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Abstra
t

Goldrei
h and Lindell (CRYPTO `01) re
ently presented the �rst proto
ol for password-authenti
ated

key ex
hange in the standard model (with no 
ommon referen
e string or set-up assumptions other than

the shared password). However, their proto
ol uses several heavy tools and has a 
ompli
ated analysis.

We present a simpli�
ation of the Goldrei
h�Lindell (GL) proto
ol and analysis for the spe
ial 
ase

when the di
tionary is of the form D = f0; 1g

d

, i.e. the password is a short random string (like an ATM

PIN number). Our proto
ol 
an be 
onverted into one for arbitrary di
tionaries using a 
ommon referen
e

string of logarithmi
 length. The se
urity bound a
hieved by our proto
ol is somewhat worse than the

GL proto
ol. Roughly speaking, our proto
ol guarantees that the adversary 
an �break� the s
heme with

probability at most O(poly(n)=jDj)


(1)

, whereas the GL proto
ol guarantees a bound of O(1=jDj).

We also present an alternative, more natural de�nition of se
urity than the �augmented de�nition� of

Goldrei
h and Lindell, and prove that the two de�nitions are equivalent.

�

An extended abstra
t of this paper appeared in the First Theory of Cryptography Conferen
e (TCC `04) [23℄.
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1 Introdu
tion

What is the minimal amount of information that two parties must share in order to perform nontrivial


ryptography? This fundamental question is at the heart of many of the major distin
tions we draw in


ryptography. Classi
al private-key 
ryptography assumes that the legitimate parties share a long random

key. Publi
-key 
ryptography mitigates this by allowing the sharing of information to be done through publi


keys that need not be hidden from the adversary. However, in both 
ases, the amount of information shared

by the legitimate parties (e.g. as measured by mutual information) needs to be quite large. Indeed, the

traditional view is that se
urity 
omes from the adversary's inability to exhaustively sear
h the keyspa
e.

Thus it is very natural to ask: 
an we do nontrivial 
ryptography using �low-entropy� keys? That is,

using a keyspa
e that is feasible to exhaustively sear
h. In addition to being a natural theoreti
al question,

it has 
lear relevan
e to the many �real-life� situations where we need se
urity but only have a low-entropy

key (e.g. an ATM PIN number, or human-
hosen password on a website).

Publi
-key 
ryptography provides an initial positive answer to this question: key-ex
hange proto
ols, as

in [10℄, do not require any prior shared information. However, this holds only for passive adversaries, and it is

well known that without any prior shared information between the legitimate parties, an a
tive adversary 
an

always su

eed through a person-in-the-middle atta
k. Thus, it remains an interesting question to a
hieve

se
urity against a
tive adversaries using a low-entropy shared key. This has led resear
hers to 
onsider the

problem of password-authenti
ated key ex
hange, whi
h we des
ribe next.

Password-Authenti
ated Key Ex
hange. The password-authenti
ated key ex
hange problem was �rst

suggested by Bellovin and Merritt [4℄. We assume that two parties, Ali
e and Bob, share a password w 
hosen

uniformly at random from a di
tionary D � f0; 1g

n

. This di
tionary 
an be very small, e.g. jDj = poly(n),

and in parti
ular it may be feasible for an adversary to exhaustively sear
h it. Our aim is to 
onstru
t a

proto
ol enabling Ali
e and Bob to generate a �random� session keyK 2 f0; 1g

n

, whi
h they 
an subsequently

use for standard private-key 
ryptography. We 
onsider an a
tive adversary that 
ompletely 
ontrols the


ommuni
ation 
hannel between Ali
e and Bob. The adversary 
an inter
ept, modify, drop, and delay

messages, and in parti
ular 
an attempt to impersonate either party through a person-in-the-middle atta
k.

Our goal is that, even after the adversary mounts su
h an atta
k, Ali
e and Bob will generate a session

key that is indistinguishable from uniform even given the adversary's view. However, our ability to a
hieve

this goal is limited by two unpreventable atta
ks. First, sin
e the adversary 
an blo
k all 
ommuni
ation, it


an prevent one or both of the parties from 
ompleting the proto
ol and obtaining a session key. Se
ond,

the adversary 
an guess a random password ~w  D and attempt to impersonate one of the parties. With

probability 1=jDj, the guess equals the real password (i.e., ~w = w), and the adversary will su

eed in

the impersonation and therefore learn the session key. Thus, we revise our goal to e�e
tively limit the

adversary to these two atta
ks. Various formalizations for this problem have been developed through several

works [3, 18, 26, 2, 7, 15℄. We follow the de�nitional framework of Goldrei
h and Lindell [15℄, whi
h is

des
ribed in more detail in Se
. 2.

In addition to addressing what 
an be done with a minimal amount of shared information, the study of

this problem is useful as another testbed for developing our understanding of 
on
urren
y in 
ryptographi


proto
ols. The 
on
urren
y impli
itly arises from the person-in-the-middle atta
k, whi
h we 
an view as two

simultaneous exe
utions of the proto
ol, one between Ali
e and the adversary and the other between Bob

and the adversary.

The �rst proto
ols for the password-authenti
ated key ex
hange problem were proposed in the se
urity

literature, based on informal de�nitions and heuristi
 arguments (e.g. [5, 28℄). The �rst rigorous proofs of

se
urity were given in the random ora
le model [2, 7℄. Only re
ently were rigorous solutions without random

ora
les given, in independent works by Goldrei
h and Lindell [15℄ and Katz, Ostrovsky, and Yung [19℄. One

of the main di�eren
es between these two proto
ols is that the KOY proto
ol (and the subsequent proto
ols

of [20, 13℄) is in the �publi
 parameters model,� requiring a string to be generated and published by a trusted

third party, whereas the GL proto
ol requires no set-up assumption other than the shared password. Thus,

even though the KOY proto
ol has a number of pra
ti
al and theoreti
al advantages over the GL proto
ol

(whi
h we will not enumerate here), the GL proto
ol is more relevant to our initial question about the

minimal amount of shared information needed for nontrivial 
ryptography.
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The Goldrei
h�Lindell Proto
ol. As mentioned above, the Goldrei
h�Lindell proto
ol [15℄ is remarkable

in that the only set-up assumption it requires is that the two parties share a password 
hosen at random from

an arbitrary di
tionary. Their proto
ol 
an be based on general 
omplexity assumptions (the existen
e of

trapdoor permutations), 
an be implemented in a 
onstant number of rounds (under stronger assumptions),

and a
hieves a nearly optimal se
urity bound (the adversary has probability only O(1=jDj) of �breaking� the

s
heme).

Despite giving su
h a strong result, the Goldrei
h�Lindell proto
ol does not leave us with a 
omplete

understanding of the password-authenti
ated key ex
hange problem. First, the proto
ol makes use of several

�heavy� tools: se
ure two-party polynomial evaluation (building on [22℄, who observed that this yields a

proto
ol for password-authenti
ated key ex
hange against passive adversaries), nonmalleable 
ommitments

(as suggested in [6℄), and the spe
i�
 
on
urrent zero-knowledge proof of Ri
hardson and Kilian [25℄. It is

un
lear whether all of these tools are really essential for solving the key ex
hange problem. Se
ond, the

proof of the proto
ol's se
urity is extremely 
ompli
ated. Goldrei
h and Lindell do introdu
e ni
e te
hniques

for analyzing 
on
urrent exe
utions (arising from the person-in-the-middle atta
k) of two-party proto
ols

whose se
urity is only guaranteed in the stand-alone setting (e.g. the polynomial evaluation). But these

te
hniques are applied in an intri
ate manner that seems inextri
ably tied to the presen
e of the nonmalleable


ommitment and zero-knowledge proof. Finally, �nding an e�
ient instantiation of the Goldrei
h�Lindell

proto
ol would require �nding e�
ient instantiations of all three of the heavy tools mentioned above, whi
h

seems di�
ult. In parti
ular, the Ri
hardson-Kilian zero-knowledge proof is used to prove an NP statement

that asserts the 
onsisten
y of a trans
ript of the nonmalleable 
ommitment, a standard 
ommitment, and

the output of an iterated one-way permutation. For su
h an NP statement, it seems di�
ult to avoid using

a generi
 zero-knowledge proof system for NP, whi
h are almost always ine�
ient due to the use of Cook's

theorem.

Our Proto
ol. Our main result is a simpli�
ation of the Goldrei
h�Lindell proto
ol and analysis for the

spe
ial 
ase when the di
tionary is of the form D = f0; 1g

d

, i.e. the password is a short random string (like an

ATM PIN number)

1

. This spe
ial 
ase still retains many of the key features of the problem: the person-in-the-

middle atta
k and the resulting 
on
urren
y issues are still present, and the adversary 
an still exhaustively

sear
h the di
tionary (sin
e we allow the password length d to be as small as O(logn), where n is the se
urity

parameter). Moreover, our proto
ol 
an be 
onverted into one for arbitrary di
tionaries in the 
ommon

referen
e string model (using the 
ommon referen
e string as the seed of a randomness extra
tor [24℄).

For di
tionaries D � f0; 1g

n

, the 
ommon referen
e string is a uniform string of only logarithmi
 length

(spe
i�
ally, O(log n+ log jDj)), and thus retains the spirit of minimizing the amount of shared information

between the legitimate parties. In 
ontrast, the previous proto
ols in the publi
 parameters model [19, 20, 13℄

require a publi
 string of length poly(n) with spe
ial number-theoreti
 stru
ture.

The main way in whi
h we simplify the GL proto
ol is that we remove the nonmalleable 
ommitments

and the Ri
hardson�Kilian zero-knowledge proof. Instead, our proto
ol 
ombines se
ure polynomial eval-

uation with a 
ombinatorial tool (almost pairwise independent hashing), in addition to using �lightweight�


ryptographi
 primitives also used in [15℄ (one-way permutations, one-time MACs, standard 
ommitments).

Our analysis is also similarly simpler. While it has the same overall stru
ture as the analysis in [15℄ and uti-

lizes their te
hniques for applying the stand-alone properties of the polynomial evaluation in the 
on
urrent

setting, it avoids dealing with the nonmalleable 
ommitments and the zero-knowledge proof (whi
h is the

most 
omplex part of the GL analysis).

Removing the nonmalleable 
ommitments and the RK zero-knowledge proof has two additional impli
a-

tions. First, �nding an e�
ient implementation of our proto
ol only requires �nding an e�
ient proto
ol for

se
ure polynomial evaluation (in fa
t, only for linear polynomials).

2

Sin
e this is a highly stru
tured spe
ial


ase of se
ure two-party 
omputation, it does not seem beyond rea
h to �nd an e�
ient proto
ol. Indeed,

Naor and Pinkas [22℄ have already given an e�
ient polynomial evaluation proto
ol for passive adversaries.

Se
ond, our proto
ol 
an be implemented in a 
onstant number of rounds assuming only the existen
e of

trapdoor permutations, whereas implementing the Goldrei
h�Lindell proto
ol in a 
onstant number of rounds

1

More generally, the password 
an be 
hosen uniformly from any di
tionary of size 2

d

whose elements we 
an e�
iently

enumerate be
ause the enumeration provides a bije
tion with f0; 1g

d

.

2

A
tually, we require a slightly augmented form of polynomial evaluation, in whi
h one of the parties 
ommits to its input

beforehand and the proto
ol ensures 
onsisten
y with this 
ommitted input.

2



requires additional assumptions, su
h as the existen
e of 
law-free permutations (for [25℄) and some sort of

exponential hardness assumption (to use [1℄).

We note that the se
urity bound a
hieved by our proto
ols is somewhat worse than in previous works.

Roughly speaking, our proto
ol guarantees that the adversary 
an �break� the s
heme with probability at

most O

�

poly(n)

jDj

�


(1)

, whereas previous works guarantee a bound of O(1=jDj).

An additional result in our paper involves the de�nition of se
urity in [15℄. As pointed out by Ra
ko�

(
f., [2℄), it is important that a key ex
hange proto
ol provide se
urity even if the party who 
ompletes

the proto
ol �rst starts using the generated key in some appli
ation before the se
ond party 
ompletes the

proto
ol. In order to address this issue, Goldrei
h and Lindell [15℄ augmented their de�nition with a �session-

key 
hallenge�, in whi
h the adversary is given either the generated key or a uniform string with probability

1/2 upon the �rst party's 
ompletion of the proto
ol. We present an arguably more natural de�nition that

dire
tly models the use of the generated key in an arbitrary appli
ation, and prove its equivalen
e to the

augmented de�nition of Goldrei
h and Lindell [15℄. (This result is analogous to the result of Shoup [26℄ for

non-password-based key ex
hange proto
ols.)

2 De�nition of Se
urity

We adopt the notation of Goldrei
h and Lindell and refer the reader to [15℄ for more details.

� C denotes the probabilisti
 polynomial time adversary through whi
h the honest parties A and B


ommuni
ate. We model this 
ommuni
ation by giving C ora
le a

ess to a single 
opy of A and a

single 
opy of B. Here the ora
les A and B have memory and represent honest parties exe
uting the

session-key generation proto
ol. We denote by C

A(x);B(y)

(�) an exe
ution of C with auxiliary input �

when it 
ommuni
ates with A and B, with respe
tive inputs x and y. The output of the 
hannel C

from this exe
ution is denoted by output

�

C

A(x);B(y)

(�)

�

.

� The se
urity parameter is denoted by n. The password di
tionary is denoted by D � f0; 1g

n

and we

write � =

1

jDj

.

We denote by U

n

the uniform distribution over strings of length n, by neg(n) a negligible fun
tion and write

x

R

 S when x is 
hosen uniformly from the set S.

For a fun
tion 
 : N ! [0; 1℄, we say that the probability ensembles fX

n

g and fY

n

g are (1 � 
)-

indistinguishable (denoted by fX

n

g




� fY

n

g) if for every nonuniform PPT distinguisher D and all n,

jPr [D(X

n

) = 1℄� Pr [D(Y

n

) = 1℄ j < 
(n) + neg(n)

We say that fX

n

g and fY

n

g are 
omputationally indistinguishable, whi
h we denote by X

n




� Y

n

, if they are

1-indistinguishable. We say that fX

n

g is (1� 
) pseudorandom if it is (1� 
) indistinguishable from U

n

.

We will now formalize the problem of session-key generation using human passwords. We �rst follow the

presentation of the problem as in [15℄ and then 
ontrast it with our de�nition.

2.1 The Initial De�nition

The de�nition in [15℄ follows the standard paradigm for se
ure 
omputation: de�ne an ideal fun
tionality

(using a trusted third party) and require that every adversary atta
king the real proto
ol 
an be simulated

by an ideal adversary atta
king the ideal fun
tionality. Note that in the real proto
ol, the a
tive adversary

C 
an prevent one or both of the parties A and B from having an output. Thus, in the ideal model, we will

allow C

ideal

to spe
ify two input bits, de


A

C

and de


B

C

, whi
h determine whether A and B obtain a session

key or not.

Ideal model Let A;B be the honest parties and let C

ideal

be any PPT ideal adversary with auxiliary input

�.

3



1. A and B re
eive w

R

 D.

2. A and B both send w to the trusted party.

3. C

ideal

sends (de


A

C

; de


B

C

) to the trusted party.

