η(1+ ε
8)] < λ ε

8 . We then have

Pr[abort|γ′ = γ] ≥ (1− λ
ε

8
)η

λ

η(l + ε
8)
≥ λ(1− ε

8
)2 ≥ λ(1− 1

4
ε)

where the probability calculation is taken of the sampling of η. We now have

(
1
2

+ ε) Pr[abort|γ′ = γ] ≥ λ(
1
2

+
3
4
ε).

(Note that the artificial abort stage aborts with probability λ
max(λ,η′) . Since η(1 + ε

8) > λ, we were
able to ignore the maximum function.)

We now lower bound the term (1
2+ε) Pr[abort|γ′ 6= γ]. The simulator will make O(ε−2 ln(ε−1)λ−1 ln(λ−1))

samples to calculate the estimate η′ and we can use Chernoff bounds to show that Pr[η′ < η(1− ε
8)] <

λ ε
8 . We then have

Pr[abort|γ′ 6= γ] ≤ λ
ε

8
+ λ

η

η(1− ε
8)
≤ λ

ε

8
+ λ(1 +

2ε

8
) = λ(1 + ε

3
8
)

where the probability calculation is taken of the sampling of η. We now have

(
1
2
− ε) Pr[abort|γ′ = γ] ≤ λ(

1
2
− 3

4
ε).

We now see that (1
2 + ε) Pr[abort|γ′ = γ]− (1

2 − ε) Pr[abort|γ′ = γ] ≥ 3
2λε.
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