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Abstrat

Goldreih and Lindell (CRYPTO `01) reently presented the �rst protool for password-authentiated

key exhange in the standard model (with no ommon referene string or set-up assumptions other than

the shared password). However, their protool uses several heavy tools and has a ompliated analysis.

We present a simpli�ation of the Goldreih�Lindell (GL) protool and analysis for the speial ase

when the ditionary is of the form D = f0; 1g

d

, i.e. the password is a short random string (like an ATM

PIN number). Our protool an be onverted into one for arbitrary ditionaries using a ommon referene

string of logarithmi length. The seurity bound ahieved by our protool is somewhat worse than the

GL protool. Roughly speaking, our protool guarantees that the adversary an �break� the sheme with

probability at most O(poly(n)=jDj)


(1)

, whereas the GL protool guarantees a bound of O(1=jDj).

We also present an alternative, more natural de�nition of seurity than the �augmented de�nition� of

Goldreih and Lindell, and prove that the two de�nitions are equivalent.

�

An extended abstrat of this paper appeared in the First Theory of Cryptography Conferene (TCC `04) [23℄.
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1 Introdution

What is the minimal amount of information that two parties must share in order to perform nontrivial

ryptography? This fundamental question is at the heart of many of the major distintions we draw in

ryptography. Classial private-key ryptography assumes that the legitimate parties share a long random

key. Publi-key ryptography mitigates this by allowing the sharing of information to be done through publi

keys that need not be hidden from the adversary. However, in both ases, the amount of information shared

by the legitimate parties (e.g. as measured by mutual information) needs to be quite large. Indeed, the

traditional view is that seurity omes from the adversary's inability to exhaustively searh the keyspae.

Thus it is very natural to ask: an we do nontrivial ryptography using �low-entropy� keys? That is,

using a keyspae that is feasible to exhaustively searh. In addition to being a natural theoretial question,

it has lear relevane to the many �real-life� situations where we need seurity but only have a low-entropy

key (e.g. an ATM PIN number, or human-hosen password on a website).

Publi-key ryptography provides an initial positive answer to this question: key-exhange protools, as

in [10℄, do not require any prior shared information. However, this holds only for passive adversaries, and it is

well known that without any prior shared information between the legitimate parties, an ative adversary an

always sueed through a person-in-the-middle attak. Thus, it remains an interesting question to ahieve

seurity against ative adversaries using a low-entropy shared key. This has led researhers to onsider the

problem of password-authentiated key exhange, whih we desribe next.

Password-Authentiated Key Exhange. The password-authentiated key exhange problem was �rst

suggested by Bellovin and Merritt [4℄. We assume that two parties, Alie and Bob, share a password w hosen

uniformly at random from a ditionary D � f0; 1g

n

. This ditionary an be very small, e.g. jDj = poly(n),

and in partiular it may be feasible for an adversary to exhaustively searh it. Our aim is to onstrut a

protool enabling Alie and Bob to generate a �random� session keyK 2 f0; 1g

n

, whih they an subsequently

use for standard private-key ryptography. We onsider an ative adversary that ompletely ontrols the

ommuniation hannel between Alie and Bob. The adversary an interept, modify, drop, and delay

messages, and in partiular an attempt to impersonate either party through a person-in-the-middle attak.

Our goal is that, even after the adversary mounts suh an attak, Alie and Bob will generate a session

key that is indistinguishable from uniform even given the adversary's view. However, our ability to ahieve

this goal is limited by two unpreventable attaks. First, sine the adversary an blok all ommuniation, it

an prevent one or both of the parties from ompleting the protool and obtaining a session key. Seond,

the adversary an guess a random password ~w  D and attempt to impersonate one of the parties. With

probability 1=jDj, the guess equals the real password (i.e., ~w = w), and the adversary will sueed in

the impersonation and therefore learn the session key. Thus, we revise our goal to e�etively limit the

adversary to these two attaks. Various formalizations for this problem have been developed through several

works [3, 18, 26, 2, 7, 15℄. We follow the de�nitional framework of Goldreih and Lindell [15℄, whih is

desribed in more detail in Se. 2.

In addition to addressing what an be done with a minimal amount of shared information, the study of

this problem is useful as another testbed for developing our understanding of onurreny in ryptographi

protools. The onurreny impliitly arises from the person-in-the-middle attak, whih we an view as two

simultaneous exeutions of the protool, one between Alie and the adversary and the other between Bob

and the adversary.

The �rst protools for the password-authentiated key exhange problem were proposed in the seurity

literature, based on informal de�nitions and heuristi arguments (e.g. [5, 28℄). The �rst rigorous proofs of

seurity were given in the random orale model [2, 7℄. Only reently were rigorous solutions without random

orales given, in independent works by Goldreih and Lindell [15℄ and Katz, Ostrovsky, and Yung [19℄. One

of the main di�erenes between these two protools is that the KOY protool (and the subsequent protools

of [20, 13℄) is in the �publi parameters model,� requiring a string to be generated and published by a trusted

third party, whereas the GL protool requires no set-up assumption other than the shared password. Thus,

even though the KOY protool has a number of pratial and theoretial advantages over the GL protool

(whih we will not enumerate here), the GL protool is more relevant to our initial question about the

minimal amount of shared information needed for nontrivial ryptography.
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The Goldreih�Lindell Protool. As mentioned above, the Goldreih�Lindell protool [15℄ is remarkable

in that the only set-up assumption it requires is that the two parties share a password hosen at random from

an arbitrary ditionary. Their protool an be based on general omplexity assumptions (the existene of

trapdoor permutations), an be implemented in a onstant number of rounds (under stronger assumptions),

and ahieves a nearly optimal seurity bound (the adversary has probability only O(1=jDj) of �breaking� the

sheme).

Despite giving suh a strong result, the Goldreih�Lindell protool does not leave us with a omplete

understanding of the password-authentiated key exhange problem. First, the protool makes use of several

�heavy� tools: seure two-party polynomial evaluation (building on [22℄, who observed that this yields a

protool for password-authentiated key exhange against passive adversaries), nonmalleable ommitments

(as suggested in [6℄), and the spei� onurrent zero-knowledge proof of Rihardson and Kilian [25℄. It is

unlear whether all of these tools are really essential for solving the key exhange problem. Seond, the

proof of the protool's seurity is extremely ompliated. Goldreih and Lindell do introdue nie tehniques

for analyzing onurrent exeutions (arising from the person-in-the-middle attak) of two-party protools

whose seurity is only guaranteed in the stand-alone setting (e.g. the polynomial evaluation). But these

tehniques are applied in an intriate manner that seems inextriably tied to the presene of the nonmalleable

ommitment and zero-knowledge proof. Finally, �nding an e�ient instantiation of the Goldreih�Lindell

protool would require �nding e�ient instantiations of all three of the heavy tools mentioned above, whih

seems di�ult. In partiular, the Rihardson-Kilian zero-knowledge proof is used to prove an NP statement

that asserts the onsisteny of a transript of the nonmalleable ommitment, a standard ommitment, and

the output of an iterated one-way permutation. For suh an NP statement, it seems di�ult to avoid using

a generi zero-knowledge proof system for NP, whih are almost always ine�ient due to the use of Cook's

theorem.

Our Protool. Our main result is a simpli�ation of the Goldreih�Lindell protool and analysis for the

speial ase when the ditionary is of the form D = f0; 1g

d

, i.e. the password is a short random string (like an

ATM PIN number)

1

. This speial ase still retains many of the key features of the problem: the person-in-the-

middle attak and the resulting onurreny issues are still present, and the adversary an still exhaustively

searh the ditionary (sine we allow the password length d to be as small as O(logn), where n is the seurity

parameter). Moreover, our protool an be onverted into one for arbitrary ditionaries in the ommon

referene string model (using the ommon referene string as the seed of a randomness extrator [24℄).

For ditionaries D � f0; 1g

n

, the ommon referene string is a uniform string of only logarithmi length

(spei�ally, O(log n+ log jDj)), and thus retains the spirit of minimizing the amount of shared information

between the legitimate parties. In ontrast, the previous protools in the publi parameters model [19, 20, 13℄

require a publi string of length poly(n) with speial number-theoreti struture.

The main way in whih we simplify the GL protool is that we remove the nonmalleable ommitments

and the Rihardson�Kilian zero-knowledge proof. Instead, our protool ombines seure polynomial eval-

uation with a ombinatorial tool (almost pairwise independent hashing), in addition to using �lightweight�

ryptographi primitives also used in [15℄ (one-way permutations, one-time MACs, standard ommitments).

Our analysis is also similarly simpler. While it has the same overall struture as the analysis in [15℄ and uti-

lizes their tehniques for applying the stand-alone properties of the polynomial evaluation in the onurrent

setting, it avoids dealing with the nonmalleable ommitments and the zero-knowledge proof (whih is the

most omplex part of the GL analysis).

Removing the nonmalleable ommitments and the RK zero-knowledge proof has two additional implia-

tions. First, �nding an e�ient implementation of our protool only requires �nding an e�ient protool for

seure polynomial evaluation (in fat, only for linear polynomials).

2

Sine this is a highly strutured speial

ase of seure two-party omputation, it does not seem beyond reah to �nd an e�ient protool. Indeed,

Naor and Pinkas [22℄ have already given an e�ient polynomial evaluation protool for passive adversaries.

Seond, our protool an be implemented in a onstant number of rounds assuming only the existene of

trapdoor permutations, whereas implementing the Goldreih�Lindell protool in a onstant number of rounds

1

More generally, the password an be hosen uniformly from any ditionary of size 2

d

whose elements we an e�iently

enumerate beause the enumeration provides a bijetion with f0; 1g

d

.

2

Atually, we require a slightly augmented form of polynomial evaluation, in whih one of the parties ommits to its input

beforehand and the protool ensures onsisteny with this ommitted input.
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requires additional assumptions, suh as the existene of law-free permutations (for [25℄) and some sort of

exponential hardness assumption (to use [1℄).