4. The trusted party 
hooses K

R

 f0; 1g

n

. For ea
h party i 2 fA;Bg, the trusted party sends K if

de


i

C

= 1 and sends ? if de


i

C

= 0.

The ideal distribution is de�ned by:

IDEAL

C

ideal

(D; �) = (w; output(A); output(B); output(C

ideal

(�)))

We note that this des
ription of the ideal model di�ers slightly from the original de�nition in [15℄ sin
e

we allow B to �nish �rst and A to reje
t in the ideal model (this is to take into a

ount proto
ols in

whi
h no party is guaranteed to terminate with a session key). However, as des
ribed in Se
tion 3.3,

our proto
ol will guarantee that A always a

epts. Moreover, we will show that any real adversary 
an

be simulated by an ideal adversary who always 
hooses A to 
on
lude �rst and a

ept.

Real model Let A;B be the honest parties and let C be any PPT real adversary with auxiliary input �.

At some initialization stage, A and B re
eive w

R

 D. The real proto
ol is exe
uted by A and B


ommuni
ating via C. We will augment C's view of the proto
ol with A and B's de
ision bits, denoted

by de


A

and de


B

, where de


A

= reje
t if output(A) = ?, and de


A

= a

ept otherwise (de


B

is

de�ned similarly). (Indeed, in typi
al appli
ations, the de
isions of A and B will be learned by the

real adversary C: if A obtains a session key, then it will use it afterwards; otherwise, A will stop


ommuni
ation or try to re-initiate an exe
ution of the proto
ol.) C's augmented view is denoted by

output(C

A(w);B(w)

(�)).

The real distribution is de�ned by:

REAL

C

(D; �) = (w; output(A); output(B); output(C

A(w);B(w)

(�)))

One might want to say that a proto
ol for password-based session-key generation is se
ure if the above

ideal and real distributions are 
omputationally indistinguishable. Unfortunately, as pointed in [15℄, an

a
tive adversary 
an guess the password and su

essfully impersonate one of the parties with probability

1

jDj

. This implies that the real and ideal distributions are always distinguishable with probability at least

1

jDj

. Thus we will only require that the distributions be distinguishable with probability at most O(
) where

the goal is to make 
 as 
lose to

1

jDj

as possible. In the 
ase of a passive adversary, we require that the real

and ideal distributions be 
omputationally indistinguishable (for all subsequent de�nitions, this requirement

will be impli
it).

De�nition 2.1 (Initial de�nition) A proto
ol for password-based authenti
ated session-key generation is

(1� 
)-se
ure for the di
tionary D � f0; 1g

n

(where 
 is a fun
tion of the di
tionary size jDj and n) if:

1. For every real passive adversary, there exists an ideal adversary C

ideal

whi
h always sends (1,1) to the

trusted party su
h that for every auxiliary input � 2 f0; 1g

poly(n)

,

fIDEAL

C

ideal

(D; �)g

�




� fREAL

C

(D; �)g

�

2. For every real adversary C, there exists an ideal adversary C

ideal

su
h that for every auxiliary input

� 2 f0; 1g

poly(n)

,

fIDEAL

C

ideal

(D; �)g

�

O(
)

� fREAL

C

(D; �)g

�

By the dis
ussion above, the best we 
an hope for is 
 =

1

jDj

. Note that in [15℄, their de�nition and

proto
ol refer to any di
tionary D � f0; 1g

n

and 
 =

1

jDj

. In 
ontrast, our proto
ol will be (1� 
)-se
ure for

di
tionaries of the form D = f0; 1g

d

and 
 =

�

poly(n)

jDj

�


(1)

.
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2.2 Se
urity with respe
t to the Session-Key Challenge

The above de�nition is a
tually not 
ompletely satisfying be
ause of a subtle point raised by Ra
ko�: the

adversary 
ontrols the s
heduling of the intera
tions (A;C) and (C;B) so the honest parties do not ne
essarily

end at the same time. A might use its session key K

A

before the intera
tion (C;B) is 
ompleted: A's use of

K

A

leaks information whi
h C might use in its intera
tion with B to learn K

A

;K

B

or the password w.

In [15℄, Goldrei
h and Lindell augment the above de�nition with a session-key 
hallenge to address this

issue. Suppose that A 
ompletes the proto
ol �rst and outputs a session key K, then the adversary is given

a session key 
hallenge K

�

, whi
h is the session key K with probability 1/2 (i.e. � = 1) or a truly random

string K

0

with probability 1/2 (i.e. � = 0). The adversary C will be given the session-key 
hallenge in both

the ideal and real models, as soon as the �rst honest party outputs a session key K. We 
all the resulting

de�nition se
urity with respe
t to the session-key 
hallenge.

Ideal model Let A;B be the honest parties and let C

ideal

be any PPT ideal adversary with auxiliary input

�.

1. A and B re
eive w

R

 D.

2. A and B both send w to the trusted party

3. C

ideal

de
ides whi
h party i 2 fA;Bg 
on
ludes �rst and whether it is a su

essful exe
ution or

not, i.e. C

ideal

sends a bit de


i

C

to the trusted party.

4. The trusted party 
hooses K

R

 f0; 1g

n

. If de


i

C

= 1, the trusted party sends K to party i;

otherwise it sends ?.

5. Session-key 
hallenge: if party i re
eived ?, then the trusted party gives ? to C

ideal

. Otherwise,

the trusted party 
hooses �

R

 f0; 1g and gives C

ideal

the stringK

�

whereK

1

= K andK

0

R

 f0; 1g

n

.

6. C

ideal

de
ides whether the se
ond party's exe
ution is su

essful or not, i.e. C

ideal

sends de


j

C

for

j 6= i to the trusted party.

7. If de


j

C

= 1, the trusted party sends K to party j. Otherwise, it sends ?.

The augmented ideal distribution is de�ned by:

IDEAL� SK

C

ideal

(D; �) = (w; output(A); output(B); output(C

ideal

(�;K

�

)); �)

Real model C has ora
le a

ess to a single 
opy of A(w) and a single 
opy of B(w). The adversary C


ontrols whi
h party (A or B) 
on
ludes �rst. If the �rst party 
on
ludes with ?, then C is given ?.

If the �rst party 
on
luding outputs lo
ally a session key K, then a bit �

R

 f0; 1g is 
hosen and C is

given the session-key 
hallenge K

�

where K

1

= K and K

0

R

 f0; 1g

n

. C 
ompletes its intera
tion with

the other party.

The augmented real distribution is de�ned by:

REAL� SK

C

(D; �) = (w; output(A); output(B); output(C

A(w);B(w)

(�;K

�

)); �)

De�nition 2.2 (Se
urity with respe
t to the session-key 
hallenge [15℄) A proto
ol for password-

based authenti
ated session-key generation is (1 � 
)-se
ure with respe
t to the session-key 
hallenge for

the di
tionary D � f0; 1g

n

if for every real adversary C, there exists C

ideal

su
h that for every auxiliary

input � 2 f0; 1g

poly(n)

,

fIDEAL� SK

C

ideal

(D; �)g

�

O(
)

� fREAL� SK

C

(D; �)g

�

Goldrei
h and Lindell give some intuition as to why the session-key 
hallenge solves the �aw mentioned

earlier. First, note that the ideal adversary 
annot distinguish between the 
ase � = 0 and the 
ase � = 1

sin
e in the ideal model, both K

0

and K are truly uniform strings. Consider the real adversary who has

been given the session-key 
hallenge: if C has been given K

0

, then the session-key 
hallenge does not help C

in atta
king the proto
ol, sin
e C 
ould generate K

0

on its own. Suppose that instead C has been given K

and that C 
an somehow use it to atta
k the proto
ol (this 
orresponds to the situation where A uses the

session-key K; C(K) 
an simulate A's use of the key), then it would mean that C 
an tell if it is in the 
ase

� = 0 or � = 1, whi
h is not possible if the proto
ol is se
ure with respe
t to the session-key 
hallenge.

5



2.3 Se
urity with respe
t to the Environment

Our intuitive notion of se
urity is that no matter how A uses its session-key K before the exe
ution (C;B)

is 
ompleted, the ideal and real distributions should be (1 � O(
))-indistinguishable. It is not immediate

that the session-key 
hallenge 
aptures this. Thus we propose an alternative augmentation to De�nition 2.1

that 
orresponds more dire
tly to this goal.

We model the di�erent ways the party A 
ould use its session-key K by 
onsidering an arbitrary prob-

abilisti
 polynomial time ma
hine Z whi
h is given the key K (as soon as A outputs a session-key K) and

intera
ts with the adversary in both the ideal and real models. This is similar to the �appli
ation� queries

in Shoup's model for (non-password-based) se
ure key-ex
hange [26℄, whi
h was later extended to password

proto
ols in [7℄. Z 
an also be thought of in terms of �environment� as in the de�nition of universal 
ompos-

ability by Canetti [8℄: Z models an arbitrary environment (or appli
ation) in whi
h the key generated by

the session-key generation proto
ol is used (note that this is not as general as the de�nition of Canetti sin
e

the environment Z is only given the session-key and not the password w).

Examples of environments follow:

1. Z(K) = ?: A does not use its session-key.

2. Z(K) = K: A publi
ly outputs its session-key.

3. Z(K) =

(

K with probability 1/2;

U

n

with probability 1/2:

This 
orresponds to the session-key 
hallenge.

4. Z(K) = En


K

(0

n

): A uses its session-key for se
ure private-key en
ryption.

5. C sends a querym

1

, Z(K) answers with En


K

(m

1

), C sends a querym

2

, Z(K) answers with En


K

(m

2

)

and so on. This 
orresponds to an intera
tive environment Z whi
h models a 
hosen plaintext atta
k.

We 
all the de�nition obtained by adding (in both the ideal and real models) the environment Z se
urity

with respe
t to the environment. Informally, a real proto
ol is se
ure with respe
t to the environment if every

adversary atta
king the real proto
ol and intera
ting with an arbitrary environment 
an be simulated, with

probability 1� O(
), by an ideal adversary atta
king the ideal fun
tionality and intera
ting with the same

environment in the ideal model. (More pre
isely, for every real adversary, there should be a single ideal

adversary that simulates it well for every environment.)

Ideal model Let A and B be the honest parties, C

ideal

any PPT ideal adversary with auxiliary input �

and Z any PPT with auxiliary input � .

1. A and B re
eive w

R

 D

2. A and B both send w to the trusted party.

3. C

ideal

de
ides whi
h party i 2 fA;Bg 
on
ludes �rst and whether it is a su

essful exe
ution or

not, i.e. C

ideal

sends de


i

C

to the trusted party.

4. The trusted party 
hooses K

R

 f0; 1g

n

. If de


i

C

= 1, it sets L

1

= K; otherwise, L

1

= ?. The

trusted party sends L

1

to party i and Z.

5. C

ideal

intera
ts with Z(L

1

; �).

6. C

ideal

de
ides whether the se
ond party's exe
ution is su

essful or not, i.e. C

ideal

sends de


j

C

for

j 6= i to the trusted party.

7. If de


j

C

= 1, the trusted party sets L

2

= K; otherwise, L

2

= ?. It sends L

2

to party j.

The ideal distribution is de�ned by:

IDEAL

Z;�;C

ideal

(D; �) = (w; output(A); output(B); output(Z(L

1

; �)); output(C

ideal

Z(L

1

;�)

(�)))
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Real model C has ora
le a

ess to a single 
opy 
opy of A(w) and a single 
opy of B(w). The adversary C


ontrols whi
h party (A or B) 
on
ludes �rst. Let L

1

2 f0; 1g

n

[? be the output of the �rst 
on
luding

party. C intera
ts with Z(L

1

; �) and 
ompletes its intera
tion with the other party,

The real distribution is de�ned by:

REAL

Z;�;C

(D; �) = (w; output(A); output(B); output(Z(L

1

; �)); output(C

A(w);B(w);Z(L

1

;�)

(�)))

De�nition 2.3 (Se
urity with respe
t to the environment) A proto
ol for password-based authenti-


ated session-key generation is (1�
)-se
ure with respe
t to the environment for the di
tionary D � f0; 1g

n

if for every PPT C, there exists C

ideal

su
h that for every auxiliary input � 2 f0; 1g

poly(n)

and every PPT

Z with every auxiliary input � 2 f0; 1g

poly(n)

,

fIDEAL

Z;�;C

ideal

(D; �)g

�

O(
)

� fREAL

Z;�;C

(D; �)g

�

Note that se
urity with respe
t to the environment implies se
urity with respe
t to the session-key


hallenge sin
e it su�
es to 
onsider the PPT Z(K) whi
h generates �

R

 f0; 1g and outputs the key K if

� = 1 or a truly random string K

0

if � = 0. We show that the two de�nitions are a
tually equivalent:

Theorem 2.4 A proto
ol (A;B) is (1� 
)-se
ure with respe
t to the session-key 
hallenge i� it is (1� 
)-

se
ure with respe
t to the environment.

This is similar to a result of Shoup [26℄ showing the equivalen
e of his de�nition and the Bellare-Rogaway

[3℄ de�nition for non-password-based key ex
hange. The �appli
ation� queries in Shoup's de�nition are anal-

ogous to our environment Z, and the �test� queries in [3℄ are analogous to the session-key 
hallenge. Though

both of these de�nitions have been extended to password-authenti
ated key ex
hange [7, 2℄, it is not imme-

diate that Shoup's equivalen
e result extends dire
tly to our setting. For example, the de�nitions of [3, 2℄

are not simulation-based and do not dire
tly require that the password remain pseudorandom, whereas here

we are relating two simulation-based de�nitions that do ensure the password's se
re
y.

Given Theorem 2.4, the relationship between se
urity with respe
t to the environment and se
urity

with respe
t to the session-key 
hallenge is analogous to the relationship between semanti
 se
urity and

indistinguishability for en
ryption s
hemes [17, 21℄. Though both are equivalent, the former 
aptures our

intuitive notion of se
urity better, but the latter is typi
ally easier to establish for a given proto
ol (as it

involves only taking into a

ount a spe
i�
 environment Z). For 
on
iseness of notation in the proof, we

omit �output� in the distributions.

Proof: Let (A;B) be a proto
ol that is se
ure with respe
t to the session-key 
hallenge. To prove the

theorem, it su�
es to prove that for every PPT C, there exists a PPT C

ideal

su
h that for every Z and every

auxiliary input � :

fw;A;B;Z(M

1

; �); C

A(w);B(w);Z(M

1

;�)

(�)g

O(
)

� fw;A;B;Z(L

1

; �);C

ideal

Z(L

1

;�)

(�)g

where M

1

is the output of the �rst 
on
luding party in the real exe
ution C

A(w);B(w)

and L

1

is the output

of the �rst 
on
luding party in the ideal exe
ution.

We denote by M

2

the output of the se
ond 
on
luding party in the real exe
ution C

A(w);B(w)

and by L

2

the output of the se
ond 
on
luding party in the ideal exe
ution. Hen
e, we want to prove that for every

PPT C, there exists a PPT C

ideal

su
h that for every Z and every auxiliary input � :

fw;M

1

;M

2

; Z(M

1

; �); C

A(w);B(w);Z(M

1

;�)

(�)g

O(
)

� fw;L

1

; L

2

; Z(L

1

; �);C

ideal

Z(L

1

;�)

(�)g

where we also require that if C

ideal

sets i 2 fA;Bg as the �rst 
on
luding party, then i 
on
ludes �rst in the

simulated view C

ideal

outputs.

We will introdu
e
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� In the ideal model of De�nition 2.2, the trusted party gives the adversaryC

ideal

the session-key 
hallenge

K

�

K

�

=

(

L

1

if � = 1 or L

1

= ?

U

n

if � = 0 and L

1

6= ?

� In the real model of De�nition 2.2, the trusted party gives the adversary C the session-key 
hallenge

K

�

K

�

=

(

M

1

if � = 1 or M

1

= ?

U

n

if � = 0 and M

1

6= ?

We �x the real adversary C (against se
urity with respe
t to the environment) and de�ne the real

adversary C

0

(against se
urity with respe
t to the session-key 
hallenge) that, on auxiliary input (�; �) and

re
eiving K from the �rst 
on
luding party, simulates Z(K; �) on its own. Hen
e C

0A(w);B(w)

(�; �;K) �

fK; �; C

A(w);B(w);Z(K;�)

(�)g.

By se
urity with respe
t to the session-key 
hallenge, there exists an ideal adversary C

ideal

0

su
h that

IDEAL� SK

C

0

ideal

O(
)

� REAL� SK

C

0

) fw;L

1

; L

2

;C

0

ideal

(�; �;K

�

); �g

O(
)

� fw;M

1

;M

2

; C

0A(w);B(w)

(�; �;K

�

); �g

Moreover, as � has only two possible values, we know that:

fw;L

1

; L

2

;C

0

ideal

(�; �; L

1

)g

O(
)

� fw;M

1

;M

2

; C

0A(w);B(w)

(�; �;M

1

)g (1)

fw;L

1

; L

2

;C

0

ideal

(�; �;K

0

)g

O(
)

� fw;M

1

;M

2

; C

0A(w);B(w)

(�; �;K

0

)g (2)

We will �rst prove that the real outputs of the honest parties are indistinguishable from ideal outputs,

even when the environment Z is present. This is formalized by the following 
laim:

Claim 2.5 For every Z, every � and every �,

fw;M

2

;M

1

; �; C

A(w);B(w);Z(M

1

;�)

(�)g

O(
)

� fw;L

2

; L

1

; �; C

A(w);B(w);Z(L

1

;�)

(�)g

where M

i

is the output of the ith 
on
luding party in the real exe
ution C

A(w);B(w)

and L

1

; L

2

are de�ned as

follows:

� if the �rst party in the real exe
ution C

A(w);B(w)

a

epts, then L

1

= U

n

. Otherwise, L

1

= ?.

� if the se
ond party in the real exe
ution C

A(w);B(w)

a

epts and L

1

6= ?, then L

2

= L

1

. If the se
ond

party a

epts and L

1

= ?, then L

2

= U

n

. If the se
ond party reje
ts, then L

2

= ?.

Proof of 
laim:

By de�nition of C

0

and Equation (1), we know that

fw;M

2

;M

1

; �; C

A(w);B(w);Z(M

1

;�)

(�)g � fw;M

2

; C

0A(w);B(w)

(�; �;M

1

)g

O(
)

� fw;L

2

;C

0

ideal

(�; �; L

1

)g

Again, by de�nition of C

0

, we have

fw;L

2

; L

1

; �; C

A(w);B(w);Z(L

1

;�)

(�)g � fw;L

2

; C

0A(w);B(w)

(�; �; L

1

)g

Note that in both the real and ideal models, the string K

0

is distributed identi
ally to L

1

, hen
e

by Equation 2, we have

fw;C

0A(w);B(w)

(�; �; L

1

)g

O(
)

� fw;C

0

ideal

(�; �; L

1

)g

) fw;L

2

; C

0A(w);B(w)

(�; �; L

1

)g

O(
)

� fw;L

2

;C

0

ideal

(�; �; L

1

)g

�
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We will now prove that if the real outputs of the honest parties are repla
ed by ideal outputs, then the

proto
ol leaks no information about the password w.

Claim 2.6 For every Z, every � and every �,

fw;L

2

; L

1

; �; C

A(w);B(w);Z(L

1

;�)

(�)g

O(
)

� f ~w;L

2

; L

1

; �; C

A(w);B(w);Z(L

1

;�)

(�)g

where ~w

R

 D and L

1

; L

2

are de�ned as follows:

� if the �rst party in the real exe
ution C

A(w);B(w)

a

epts, then L

1

= U

n

. Otherwise, L

1

= ?.

� if the se
ond party in the real exe
ution C

A(w);B(w)

a

epts and L

1

6= ?, then L

2

= L

1

. If the se
ond

party a

epts and L

1

= ?, then L

2

= U

n

. If the se
ond party reje
ts, then L

2

= ?.

Proof of 
laim: We de�ne the real adversary C

00

(against se
urity with respe
t to the session-

key 
hallenge) that, on auxiliary input (�; �) and re
eiving L

1

from the �rst 
on
luding party,

simulates Z(L

1

; �) on its own su
h that C

00A(w);B(w)

(�; �; L

1

) � fL

2

; L

1

; �; C

A(w);B(w);Z(L

1

;�)

g,

where L

2

is 
omputed a

ording to the above rule. Sin
e L

1

is distributed identi
ally to K

0

, by

se
urity with respe
t to the session-key 
hallenge (for the 
ase where � = 0) there exists C

00

ideal

su
h that

fw;C

00

ideal

(�; �; L

1

)g

O(
)

� fw;C

00A(w);B(w)

(�; �; L

1

)g (3)

whi
h in turn implies (by non-uniform indistinguishability or samplability of D)

f ~w;C

00

ideal

(�; �; L

1

)g

O(
)

� f ~w;C

00A(w);B(w)

(�; �; L

1

)g (4)

where ~w

R

 D. Note that in the ideal model, the adversary C

00

ideal

(�; �; L

1

) learns nothing about

the password w sin
e L

1

is independent of the password w. Hen
e we have

f ~w;C

00

ideal

(�; �; L

1

)g � fw;C

00

ideal

(�; �; L

1

)g (5)

From Equations (3), (4), (5) and transitivity of indistinguishability, we 
on
lude that

fw;C

00A(w);B(w)

(�; �; L

1

)g

O(
)

� f ~w;C

00A(w);B(w)

(�; �; L

1

)g

�

Note that the distributions f ~w;L

2

; L

1

; �; C

A(w);B(w);Z(L

1

;�)

(�)g and fw;L

2

; L

1

; �; C

A( ~w);B( ~w);Z(L

1

;�)

(�)g, where

~w

R

 D, are equivalent. Combining Claims 2.5 and 2.6, we obtain

fw;M

1

;M

2

; �; C

A(w);B(w);Z(M

1

;�)

(�)g

O(
)

� fw;L

1

; L

2

; �; C

A( ~w);B( ~w);Z(L

1

;�)

(�)g

We now des
ribe the ideal adversary C

ideal

Z(L

1

;�)

(�): C

ideal

generates a random password ~w

R

 D and

simulates the honest parties A and B in the intera
tion (A( ~w); B( ~w)). C

ideal

intera
ts with Z(L

1

) as soon

as the �rst party in the simulated exe
ution 
on
ludes. C

ideal


an therefore simulate C

A( ~w);B( ~w);Z(L

1

;�)

(�).

Hen
e, for any PPT C, there exists C

ideal

su
h that for every Z and every � :

fw;M

1

;M

2

; Z(M

1

; �); C

A(w);B(w);Z(M

1

;�)

(�)g

O(
)

� fw;L

1

; L

2

; Z(L

1

; �);C

ideal

Z(L

1

;�)

(�)g

3 An Overview of the Proto
ol

Before presenting our proto
ol, we introdu
e the polynomial evaluation fun
tionality, whi
h is an important

tool for the rest of the paper. In [22℄, it is observed that a se
ure proto
ol for polynomial evaluation

immediately yields a proto
ol for session-key generation whi
h is se
ure against passive adversaries. In [15℄,

Goldrei
h and Lindell work from the intuition (from [6℄) that by augmenting a se
ure proto
ol for polynomial

evaluation with additional me
hanisms, one 
an obtain a proto
ol for session-key generation whi
h is se
ure

against a
tive adversaries. Our proto
ol also 
omes from this intuition but the additional tools we are using

are di�erent.
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3.1 Se
ure Polynomial Evaluation

In a se
ure polynomial evaluation, a party A knows a polynomial Q over some �eld F and a party B wishes

to learn the value Q(x) for some element x 2 F su
h that A learns nothing about x and B learns nothing

else about the polynomial Q but the value Q(x). More spe
i�
ally, for our problem, we will assume that

F = GF(2

n

) � f0; 1g

n

, Q is a non-
onstant linear polynomial over F, and x is a string in f0; 1g

n

.

De�nition 3.1 (Polynomial evaluation) The polynomial evaluation fun
tionality is de�ned as:

Inputs The input of A is a non-
onstant linear polynomial Q over GF(2

n

). The input of B is a value

x 2 GF(2

n

).

Outputs B re
eives Q(x). A re
eives nothing.

As observed in [22℄, a se
ure proto
ol for polynomial evaluation yields immediately a proto
ol for session-

key generation whi
h is se
ure against passive adversaries as follows: A 
hooses a random linear non-
onstant

polynomial Q, and A and B engage in a se
ure polynomial evaluation proto
ol, where A inputs Q and B

inputs w, so that B obtains Q(w). Sin
e A has both Q and w, A 
an also obtain Q(w), and the session key

is set to be K = Q(w).

This proto
ol is se
ure against passive adversaries be
ause the key K is a random string (sin
e Q is a

random polynomial), and it 
an be shown that an eavesdropper learns nothing about w or Q(w) (due to the

se
urity of the polynomial evaluation).

However, the proto
ol is not se
ure against a
tive adversaries. For example, an a
tive adversary C 
an

input a �xed polynomial Q

C

in its intera
tion with B, say the identity polynomial id, and a �xed password

w

C

in its intera
tion with A. A outputs the session key Q

A

(w) and B outputs the session key Q

C

(w) = w.

With probability 1� 2

�n

, the two session keys are di�erent, whereas the de�nition of se
urity requires them

to be equal with probability 1�O(
).

A C B

Q

A

-

K

A

= Q

A

(w)

� w

C

- Q

A

(w

C

)

Q

C

- � w

- Q

C

(w)

K

B

= Q

C

(w)

Figure 1: Proto
ol whi
h is inse
ure against a
tive adversaries

3.2 Motivation for our Proto
ol

The main de�
ien
y of the se
ure polynomial evaluation proto
ol against a
tive adversaries is that it does

not guarantee that A and B output the same random session key. Somehow, the parties have to 
he
k that

they 
omputed the same random session key before starting to use it. It 
an be shown that A's session

key K

A

= Q

A

(w) is pseudorandom to the adversary, so A 
an start using it without leaking information.

However, B 
annot use its keyK

B

= Q

C

(w) be
ause it might belong to a set of polynomial size (for example,

if Q

C

= id, then Q

C

(w) 2 D where the di
tionary is by de�nition a small set). Hen
e Goldrei
h and Lindell

added a validation phase in whi
h A sends a message to B so that B 
an 
he
k if it 
omputed the same

session key, say A sends f

n

(K

A

) where f is a one-way permutation. Sin
e f

n

is a 1-1 map, this uniquely

de�nes K

A

(the session-key used now 
onsists of hard
ore bits of f

i

(K

A

), for i = 0; � � � ; n � 1) : B will


ompute f

n

(K

B

) and 
ompare it with the value it re
eived.

10



But it is still not 
lear that this 
andidate proto
ol is se
ure. Re
all that the se
urity of the polynomial

evaluation proto
ol applies only in the stand-alone setting and guarantees nothing in the 
on
urrent setting.

In parti
ular, it might be that C inputs a polynomial Q

C

in the polynomial evaluation between C and B

su
h that the polynomials Q

A

and Q

C

are related in some manner, say for any w 2 D, it is easy to 
ompute

the 
orre
t validation message f

2n

(Q

C

(w)) given the value of f

2n

(Q

A

(w)); yet B's key does not equal A's key.

To prevent this from happening, Goldrei
h and Lindell for
e the polynomial Q input in the polyno-

mial evaluation phase to be 
onsistent with the message sent in the validation phase (whi
h is supposedly

f

2n

(Q(w))). The parties have to 
ommit to their inputs at the beginning and then prove in a zero-knowledge

manner that the messages sent in the validation phase are 
onsistent with these 
ommitments. Be
ause of

the person-in-the-middle atta
k and the 
on
urren
y issues mentioned earlier, Goldrei
h and Lindell 
annot

use standard 
ommitment s
hemes and standard zero-knowledge proofs but rather they use non-malleable


ommitments and the spe
i�
 zero-knowledge proof of Ri
hardson and Kilian.

Our approa
h is to allow C to input a polynomial Q

C

related to Q

A

, but to prevent C from being able

to 
ompute a 
orre
t validation message with respe
t to B's session-key, even given A's validation message.

Suppose that the parties have a

ess to a family of pairwise independent hash fun
tions H. In the valida-

tion phase, we require A to send h(f

2n

(K

A

)) = h(f

2n

(Q

A

(w))) for some fun
tion h

R

 H. Then, even if

K

A

= Q

A

(w) and K

B

= Q

C

(w) are related (but distin
t), the values h(f

2n

(K

A

)) and h(f

2n

(K

B

)) will be

independent and C 
annot do mu
h better than randomly guess the value of h(f

2n

(K

B

)).

One di�
ulty arises at this point: the parties have to agree on a 
ommon random hash fun
tion h

R

 H.

But the honest parties A and B only share the randomness 
oming from the password w so this password w

has to be enough to agree on a random hash fun
tion. To make this possible, we assume that the password

is of the form (w;w

0

) where w and w

0

are 
hosen independently of one another: w is 
hosen at random from

an arbitrary di
tionary D � f0; 1g

n

and w

0

is uniformly distributed in D

0

= f0; 1g

d

0

. (For example, these


an be obtained by splitting a single random password from f0; 1g

d

00

into two parts.) The �rst part of the

password, w, will be used in the polynomial evaluation proto
ol whereas the se
ond part of the password,

w

0

, will be used as the index of a hash fun
tion. Indeed, if we assume that D

0

= f0; 1g

d

0

, there exists a family

of almost pairwise independent hash fun
tions H = fh : f0; 1g

n

! f0; 1g

m

g, where ea
h hash fun
tion is

indexed by a password w

0

2 D

0

and m = 
(d

0

).

We formalize these ideas in the proto
ol des
ribed below.

3.3 Des
ription of the Proto
ol

Like in [15℄, we will need a se
ure proto
ol for an augmented version of polynomial evaluation.

De�nition 3.2 (Augmented polynomial evaluation) The augmented polynomial evaluation fun
tion-

ality is de�ned as:

Earlier phase A sends a 
ommitment 


A

= Commit(Q

A

; r

A

) to a linear non-
onstant polynomial Q

A

for

a randomly 
hosen r

A

. B re
eives a 
ommitment 


B

. We assume that the 
ommitment s
heme used is

perfe
tly binding and 
omputationally hiding.