We note that the seurity bound ahieved by our protools is somewhat worse than in previous works.

Roughly speaking, our protool guarantees that the adversary an �break� the sheme with probability at

most O

�

poly(n)

jDj

�


(1)

, whereas previous works guarantee a bound of O(1=jDj).

An additional result in our paper involves the de�nition of seurity in [15℄. As pointed out by Rako�

(f., [2℄), it is important that a key exhange protool provide seurity even if the party who ompletes

the protool �rst starts using the generated key in some appliation before the seond party ompletes the

protool. In order to address this issue, Goldreih and Lindell [15℄ augmented their de�nition with a �session-

key hallenge�, in whih the adversary is given either the generated key or a uniform string with probability

1/2 upon the �rst party's ompletion of the protool. We present an arguably more natural de�nition that

diretly models the use of the generated key in an arbitrary appliation, and prove its equivalene to the

augmented de�nition of Goldreih and Lindell [15℄. (This result is analogous to the result of Shoup [26℄ for

non-password-based key exhange protools.)

2 De�nition of Seurity

We adopt the notation of Goldreih and Lindell and refer the reader to [15℄ for more details.

� C denotes the probabilisti polynomial time adversary through whih the honest parties A and B

ommuniate. We model this ommuniation by giving C orale aess to a single opy of A and a

single opy of B. Here the orales A and B have memory and represent honest parties exeuting the

session-key generation protool. We denote by C

A(x);B(y)

(�) an exeution of C with auxiliary input �

when it ommuniates with A and B, with respetive inputs x and y. The output of the hannel C

from this exeution is denoted by output

�

C

A(x);B(y)

(�)

�

.

� The seurity parameter is denoted by n. The password ditionary is denoted by D � f0; 1g

n

and we

write � =

1

jDj

.

We denote by U

n

the uniform distribution over strings of length n, by neg(n) a negligible funtion and write

x

R

 S when x is hosen uniformly from the set S.

For a funtion  : N ! [0; 1℄, we say that the probability ensembles fX

n

g and fY

n

g are (1 � )-

indistinguishable (denoted by fX

n

g



� fY

n

g) if for every nonuniform PPT distinguisher D and all n,

jPr [D(X

n

) = 1℄� Pr [D(Y

n

) = 1℄ j < (n) + neg(n)

We say that fX

n

g and fY

n

g are omputationally indistinguishable, whih we denote by X

n



� Y

n

, if they are

1-indistinguishable. We say that fX

n

g is (1� ) pseudorandom if it is (1� ) indistinguishable from U

n

.

We will now formalize the problem of session-key generation using human passwords. We �rst follow the

presentation of the problem as in [15℄ and then ontrast it with our de�nition.

2.1 The Initial De�nition

The de�nition in [15℄ follows the standard paradigm for seure omputation: de�ne an ideal funtionality

(using a trusted third party) and require that every adversary attaking the real protool an be simulated

by an ideal adversary attaking the ideal funtionality. Note that in the real protool, the ative adversary

C an prevent one or both of the parties A and B from having an output. Thus, in the ideal model, we will

allow C

ideal

to speify two input bits, de

A

C

and de

B

C

, whih determine whether A and B obtain a session

key or not.

Ideal model Let A;B be the honest parties and let C

ideal

be any PPT ideal adversary with auxiliary input

�.
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1. A and B reeive w

R

 D.

2. A and B both send w to the trusted party.

3. C

ideal

sends (de

A

C

; de

B

C

) to the trusted party.

4. The trusted party hooses K

R

 f0; 1g

n

. For eah party i 2 fA;Bg, the trusted party sends K if

de

i

C

= 1 and sends ? if de

i

C

= 0.

The ideal distribution is de�ned by:

IDEAL

C

ideal

(D; �) = (w; output(A); output(B); output(C

ideal

(�)))

We note that this desription of the ideal model di�ers slightly from the original de�nition in [15℄ sine

we allow B to �nish �rst and A to rejet in the ideal model (this is to take into aount protools in

whih no party is guaranteed to terminate with a session key). However, as desribed in Setion 3.3,

our protool will guarantee that A always aepts. Moreover, we will show that any real adversary an

be simulated by an ideal adversary who always hooses A to onlude �rst and aept.

Real model Let A;B be the honest parties and let C be any PPT real adversary with auxiliary input �.

At some initialization stage, A and B reeive w

R

 D. The real protool is exeuted by A and B

ommuniating via C. We will augment C's view of the protool with A and B's deision bits, denoted

by de

A

and de

B

, where de

A

= rejet if output(A) = ?, and de

A

= aept otherwise (de

B

is

de�ned similarly). (Indeed, in typial appliations, the deisions of A and B will be learned by the

real adversary C: if A obtains a session key, then it will use it afterwards; otherwise, A will stop

ommuniation or try to re-initiate an exeution of the protool.) C's augmented view is denoted by

output(C

A(w);B(w)

(�)).

The real distribution is de�ned by:

REAL

C

(D; �) = (w; output(A); output(B); output(C

A(w);B(w)

(�)))

One might want to say that a protool for password-based session-key generation is seure if the above

ideal and real distributions are omputationally indistinguishable. Unfortunately, as pointed in [15℄, an

ative adversary an guess the password and suessfully impersonate one of the parties with probability

1

jDj

. This implies that the real and ideal distributions are always distinguishable with probability at least

1

jDj

. Thus we will only require that the distributions be distinguishable with probability at most O() where

the goal is to make  as lose to

1

jDj

as possible. In the ase of a passive adversary, we require that the real

and ideal distributions be omputationally indistinguishable (for all subsequent de�nitions, this requirement

will be impliit).

De�nition 2.1 (Initial de�nition) A protool for password-based authentiated session-key generation is

(1� )-seure for the ditionary D � f0; 1g

n

(where  is a funtion of the ditionary size jDj and n) if:

1. For every real passive adversary, there exists an ideal adversary C

ideal

whih always sends (1,1) to the

trusted party suh that for every auxiliary input � 2 f0; 1g

poly(n)

,

fIDEAL

C

ideal

(D; �)g

�



� fREAL

C

(D; �)g

�

2. For every real adversary C, there exists an ideal adversary C

ideal

suh that for every auxiliary input

� 2 f0; 1g

poly(n)

,

fIDEAL

C

ideal

(D; �)g

�

O()

� fREAL

C

(D; �)g

�

By the disussion above, the best we an hope for is  =

1

jDj

. Note that in [15℄, their de�nition and

protool refer to any ditionary D � f0; 1g

n

and  =

1

jDj

. In ontrast, our protool will be (1� )-seure for

ditionaries of the form D = f0; 1g

d

and  =

�

poly(n)

jDj

�


(1)

.
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2.2 Seurity with respet to the Session-Key Challenge

The above de�nition is atually not ompletely satisfying beause of a subtle point raised by Rako�: the

adversary ontrols the sheduling of the interations (A;C) and (C;B) so the honest parties do not neessarily

end at the same time. A might use its session key K

A

before the interation (C;B) is ompleted: A's use of

K

A

leaks information whih C might use in its interation with B to learn K

A

;K

B

or the password w.

In [15℄, Goldreih and Lindell augment the above de�nition with a session-key hallenge to address this

issue. Suppose that A ompletes the protool �rst and outputs a session key K, then the adversary is given

a session key hallenge K

�

, whih is the session key K with probability 1/2 (i.e. � = 1) or a truly random

string K

0

with probability 1/2 (i.e. � = 0). The adversary C will be given the session-key hallenge in both

the ideal and real models, as soon as the �rst honest party outputs a session key K. We all the resulting

de�nition seurity with respet to the session-key hallenge.

Ideal model Let A;B be the honest parties and let C

ideal

be any PPT ideal adversary with auxiliary input

�.

1. A and B reeive w

R

 D.

2. A and B both send w to the trusted party

3. C

ideal

deides whih party i 2 fA;Bg onludes �rst and whether it is a suessful exeution or

not, i.e. C

ideal

sends a bit de

i

C

to the trusted party.

4. The trusted party hooses K

R

 f0; 1g

n

. If de

i

C

= 1, the trusted party sends K to party i;

otherwise it sends ?.

5. Session-key hallenge: if party i reeived ?, then the trusted party gives ? to C

ideal

. Otherwise,

the trusted party hooses �

R

 f0; 1g and gives C

ideal

the stringK

�

whereK

1

= K andK

0

R

 f0; 1g

n

.

6. C

ideal

deides whether the seond party's exeution is suessful or not, i.e. C

ideal

sends de

j

C

for

j 6= i to the trusted party.

7. If de

j

C

= 1, the trusted party sends K to party j. Otherwise, it sends ?.

The augmented ideal distribution is de�ned by:

IDEAL� SK

C

ideal

(D; �) = (w; output(A); output(B); output(C

ideal

(�;K

�

)); �)

Real model C has orale aess to a single opy of A(w) and a single opy of B(w). The adversary C

ontrols whih party (A or B) onludes �rst. If the �rst party onludes with ?, then C is given ?.

If the �rst party onluding outputs loally a session key K, then a bit �

R

 f0; 1g is hosen and C is

given the session-key hallenge K

�

where K

1

= K and K

0

R

 f0; 1g

n

. C ompletes its interation with

the other party.