Inputs The input of A is a linear non-
onstant polynomial Q

A

, a 
ommitment 


A

to Q

A

and a 
orresponding

de
ommitment r

A

. The input of B is a value x 2 GF(2

n

) and a 
ommitment 


B

.

Outputs � In the 
ase of 
orre
t inputs, i.e. 


A

= 


B

and 


A

= Commit(Q

A

; r

A

), B re
eives Q

A

(x) and

A re
eives nothing.

� In the 
ase of in
orre
t inputs, i.e. 


A

6= 


B

or 


A

6= Commit(Q

A

; r

A

), B re
eives a spe
ial failure

symbol ? and A re
eives nothing.

The other 
ryptographi
 tools we will need are:

Commitment s
heme : Let Commit be a perfe
tly binding, 
omputationally hiding string 
ommitment.
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Seed-
ommitted pseudorandom generator : similarly to [15℄, we will use the seed-
ommitted pseudo-

random generator G(s) = (b(s)b(f(s)) � � � b(f

n+`�1

(s))f

n+`

(s)) where f is a one-way permutation with

hard
ore bit b.

One-time MAC with pseudorandomness property : Let MAC be a message authenti
ation 
ode for

message spa
e f0; 1g

p(n)

(for a polynomial p(n) to be spe
i�ed later) using keys of length ` = `(n) that

is se
ure against one query atta
k, i.e. a PPT A whi
h queries the tagging algorithm MAC

K

on at

most one message of its 
hoi
e 
annot produ
e a valid forgery on a di�erent message. Additionally, we

will require the following pseudorandomness property:

� Let K be a uniform key of length `

� The adversary queries the tagging algorithm MAC

K

on the message m of its 
hoi
e

� The adversary sele
ts m

0

6= m. We require that the value MAC

K

(m

0

) be pseudorandom with

respe
t to the adversary's view.

Two examples of su
h a MAC are:

� MAC

s

(m) = f

s

(m) where ff

s

g

s2f0;1g

` is a pseudorandom fun
tion family

� MAC

a;b

(m) = am+ b where `(n) = 2p(n) and a; b 2 GF(2

`=2

).

Almost pairwise independent hash fun
tions The family of fun
tionsH = fh

w

0

: f0; 1g

n

! f0; 1g

m

g

w

0

2f0;1g

d

0

is said to be pairwise Æ-dependent or almost pairwise independent if:

1. (uniformity) 8x 2 f0; 1g

n

, when we 
hoose w

0

R

 f0; 1g

d

0

, h

w

0

(x) is uniform over f0; 1g

m

.

2. (pairwise independen
e) 8x

1

6= x

2

2 f0; 1g

n

;8y

1

; y

2

2 f0; 1g

m

, when we 
hoose w

0

R

 f0; 1g

d

0

,

Pr

w

0

2f0;1g

d

0

[h

w

0

(x

1

) = y

1

^ h

w

0

(x

2

) = y

2

℄ =

1 + Æ

2

2m

We also require that for a �xed w

0

2 f0; 1g

d

0

, the fun
tion h

w

0

is regular, i.e. it is 2

n�m

to 1. In other

words, h

w

0

(U

n

) � U

m

. Throughout this paper, we write �

def

=

1+Æ

2

m

.

Lemma 3.3 For the �xed di
tionary D

0

= f0; 1g

d

0

� f0; 1g

n

, there exists a family of almost pairwise

independent hash fun
tions H = fh

w

0

: f0; 1g

n

! f0; 1g

m

g

w

0

2D

0

for � = O

�

n

jD

0

j

1=3

�

.

The formal des
ription of the proto
ol follows.

Proto
ol 3.4 1. Inputs The parties A and B have a joint password (w;w

0

), where w is 
hosen at random

from an arbitrary di
tionary D � f0; 1g

n

and w

0

is uniformly distributed in D

0

= f0; 1g

d

0

� f0; 1g

n

. w

and w

0

are 
hosen independently.

2. Commitment: A 
hooses a random non-
onstant linear polynomial Q

A

over GF(2

n

) and 
oin tosses

r

A

and sends 


A

= Commit(Q

A

; r

A

). B re
eives some 
ommitment 


B

.

3. Augmented polynomial evaluation

(a) A and B engage in a polynomial evaluation proto
ol: A inputs the polynomial Q

A

, the 
om-

mitment 


A

and the 
oin tosses r

A

it used for the 
ommitment; B inputs the 
ommitment 


B

it

re
eived and the password w seen as an element of GF (2

n

).

(b) The output of B is denoted �

B

, whi
h is supposed to be equal to Q

A

(w).

(
) A internally 
omputes �

A

= Q

A

(w).

4. Validation

(a) A sends the string y

A

= h

w

0

(f

n+`

(�

A

)).
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(b) Let t

A

be the session trans
ript so far as seen by A. A 
omputes k

1

(�

A

) = b(�

A

) � � � b(f

`�1

(�

A

))

and sends the string z

A

= MAC

k

1

(�

A

)

(t

A

).

5. De
ision

(a) A always a

epts and outputs k

2

(�

A

) = b(f

`

(�

A

)) � � � b(f

`+n�1

(�

A

))

(b) B a

epts (this event is denoted by de


B

= a

ept) if the strings y

B

and z

B

it re
eived satisfy

the following 
onditions :

� y

B

= h

w

0

(f

n+`

(�

B

))

� Ver

k

1

(�

B

)

(t

B

; z

B

) = a

ept, where t

B

is the session trans
ript so far as seen by B and k

1

(�

B

)

is de�ned analogously to k

1

(�

A

).

If �

B

= ?, then B will immediately reje
t.

If B a

epts, it outputs k

2

(�

B

) = b(f

`

(�

B

)) � � � b(f

`+n�1

(�

B

)).

A has (w;w

0

) and pi
ks a random Q

A

B has (w;w

0

)

Commitment 


A

def

= Commit(Q

A

; r

A

)




B

-

Se
ure polynomial evaluation

Q

A

; 


A

; r

A

- � w; 


B

- �

B

�

A

def

= Q

A

(w)

Hash y

A

def

= h

w

0

(f

n+`

(�

A

))

y

B

-

MAC of trans
ript z

A

def

= MAC

k

1

(�

A

)

(t

A

)

-
z

B

Output key k

2

(�

A

)

A

ept if y

B

= h

w

0

(f

n+`

(�

B

))

& Ver

k

1

(�

B

)

(t

B

; z

B

) = a

ept

If a

ept, output key k

2

(�

B

)

Figure 2: Overview of our proto
ol

4 Se
urity Theorems

We begin by stating our proto
ol's se
urity against passive adversaries.

Theorem 4.1 Proto
ol 3.4 is se
ure for the di
tionary D � D

0

= D � f0; 1g

d

0

against passive adversaries.

More formally, for every passive PPT real adversary C, there exists an ideal adversary C

ideal

whi
h always

sends (de


A

C

; de


B

C

) = (1; 1) to the trusted party su
h that for every auxiliary input � 2 f0; 1g

poly(n)

:

fIDEAL

C

ideal

(D �D

0

; �)g

�




� fREAL

C

(D �D

0

; �)g

�

Next we state the basi
 se
urity theorem against a
tive adversaries, in the plain model with a di
tionary

of the form D � f0; 1g

d

0

.
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Theorem 4.2 Proto
ol 3.4 is (1 � 
)-se
ure with respe
t to the session-key 
hallenge for the di
tionary

D �D

0

= D � f0; 1g

d

0

, for 
 = max

�

1

jDj

;

�

poly(n)

jD

0

j

�


(1)

�

. More pre
isely, 
 = max

�

1

jDj

; O

�

n

3

jD

0

j

�

1=6

�

.

Finally, we show how the shared di
tionary of the form D�f0; 1g

d

required in Theorem 4.2 
an be realized

from several other types of di
tionaries D

00

, a
hieving se
urity bounds of the form (poly(n)=jD

00

j)


(1)

in all


ases.

Single Random Password. We 
an split a single random password from a di
tionary D

00

= f0; 1g

d

00

into

two parts, one of length d and one of length d

0

= d

00

� d. Optimizing, we set d = (d

00

� 3 logn)=7, and obtain

a se
urity bound of


 = max

(

1

2

d

; O

�

n

3

2

d

0

�

1=6

)

= O

�

n

3

jD

00

j

�

1=7

:

Arbitrary Password with Common Random String. We 
an 
onvert a password from an arbitrary

di
tionary D

000

� f0; 1g

n

into a single random password (as in the previous 
onstru
tion) in the 
ommon

random string model, using randomness extra
tors, whi
h we de�ne now.

A random variable X is a k-sour
e if for all x, Pr [X = x℄ � 2

�k

. (In other words, X has min-entropy at

least k.) Note that the uniform distribution on D

000

is a k-sour
e for k = logD

000

.

De�nition 4.3 ([24℄) A fun
tion Ext : f0; 1g

n

�f0; 1g

`

! f0; 1g

m

is a (strong) (k; �)-extra
tor if for every

k-sour
e X on f0; 1g

n

, the random variable (U

`

;Ext(X;U

`

)) is �-
lose to (U

`

; U

m

).

That is, using a random seed of length `, the fun
tion Ext extra
ts m almost-uniform bits from the

k-sour
e X . We 
all Ext expli
it if it is 
omputable in polynomial time (in n and `).

We will use the following 
onstru
tion of �low min-entropy� extra
tors.

Lemma 4.4 ([27℄) For every n, k � n, and � > 0, there exists an expli
it (k; �)-extra
tor Ext : f0; 1g

n

�

f0; 1g

`

! f0; 1g

m

with ` = O(log n+m) + 2 log(1=�) and m = k � 2 log(1=�)�O(1).

To use extra
tors with our proto
ol, we view the 
ommon random string as the seed for the extra
tor, and

apply the extra
tor to 
onvert the password from the arbitrary di
tionary D

000

� f0; 1g

n

into d

00

= m almost-

uniform bits, whi
h we use in pla
e of the �single random password� in the previous 
onstru
tion. We pay an

additive loss of � (the error of the extra
tor) in the se
urity bound, and also lose be
ause the extra
tor 
annot

extra
t all of the min-entropy in the sour
e (i.e. d

00

will be smaller than log jD

000

j). Optimizing with the

extra
tor of Lemma 4.4, we set k = log jD

000

j and � = (n

3

=jD

000

j)

1=9

, and obtain d

00

= m = k�2 log(1=�)�O(1),

i.e. jD

00

j = 2

d

00

= 
(�

2

� 2

k

) = 
(n

2=3

� jD

000

j

7=9

). Then we have:


 = O

�

n

3

jD

00

j

�

1=7

= O

�

n

3

n

2=3

� jD

000

j

7=9

�

1=7

= O

�

n

3

jD

000

j

�

1=9

;

for a �nal se
urity bound of


 + � = O

�

n

3

jD

000

j

�

1=9

:

The length of our 
ommon random string is ` = O(log n+k) = O(log n+log jD

000

j). Note that this is only

logarithmi
 in the se
urity parameter n, whereas the proto
ols of [19, 13℄ require 
ommon referen
e strings of

length polynomially related to n (and, moreover, their referen
e strings are not merely uniformly distributed

random strings, but are supposed to be generated a

ording to more 
omplex distributions). On the other

hand, using our proto
ol requires knowing (or assuming) a lower bound on the size of the di
tionary (and

this lower bound is what determines the se
urity). The proto
ols of [15, 19, 13℄ do not require su
h a lower

bound.
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Two Independent Passwords. If the parties share two independent passwords w

1

; w

2


oming from ar-

bitrary di
tionaries D

1

;D

2

� f0; 1g

r

, then they 
an apply a (seedless) extra
tor for 2 independent weak

random sour
es [9℄ to 
onvert these into a single random password. Even better is to use the following

variant of 2-sour
e extra
tors:

De�nition 4.5 ([11℄) A fun
tion Ble : f0; 1g

r

� f0; 1g

r

! f0; 1g

m

is a (strong) (k

1

; k

2

; �)-blender if for

every k

1

-sour
e X

1

and independent k

2

-sour
e X

2

on f0; 1g

r

, the random variable (X

1

;Ble(X

1

; X

2

)) is �-
lose

to (X

1

; U

m

).

Thus, if the parties share two independent passwords w

1

; w

2


oming from arbitrary di
tionaries, a strong

blender 
an be used to 
onvert w

2

into an almost-uniform string w

0

= Ble(w

1

; w

2

) that is essentially in-

dependent of the other password, and thus (w

1

; w

0

) 
an be used in our original 
onstru
tion. Non
on-

stru
tively, strong (k

1

; k

2

; �)-blenders are known to exist with m = k

2

� 2 log(1=�) � O(1), provided that

k

1

> log r + 2 log(1=�) + O(1). If there were expli
it 
onstru
tions mat
hing these parameters, we would

obtain a proto
ol with se
urity bound of


 = O

 

max

(

�

n

jD

1

j

�

1=2

;

�

n

3

jD

2

j

�

1=8

)!

:

Unfortunately, expli
it 
onstru
tions of blenders (or 2-sour
e extra
tors) are only known in 
ases when

either k

1

or k

2

are at least r=2. (See [12℄ and the referen
es therein for the 
urrent state-of-the-art.) Thus

we would not obtain a proto
ol that 
ould work for arbitrary di
tionaries D

1

;D

2

� f0; 1g

n

of size poly(n).

However, these 
onstru
tions do allow us to obtain a proto
ol for arbitrary di
tionaries D

1

;D

2

� f0; 1g

r

of

size, say, 2

:51r

, for r � n and even r = O(log n).

5 Overview of the Proof

Notations

� Without loss of generality, we will assume that the real adversary's output equals its view of the

exe
ution (sin
e the output is e�
iently 
omputable from the view). We will also often omit the

auxiliary input � of the adversary.

� Re
all that we denote by C

A(w;w

0

);B(w;w

0

)

an exe
ution of C when it 
ommuni
ates with A and B,

with 
ommon input w. We denote by C

A(Q

A

;w;w

0

);B(w;w

0

)

the exe
ution of C with A and B where Q

A

spe
i�es the random non-
onstant linear polynomial to be used by A.

� A 
hannel C is reliable in a given proto
ol exe
ution if C runs the (A;C) and (C;B) exe
utions in a

syn
hronized manner and does not modify any message sent by A or B. If C was reliable in the given

exe
ution, we denote this event by reliable

C

= true; otherwise, we write reliable

C

= false.

Although the se
urity theorems are stated in terms of De�nition 2.2, the proofs will 
on
ern mainly

De�nition 2.1 and the modi�
ations ne
essary to take into a

ount the session-key 
hallenge are given.

Similarly to [15℄, the proof of Theorem 4.2 is in four steps:

1. Key-Mat
h property: we show that if �

A

6= �

B

, then B will reje
t with probability 1�O(
).

2. Simulation of the (C;B) intera
tion: we show that if the key-mat
h property holds, then the

intera
tion (C;B) 
an be simulated by an adversary C

0

intera
ting only with A, even if the intera
tion

(A;C) is 
on
urrent.

3. Simulation of the (A;C

0

) intera
tion: we show that the intera
tion (A;C

0

) as a stand-alone 
an

be simulated.

4. Combining the above steps, we obtain a proof of se
urity against a
tive adversaries. The real adver-

sary's view of the 
on
urrent intera
tions (A;C) and (C;B) 
an be simulated by a PPT C

00

whi
h is

non-intera
tive and 
an therefore be simulated by an ideal adversary with no input.
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Like in [15℄, the main part of the proof of Theorem 4.2 is the key-mat
h property. On
e the key-mat
h

property is established, we 
an easily adapt the proofs in [15℄ to our spe
i�
 proto
ol to build an ideal

adversary whi
h simulates the real adversary's view.

Theorem 5.1 (Key-Mat
h property) For every PPT real adversary C and all su�
iently large values

of n

Pr [de


B

= a

ept^ �

A

6= �

B

℄ <

p

�+ �+ �+ neg(n)

where � =

1

jDj

and � =

1+Æ

2

m

= O

�

n

jD

0

j

1=3

log jD

0

j

�

.

The main part of our proof that is new (and simpler than [15℄) is the key-mat
h property. As noted in

the introdu
tion, the adversary C has total 
ontrol over the s
heduling of the two intera
tions (A;C) and

(C;B). Hen
e the key-mat
h property will be proved for every possible s
heduling 
ase, in
luding those for

whi
h these intera
tions are 
on
urrent. Nevertheless, the key-mat
h property will be established by tools

of se
ure two-party 
omputation, whi
h a priori only guarantee se
urity in the stand-alone setting.

For ea
h s
heduling, we want to bound from above the probability Pr [de


B

= a

ept^ �

A

6= �

B

℄. Re
all

that B a

epts i� two 
onditions are satis�ed: the string y

B

re
eived must equal h

w

0

(f

n+`

(�

B

)) and the

MAC z

B

re
eived must be a valid MAC, i.e. Ver

k

1

(�

B

)

(t

B

; z

B

) = a

ept. Hen
e, to obtain an upper bound

we 
an omit the veri�
ation of the MAC by B and only 
onsider the probability that C su

eeds in sending

the value h

w

0

(f

n+`

(�

B

)) when �

A

6= �

B

. (Like in [15℄, the MAC is only used to redu
e the simulation of

a
tive adversaries to the simulation of passive adversaries plus the key-mat
h property.) For 
onvenien
e,

we will de
ompose the adversary into two algorithms.

� The �rst algorithm is denoted by C. C is the 
hannel through whi
h A and B 
ommuni
ate. For a

given exe
ution, we denote by C

A(Q

A

;w;w

0

);B(w;w

0

)

the view of C when it 
ommuni
ates with A and B

with respe
tive inputs (Q

A

; w; w

0

) and (w;w

0

) until just before C sends a string y

B

to B.

� The se
ond algorithm is denoted by C

hash

. C

hash

takes as an input the above view C

A(Q

A

;w;w

0

);B(w;w

0

)

and tries to 
ompute the hash value h

w

0

(f

n+`

(�

B

)).

Hen
e to establish the key-mat
h property, for ea
h s
heduling, we will bound from above the probability

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

) = h

w

0

(f

n+`

(�

B

)) ^�

A

6= �

B

i

Note that sin
e B always reje
ts if �

B

= ?, we 
an adopt the 
onvention that

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

) = h

w

0

(f

n+`

(�

B

)) ^ �

B

= ?

i

= 0

We 
onsider two s
heduling 
ases (see Figures 3 and 4):

S
heduling 1 : C sends the 
ommitment 


B

to B after A sends the hash value y

A

.

The intuition for this 
ase is that we have two sequential exe
utions (A;C) and (C;B). Using the

se
urity of the polynomial evaluation (A;C), we show that even if C re
eives y

A

, the hash index w

0

is

(1� �) pseudorandom with respe
t to the adversary's view. Hen
e, by the uniformity property of the

hash fun
tions, C 
annot do mu
h better than randomly guess the value of h

w

0

(f

n+`

(�

B

)).

S
heduling 2 : C sends the 
ommitment 


B

to B before A sends the hash value y

A

.

The almost pairwise independen
e property means that for �xed values x

1

6= x

2

2 f0; 1g

n

, if the index

w

0

is 
hosen at random and independently of x

1

and x

2

, then given the value h

w

0

(x

1

), one 
annot do

mu
h better than randomly guess the value h

w

0

(x

2

). Before y

A

is sent, the hash index w

0

is random

(sin
e it has not been used by A). Thus, if we show that the values �

A

and �

B


an be 
omputed before

y

A

is sent, then w

0

is independent of x

1

= f

n+`

(�

A

) and x

2

= f

n+`

(�

B

) and the adversary 
annot

guess h

w

0

(x

2

) even given y

A

= h

w

(x

1

). To show that �

A

and �

B


an be 
omputed before y

A

is sent,

we used an ideal polynomial evaluation (C;B) to extra
t an opening of the adversary's 
ommitment




B

. (The adversary must input su
h an opening in the ideal evaluation, else B will reje
t).
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Polynomial

evaluation




A

= Commit(Q

A

; r

A

)

-

Q

A

; 


A

; r

A

-

�

A

def

= Q

A

(w)

y

A

-

z

A

-

-




B

Polynomial

evaluation

w; 


B

�

�

B

-

-

y

B

A(Q

A

; w; w

0

) C B(w;w

0

)

Figure 3: First s
heduling

Polynomial

evaluation




A

= Commit(Q

A

; r

A

)

-

Q

A

; 


A

; r

A

-

�

A

def

= Q

A

(w)

y

A

-

z

A

-

-




B

Polynomial

evaluation

w; 


B

�

�

B

-

-

y

B

A(Q

A

; w; w

0

) C B(w;w

0

)

Figure 4: Se
ond s
heduling
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6 Proof of Se
urity against Passive Adversaries

Theorem 6.1 Proto
ol 3.4 is se
ure for the di
tionary D � D

0

= D � f0; 1g

d

0

against passive adversaries.

More formally, for every passive PPT real adversary C, there exists an ideal adversary C

ideal

whi
h always

sends (de


A

C

; de


B

C

) = (1; 1) to the trusted party su
h that for every auxiliary input � 2 f0; 1g

poly(n)

:

fIDEAL

C

ideal

(D �D

0

; �)g

�




� fREAL

C

(D �D

0

; �)g

�

Re
all that a passive adversary just eavesdrops on the intera
tion between the honest parties so in this


ase, the parties A and B output the same session-key (output(A) = output(B)) and both a

ept. In the

ideal model, the session-key K

ideal

is distributed a

ording to U

n

.

Thus, to prove Theorem 6.1, it su�
es to prove the following proposition:

Proposition 6.2 For every passive PPT real adversary C, there exists an ideal adversary C

ideal

su
h that

fw;w

0

; output(A); output(C

A(w;w

0

);B(w;w

0

)

)g




� fw;w

0

; U

n

; output(C

ideal

)g

Proof: The view of the real adversary 
onsists of a trans
ript of the exe
ution of the proto
ol by A and

B. We 
an think of this trans
ript as the 
on
atenation of:

� The 
ommitment to Q

A

and the trans
ript of the augmented polynomial evaluation. We denote these

by T (Q

A

; w).

� The hash value y

A

def

= h

w

0

(f

n+`

(�

A

)) where �

A

def

= Q

A

(w).

� The MAC-key k

1

(�

A

) (it su�
es to in
lude the MAC-key rather than the MAC itself, sin
e the latter

is easily 
omputable from the MAC-key and the trans
ript so far).

Claim 6.3

fw;Q

A

; T (Q

A

; w)g




� fw;Q

A

; T (

~

Q

A

; ~w)g

where Q

A

and

~

Q

A

are random non-
onstant linear polynomials and w; ~w are taken uniformly at random (and

independently) from D.

Proof Sket
h: The 
laim follows from the se
urity of the augmented polynomial evaluation.

The 
ommitment s
heme we 
onsider is 
omputationally hiding hen
e a 
ommitment to Q

A

is indis-

tinguishable from a 
ommitment to

~

Q

A

. Combining this with the se
urity of the augmented polynomial

evaluation and the 
onne
tedness of non-
onstant linear polynomials (for every Q

A

and

~

Q

A

, there exists

^

Q

A

and values x

1

and x

2

su
h that Q

A

(x

1

) =

^

Q

A

(x

1

) and

~

Q

A

(x

2

) =

^

Q

A

(x

2

)), we know

3

that 8w;Q

A

; ~w;

~

Q

A

,

T (Q

A

; w)




� T (

~

Q

A

; ~w)

�

Claim 6.3 implies that

fw;Q

A

(w); T (Q

A

; w)g




� fw;Q

A

(w); T (

~

Q

A

; ~w)g

� fw;U

n

; T (

~

Q

A

; ~w)g (6)

where Equation (6) 
omes from the fa
t that for a random Q

A

, �

A

= Q

A

(w) is uniformly distributed in

f0; 1g

n

and Q

A

is independent of T (

~

Q

A

; ~w).

Note that w

0

is independent from the variables in Equation (6) hen
e we have:

fw;w

0

; Q

A

(w); T (Q

A

; w)g




� fw;w

0

; U

n

; T (

~

Q

A

; ~w)g

3

See Claim 5.2 in [15℄
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We 
an then apply the deterministi
 polytime fun
tion G(:) = (f

n+`

(:); k

1

(:); k

2

(:)) to the third 
omponent

of ea
h distribution to obtain:

fw;w

0

; k

2

(�

A

); f

n+`

(�

A

); k

1

(�

A

); T (Q

A

; w)g




� fw;w

0

; k

2

(U

n

); f

n+`

(U

n

); k

1

(U

n

); T (

~

Q

A

; ~w)g

Sin
e G(s) = (f

n+`

(s); k

1

(s); k

2

(s)) is a PRG, we have:

fw;w

0

; k

2

(�

A

); f

n+`

(�

A

); k

1

(�

A

); T (Q

A

; w)g




� fw;w

0

; U

1

n

; U

2

n

; U

`

; T (

~

Q

A

; ~w)g

) fw;w

0

; k

2

(�

A

); h

w

0

(f

n+`

(�

A

)); k

1

(�

A

); T (Q

A

; w)g




� fw;w

0

; U

1

n

; h

w

0

(U

2

n

); U

`

; T (

~

Q

A

; ~w)g

For a �xed w

0

2 D

0

, h

w

0

is a regular map, so

fw;w

0

; k

2

(�

A

); h

w

0

(f

n+`

(�

A

)); k

1

(�

A

); T (Q

A

; w)g




� fw;w

0

; U

1

n

; U

m

; U

`

; T (

~

Q

A

; ~w)g

The ideal adversary C

ideal

will do the following:

1. Generate a random password ~w 2 D and a random non-
onstant linear polynomial

~

Q

A

2. Simulate the honest parties in the augmented polynomial evaluation to produ
e the trans
ript T (

~

Q

A

; ~w)

3. Generate random strings U

m

and U

`

.

4. Output (U

m

; U

`

; T (

~

Q

A

; ~w))

7 Key-Mat
h Property for the First S
heduling

S
heduling 1 is de�ned as �C sends the 
ommitment 


B

to B after A sends y

A

�. Without loss of generality

we 
an assume that C sends the 
ommitment 


B

to B after A sends z

A

(sin
e obtaining z

A


an only help

C).

The intuition for this 
ase is that we have two sequential exe
utions (A;C) and (C;B). Using the

se
urity of the polynomial evaluation (A;C), we show that even if C re
eives y

A

, the hash index w

0

is (1� �)

pseudorandom with respe
t to the adversary's view. Hen
e, by the uniformity property of the hash fun
tions,

C 
annot do mu
h better than randomly guess the value of h

w

0

(f

n+`

(�

B

)).

Proposition 7.1 For every PPT real adversary C and all su�
iently large values of n

Pr [de


B

= a

ept^ �

A

6= �

B

^ S
h1℄ < �+ �+ neg(n)

where � =

1

D

and � = O

�

n

jD

0

j

1=3

log jD

0

j

�

. S
h1 denotes the event that the exe
ution follows the �rst s
heduling.

Proof: From the dis
ussion in Se
tion 5, re
all that:

Pr [de


B

= a

ept^�

A

6= �

B

^ S
h1℄ � Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

) = h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

^ S
h1

i

We de
ompose the adversary into two algorithms:

� C

1

refers to the adversary until just before the 
ommitment 


B

is sent. Let (�; y

A

; z

A

) denote the view

of the adversary C

1

when intera
ting with A(Q

A

; w; w

0

).

� C

2

refers to the adversary on
e the (A;C) intera
tion is over, i.e. C

2

will be given as inputs (�; y

A

; z

A

).

Sin
e C

2

and B are exe
uting the se
ure (augmented) polynomial evaluation in the stand-alone setting,

we know that there exists an ideal adversary C

2;ideal

su
h that for every �; y

A

; z

A

,

f�

B;ideal

;C

2;ideal

B(w;


B

)

(�; y

A

; z

A

)g




� f�

B

; C

B(w;


B

)

2

(�; y

A

; z

A

)g

where �

B;ideal

def

= output(B

C

2;ideal

(�;y

A

;z

A

)

(w; 


B

)) and �

B

def

= output(B

C

2

(�;y

A

;z

A

)

(w; 


B

)).
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Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

) = h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

^ S
h1

i

� Pr

h

C

hash

(C

B(w;


B

)

2

(�; y

A

; z

A

)) = h

w

0

(f

n+`

(�

B

)) ^ S
h1

i

� Pr

h

C

hash

(C

2;ideal

B(w;


B

)

(�; y

A

; z

A

)) = h

w

0

(f

n+`

(�

B;ideal

)) ^ S
h1

i

+ neg(n) (7)

� Pr

�

C

hash

0

(�; h

w

0

(f

n+`

(�

A

)); k

1

(�

A

)) = h

w

0

(f

n+`

(Q

C

(w)))

�

+ neg(n)

where C

hash

0

simulates C

2;ideal

's view of the ideal polynomial evaluation with B and Q

C

is C

2;ideal

's input

(wlog we will assume that we are in the 
orre
t input 
ase in the augmented polynomial evaluation (C;B)

sin
e by 
onvention we de�ne C

hash

(�) 6= h

w

0

(f

n+`

(�

B

)) if �

B

= ?). Equation (7) 
omes from the fa
t that

the se
urity of the augmented polynomial evaluation (C;B) holds even for �xed inputs (w; 


B

; �; y

A

; z

A

) and

with advi
e string (w

0

;�

A

) to the distinguisher.

We will now prove that the hash index w

0

is (1 � �)-pseudorandom with respe
t to the inputs given to

C

hash

0

. This will imply that the value h

w

0

(f

n+`

(Q

C

(w))) is (1 � �)-indistinguishable from uniform. Thus

h

w

0

(f

n+`

(Q

C

(w))) will be predi
ted by C

hash

0

with probability at most �+ 2

�m

.