The augmented real distribution is de�ned by:

REAL� SK

C

(D; �) = (w; output(A); output(B); output(C

A(w);B(w)

(�;K

�

)); �)

De�nition 2.2 (Seurity with respet to the session-key hallenge [15℄) A protool for password-

based authentiated session-key generation is (1 � )-seure with respet to the session-key hallenge for

the ditionary D � f0; 1g

n

if for every real adversary C, there exists C

ideal

suh that for every auxiliary

input � 2 f0; 1g

poly(n)

,

fIDEAL� SK

C

ideal

(D; �)g

�

O()

� fREAL� SK

C

(D; �)g

�

Goldreih and Lindell give some intuition as to why the session-key hallenge solves the �aw mentioned

earlier. First, note that the ideal adversary annot distinguish between the ase � = 0 and the ase � = 1

sine in the ideal model, both K

0

and K are truly uniform strings. Consider the real adversary who has

been given the session-key hallenge: if C has been given K

0

, then the session-key hallenge does not help C

in attaking the protool, sine C ould generate K

0

on its own. Suppose that instead C has been given K

and that C an somehow use it to attak the protool (this orresponds to the situation where A uses the

session-key K; C(K) an simulate A's use of the key), then it would mean that C an tell if it is in the ase

� = 0 or � = 1, whih is not possible if the protool is seure with respet to the session-key hallenge.
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2.3 Seurity with respet to the Environment

Our intuitive notion of seurity is that no matter how A uses its session-key K before the exeution (C;B)

is ompleted, the ideal and real distributions should be (1 � O())-indistinguishable. It is not immediate

that the session-key hallenge aptures this. Thus we propose an alternative augmentation to De�nition 2.1

that orresponds more diretly to this goal.

We model the di�erent ways the party A ould use its session-key K by onsidering an arbitrary prob-

abilisti polynomial time mahine Z whih is given the key K (as soon as A outputs a session-key K) and

interats with the adversary in both the ideal and real models. This is similar to the �appliation� queries

in Shoup's model for (non-password-based) seure key-exhange [26℄, whih was later extended to password

protools in [7℄. Z an also be thought of in terms of �environment� as in the de�nition of universal ompos-

ability by Canetti [8℄: Z models an arbitrary environment (or appliation) in whih the key generated by

the session-key generation protool is used (note that this is not as general as the de�nition of Canetti sine

the environment Z is only given the session-key and not the password w).

Examples of environments follow:

1. Z(K) = ?: A does not use its session-key.

2. Z(K) = K: A publily outputs its session-key.

3. Z(K) =

(

K with probability 1/2;

U

n

with probability 1/2:

This orresponds to the session-key hallenge.

4. Z(K) = En

K

(0

n

): A uses its session-key for seure private-key enryption.

5. C sends a querym

1

, Z(K) answers with En

K

(m

1

), C sends a querym

2

, Z(K) answers with En

K

(m

2

)

and so on. This orresponds to an interative environment Z whih models a hosen plaintext attak.

We all the de�nition obtained by adding (in both the ideal and real models) the environment Z seurity

with respet to the environment. Informally, a real protool is seure with respet to the environment if every

adversary attaking the real protool and interating with an arbitrary environment an be simulated, with

probability 1� O(), by an ideal adversary attaking the ideal funtionality and interating with the same

environment in the ideal model. (More preisely, for every real adversary, there should be a single ideal

adversary that simulates it well for every environment.)

Ideal model Let A and B be the honest parties, C

ideal

any PPT ideal adversary with auxiliary input �

and Z any PPT with auxiliary input � .

1. A and B reeive w

R

 D

2. A and B both send w to the trusted party.

3. C

ideal

deides whih party i 2 fA;Bg onludes �rst and whether it is a suessful exeution or

not, i.e. C

ideal

sends de

i

C

to the trusted party.

4. The trusted party hooses K

R

 f0; 1g

n

. If de

i

C

= 1, it sets L

1

= K; otherwise, L

1

= ?. The

trusted party sends L

1

to party i and Z.

5. C

ideal

interats with Z(L

1

; �).

6. C

ideal

deides whether the seond party's exeution is suessful or not, i.e. C

ideal

sends de

j

C

for

j 6= i to the trusted party.

7. If de

j

C

= 1, the trusted party sets L

2

= K; otherwise, L

2

= ?. It sends L

2

to party j.

The ideal distribution is de�ned by:

IDEAL

Z;�;C

ideal

(D; �) = (w; output(A); output(B); output(Z(L

1

; �)); output(C

ideal

Z(L

1

;�)

(�)))
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Real model C has orale aess to a single opy opy of A(w) and a single opy of B(w). The adversary C

ontrols whih party (A or B) onludes �rst. Let L

1

2 f0; 1g

n

[? be the output of the �rst onluding

party. C interats with Z(L

1

; �) and ompletes its interation with the other party,

The real distribution is de�ned by:

REAL

Z;�;C

(D; �) = (w; output(A); output(B); output(Z(L

1

; �)); output(C

A(w);B(w);Z(L

1

;�)

(�)))

De�nition 2.3 (Seurity with respet to the environment) A protool for password-based authenti-

ated session-key generation is (1�)-seure with respet to the environment for the ditionary D � f0; 1g

n

if for every PPT C, there exists C

ideal

suh that for every auxiliary input � 2 f0; 1g

poly(n)

and every PPT

Z with every auxiliary input � 2 f0; 1g

poly(n)

,

fIDEAL

Z;�;C

ideal

(D; �)g

�

O()

� fREAL

Z;�;C

(D; �)g

�

Note that seurity with respet to the environment implies seurity with respet to the session-key

hallenge sine it su�es to onsider the PPT Z(K) whih generates �

R

 f0; 1g and outputs the key K if

� = 1 or a truly random string K

0

if � = 0. We show that the two de�nitions are atually equivalent:

Theorem 2.4 A protool (A;B) is (1� )-seure with respet to the session-key hallenge i� it is (1� )-

seure with respet to the environment.

This is similar to a result of Shoup [26℄ showing the equivalene of his de�nition and the Bellare-Rogaway

[3℄ de�nition for non-password-based key exhange. The �appliation� queries in Shoup's de�nition are anal-

ogous to our environment Z, and the �test� queries in [3℄ are analogous to the session-key hallenge. Though

both of these de�nitions have been extended to password-authentiated key exhange [7, 2℄, it is not imme-

diate that Shoup's equivalene result extends diretly to our setting. For example, the de�nitions of [3, 2℄

are not simulation-based and do not diretly require that the password remain pseudorandom, whereas here

we are relating two simulation-based de�nitions that do ensure the password's serey.

Given Theorem 2.4, the relationship between seurity with respet to the environment and seurity

with respet to the session-key hallenge is analogous to the relationship between semanti seurity and

indistinguishability for enryption shemes [17, 21℄. Though both are equivalent, the former aptures our

intuitive notion of seurity better, but the latter is typially easier to establish for a given protool (as it

involves only taking into aount a spei� environment Z). For oniseness of notation in the proof, we

omit �output� in the distributions.

Proof: Let (A;B) be a protool that is seure with respet to the session-key hallenge. To prove the

theorem, it su�es to prove that for every PPT C, there exists a PPT C

ideal

suh that for every Z and every

auxiliary input � :

fw;A;B;Z(M

1

; �); C

A(w);B(w);Z(M

1

;�)

(�)g

O()

� fw;A;B;Z(L

1

; �);C

ideal

Z(L

1

;�)

(�)g

where M

1

is the output of the �rst onluding party in the real exeution C

A(w);B(w)

and L

1

is the output

of the �rst onluding party in the ideal exeution.

We denote by M

2

the output of the seond onluding party in the real exeution C

A(w);B(w)

and by L

2

the output of the seond onluding party in the ideal exeution. Hene, we want to prove that for every

PPT C, there exists a PPT C

ideal

suh that for every Z and every auxiliary input � :

fw;M

1

;M

2

; Z(M

1

; �); C

A(w);B(w);Z(M

1

;�)

(�)g

O()

� fw;L

1

; L

2

; Z(L

1

; �);C

ideal

Z(L

1

;�)

(�)g

where we also require that if C

ideal

sets i 2 fA;Bg as the �rst onluding party, then i onludes �rst in the

simulated view C

ideal

outputs.

We will introdue
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� In the ideal model of De�nition 2.2, the trusted party gives the adversaryC

ideal

the session-key hallenge

K

�

K

�

=

(

L

1

if � = 1 or L

1

= ?

U

n

if � = 0 and L

1

6= ?

� In the real model of De�nition 2.2, the trusted party gives the adversary C the session-key hallenge

K

�

K

�

=

(

M

1

if � = 1 or M

1

= ?

U

n

if � = 0 and M

1

6= ?

We �x the real adversary C (against seurity with respet to the environment) and de�ne the real

adversary C

0

(against seurity with respet to the session-key hallenge) that, on auxiliary input (�; �) and

reeiving K from the �rst onluding party, simulates Z(K; �) on its own. Hene C

0A(w);B(w)

(�; �;K) �

fK; �; C

A(w);B(w);Z(K;�)

(�)g.

By seurity with respet to the session-key hallenge, there exists an ideal adversary C

ideal

0

suh that

IDEAL� SK

C

0

ideal

O()

� REAL� SK

C

0

) fw;L

1

; L

2

;C

0

ideal

(�; �;K

�

); �g

O()

� fw;M

1

;M

2

; C

0A(w);B(w)

(�; �;K

�

); �g

Moreover, as � has only two possible values, we know that:

fw;L

1

; L

2

;C

0

ideal

(�; �; L

1

)g

O()

� fw;M

1

;M

2

; C

0A(w);B(w)

(�; �;M

1

)g (1)

fw;L

1

; L

2

;C

0

ideal

(�; �;K

0

)g

O()

� fw;M

1

;M

2

; C

0A(w);B(w)

(�; �;K

0

)g (2)

We will �rst prove that the real outputs of the honest parties are indistinguishable from ideal outputs,

even when the environment Z is present. This is formalized by the following laim:

Claim 2.5 For every Z, every � and every �,

fw;M

2

;M

1

; �; C

A(w);B(w);Z(M

1

;�)

(�)g

O()

� fw;L

2

; L

1

; �; C

A(w);B(w);Z(L

1

;�)

(�)g

where M

i

is the output of the ith onluding party in the real exeution C

A(w);B(w)

and L

1

; L

2

are de�ned as

follows:

� if the �rst party in the real exeution C

A(w);B(w)

aepts, then L

1

= U

n

. Otherwise, L

1

= ?.

� if the seond party in the real exeution C

A(w);B(w)

aepts and L

1

6= ?, then L

2

= L

1

. If the seond

party aepts and L

1

= ?, then L

2

= U

n

. If the seond party rejets, then L

2

= ?.

Proof of laim:

By de�nition of C

0

and Equation (1), we know that

fw;M

2

;M

1

; �; C

A(w);B(w);Z(M

1

;�)

(�)g � fw;M

2

; C

0A(w);B(w)

(�; �;M

1

)g

O()

� fw;L

2

;C

0

ideal

(�; �; L

1

)g

Again, by de�nition of C

0

, we have

fw;L

2

; L

1

; �; C

A(w);B(w);Z(L

1

;�)

(�)g � fw;L

2

; C

0A(w);B(w)

(�; �; L

1

)g

Note that in both the real and ideal models, the string K

0

is distributed identially to L

1

, hene

by Equation 2, we have

fw;C

0A(w);B(w)

(�; �; L

1

)g

O()

� fw;C

0

ideal

(�; �; L

1

)g

) fw;L

2

; C

0A(w);B(w)

(�; �; L

1

)g

O()

� fw;L

2

;C

0

ideal

(�; �; L

1

)g

�

8



We will now prove that if the real outputs of the honest parties are replaed by ideal outputs, then the

protool leaks no information about the password w.

Claim 2.6 For every Z, every � and every �,

fw;L

2

; L

1

; �; C

A(w);B(w);Z(L

1

;�)

(�)g

O()

� f ~w;L

2

; L

1

; �; C

A(w);B(w);Z(L

1

;�)

(�)g

where ~w

R

 D and L

1

; L

2

are de�ned as follows:

� if the �rst party in the real exeution C

A(w);B(w)

aepts, then L

1

= U

n

. Otherwise, L

1

= ?.

� if the seond party in the real exeution C

A(w);B(w)

aepts and L

1

6= ?, then L

2

= L

1

. If the seond

party aepts and L

1

= ?, then L

2

= U

n

. If the seond party rejets, then L

2

= ?.

Proof of laim: We de�ne the real adversary C

00

(against seurity with respet to the session-

key hallenge) that, on auxiliary input (�; �) and reeiving L

1

from the �rst onluding party,

simulates Z(L

1

; �) on its own suh that C

00A(w);B(w)

(�; �; L

1

) � fL

2

; L

1

; �; C

A(w);B(w);Z(L

1

;�)

g,

where L

2

is omputed aording to the above rule. Sine L

1

is distributed identially to K

0

, by

seurity with respet to the session-key hallenge (for the ase where � = 0) there exists C

00

ideal

suh that

fw;C

00

ideal

(�; �; L

1

)g

O()

� fw;C

00A(w);B(w)

(�; �; L

1

)g (3)

whih in turn implies (by non-uniform indistinguishability or samplability of D)

f ~w;C

00

ideal

(�; �; L

1

)g

O()

� f ~w;C

00A(w);B(w)

(�; �; L

1

)g (4)

where ~w

R

 D. Note that in the ideal model, the adversary C

00

ideal

(�; �; L

1

) learns nothing about

the password w sine L

1

is independent of the password w. Hene we have

f ~w;C

00

ideal

(�; �; L

1

)g � fw;C

00

ideal

(�; �; L

1

)g (5)

From Equations (3), (4), (5) and transitivity of indistinguishability, we onlude that

fw;C

00A(w);B(w)

(�; �; L

1

)g

O()

� f ~w;C

00A(w);B(w)

(�; �; L

1

)g

�

Note that the distributions f ~w;L

2

; L

1

; �; C

A(w);B(w);Z(L

1

;�)

(�)g and fw;L

2

; L

1

; �; C

A( ~w);B( ~w);Z(L

1

;�)

(�)g, where

~w

R

 D, are equivalent. Combining Claims 2.5 and 2.6, we obtain

fw;M

1

;M

2

; �; C

A(w);B(w);Z(M

1

;�)

(�)g

O()

� fw;L

1

; L

2

; �; C

A( ~w);B( ~w);Z(L

1

;�)

(�)g

We now desribe the ideal adversary C

ideal

Z(L

1

;�)

(�): C

ideal

generates a random password ~w

R

 D and

simulates the honest parties A and B in the interation (A( ~w); B( ~w)). C

ideal

interats with Z(L

1

) as soon

as the �rst party in the simulated exeution onludes. C

ideal

an therefore simulate C

A( ~w);B( ~w);Z(L

1

;�)

(�).

Hene, for any PPT C, there exists C

ideal

suh that for every Z and every � :

fw;M

1

;M

2

; Z(M

1

; �); C

A(w);B(w);Z(M

1

;�)

(�)g

O()

� fw;L

1

; L

2

; Z(L

1

; �);C

ideal

Z(L

1

;�)

(�)g

3 An Overview of the Protool

Before presenting our protool, we introdue the polynomial evaluation funtionality, whih is an important

tool for the rest of the paper. In [22℄, it is observed that a seure protool for polynomial evaluation

immediately yields a protool for session-key generation whih is seure against passive adversaries. In [15℄,

Goldreih and Lindell work from the intuition (from [6℄) that by augmenting a seure protool for polynomial

evaluation with additional mehanisms, one an obtain a protool for session-key generation whih is seure

against ative adversaries. Our protool also omes from this intuition but the additional tools we are using

are di�erent.
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3.1 Seure Polynomial Evaluation

In a seure polynomial evaluation, a party A knows a polynomial Q over some �eld F and a party B wishes

to learn the value Q(x) for some element x 2 F suh that A learns nothing about x and B learns nothing

else about the polynomial Q but the value Q(x). More spei�ally, for our problem, we will assume that

F = GF(2

n

) � f0; 1g

n

, Q is a non-onstant linear polynomial over F, and x is a string in f0; 1g

n

.

De�nition 3.1 (Polynomial evaluation) The polynomial evaluation funtionality is de�ned as:

Inputs The input of A is a non-onstant linear polynomial Q over GF(2

n

). The input of B is a value

x 2 GF(2

n

).

Outputs B reeives Q(x). A reeives nothing.

As observed in [22℄, a seure protool for polynomial evaluation yields immediately a protool for session-

key generation whih is seure against passive adversaries as follows: A hooses a random linear non-onstant

polynomial Q, and A and B engage in a seure polynomial evaluation protool, where A inputs Q and B

inputs w, so that B obtains Q(w). Sine A has both Q and w, A an also obtain Q(w), and the session key

is set to be K = Q(w).

This protool is seure against passive adversaries beause the key K is a random string (sine Q is a

random polynomial), and it an be shown that an eavesdropper learns nothing about w or Q(w) (due to the

seurity of the polynomial evaluation).

However, the protool is not seure against ative adversaries. For example, an ative adversary C an

input a �xed polynomial Q

C

in its interation with B, say the identity polynomial id, and a �xed password

w

C

in its interation with A. A outputs the session key Q

A

(w) and B outputs the session key Q

C

(w) = w.

With probability 1� 2

�n

, the two session keys are di�erent, whereas the de�nition of seurity requires them

to be equal with probability 1�O().

A C B

Q

A

-

K

A

= Q

A

(w)

� w

C

- Q

A

(w

C

)

Q

C

- � w

- Q

C

(w)

K

B

= Q

C

(w)

Figure 1: Protool whih is inseure against ative adversaries

3.2 Motivation for our Protool

The main de�ieny of the seure polynomial evaluation protool against ative adversaries is that it does

not guarantee that A and B output the same random session key. Somehow, the parties have to hek that

they omputed the same random session key before starting to use it. It an be shown that A's session

key K

A

= Q

A

(w) is pseudorandom to the adversary, so A an start using it without leaking information.

However, B annot use its keyK

B

= Q

C

(w) beause it might belong to a set of polynomial size (for example,

if Q

C

= id, then Q

C

(w) 2 D where the ditionary is by de�nition a small set). Hene Goldreih and Lindell

added a validation phase in whih A sends a message to B so that B an hek if it omputed the same

session key, say A sends f

n

(K

A

) where f is a one-way permutation. Sine f

n

is a 1-1 map, this uniquely

de�nes K

A

(the session-key used now onsists of hardore bits of f

i

(K

A

), for i = 0; � � � ; n � 1) : B will

ompute f

n

(K

B

) and ompare it with the value it reeived.
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But it is still not lear that this andidate protool is seure. Reall that the seurity of the polynomial

evaluation protool applies only in the stand-alone setting and guarantees nothing in the onurrent setting.

In partiular, it might be that C inputs a polynomial Q

C

in the polynomial evaluation between C and B

suh that the polynomials Q

A

and Q

C

are related in some manner, say for any w 2 D, it is easy to ompute

the orret validation message f

2n

(Q

C

(w)) given the value of f

2n

(Q

A

(w)); yet B's key does not equal A's key.

To prevent this from happening, Goldreih and Lindell fore the polynomial Q input in the polyno-

mial evaluation phase to be onsistent with the message sent in the validation phase (whih is supposedly

f

2n

(Q(w))). The parties have to ommit to their inputs at the beginning and then prove in a zero-knowledge

manner that the messages sent in the validation phase are onsistent with these ommitments. Beause of

the person-in-the-middle attak and the onurreny issues mentioned earlier, Goldreih and Lindell annot

use standard ommitment shemes and standard zero-knowledge proofs but rather they use non-malleable

ommitments and the spei� zero-knowledge proof of Rihardson and Kilian.

Our approah is to allow C to input a polynomial Q

C

related to Q

A

, but to prevent C from being able

to ompute a orret validation message with respet to B's session-key, even given A's validation message.