Lemma 7.2 For every PPT adversary C

0

intera
ting with A(Q

A

) who halts after the augmented polynomial

evaluation, fw;Q

A

(w); C

0A(Q

A

)

g

�

� fw;U

n

; C

0A(Q

A

)

g

Proof: C

0

re
eives a 
ommitment 


A

= Commit(Q

A

; r

A

) from A before exe
uting the se
ure proto
ol for

augmented polynomial evaluation. By se
urity of the augmented polynomial evaluation, we know that there

exists an ideal adversary C

0

ideal

su
h that for every Q

A

; 


A

; r

A

, we have C

0A(Q

A

;


A

;r

A

)




�C

0

ideal

A(Q

A

;


A

;r

A

)

(


A

).

Without loss of generality, we will assume that we are in the 
orre
t input 
ase so that C

0

ideal

always

re
eives Q

A

(w

C

) for some input w

C

= C

0

ideal

(


A

). Hen
e for every w;Q

A

; 


A

; r

A

, we have C

0A(Q

A

;


A

;r

A

)




�

C

0

ideal

(


A

; w

C

; Q

A

(w

C

)).

We want to show that

fw;Q

A

(w);Commit(Q

A

); w

C

; Q

A

(w

C

)g

�

� fw;U

n

;Commit(Q

A

); w

C

; Q

A

(w

C

)g

where w

C

= C

0

ideal

(Commit(Q

A

)).

� By the hiding property of the 
ommitment s
heme, we 
an repla
e the 
ommitment to Q

A

by a


ommitment to 0

2n

in the distributions. This makes w

C

= C

0

ideal

(Commit(0

2n

)), whi
h is independent

of Q

A

.

� Sin
e w

C

is independent of w, the probability that w

C

= w is at most � =

1

jDj

.

� If w 6= w

C

, Q

A

(w) is within 2

�n

statisti
al distan
e of U

n

and independent of Q

A

(w

C

) by pairwise

independen
e of (non-
onstant linear) polynomials.

fw;Q

A

(w);Commit(0

2n

); w

C

; Q

A

(w

C

)jw

C

6= wg




� fw;U

n

;Commit(0

2n

); w

C

; Q

A

(w

C

)jw

C

6= wg

By Lemma 7.2, we have:

fw;�

A

; �g

�

� fw;U

n

; �g

Note that w

0

is independent of all the above variables hen
e we have:

fw;w

0

;�

A

; �g

�

� fw;w

0

; U

n

; �g

We 
an then apply the deterministi
 polytime fun
tion (h

w

0

(f

n+`

(:)); k

1

(:)) using the se
ond 
omponent w

0

to the third 
omponent of ea
h distribution to obtain:

fw;w

0

; �; h

w

0

(f

n+`

(�

A

)); k

1

(�

A

)g

�

� fw;w

0

; �; h

w

0

(f

n+`

(U

n

)); k

1

(U

n

)g
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By applying the polytime fun
tion C

2;ideal

(:) to the last three 
omponents of ea
h distribution, we have:

fw;w

0

; �; h

w

0

(f

n+`

(�

A

)); k

1

(�

A

); Q

C

g

�

� fw;w

0

; �; h

w

0

(f

n+`

(U

n

)); k

1

(U

n

);

~

Q

C

g

where Q

C

= C

2;ideal

(�; y

A

; z

A

) and

~

Q

C

= C

2;ideal

(�; h

w

0

(f

n+`

(U

n

)); k

1

(U

n

)).

Pr

�

C

hash

0

(�; h

w

0

(f

n+`

(�

A

)); k

1

(�

A

); Q

C

) = h

w

0

(f

n+`

(Q

C

(w)))

�

� Pr

h

C

hash

0

(�; h

w

0

(f

n+`

(U

n

)); k

1

(U

n

);

~

Q

C

) = h

w

0

(f

n+`

(

~

Q

C

(w)))

i

+ �+ neg(n)

� Pr

h

C

hash

0

(�; U

m

; U

`

;

~

Q

C

) = h

w

0

(f

n+`

(

~

Q

C

(w)))

i

+ �+ neg(n)

� �+ 2

�m

+ neg(n)

The last inequality follows be
ause the inputs to C

hash

0

are independent of w

0

.

8 Key-Mat
h Property for the warm-up 
ase

Before proving the key-mat
h property for the se
ond s
heduling, we will 
onsider a warm-up 
ase for

intuition. The warm-up 
ase is de�ned as �C sends its last message in the (C;B) polynomial evaluation

before A sends the validation message y

A

�.

The intuition for this 
ase is that even though the polynomial evaluations are 
on
urrent, the values �

A

and �

B

are de�ned and 
omputed before y

A

= h

w

0

(f

n+`

(�

B

)) is sent so that we 
an apply almost pairwise

independen
e. The almost pairwise independen
e property means that for �xed values x

1

; x

2

2 f0; 1g

n

, if

the index w

0

is 
hosen at random and independently of x

1

and x

2

, then given the value h

w

0

(x

1

), one 
annot

do mu
h better than randomly guess the value h

w

0

(x

2

). Before y

A

is sent, the hash index w

0

is random

(sin
e it has not been used by A). Thus, if we show that the values �

A

and �

B


an be 
omputed from the

adversary's view before y

A

is sent, then w

0

is independent of x

1

= f

n+`

(�

A

) and x

2

= f

n+`

(�

B

) and the

adversary 
annot guess h

w

0

(x

2

) from h

w

0

(x

1

).

Proposition 8.1 For every PPT real adversary C and all su�
iently large values of n

Pr [de


B

= a

ept^ �

A

6= �

B

℄ < �+ neg(n)

From the dis
ussion in Se
tion 5, re
all that:

Pr [de


B

= a

ept^ �

A

6= �

B

℄ � Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

) = h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

i

Let � denote the adversary's view of the (possibly 
on
urrent) exe
utions (A;C) and (C;B) until y

A

=

h

w

0

(f

n+`

(�

A

)) is sent.

Sin
e Q

A

represents all of A's input in the proto
ol up to this point and w represents all of B's input

in the proto
ol up to this point, there exists a PPT C

0

whi
h on input (Q

A

; w) simulates the (possibly


on
urrent) exe
utions (A;C) and (C;B) on its own until the validation message y

A

is sent. In parti
ular,

C

0


omputes �

A

= Q

A

(w) and �

B

= output(B

C

(w)).

C

0

(Q

A

; w) � f�;�

A

;�

B

g

Note that w

0

is random and independent of Q

A

and w.

Then we have :

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

) = h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

i

= Pr

�

C

hash

(�; h

w

0

(f

n+`

(�

A

)); k

1

(�

A

)) = h

w

0

(f

n+`

(�

B

)) ^�

A

6= �

B

�

� Pr

�

C

hash

(C

0

(Q

A

; w); h

w

0

(f

n+`

(�

A

))) = h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

�

� �

where the last inequality follows from almost pairwise independen
e, sin
e the index of the hash fun
tion,

w

0

, is random and independent of the points f

n+`

(�

A

) and f

n+`

(�

B

).
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9 Key-Mat
h Property for the Se
ond S
heduling

S
heduling 2 is de�ned as � the validation message y

A

is sent by A after C sends the 
ommitment 


B

to B�.

The intuition for this 
ase is similar to the warm-up 
ase. The almost pairwise independen
e property

means that for �xed values x

1

; x

2

2 f0; 1g

n

, if the index w

0

is 
hosen at random and independently of x

1

and

x

2

, then given the value h

w

0

(x

1

), one 
annot do mu
h better than randomly guess the value h

w

0

(x

2

). Before

y

A

is sent, the hash index w

0

is random (sin
e it has not been used by A). Thus, if we show that the values

�

A

and �

B


an be 
omputed before y

A

is sent, then w

0

is independent of x

1

= f

n+`

(�

A

) and x

2

= f

n+`

(�

B

)

and the adversary 
annot guess h

w

0

(x

2

). To show that �

A

and �

B


an be 
omputed before y

A

is sent, we

used an ideal polynomial evaluation (C;B) to extra
t an opening of the adversary's 
ommitment 


B

. (The

adversary must input su
h an opening in the ideal evaluation, else B will reje
t).

9.1 Mental Experiment Proto
ol

In order to prove the key-mat
h property for this s
heduling 
ase, we will need to 
onsider a �mental

experiment proto
ol� whi
h is related to the initial proto
ol we are analyzing.

Proto
ol 9.1 (Mental experiment) 1. Inputs There are three parties A;B;C

m

involved in the pro-

to
ol. A and B have a joint password (w;w

0

)

R

 D�D

0

. In addition, A is given a random non-
onstant

linear polynomial Q

A

.

2. A sends Q

A

to C

m

.

3. C

m


omputes Q

C

= C

m

(Q

A

) and sends it to B.

4. B sends w to C.

5. A 
omputes Q

A

(w) and sends y

A

= h

w

0

(f

n+`

(Q

A

(w))) to C. Note that the s
heduling �Q

C

is sent

before y

A

� is enfor
ed.

6. C

m

sends a string y

B

to B.

Proposition 9.2 In the above mental experiment proto
ol, for every adversary C

m

,

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

m

) = h

w

0

(f

n+`

(Q

C

(w))) ^Q

A

(w) 6= Q

C

(w)

i

� �

Proof: By de�nition of the mental experiment, (Q

A

(w); Q

C

(w)) 
an be 
omputed from the view of the

adversary C

m

before y

A

= h

w

0

(f

n+`

(Q

A

(w))) is sent. Thus the values (Q

A

(w); Q

C

(w)) are independent of

the hash index w

0

. Hen
e we obtain:

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

m

) = h

w

0

(f

n+`

(Q

C

(w))) ^Q

A

(w) 6= Q

C

(w)

i

� Pr

�

C

hash

(C

m

(Q

A

; Q

C

; w; h

w

0

(f

n+`

(Q

A

(w))))) = h

w

0

(f

n+`

(Q

C

(w))) ^Q

A

(w) 6= Q

C

(w)

�

� �

where the last inequality follows from almost pairwise independen
e (the index of the hash fun
tion, w

0

, is

random and independent from the points f

n+`

(Q

A

(w)) and f

n+`

(Q

C

(w))).

9.2 Key-mat
h Property for the Se
ond S
heduling

Proposition 9.3 For every PPT real adversary C,

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

= h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

^ S
h2

i

�

p

�+ neg(n)
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This proposition is proved via a redu
tion to the above mental experiment. We want to show that if

an adversary su

eeds in 
omputing the 
orre
t hash value y

B

in the original proto
ol, then we 
an build

an adversary whi
h 
omputes the 
orre
t hash value in the mental experiment (and we know how to upper

bound this su

ess probability).

In the mental experiment, the adversary C

m

is for
ed to send (hen
e 
ommit to) the value Q

C

be-

fore re
eiving y

A

= h

w

0

(f

n+`

(�

A

)). This is analogous to for
ing the adversary C to open its 
ommitment




B

= Commit(Q

C

) in the original proto
ol. Roughly speaking, the only di�eren
e between the original

proto
ol and the mental experiment is that we for
e the adversary to open its 
ommitment 


B

. Thus, a

natural way to build the adversary C

m

in the mental experiment is to run the original adversary until the


ommitment 


B

must be opened, �nd a way to open the 
ommitment, then 
ontinue to run the original

adversary.

Our main problem is to open the 
ommitment 


B

. Intuitively, if the original adversary C 
an 
ompute

the 
orre
t hash value y

B

, it is be
ause C inputs an opening of 


B

in the augmented polynomial evaluation

(C;B) (otherwise C would have no idea what �

B

is). However, we 
annot formally talk about C's input,

sin
e the polynomial evaluation (C;B) does not o

ur in the stand alone setting. Indeed, C re
eives from

A the validation messages depending on Q

A

; w and w

0

while B

2

o

urs. Nevertheless, there exists an ideal

adversary C

ideal

for whi
h the input to the (C;B) polynomial evaluation is well-de�ned if this ideal adversary

is given (Q

A

; w; w

0

) as input to simulate the validation messages on its own. The input of C

ideal

(Q

A

; w; w

0

)

to the augmented polynomial evaluation is well-de�ned and is intuitively an opening of 


B

.

We show that at this stage of the proto
ol, w and w

0

are pseudorandom so that given a random password

~w and a random index ~w

0

, C

ideal

(Q

A

; ~w; ~w

0

) will also input to the augmented polynomial evaluation an

opening of 


B

. So to open the 
ommitment 


B

, we will just run the input fun
tion of C

ideal

on a random

password and a random index. The details of the proof follow.

Proof: Let us assume that there exists an adversary C in the initial proto
ol su
h that

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

) = h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

^ S
h2

i

� �

We will build an adversary C

m

in the mental experiment su
h that

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

m

) = h

w

0

(f

n+`

(Q

C

(w))) ^Q

A

(w) 6= Q

C

(w)

i

� �

2

� neg(n)

By Lemma 9.2, we know that the latter probability is bounded by � whi
h means that � �

p

�.

On
e the 
ommitment 


B

= Commit(Q

C

; r

C

) is sent to B, the state of the three parties is des
ribed by

s

def

= (Q

A

; R

A

; R

C

; �) where:

� Q

A

is the polynomial used by A

� R

A

are the 
oin tosses of A other than Q

A

� R

C

are the 
oin tosses of C

� � is C's view up to and in
luding the sending of 


B

(this view in
ludes 


A

and 


B

)

Note that we do not need to in
lude the 
oin tosses of B sin
e B has not sent any messages yet.

On
e the 
ommitment 


B

is sent, we 
an think of an adversary C

0

as being given s = (Q

A

; R

A

; R

C

; �)

so that C

0

simulates the 
ontinuation of the augmented polynomial evaluation (A;C) on its own. Given a

state s, we de�ne p

1

(s) to be the probability that the adversary C

0


omputes the value of the hash fun
tion

h

w

0

(f

n+`

(:)) on a point �

B

6= �

A

. Formally, we write

p

1

(s)

def

= Pr

h

C

hash

(C

0h

w

0

(f

n+`

(�

A

));k

1

(�

A

);B(w;


B

)

(s) = h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

js

i
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Note that we have in
luded ora
le a

ess to the MAC-key rather than the MAC itself, sin
e the latter is

easily 
omputable from the MAC-key and the trans
ript so far. By de�nition of p

1

and �,

E

s

[p

1

℄ � �.

Consider the adversary

~

C whi
h on input (s; w; w

0

) simulates the hash h

w

0

(f

n+`

(�

A

)) and the MAC-key

k

1

(�

A

) on its own. We have

Pr

h

C

hash

(

~

C

B(w;


B

)

(s; w; w

0

) = h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

js

i

= p

1

(s)

where the probabilities are taken over the 
oin tosses of B, whi
h we denote by R

B

. Sin
e (

~

C;B) are

exe
uting the proto
ol for augmented polynomial evaluation in the stand-alone setting, there exists an ideal

adversary

~

C

ideal

su
h that the ideal and real distributions will be 
omputationally indistinguishable. Re
all

that the 
omputational indistinguishability holds even for �xed inputs (s; w; w

0

) and (w; 


B

). Hen
e, for

every s; w; w

0

; 


B

,

(�

B;ideal

;

~

C

B(w;


B

)

ideal

(s; w; w

0

))




� (�

B

;

~

C

B(w;


B

)

(s; w; w

0

))

where �

B;ideal

def

= output(B

~

C

ideal

(s;w;w

0

)

(w; 


B

)) and �

B

def

= output(B

~

C(s;w;w

0

)

(w; 


B

)).