Suppose that the parties have aess to a family of pairwise independent hash funtions H. In the valida-

tion phase, we require A to send h(f

2n

(K

A

)) = h(f

2n

(Q

A

(w))) for some funtion h

R

 H. Then, even if

K

A

= Q

A

(w) and K

B

= Q

C

(w) are related (but distint), the values h(f

2n

(K

A

)) and h(f

2n

(K

B

)) will be

independent and C annot do muh better than randomly guess the value of h(f

2n

(K

B

)).

One di�ulty arises at this point: the parties have to agree on a ommon random hash funtion h

R

 H.

But the honest parties A and B only share the randomness oming from the password w so this password w

has to be enough to agree on a random hash funtion. To make this possible, we assume that the password

is of the form (w;w

0

) where w and w

0

are hosen independently of one another: w is hosen at random from

an arbitrary ditionary D � f0; 1g

n

and w

0

is uniformly distributed in D

0

= f0; 1g

d

0

. (For example, these

an be obtained by splitting a single random password from f0; 1g

d

00

into two parts.) The �rst part of the

password, w, will be used in the polynomial evaluation protool whereas the seond part of the password,

w

0

, will be used as the index of a hash funtion. Indeed, if we assume that D

0

= f0; 1g

d

0

, there exists a family

of almost pairwise independent hash funtions H = fh : f0; 1g

n

! f0; 1g

m

g, where eah hash funtion is

indexed by a password w

0

2 D

0

and m = 
(d

0

).

We formalize these ideas in the protool desribed below.

3.3 Desription of the Protool

Like in [15℄, we will need a seure protool for an augmented version of polynomial evaluation.

De�nition 3.2 (Augmented polynomial evaluation) The augmented polynomial evaluation funtion-

ality is de�ned as:

Earlier phase A sends a ommitment 

A

= Commit(Q

A

; r

A

) to a linear non-onstant polynomial Q

A

for

a randomly hosen r

A

. B reeives a ommitment 

B

. We assume that the ommitment sheme used is

perfetly binding and omputationally hiding.

Inputs The input of A is a linear non-onstant polynomial Q

A

, a ommitment 

A

to Q

A

and a orresponding

deommitment r

A

. The input of B is a value x 2 GF(2

n

) and a ommitment 

B

.

Outputs � In the ase of orret inputs, i.e. 

A

= 

B

and 

A

= Commit(Q

A

; r

A

), B reeives Q

A

(x) and

A reeives nothing.

� In the ase of inorret inputs, i.e. 

A

6= 

B

or 

A

6= Commit(Q

A

; r

A

), B reeives a speial failure

symbol ? and A reeives nothing.

The other ryptographi tools we will need are:

Commitment sheme : Let Commit be a perfetly binding, omputationally hiding string ommitment.
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Seed-ommitted pseudorandom generator : similarly to [15℄, we will use the seed-ommitted pseudo-

random generator G(s) = (b(s)b(f(s)) � � � b(f

n+`�1

(s))f

n+`

(s)) where f is a one-way permutation with

hardore bit b.

One-time MAC with pseudorandomness property : Let MAC be a message authentiation ode for

message spae f0; 1g

p(n)

(for a polynomial p(n) to be spei�ed later) using keys of length ` = `(n) that

is seure against one query attak, i.e. a PPT A whih queries the tagging algorithm MAC

K

on at

most one message of its hoie annot produe a valid forgery on a di�erent message. Additionally, we

will require the following pseudorandomness property:

� Let K be a uniform key of length `

� The adversary queries the tagging algorithm MAC

K

on the message m of its hoie

� The adversary selets m

0

6= m. We require that the value MAC

K

(m

0

) be pseudorandom with

respet to the adversary's view.

Two examples of suh a MAC are:

� MAC

s

(m) = f

s

(m) where ff

s

g

s2f0;1g

` is a pseudorandom funtion family

� MAC

a;b

(m) = am+ b where `(n) = 2p(n) and a; b 2 GF(2

`=2

).

Almost pairwise independent hash funtions The family of funtionsH = fh

w

0

: f0; 1g

n

! f0; 1g

m

g

w

0

2f0;1g

d

0

is said to be pairwise Æ-dependent or almost pairwise independent if:

1. (uniformity) 8x 2 f0; 1g

n

, when we hoose w

0

R

 f0; 1g

d

0

, h

w

0

(x) is uniform over f0; 1g

m

.

2. (pairwise independene) 8x

1

6= x

2

2 f0; 1g

n

;8y

1

; y

2

2 f0; 1g

m

, when we hoose w

0

R

 f0; 1g

d

0

,

Pr

w

0

2f0;1g

d

0

[h

w

0

(x

1

) = y

1

^ h

w

0

(x

2

) = y

2

℄ =

1 + Æ

2

2m

We also require that for a �xed w

0

2 f0; 1g

d

0

, the funtion h

w

0

is regular, i.e. it is 2

n�m

to 1. In other

words, h

w

0

(U

n

) � U

m

. Throughout this paper, we write �

def

=

1+Æ

2

m

.

Lemma 3.3 For the �xed ditionary D

0

= f0; 1g

d

0

� f0; 1g

n

, there exists a family of almost pairwise

independent hash funtions H = fh

w

0

: f0; 1g

n

! f0; 1g

m

g

w

0

2D

0

for � = O

�

n

jD

0

j

1=3

�

.

The formal desription of the protool follows.

Protool 3.4 1. Inputs The parties A and B have a joint password (w;w

0

), where w is hosen at random

from an arbitrary ditionary D � f0; 1g

n

and w

0

is uniformly distributed in D

0

= f0; 1g

d

0

� f0; 1g

n

. w

and w

0

are hosen independently.

2. Commitment: A hooses a random non-onstant linear polynomial Q

A

over GF(2

n

) and oin tosses

r

A

and sends 

A

= Commit(Q

A

; r

A

). B reeives some ommitment 

B

.

3. Augmented polynomial evaluation

(a) A and B engage in a polynomial evaluation protool: A inputs the polynomial Q

A

, the om-

mitment 

A

and the oin tosses r

A

it used for the ommitment; B inputs the ommitment 

B

it

reeived and the password w seen as an element of GF (2

n

).

(b) The output of B is denoted �

B

, whih is supposed to be equal to Q

A

(w).

() A internally omputes �

A

= Q

A

(w).

4. Validation

(a) A sends the string y

A

= h

w

0

(f

n+`

(�

A

)).

12



(b) Let t

A

be the session transript so far as seen by A. A omputes k

1

(�

A

) = b(�

A

) � � � b(f

`�1

(�

A

))

and sends the string z

A

= MAC

k

1

(�

A

)

(t

A

).

5. Deision

(a) A always aepts and outputs k

2

(�

A

) = b(f

`

(�

A

)) � � � b(f

`+n�1

(�

A

))

(b) B aepts (this event is denoted by de

B

= aept) if the strings y

B

and z

B

it reeived satisfy

the following onditions :

� y

B

= h

w

0

(f

n+`

(�

B

))

� Ver

k

1

(�

B

)

(t

B

; z

B

) = aept, where t

B

is the session transript so far as seen by B and k

1

(�

B

)

is de�ned analogously to k

1

(�

A

).

If �

B

= ?, then B will immediately rejet.

If B aepts, it outputs k

2

(�

B

) = b(f

`

(�

B

)) � � � b(f

`+n�1

(�

B

)).

A has (w;w

0

) and piks a random Q

A

B has (w;w

0

)

Commitment 

A

def

= Commit(Q

A

; r

A

)



B

-

Seure polynomial evaluation

Q

A

; 

A

; r

A

- � w; 

B

- �

B

�

A

def

= Q

A

(w)

Hash y

A

def

= h

w

0

(f

n+`

(�

A

))

y

B

-

MAC of transript z

A

def

= MAC

k

1

(�

A

)

(t

A

)

-
z

B

Output key k

2

(�

A

)

Aept if y

B

= h

w

0

(f

n+`

(�

B

))

& Ver

k

1

(�

B

)

(t

B

; z

B

) = aept

If aept, output key k

2

(�

B

)

Figure 2: Overview of our protool

4 Seurity Theorems

We begin by stating our protool's seurity against passive adversaries.

Theorem 4.1 Protool 3.4 is seure for the ditionary D � D

0

= D � f0; 1g

d

0

against passive adversaries.

More formally, for every passive PPT real adversary C, there exists an ideal adversary C

ideal

whih always

sends (de

A

C

; de

B

C

) = (1; 1) to the trusted party suh that for every auxiliary input � 2 f0; 1g

poly(n)

:

fIDEAL

C

ideal

(D �D

0

; �)g

�



� fREAL

C

(D �D

0

; �)g

�

Next we state the basi seurity theorem against ative adversaries, in the plain model with a ditionary

of the form D � f0; 1g

d

0

.
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Theorem 4.2 Protool 3.4 is (1 � )-seure with respet to the session-key hallenge for the ditionary

D �D

0

= D � f0; 1g

d

0

, for  = max

�

1

jDj

;

�

poly(n)

jD

0

j

�


(1)

�

. More preisely,  = max

�

1

jDj

; O

�

n

3

jD

0

j

�

1=6

�

.

Finally, we show how the shared ditionary of the form D�f0; 1g

d

required in Theorem 4.2 an be realized

from several other types of ditionaries D

00

, ahieving seurity bounds of the form (poly(n)=jD

00

j)


(1)

in all

ases.

Single Random Password. We an split a single random password from a ditionary D

00

= f0; 1g

d

00

into

two parts, one of length d and one of length d

0

= d

00

� d. Optimizing, we set d = (d

00

� 3 logn)=7, and obtain

a seurity bound of

 = max

(

1

2

d

; O

�

n

3

2

d

0

�

1=6

)

= O

�

n

3

jD

00

j

�

1=7

:

Arbitrary Password with Common Random String. We an onvert a password from an arbitrary

ditionary D

000

� f0; 1g

n

into a single random password (as in the previous onstrution) in the ommon

random string model, using randomness extrators, whih we de�ne now.

A random variable X is a k-soure if for all x, Pr [X = x℄ � 2

�k

. (In other words, X has min-entropy at

least k.) Note that the uniform distribution on D

000

is a k-soure for k = logD

000

.

De�nition 4.3 ([24℄) A funtion Ext : f0; 1g

n

�f0; 1g

`

! f0; 1g

m

is a (strong) (k; �)-extrator if for every

k-soure X on f0; 1g

n

, the random variable (U

`

;Ext(X;U

`

)) is �-lose to (U

`

; U

m

).

That is, using a random seed of length `, the funtion Ext extrats m almost-uniform bits from the

k-soure X . We all Ext expliit if it is omputable in polynomial time (in n and `).

We will use the following onstrution of �low min-entropy� extrators.

Lemma 4.4 ([27℄) For every n, k � n, and � > 0, there exists an expliit (k; �)-extrator Ext : f0; 1g

n

�

f0; 1g

`

! f0; 1g

m

with ` = O(log n+m) + 2 log(1=�) and m = k � 2 log(1=�)�O(1).

To use extrators with our protool, we view the ommon random string as the seed for the extrator, and

apply the extrator to onvert the password from the arbitrary ditionary D

000

� f0; 1g

n

into d

00

= m almost-

uniform bits, whih we use in plae of the �single random password� in the previous onstrution. We pay an

additive loss of � (the error of the extrator) in the seurity bound, and also lose beause the extrator annot

extrat all of the min-entropy in the soure (i.e. d

00

will be smaller than log jD

000

j). Optimizing with the

extrator of Lemma 4.4, we set k = log jD

000

j and � = (n

3

=jD

000

j)

1=9

, and obtain d

00

= m = k�2 log(1=�)�O(1),

i.e. jD

00

j = 2

d

00

= 
(�

2

� 2

k

) = 
(n

2=3

� jD

000

j

7=9

). Then we have:

 = O

�

n

3

jD

00

j

�

1=7

= O

�

n

3

n

2=3

� jD

000

j

7=9

�

1=7

= O

�

n

3

jD

000

j

�

1=9

;

for a �nal seurity bound of

 + � = O

�

n

3

jD

000

j

�

1=9

:

The length of our ommon random string is ` = O(log n+k) = O(log n+log jD

000

j). Note that this is only

logarithmi in the seurity parameter n, whereas the protools of [19, 13℄ require ommon referene strings of

length polynomially related to n (and, moreover, their referene strings are not merely uniformly distributed

random strings, but are supposed to be generated aording to more omplex distributions). On the other

hand, using our protool requires knowing (or assuming) a lower bound on the size of the ditionary (and

this lower bound is what determines the seurity). The protools of [15, 19, 13℄ do not require suh a lower

bound.
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Two Independent Passwords. If the parties share two independent passwords w

1

; w

2

oming from ar-

bitrary ditionaries D

1

;D

2

� f0; 1g

r

, then they an apply a (seedless) extrator for 2 independent weak

random soures [9℄ to onvert these into a single random password. Even better is to use the following

variant of 2-soure extrators:

De�nition 4.5 ([11℄) A funtion Ble : f0; 1g

r

� f0; 1g

r

! f0; 1g

m

is a (strong) (k

1

; k

2

; �)-blender if for

every k

1

-soure X

1

and independent k

2

-soure X

2

on f0; 1g

r

, the random variable (X

1

;Ble(X

1

; X

2

)) is �-lose

to (X

1

; U

m

).

Thus, if the parties share two independent passwords w

1

; w

2

oming from arbitrary ditionaries, a strong

blender an be used to onvert w

2

into an almost-uniform string w

0

= Ble(w

1

; w

2

) that is essentially in-

dependent of the other password, and thus (w

1

; w

0

) an be used in our original onstrution. Nonon-

strutively, strong (k

1

; k

2

; �)-blenders are known to exist with m = k

2

� 2 log(1=�) � O(1), provided that

k

1

> log r + 2 log(1=�) + O(1). If there were expliit onstrutions mathing these parameters, we would

obtain a protool with seurity bound of

 = O

 

max

(

�

n

jD

1

j

�

1=2

;

�

n

3

jD

2

j

�

1=8

)!

:

Unfortunately, expliit onstrutions of blenders (or 2-soure extrators) are only known in ases when

either k

1

or k

2

are at least r=2. (See [12℄ and the referenes therein for the urrent state-of-the-art.) Thus

we would not obtain a protool that ould work for arbitrary ditionaries D

1

;D

2

� f0; 1g

n

of size poly(n).

However, these onstrutions do allow us to obtain a protool for arbitrary ditionaries D

1

;D

2

� f0; 1g

r

of

size, say, 2

:51r

, for r � n and even r = O(log n).

5 Overview of the Proof

Notations

� Without loss of generality, we will assume that the real adversary's output equals its view of the

exeution (sine the output is e�iently omputable from the view). We will also often omit the

auxiliary input � of the adversary.

� Reall that we denote by C

A(w;w

0

);B(w;w

0

)

an exeution of C when it ommuniates with A and B,

with ommon input w. We denote by C

A(Q

A

;w;w

0

);B(w;w

0

)

the exeution of C with A and B where Q

A

spei�es the random non-onstant linear polynomial to be used by A.

� A hannel C is reliable in a given protool exeution if C runs the (A;C) and (C;B) exeutions in a

synhronized manner and does not modify any message sent by A or B. If C was reliable in the given

exeution, we denote this event by reliable

C

= true; otherwise, we write reliable

C

= false.

Although the seurity theorems are stated in terms of De�nition 2.2, the proofs will onern mainly

De�nition 2.1 and the modi�ations neessary to take into aount the session-key hallenge are given.

Similarly to [15℄, the proof of Theorem 4.2 is in four steps:

1. Key-Math property: we show that if �

A

6= �

B

, then B will rejet with probability 1�O().

2. Simulation of the (C;B) interation: we show that if the key-math property holds, then the

interation (C;B) an be simulated by an adversary C

0

interating only with A, even if the interation

(A;C) is onurrent.

3. Simulation of the (A;C

0

) interation: we show that the interation (A;C

0

) as a stand-alone an

be simulated.

4. Combining the above steps, we obtain a proof of seurity against ative adversaries. The real adver-

sary's view of the onurrent interations (A;C) and (C;B) an be simulated by a PPT C

00

whih is

non-interative and an therefore be simulated by an ideal adversary with no input.
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Like in [15℄, the main part of the proof of Theorem 4.2 is the key-math property. One the key-math

property is established, we an easily adapt the proofs in [15℄ to our spei� protool to build an ideal

adversary whih simulates the real adversary's view.

Theorem 5.1 (Key-Math property) For every PPT real adversary C and all su�iently large values

of n

Pr [de

B

= aept^ �

A

6= �

B

℄ <

p

�+ �+ �+ neg(n)

where � =

1

jDj

and � =

1+Æ

2

m

= O

�

n

jD

0

j

1=3

log jD

0

j

�

.

The main part of our proof that is new (and simpler than [15℄) is the key-math property. As noted in

the introdution, the adversary C has total ontrol over the sheduling of the two interations (A;C) and

(C;B). Hene the key-math property will be proved for every possible sheduling ase, inluding those for

whih these interations are onurrent. Nevertheless, the key-math property will be established by tools

of seure two-party omputation, whih a priori only guarantee seurity in the stand-alone setting.

For eah sheduling, we want to bound from above the probability Pr [de

B

= aept^ �

A

6= �

B

℄. Reall

that B aepts i� two onditions are satis�ed: the string y

B

reeived must equal h

w

0

(f

n+`

(�

B

)) and the

MAC z

B

reeived must be a valid MAC, i.e. Ver

k

1

(�

B

)

(t

B

; z

B

) = aept. Hene, to obtain an upper bound

we an omit the veri�ation of the MAC by B and only onsider the probability that C sueeds in sending

the value h

w

0

(f

n+`

(�

B

)) when �

A

6= �

B

. (Like in [15℄, the MAC is only used to redue the simulation of

ative adversaries to the simulation of passive adversaries plus the key-math property.) For onveniene,

we will deompose the adversary into two algorithms.

� The �rst algorithm is denoted by C. C is the hannel through whih A and B ommuniate. For a

given exeution, we denote by C

A(Q

A

;w;w

0

);B(w;w

0

)

the view of C when it ommuniates with A and B

with respetive inputs (Q

A

; w; w

0

) and (w;w

0

) until just before C sends a string y

B

to B.

� The seond algorithm is denoted by C

hash

. C

hash

takes as an input the above view C

A(Q

A

;w;w

0

);B(w;w

0

)

and tries to ompute the hash value h

w

0

(f

n+`

(�

B

)).

Hene to establish the key-math property, for eah sheduling, we will bound from above the probability

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

) = h

w

0

(f

n+`

(�

B

)) ^�

A

6= �

B

i

Note that sine B always rejets if �

B

= ?, we an adopt the onvention that

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

) = h

w

0

(f

n+`

(�

B

)) ^ �

B

= ?

i

= 0

We onsider two sheduling ases (see Figures 3 and 4):

Sheduling 1 : C sends the ommitment 

B

to B after A sends the hash value y

A

.

The intuition for this ase is that we have two sequential exeutions (A;C) and (C;B). Using the

seurity of the polynomial evaluation (A;C), we show that even if C reeives y

A

, the hash index w

0

is

(1� �) pseudorandom with respet to the adversary's view. Hene, by the uniformity property of the

hash funtions, C annot do muh better than randomly guess the value of h

w

0

(f

n+`

(�

B

)).

Sheduling 2 : C sends the ommitment 

B

to B before A sends the hash value y

A

.