Given a state s and

~

C

ideal

, we de�ne p

2

(s) to be the probability that the ideal adversary

~

C

ideal

, given

(s; w; w

0

), opens 


B

su

essfully and 
omputes the value of the hash fun
tion h

w

0

(f

n+`

(:)) on a point �

B

=

Q

C

(w) 6= Q

A

(w). Formally, we write

p

2

(s)

def

= Pr

�

input(

~

C

ideal

(s; w; w

0

)) = (Q

C

; R) s:t: 


B

= Commit(Q

C

; R)

^ C

hash

(

~

C

B(w;


B

)

ideal

(s; w; w

0

) = h

w

0

(f

n+`

(Q

C

(w))) ^Q

A

(w) 6= Q

C

(w)js℄

where the probability is taken over the 
oin tosses of B and the 
oin tosses of

~

C

ideal

, whi
h we denote by R

B

and R

~

C

ideal

respe
tively. Sin
e w and w

0

are independent of the state s, the probability p

2

(s) is the same if

we repla
e (w;w

0

) by a random pair ( ~w; ~w

0

) 2 D �D

0

.

Intuitively, the adversary C 
omputes the 
orre
t hash value h

w

0

(f

n+`

(�

B

)) be
ause it 
an open its 
om-

mitment 


B

(otherwise, we are in the 
ase of in
orre
t inputs and B reje
ts immediately). This relationship

between p

1

and p

2

is formalized in the following lemma.

Lemma 9.4 For every state s = (Q

A

; R

A

; R

C

; �), we have p

2

(s) � p

1

(s)� neg(n)

Proof:

p

2

(s) = Pr

�

input(

~

C

ideal

(s; w; w

0

)) = (Q

C

; R) s:t: 


B

= Commit(Q

C

; R)

^ C

hash

(

~

C

B(w;


B

)

ideal

(s; w; w

0

)) = h

w

0

(f

n+`

(Q

C

(w))) ^Q

A

(w) 6= Q(w)js

�

= Pr

h

C

hash

(

~

C

B(w;


B

)

ideal

(s; w; w

0

)) = h

w

0

(f

n+`

(�

B;ideal

)) ^ �

A

6= �

B;ideal

js

i

(8)

where we de�ne �

A

to be Q

A

(w). Indeed, re
all that if

~

C

ideal

does not input an opening to the 
ommitment




B

, then B has no output and

Pr

h

C

hash

(

~

C

B(w;


B

)

ideal

(s; w; w

0

)) = h

w

0

(f

n+`

(�

B;ideal

)) ^ �

B;ideal

= ?js

i

= 0

By indistinguishability of

~

C

B

ideal

and

~

C

B

, we have:

Claim 9.5 For every state s, jp

2

(s)� p

1

(s)j � neg(n).

Indeed, re
all that for every s; w; w

0

; 


B

,

~

C

B

ideal

and

~

C

B

are 
omputationally indistinguishable. Hen
e if we

repla
e Pr

h

C

hash

(

~

C

B(w;


B

))

ideal

(s; w; w

0

)) = h

w

0

(f

n+`

(�

B

)) ^�

B

6= �

A

js

i

by p

1

(s) in Equation (8), there will

be only a negligible di�eren
e.
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Assume that there exists an adversary C (des
ribed by three algorithms C

1

; C

0

and C

hash

) in the initial

proto
ol whi
h breaks the key-mat
h property with su

ess probability �. We now des
ribe the adversary

C

m

in the mental experiment:

1. C

m

generates 
oin tosses R

A

; R

B

; R

C

and R

~

C

ideal

.

2. Simulating the (A;C) polynomial evaluation On
e A sends Q

A

to C

m

, C

m

simulates on its own

the beginning of the augmented polynomial evaluation between A(Q

A

; R

A

) and C

1

and obtains a view

� and a 
ommitment 


B

.

3. Opening algorithm

� C

m


hooses a random pair ( ~w; ~w

0

) and runs input(

~

C

ideal

(s; ~w; ~w

0

; R

~

C

ideal

)) = (Q

C

; R), where s

def

=

(Q

A

; R

A

; R

C

; �).

� If 


B

= Commit(Q

C

; R), C

m

sends Q

C

to B. Otherwise C

m

aborts.

4. Simulating the (C;B) polynomial evaluation

� C

m

re
eives w from B and y

A

= h

w

0

(f

n+`

(�

A

)) from A.

� C

m


omputes k

1

(�

A

) = k

1

(Q

A

(w)).

� C simulates C

0h

w

0

(f

n+`

(�

A

));k

1

(�

A

);B(w;


B

)

.

5. C

m

runs C

hash

(C

0h

w

0

(f

n+`

(�

A

));k

1

(�

A

);B(w;


B

)

(s)) = y

B

and sends y

B

to B.

C

m

su

eeds in this exe
ution of the mental experiment if and only if:

� in this exe
ution of the initial proto
ol, the adversary C follows s
heduling 2.

� the algorithm

~

C

ideal

su

eeds in opening the 
ommitment 


B

� C

hash

su

eeds in sending the 
orre
t validation message h

w

0

(f

n+`

(�

B

)) for �

B

6= �

A

More pre
isely:

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

m

) = h

w

0

(f

n+`

(Q

C

(w))) ^ �

A

6= Q

C

(w)

i

=

E

s

"

E

~w; ~w

0

;R

~

C

ideal

[

~

C

ideal

(s; ~w; ~w

0

; R

~

C

ideal

) opens 


B

℄

E

w;w

0

;R

B

[C

hash


omputes h

w

0

(f

n+`

(Q

C

(w)))℄

#

�

E

s

[p

2

(s) � p

1

(s)℄

�

E

s

�

(p

1

(s))

2

�

� neg(n)

� �

2

� neg(n)

We built an adversary C

m

whi
h su

eeds with probability �

2

� neg(n). By Proposition 9.2, we obtain that

� �

p

�+ neg(n).

10 Adapting the GL Te
hniques to our Proto
ol

Now that we have established the key-mat
h property, we will adapt the proofs of [15℄ to our proto
ol for

the following steps:

� Simulation of the (C;B) intera
tion: we show that the intera
tion (C;B) 
an be simulated by an

adversary C

0

intera
ting only with A, even if the intera
tion (A;C) is 
on
urrent.

� Simulation of the (A;C

0

) intera
tion: we show that the intera
tion (A;C

0

) as a stand-alone 
an be

simulated.

� Combining the above steps, we obtain a proof of se
urity against a
tive adversaries.

For the sake of 
larity we will �rst present the simulation of the (A;C

0

) intera
tion. For ea
h step, the

modi�
ations ne
essary to take into a

ount the session-key 
hallenge and De�nition 2.2 are given.
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10.1 Simulation of the (A;C

0

) Exe
ution

Proposition 10.1 For the di
tionary D�D

0

= D�f0; 1g

d

0

, for every polytime 
hannel C

0

intera
ting with

A only, there exists a non-intera
tive C

00

su
h that for every auxiliary input �,

fw;w

0

; k

2

(�

A

); output(C

0A(Q

A

;w;w

0

)

(�))g

�

� fw;w

0

; U

n

; output(C

00

(�))g

Proof:

By Lemma 7.2, we know that after the augmented polynomial evaluation, fw;�

A

g is (1 � �) indistin-

guishable from fw;U

n

g with respe
t to C

0

's view:

fw;�

A

; C

0A(Q

A

)

g

�

� fw;U

n

; C

0A(Q

A

)

g

Note that w

0

is independent of all the above variables hen
e

fw;w

0

;�

A

; C

0A(Q

A

)

g

�

� fw;w

0

; U

n

; C

0A(Q

A

)

g

Lemma 10.2

fw;w

0

; k

2

(�

A

); k

1

(�

A

);MAC

k

1

(�

A

)

(t

A

); h

w

0

(f

n+`

(�

A

)); C

0A(Q

A

)

g

�

�fw;w

0

; U

1

n

; U

`

;MAC

U

`

(t

A

); U

m

; C

0A(Q

A

)

g

Proof: From the above dis
ussion, we know that

fw;w

0

;�

A

; C

0A(Q

A

)

g

�

� fw;w

0

; U

n

; C

0A(Q

A

)

g

) fw;w

0

; k

2

(�

A

); k

1

(�

A

); f

n+`

(�

A

); C

0A(Q

A

)

g

�

� fw;w

0

; k

2

(U

n

); k

1

(U

n

); f

n+`

(U

n

); C

0A(Q

A

)

g

fw;w

0

; k

2

(�

A

); k

1

(�

A

); f

n+`

(�

A

); C

0A(Q

A

)

g

�

� fw;w

0

; U

1

n

; U

`

; U

2

n

; C

0A(Q

A

)

g

fw;w

0

; k

2

(�

A

);MAC

k

1

(�

A

)

(t

A

); h

w

0

(f

n+`

(�

A

)); C

0A(Q

A

)

g

�

� fw;w

0

; U

1

n

;MAC

U

`

(t

A

); U

m

; C

0A(Q

A

)

g

where t

A

is A(Q

A

)'s trans
ript of the 
ommitment and the augmented polynomial evaluation, whi
h 
an be


omputed from C

0A(Q

A

)

.

The non-intera
tive adversary C

00

(�) will do the following:

1. Generate a random non-
onstant linear polynomial Q

A

.

2. Simulate the intera
tion between C

0

(�) and A(Q

A

), from whi
h it 
an 
ompute the trans
ript t

A

.

3. Generate random strings U

`

and U

m

4. Output (C

0A(Q

A

)

; U

m

;MAC

U

`

(t

A

)).

Augmented de�nition We know that

fw;w

0

; k

2

(�

A

); C

0A(Q

A

;w;w

0

)

(�)g

�

� fw;w

0

; U

n

; C

00

(�)g

The session-key 
hallenge is given only after the entire exe
ution (A;C

0

) has been 
ompleted (re
all that

in our proto
ol A always a

epts). The session-key 
hallenge 
an be generated from ea
h distribution by the

distinguisher. We de�ne C

0A(Q

A

;w;w

0

)

(�;K

�

)

def

= (C

0A(Q

A

;w;w

0

)

(�);K

�

) and C

00

(�;K

�

)

def

= (C

00

(�);K

�

). By

the above dis
ussion we have:

fw;w

0

; k

2

(�

A

); C

0A(Q

A

;w;w

0

)

(�;K

�

); �g

�

� fw;w

0

; U

n

; C

00

(�;K

�

); �g

where on the left-hand side K

�

is given when A 
on
ludes and is de�ned as:

K

�

=

(

k

2

(�

A

) if � = 1

U

0

n

if � = 0

and on the right-hand side K

�

is de�ned as

K

�

=

(

U

n

if � = 1

U

0

n

if � = 0
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10.2 Simulation of the (C;B) Exe
ution

Proposition 10.3 For the di
tionary D�D

0

= D� f0; 1g

d

0

, for every real adversary C intera
ting with A

and B, there exists a PPT C

0

intera
ting only with A su
h that for every auxiliary input � 2 f0; 1g

poly(n)

fw;w

0

; k

2

(�

A

); output(C

0A(Q

A

;w;w

0

)

(�))g

�+�

� fw;w

0

; k

2

(�

A

); output(C

A(Q

A

;w;w

0

);B(w;w

0

)

(�))g

where � =

p

�+ �+ �.

The proof of this proposition relies on two fa
ts:

� it is easy to simulate B in the augmented polynomial evaluation by se
urity of two-party 
omputation

(see Lemma 10.4)

� B's de
ision bit 
an be simulated with high probability be
ause of the key-mat
h property (see

Lemma 10.6). We need for C

0

to simulate B's de
ision bit be
ause the view of the real adversary

C

A(Q

A

;w;w

0

);B(w;w

0

)

in
ludes B's de
ision bit.

Lemma 10.4 Let

~

C be a real adversary intera
ting with A and a modi�ed party B

6de


(B

6de


does the same

as B ex
ept that it does not output a de
ision bit). There exists C

0

intera
ting only with A su
h that:

fw;w

0

; k

2

(�

A

); output(C

0A(Q

A

;w;w

0

)

(�))g




� fw;w

0

; k

2

(�

A

); output(

~

C

A(Q

A

;w;w

0

);B

6de


(w)

(�))g

where on the left-hand side k

2

(�

A

) refers to the output of A in the exe
ution C

0A(Q

A

;w;w

0

)

(�) and on the

right-hand side k

2

(�

A

) refers to the output of A in the exe
ution

~

C

A(Q

A

;w;w

0

);B

6de


(w)

(�).

Proof: Note that these distributions do not refer to B

6de


's output from the polynomial evaluation, hen
e

we 
an swit
h B

6de


's input from w to a random password ~w 2 D via the following 
laim.

Claim 10.5 For every w;w

0

; Q

A

; ~w and auxiliary input � 2 f0; 1g

poly(n)

,

foutput(A); C

A(Q

A

;w;w

0

);B

6de


(w)

(�)g




� foutput(A); C

A(Q

A

;w;w

0

);B

6de


( ~w)

(�)g

where on the left-hand side output(A) refers to the output of A in the exe
ution C

A(Q

A

;w;w

0

);B

6de


(w)

(�) and

on the right-hand side output(A) refers to the output of A in the exe
ution C

A(Q

A

;w;w

0

);B

6de


( ~w)

(�).

Proof of 
laim: De�ne C

0

whi
h on input (w;w

0

; Q

A

) simulates the entire (A;C) exe
ution,

in
luding 
omputing output(A), on its own:

C

0B

6de


(w)

(w;w

0

; Q

A

; �) � foutput(A); C

A(Q

A

;w;w

0

);B

6de


(w)

(�)g

C

0B

6de


( ~w)

(w;w

0

; Q

A

; �) � foutput(A); C

A(Q

A

;w;w

0

);B

6de


( ~w)

(�)g

Sin
e C

0

and B

6de


are exe
uting the se
ure polynomial evaluation proto
ol in the stand-alone

setting, there exists an ideal adversary C

0

ideal

su
h that for every w;w

0

; Q

A

; ~w; �,

C

0

ideal

(w;w

0

; Q

A

; �)




� C

0B

6de


(w)

(w;w

0

; Q

A

; �)

C

0

ideal

(w;w

0

; Q

A

; �)




� C

0B

6de


( ~w)

(w;w

0

; Q

A

; �)

By transitivity of indistinguishability, we obtain the lemma. �

By Claim 10.5, we have:

fw;w

0

;�

A

; output(

~

C

A(Q

A

;w;w

0

);B

6de


( ~w)

(�))g




� fw;w

0

;�

A

; output(

~

C

A(Q

A

;w;w

0

);B

6de


(w)

(�))g

Hen
e for any adversary

~

C intera
ting with A and B

6de


, we build an adversary C

0

whi
h will simulate on

its own B

6de


by using an arbitrary element ~w for the polynomial evaluation (C;B).
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Augmented de�nition In the 
ase of the augmented de�nition, the proof of the �rst lemma still holds

be
ause Claim 10.5 will hold for every session-key 
hallenge given by A. Hen
e we have

fw;w

0

; k

2

(�

A

); output(C

0A(Q

A

;w;w

0

)

(�;K

�

)); �g




� fw;w

0

; k

2

(�

A

); output(

~

C

A(Q

A

;w;w

0

);B

6de


(w)

(�;K

�

)); �g

where K

�

is given when A 
on
ludes and is de�ned as:

K

�

=

(

k

2

(�

A

) if � = 1

U

0

n

if � = 0

Lemma 10.6 Let C be a real adversary intera
ting with A and B. There exists

~

C intera
ting with A and

B

6de


su
h that

fw;w

0

; k

2

(�

A

); output(

~

C

A(Q

A

;w;w

0

);B

6de


(w)

(�))g

�+�

� fw;w

0

; k

2

(�

A

); output(C

A(Q

A

;w;w

0

);B(w;w

0

)

(�))g

The proof of this lemma relies on the fa
t that the de
ision bit of B 
an be predi
ted by C with high

probability be
ause of the key-mat
h property and the following 
laim.