The almost pairwise independene property means that for �xed values x

1

6= x

2

2 f0; 1g

n

, if the index

w

0

is hosen at random and independently of x

1

and x

2

, then given the value h

w

0

(x

1

), one annot do

muh better than randomly guess the value h

w

0

(x

2

). Before y

A

is sent, the hash index w

0

is random

(sine it has not been used by A). Thus, if we show that the values �

A

and �

B

an be omputed before

y

A

is sent, then w

0

is independent of x

1

= f

n+`

(�

A

) and x

2

= f

n+`

(�

B

) and the adversary annot

guess h

w

0

(x

2

) even given y

A

= h

w

(x

1

). To show that �

A

and �

B

an be omputed before y

A

is sent,

we used an ideal polynomial evaluation (C;B) to extrat an opening of the adversary's ommitment



B

. (The adversary must input suh an opening in the ideal evaluation, else B will rejet).

16



Polynomial

evaluation



A

= Commit(Q

A

; r

A

)

-

Q

A

; 

A

; r

A

-

�

A

def

= Q

A

(w)

y

A

-

z

A

-

-



B

Polynomial

evaluation

w; 

B

�

�

B

-

-

y

B

A(Q

A

; w; w

0

) C B(w;w

0

)

Figure 3: First sheduling
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Figure 4: Seond sheduling
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6 Proof of Seurity against Passive Adversaries

Theorem 6.1 Protool 3.4 is seure for the ditionary D � D

0

= D � f0; 1g

d

0

against passive adversaries.

More formally, for every passive PPT real adversary C, there exists an ideal adversary C

ideal

whih always

sends (de

A

C

; de

B

C

) = (1; 1) to the trusted party suh that for every auxiliary input � 2 f0; 1g

poly(n)

:

fIDEAL

C

ideal

(D �D

0

; �)g

�



� fREAL

C

(D �D

0

; �)g

�

Reall that a passive adversary just eavesdrops on the interation between the honest parties so in this

ase, the parties A and B output the same session-key (output(A) = output(B)) and both aept. In the

ideal model, the session-key K

ideal

is distributed aording to U

n

.

Thus, to prove Theorem 6.1, it su�es to prove the following proposition:

Proposition 6.2 For every passive PPT real adversary C, there exists an ideal adversary C

ideal

suh that

fw;w

0

; output(A); output(C

A(w;w

0

);B(w;w

0

)

)g



� fw;w

0

; U

n

; output(C

ideal

)g

Proof: The view of the real adversary onsists of a transript of the exeution of the protool by A and

B. We an think of this transript as the onatenation of:

� The ommitment to Q

A

and the transript of the augmented polynomial evaluation. We denote these

by T (Q

A

; w).

� The hash value y

A

def

= h

w

0

(f

n+`

(�

A

)) where �

A

def

= Q

A

(w).

� The MAC-key k

1

(�

A

) (it su�es to inlude the MAC-key rather than the MAC itself, sine the latter

is easily omputable from the MAC-key and the transript so far).

Claim 6.3

fw;Q

A

; T (Q

A

; w)g



� fw;Q

A

; T (

~

Q

A

; ~w)g

where Q

A

and

~

Q

A

are random non-onstant linear polynomials and w; ~w are taken uniformly at random (and

independently) from D.

Proof Sketh: The laim follows from the seurity of the augmented polynomial evaluation.

The ommitment sheme we onsider is omputationally hiding hene a ommitment to Q

A

is indis-

tinguishable from a ommitment to

~

Q

A

. Combining this with the seurity of the augmented polynomial

evaluation and the onnetedness of non-onstant linear polynomials (for every Q

A

and

~

Q

A

, there exists

^

Q

A

and values x

1

and x

2

suh that Q

A

(x

1

) =

^

Q

A

(x

1

) and

~

Q

A

(x

2

) =

^

Q

A

(x

2

)), we know

3

that 8w;Q

A

; ~w;

~

Q

A

,

T (Q

A

; w)



� T (

~

Q

A

; ~w)

�

Claim 6.3 implies that

fw;Q

A

(w); T (Q

A

; w)g



� fw;Q

A

(w); T (

~

Q

A

; ~w)g

� fw;U

n

; T (

~

Q

A

; ~w)g (6)

where Equation (6) omes from the fat that for a random Q

A

, �

A

= Q

A

(w) is uniformly distributed in

f0; 1g

n

and Q

A

is independent of T (

~

Q

A

; ~w).

Note that w

0

is independent from the variables in Equation (6) hene we have:

fw;w

0

; Q

A

(w); T (Q

A

; w)g



� fw;w

0

; U

n

; T (

~

Q

A

; ~w)g

3

See Claim 5.2 in [15℄
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We an then apply the deterministi polytime funtion G(:) = (f

n+`

(:); k

1

(:); k

2

(:)) to the third omponent

of eah distribution to obtain:

fw;w

0

; k

2

(�

A

); f

n+`

(�

A

); k

1

(�

A

); T (Q

A

; w)g



� fw;w

0

; k

2

(U

n

); f

n+`

(U

n

); k

1

(U

n

); T (

~

Q

A

; ~w)g

Sine G(s) = (f

n+`

(s); k

1

(s); k

2

(s)) is a PRG, we have:

fw;w

0

; k

2

(�

A

); f

n+`

(�

A

); k

1

(�

A

); T (Q

A

; w)g



� fw;w

0

; U

1

n

; U

2

n

; U

`

; T (

~

Q

A

; ~w)g

) fw;w

0

; k

2

(�

A

); h

w

0

(f

n+`

(�

A

)); k

1

(�

A

); T (Q

A

; w)g



� fw;w

0

; U

1

n

; h

w

0

(U

2

n

); U

`

; T (

~

Q

A

; ~w)g

For a �xed w

0

2 D

0

, h

w

0

is a regular map, so

fw;w

0

; k

2

(�

A

); h

w

0

(f

n+`

(�

A

)); k

1

(�

A

); T (Q

A

; w)g



� fw;w

0

; U

1

n

; U

m

; U

`

; T (

~

Q

A

; ~w)g

The ideal adversary C

ideal

will do the following:

1. Generate a random password ~w 2 D and a random non-onstant linear polynomial

~

Q

A

2. Simulate the honest parties in the augmented polynomial evaluation to produe the transript T (

~

Q

A

; ~w)

3. Generate random strings U

m

and U

`

.

4. Output (U

m

; U

`

; T (

~

Q

A

; ~w))

7 Key-Math Property for the First Sheduling

Sheduling 1 is de�ned as �C sends the ommitment 

B

to B after A sends y

A

�. Without loss of generality

we an assume that C sends the ommitment 

B

to B after A sends z

A

(sine obtaining z

A

an only help

C).

The intuition for this ase is that we have two sequential exeutions (A;C) and (C;B). Using the

seurity of the polynomial evaluation (A;C), we show that even if C reeives y

A

, the hash index w

0

is (1� �)

pseudorandom with respet to the adversary's view. Hene, by the uniformity property of the hash funtions,

C annot do muh better than randomly guess the value of h

w

0

(f

n+`

(�

B

)).

Proposition 7.1 For every PPT real adversary C and all su�iently large values of n

Pr [de

B

= aept^ �

A

6= �

B

^ Sh1℄ < �+ �+ neg(n)

where � =

1

D

and � = O

�

n

jD

0

j

1=3

log jD

0

j

�

. Sh1 denotes the event that the exeution follows the �rst sheduling.

Proof: From the disussion in Setion 5, reall that:

Pr [de

B

= aept^�

A

6= �

B

^ Sh1℄ � Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

) = h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

^ Sh1

i

We deompose the adversary into two algorithms:

� C

1

refers to the adversary until just before the ommitment 

B

is sent. Let (�; y

A

; z

A

) denote the view

of the adversary C

1

when interating with A(Q

A

; w; w

0

).

� C

2

refers to the adversary one the (A;C) interation is over, i.e. C

2

will be given as inputs (�; y

A

; z

A

).

Sine C

2

and B are exeuting the seure (augmented) polynomial evaluation in the stand-alone setting,

we know that there exists an ideal adversary C

2;ideal

suh that for every �; y

A

; z

A

,

f�

B;ideal

;C

2;ideal

B(w;

B

)

(�; y

A

; z

A

)g



� f�

B

; C

B(w;

B

)

2

(�; y

A

; z

A

)g

where �

B;ideal

def

= output(B

C

2;ideal

(�;y

A

;z

A

)

(w; 

B

)) and �

B

def

= output(B

C

2

(�;y

A

;z

A

)

(w; 

B

)).
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Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

) = h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

^ Sh1

i

� Pr

h

C

hash

(C

B(w;

B

)

2

(�; y

A

; z

A

)) = h

w

0

(f

n+`

(�

B

)) ^ Sh1

i

� Pr

h

C

hash

(C

2;ideal

B(w;

B

)

(�; y

A

; z

A

)) = h

w

0

(f

n+`

(�

B;ideal

)) ^ Sh1

i

+ neg(n) (7)

� Pr

�

C

hash

0

(�; h

w

0

(f

n+`

(�

A

)); k

1

(�

A

)) = h

w

0

(f

n+`

(Q

C

(w)))

�

+ neg(n)

where C

hash

0

simulates C

2;ideal

's view of the ideal polynomial evaluation with B and Q

C

is C

2;ideal

's input

(wlog we will assume that we are in the orret input ase in the augmented polynomial evaluation (C;B)

sine by onvention we de�ne C

hash

(�) 6= h

w

0

(f

n+`

(�

B

)) if �

B

= ?). Equation (7) omes from the fat that

the seurity of the augmented polynomial evaluation (C;B) holds even for �xed inputs (w; 

B

; �; y

A

; z

A

) and

with advie string (w

0

;�

A

) to the distinguisher.

We will now prove that the hash index w

0

is (1 � �)-pseudorandom with respet to the inputs given to

C

hash

0

. This will imply that the value h

w

0

(f

n+`

(Q

C

(w))) is (1 � �)-indistinguishable from uniform. Thus

h

w

0

(f

n+`

(Q

C

(w))) will be predited by C

hash

0

with probability at most �+ 2

�m

.