Claim 10.7 For every C intera
ting with A and B

6de


, the probability that t

B

6= t

A

and C 
omputes

MAC

k

1

(�

A

)

(t

B

) is at most �+ neg(n).

Proof of 
laim: First, we will remove B by modifying C into C

0

from Lemma 10.4, whi
h

simulates B in the polynomial evaluation phase. We know from Lemma 10.2 that:

fw;w

0

; k

2

(�

A

); k

1

(�

A

);MAC

k

1

(�

A

)

(t

A

); h

w

0

(f

n+`

(�

A

)); C

0A(Q

A

)

g

�

� fw;w

0

; U

1

n

; U

`

;MAC

U

`

(t

A

); U

m

; C

0A(Q

A

)

g

We will bound from above, for t 6= t

A

, the probability

Pr

h

C

ma


(C

0A(Q

A

)

; h

w

0

(f

n+`

(�

A

));MAC

k

1

(�

A

)

(t

A

)) = MAC

k

1

(�

A

)

(t)

i

� Pr

h

C

ma


(C

0A(Q

A

)

; U

m

;MAC

U

`

(t

A

)) = MAC

U

`

(t)

i

+ �+ neg(n)

� �+ neg(n)

where the last inequality 
omes from the one-time MAC property. �

Using Claim 10.7, we obtain the following adversary

~

C:

~

C intera
ts with A and B

6de


by passing their mes-

sages to C. Sin
e

~

C has the trans
ript of the intera
tions (A;C) and (C;B),

~

C 
an tell whether C was reliable

or not. If C was reliable,

~

C predi
ts that de


B

= a

ept (sin
e B always a

epts if C is reliable), otherwise, it

predi
ts de


B

= reje
t. We know that Pr

h

~

C predi
ts in
orre
tly

i

= Pr [de


B

= a

ept^ reliable

C

= false℄.

In order to prove Lemma 10.6, it remains to show that for any C,

Pr [de


B

= a

ept^ reliable

C

= false℄ < �+ � + neg(n)

Pr [de


B

= a

ept^ reliable

C

= false℄

= Pr [de


B

= a

ept^ reliable

C

= false ^ �

A

6= �

B

℄

+Pr [de


B

= a

ept^ reliable

C

= false^ �

A

= �

B

℄

� (� + neg(n)) from the key-mat
h property

+(�+ neg(n)) from Claim 10.7

� �+ � + neg(n)
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Augmented de�nition

C is not reliable and B 
on
ludes �rst:

~

C will set B's simulated de
ision bit to be de


B

= reje
t and

its simulated session-key 
hallenge to be ?. Note that if B 
on
ludes �rst, then with high probability

B would indeed reje
t (whi
h follows from the fa
t that if C is not reliable, then with high probability

B will reje
t as shown above).

A 
on
ludes �rst: Lemma 10.6 must be slightly modi�ed. One 
an show using Lemma 10.2 that the

probability that t

B

6= t

A

and C 
omputes MAC

k

1

(�

A

)

(t

B

) is at most �+ neg(n) even if k

2

(�

A

) = k

A

is given.

From the above two arguments, we have:

fw;w

0

; k

2

(�

A

); output(

~

C

A(Q

A

;w;w

0

);B

6de


(w)

(�;K

�

)); �g

�+�

� fw;w

0

; k

2

(�

A

); output(C

A(Q

A

;w;w

0

);B(w;w

0

)

(�;K

�

)); �g

where on left-hand side K

�

is given when A 
on
ludes and is de�ned as:

K

�

=

(

k

2

(�

A

) if � = 1

U

0

n

if � = 0

and on the right-hand side the session-key 
hallengeK

�

is given on
e the �rst party (either A or B) 
on
ludes

with output L

1

and is de�ned as:

K

�

=

(

L

1

if � = 1 or L

1

= ?

U

0

n

if � = 0 and L

1

6= ?

10.3 Se
urity Theorem

Theorem 10.8 For the di
tionary D � D

0

= D � f0; 1g

d

0

, for every PPT real adversary C, there exists a

polytime ideal model 
hannel

^

C su
h that for any � 2 f0; 1g

poly(n)

fIDEAL

^

C

(D; �)g

3�+2�

� fREAL

C

(D; �)g

where � =

p

�+ �+ �.

Proof: From the previous two se
tions, we know that there exists a non-intera
tive C

00

su
h that

fw;w

0

; U

n

; C

00

(�)g

2�+�

� fw;w

0

; k

2

(�

A

); output(C

A;B

(�))g

The ideal model adversary

^

C does the following:

�

^

C de
ides that A will 
on
lude �rst and a

ept in the ideal model.

� C invokes C

00

, whi
h is non-intera
tive.

� A

ording to the view output by C

00

,

^

C will de
ide whether B a

epts or not in the ideal exe
ution.

�

^

C outputs the output of C

00

.

) fw;w

0

; U

n

;

^

C(�)g

2�+�

� fw;w

0

; k

2

(�

A

); output(C

A;B

(�))g (9)

We now need to in
lude B's output in the above distributions. Let D be a distinguisher for IDEAL

^

C

and REAL

C

. We will 
onsider the di�erent 
ases, whether B a

epts or not.
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If B reje
ts

Pr

�

D(IDEAL

^

C

) = 1 ^ de


B

= reje
t

�

= Pr

h

D(w;w

0

; U

n

;?;

^

C) = 1 ^ de


B

= reje
t

i

Pr [D(REAL

C

) = 1 ^ de


B

= reje
t℄ = Pr

�

D(w;w

0

; k

2

(�

A

);?; C

A;B

) = 1 ^ de


B

= reje
t

�

In the ideal model, we are guaranteed that when B reje
ts,

^

C will send b = 0 to the trusted party,


ausing B to output ?. In the real proto
ol, when B reje
ts, it always outputs ?. But B's de
ision bit

is 
ontained in the view

^

C (as simulated by C

00

) and in the view C

A;B

so by Equation (9) the di�eren
e

between Pr

�

D(IDEAL

^

C

) = 1 ^ de


B

= reje
t

�

and Pr [D(REAL

C

) = 1 ^ de


B

= reje
t℄ is at most

2�+ � + neg(n).

If B a

epts � suppose C was reliable: in the real model, B always a

epts and outputs k

2

(�

A

); in the

ideal model, B outputs U

n

. C is a
ting like a passive adversary, so we know that IDEAL

^

C




�

REAL

C

.

� suppose C was not reliable, but B a

epts. From the proof of Theorem 10.3, we know that

Pr [de


B

= a

ept^ reliable

C

= false℄ � �+�+neg(n), whether in the real model or in the one

simulated by

^

C.

jPr

�

D(IDEAL

^

C

) = 1 ^ de


B

= a

ept^ reliable

C

= false

�

� Pr [D(REAL

C

) = 1 ^ de


B

= a

ept^ reliable

C

= false℄ j

� �+ � + neg(n)

Combining all the above 
ases, we have that the ideal distribution and the real distribution are distin-

guishable with probability at most 3�+ 2�.

Augmented de�nition From the previous se
tions, we know that

fw;w

0

; U

n

; C

00

(�;K

�

); �g

2�+�

� fw;w

0

; k

2

(�

A

); C

A;B

(�;K

�

); �g

where on the left-hand side K

�

is de�ned as

K

�

=

(

U

n

if � = 1

U

0

n

if � = 0

and on the right-hand side the session-key 
hallengeK

�

is given on
e the �rst party (either A or B) 
on
ludes

with output L

1

:

K

�

=

(

L

1

if � = 1 or L

1

= ?

U

n

if � = 0 and L

1

6= ?

The ideal adversary

^

C does the following:

�

^

C de
ides that A will 
on
lude �rst and a

ept. The trusted party 
hooses �

R

 f0; 1g and gives

^

C the

string K

�

where

K

�

=

(

U

n

if � = 1

U

0

n

if � = 0

� C invokes C

00

(�;K

�

), whi
h is non-intera
tive.

� A

ording to the view output by C

00

,

^

C will de
ide whether B a

epts or not in the ideal exe
ution.

�

^

C outputs the output of C

00

(�;K

�

).
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A Se
ure Two-Party Computation

This presentation is taken from [14℄. We will des
ribe se
ure two-party 
omputation for the spe
ial 
ase of

single-output fun
tionalities, i.e. fun
tionalities where only one party obtains an output. Indeed, we will only

use tools from se
ure two-party 
omputation when dealing with the augmented polynomial evaluation fun
-

tionality, whi
h is a single-output fun
tionality. Furthermore, for simpli
ity, we will restri
t our des
ription

to the 
ase where none of the parties aborts and at least one of the two parties is honest.

Let f : f0; 1g

�

� f0; 1g

�

! f0; 1g

�

� f0; 1g

�

be a deterministi
 single-output fun
tionality, i.e. f is of the

form f(x; y) = (f

1

(x; y); �).

We �rst de�ne the ideal model:

Inputs Ea
h party obtains an input, denoted u.

Sending inputs to the trusted party An honest party will always send its input u to the trusted party.

A mali
ious party will send some input u

0

, whi
h may depend on its initial input and auxiliary input.

Answer of the trusted party Upon obtaining (x; y), the trusted party will reply f

1

(x; y) to the �rst party.

Output An honest party will always output the message obtained from the trusted party. A mali
ious party

may output a polytime 
omputable fun
tion of its initial input, its auxiliary input and the message

obtained from the trusted party.

Let (B

1

; B

2

) be a pair of PPT representing strategies in the ideal model, su
h that at least one of the two

parties is honest. The joint distribution of f under (B

1

; B

2

) in the ideal model, on input pair (x; y) and

auxiliary input z, denoted by IDEAL

f;B

1

(z);B

2

(z)

, is:

� in the 
ase where B

1

is honest, IDEAL

f;B

1

(z);B

2

(z)

(x; y) = (f

1

(x;B

2

(y; z)); B

2

(y; z; �))

� in the 
ase where B

2

is honest, IDEAL

f;B

1

(z);B

2

(z)

(x; y) = (B

1

(x; z; f

1

(B

1

(x; z); y)); �)

We now des
ribe the real model. Let � be a two-party proto
ol for 
omputing f . Let (A

1

; A

2

) be a

pair of PPT representing strategies in the real model, su
h that at least one of two parties is honest (i.e.

follows the strategy spe
i�ed by �). The joint exe
ution of � under (A

1

; A

2

) in the real model, on input

pair (x; y) and auxiliary input z, denoted by REAL

�;A

1

(z);A

2

(z)

is de�ned as the output pair resulting from

the intera
tion between A

1

(x; z) and A

2

(x; z).

De�nition A.1 Let f : f0; 1g

�

� f0; 1g

�

! f0; 1g

�

� f0; 1g

�

be a deterministi
 single-output fun
tionality

and � be a two-party proto
ol for 
omputing f . Proto
ol � se
urely 
omputes f if for every PPT pair

(A

1

; A

2

) (su
h that at least one party follows the strategy spe
i�ed by �), there exists a PPT pair (B

1

; B

2

)

(su
h that the 
orresponding party is honest in the ideal model) su
h that:

fIDEAL

f;B

1

(z);B

2

(z)

(x; y)g

x;y;z




� fREAL

�;A

1

(z);A

2

(z)

(x; y)g

x;y;z

Assuming the existen
e of trapdoor permutations, it is known how to obtain a se
ure proto
ol for any

two-party 
omputation ([29℄).

B Almost Pairwise Independen
e

Lemma B.1 For a given di
tionary D

0

= f0; 1g

d

0

� f0; 1g

n

, there exists a family of almost pairwise inde-

pendent hash fun
tions H = fh

w

0

: f0; 1g

n

! f0; 1g

m

g for � = O

�

n

jD

0

j

1=3

log jD

0

j

�

= O

�

n

d

0

2

d

0

=3

�

.

Proof Sket
h: Let F be a �nite �eld of 
hara
teristi
 2 (the size of F will be determined below). Let

k be an integer (its value will be determined below). An element p of F

k


an be seen as a polynomial of

degree (k � 1) over F. Given an index (�; �; 
) 2 F

?

� F � F, we de�ne the hash fun
tion h

�;�;


as follows:

h

�;�;


: F

k

! f0; 1g

m

; p 7! b�p(�) + 



m

, i.e. we 
onsider the m-bit pre�x of �p(�) + 
 2 F.
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We will now verify that H = fh

�;�;


: F

k

! f0; 1g

m

g is a family of almost pairwise independent hash

fun
tions. First, note that when we 
hoose (�; �; 
)

R

 F

?

� F � F, for every p 2 F

k

, h

�;�;


(p) is uniform

over f0; 1g

m

just by randomness of 
. Also, for a �xed triple (�; �; 
) 2 F

?

� F � F and a �xed element

y 2 f0; 1g

m

, Pr

p2F

k
[h

�;�;


(p) = y℄ = 2

�m

, hen
e the fun
tion h

�;�;


is regular.

We will now prove that 8p 6= q 2 F

k

, 8y

1

; y

2

2 f0; 1g

m

,

Pr

�;�;


[h

�;�;


(p) = y

1

^ h

�;�;


(q) = y

2

℄ �

k � 1

jFj2

m

+

1

2

2m

Consider the 
ase where y

1

6= y

2

:

� Suppose that � is a root of the polynomial p�q. It is impossible to have h

�;�;


(p) = y

1

and h

�;�;


(p) =

y

2

.

� Suppose that � is not a root of the polynomial p� q.

Pr

�;�;


[h

�;�;


(p) = y

1

^ h

�;�;


(q) = y

2

jp(�) 6= q(�)℄ �

jFj

2

2m

(jFj � 1)

Consider the 
ase where y

1

= y

2

:

� Suppose that � is a root of the polynomial p� q (whi
h happens with probability at most

k�1

jFj

). Then

by the regularity property,

Pr

�;�;


[h

�;�;


(p) = y

1

^ h

�;�;


(q) = y

1

jp(�) = q(�)℄ = 2

�m

� Suppose that � is not a root of the polynomial p� q.

Pr

�;�;


[h

�;�;


(p) = y

1

^ h

�;�;


(q) = y

1

jp(�) 6= q(�)℄ �

1

2

2m

By 
hoosing jFj =

3

p

jD

0

j, k =

3n

log jD

0

j

, we obtain the parameters � = O

�

n

jD

0

j

1=3

log jD

0

j

�

= O

�

n

d

0

2

d

0

=3

�

and m �

1

3

d

0

+ log d

0

� logn�O(1). �
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