Lemma 7.2 For every PPT adversary C

0

interating with A(Q

A

) who halts after the augmented polynomial

evaluation, fw;Q

A

(w); C

0A(Q

A

)

g

�

� fw;U

n

; C

0A(Q

A

)

g

Proof: C

0

reeives a ommitment 

A

= Commit(Q

A

; r

A

) from A before exeuting the seure protool for

augmented polynomial evaluation. By seurity of the augmented polynomial evaluation, we know that there

exists an ideal adversary C

0

ideal

suh that for every Q

A

; 

A

; r

A

, we have C

0A(Q

A

;

A

;r

A

)



�C

0

ideal

A(Q

A

;

A

;r

A

)

(

A

).

Without loss of generality, we will assume that we are in the orret input ase so that C

0

ideal

always

reeives Q

A

(w

C

) for some input w

C

= C

0

ideal

(

A

). Hene for every w;Q

A

; 

A

; r

A

, we have C

0A(Q

A

;

A

;r

A

)



�

C

0

ideal

(

A

; w

C

; Q

A

(w

C

)).

We want to show that

fw;Q

A

(w);Commit(Q

A

); w

C

; Q

A

(w

C

)g

�

� fw;U

n

;Commit(Q

A

); w

C

; Q

A

(w

C

)g

where w

C

= C

0

ideal

(Commit(Q

A

)).

� By the hiding property of the ommitment sheme, we an replae the ommitment to Q

A

by a

ommitment to 0

2n

in the distributions. This makes w

C

= C

0

ideal

(Commit(0

2n

)), whih is independent

of Q

A

.

� Sine w

C

is independent of w, the probability that w

C

= w is at most � =

1

jDj

.

� If w 6= w

C

, Q

A

(w) is within 2

�n

statistial distane of U

n

and independent of Q

A

(w

C

) by pairwise

independene of (non-onstant linear) polynomials.

fw;Q

A

(w);Commit(0

2n

); w

C

; Q

A

(w

C

)jw

C

6= wg



� fw;U

n

;Commit(0

2n

); w

C

; Q

A

(w

C

)jw

C

6= wg

By Lemma 7.2, we have:

fw;�

A

; �g

�

� fw;U

n

; �g

Note that w

0

is independent of all the above variables hene we have:

fw;w

0

;�

A

; �g

�

� fw;w

0

; U

n

; �g

We an then apply the deterministi polytime funtion (h

w

0

(f

n+`

(:)); k

1

(:)) using the seond omponent w

0

to the third omponent of eah distribution to obtain:

fw;w

0

; �; h

w

0

(f

n+`

(�

A

)); k

1

(�

A

)g

�

� fw;w

0

; �; h

w

0

(f

n+`

(U

n

)); k

1

(U

n

)g
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By applying the polytime funtion C

2;ideal

(:) to the last three omponents of eah distribution, we have:

fw;w

0

; �; h

w

0

(f

n+`

(�

A

)); k

1

(�

A

); Q

C

g

�

� fw;w

0

; �; h

w

0

(f

n+`

(U

n

)); k

1

(U

n

);

~

Q

C

g

where Q

C

= C

2;ideal

(�; y

A

; z

A

) and

~

Q

C

= C

2;ideal

(�; h

w

0

(f

n+`

(U

n

)); k

1

(U

n

)).

Pr

�

C

hash

0

(�; h

w

0

(f

n+`

(�

A

)); k

1

(�

A

); Q

C

) = h

w

0

(f

n+`

(Q

C

(w)))

�

� Pr

h

C

hash

0

(�; h

w

0

(f

n+`

(U

n

)); k

1

(U

n

);

~

Q

C

) = h

w

0

(f

n+`

(

~

Q

C

(w)))

i

+ �+ neg(n)

� Pr

h

C

hash

0

(�; U

m

; U

`

;

~

Q

C

) = h

w

0

(f

n+`

(

~

Q

C

(w)))

i

+ �+ neg(n)

� �+ 2

�m

+ neg(n)

The last inequality follows beause the inputs to C

hash

0

are independent of w

0

.

8 Key-Math Property for the warm-up ase

Before proving the key-math property for the seond sheduling, we will onsider a warm-up ase for

intuition. The warm-up ase is de�ned as �C sends its last message in the (C;B) polynomial evaluation

before A sends the validation message y

A

�.

The intuition for this ase is that even though the polynomial evaluations are onurrent, the values �

A

and �

B

are de�ned and omputed before y

A

= h

w

0

(f

n+`

(�

B

)) is sent so that we an apply almost pairwise

independene. The almost pairwise independene property means that for �xed values x

1

; x

2

2 f0; 1g

n

, if

the index w

0

is hosen at random and independently of x

1

and x

2

, then given the value h

w

0

(x

1

), one annot

do muh better than randomly guess the value h

w

0

(x

2

). Before y

A

is sent, the hash index w

0

is random

(sine it has not been used by A). Thus, if we show that the values �

A

and �

B

an be omputed from the

adversary's view before y

A

is sent, then w

0

is independent of x

1

= f

n+`

(�

A

) and x

2

= f

n+`

(�

B

) and the

adversary annot guess h

w

0

(x

2

) from h

w

0

(x

1

).

Proposition 8.1 For every PPT real adversary C and all su�iently large values of n

Pr [de

B

= aept^ �

A

6= �

B

℄ < �+ neg(n)

From the disussion in Setion 5, reall that:

Pr [de

B

= aept^ �

A

6= �

B

℄ � Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

) = h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

i

Let � denote the adversary's view of the (possibly onurrent) exeutions (A;C) and (C;B) until y

A

=

h

w

0

(f

n+`

(�

A

)) is sent.

Sine Q

A

represents all of A's input in the protool up to this point and w represents all of B's input

in the protool up to this point, there exists a PPT C

0

whih on input (Q

A

; w) simulates the (possibly

onurrent) exeutions (A;C) and (C;B) on its own until the validation message y

A

is sent. In partiular,

C

0

omputes �

A

= Q

A

(w) and �

B

= output(B

C

(w)).

C

0

(Q

A

; w) � f�;�

A

;�

B

g

Note that w

0

is random and independent of Q

A

and w.

Then we have :

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

) = h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

i

= Pr

�

C

hash

(�; h

w

0

(f

n+`

(�

A

)); k

1

(�

A

)) = h

w

0

(f

n+`

(�

B

)) ^�

A

6= �

B

�

� Pr

�

C

hash

(C

0

(Q

A

; w); h

w

0

(f

n+`

(�

A

))) = h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

�

� �

where the last inequality follows from almost pairwise independene, sine the index of the hash funtion,

w

0

, is random and independent of the points f

n+`

(�

A

) and f

n+`

(�

B

).
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9 Key-Math Property for the Seond Sheduling

Sheduling 2 is de�ned as � the validation message y

A

is sent by A after C sends the ommitment 

B

to B�.

The intuition for this ase is similar to the warm-up ase. The almost pairwise independene property

means that for �xed values x

1

; x

2

2 f0; 1g

n

, if the index w

0

is hosen at random and independently of x

1

and

x

2

, then given the value h

w

0

(x

1

), one annot do muh better than randomly guess the value h

w

0

(x

2

). Before

y

A

is sent, the hash index w

0

is random (sine it has not been used by A). Thus, if we show that the values

�

A

and �

B

an be omputed before y

A

is sent, then w

0

is independent of x

1

= f

n+`

(�

A

) and x

2

= f

n+`

(�

B

)

and the adversary annot guess h

w

0

(x

2

). To show that �

A

and �

B

an be omputed before y

A

is sent, we

used an ideal polynomial evaluation (C;B) to extrat an opening of the adversary's ommitment 

B

. (The

adversary must input suh an opening in the ideal evaluation, else B will rejet).

9.1 Mental Experiment Protool

In order to prove the key-math property for this sheduling ase, we will need to onsider a �mental

experiment protool� whih is related to the initial protool we are analyzing.

Protool 9.1 (Mental experiment) 1. Inputs There are three parties A;B;C

m

involved in the pro-

tool. A and B have a joint password (w;w

0

)

R

 D�D

0

. In addition, A is given a random non-onstant

linear polynomial Q

A

.

2. A sends Q

A

to C

m

.

3. C

m

omputes Q

C

= C

m

(Q

A

) and sends it to B.

4. B sends w to C.

5. A omputes Q

A

(w) and sends y

A

= h

w

0

(f

n+`

(Q

A

(w))) to C. Note that the sheduling �Q

C

is sent

before y

A

� is enfored.

6. C

m

sends a string y

B

to B.

Proposition 9.2 In the above mental experiment protool, for every adversary C

m

,

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

m

) = h

w

0

(f

n+`

(Q

C

(w))) ^Q

A

(w) 6= Q

C

(w)

i

� �

Proof: By de�nition of the mental experiment, (Q

A

(w); Q

C

(w)) an be omputed from the view of the

adversary C

m

before y

A

= h

w

0

(f

n+`

(Q

A

(w))) is sent. Thus the values (Q

A

(w); Q

C

(w)) are independent of

the hash index w

0

. Hene we obtain:

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

m

) = h

w

0

(f

n+`

(Q

C

(w))) ^Q

A

(w) 6= Q

C

(w)

i

� Pr

�

C

hash

(C

m

(Q

A

; Q

C

; w; h

w

0

(f

n+`

(Q

A

(w))))) = h

w

0

(f

n+`

(Q

C

(w))) ^Q

A

(w) 6= Q

C

(w)

�

� �

where the last inequality follows from almost pairwise independene (the index of the hash funtion, w

0

, is

random and independent from the points f

n+`

(Q

A

(w)) and f

n+`

(Q

C

(w))).

9.2 Key-math Property for the Seond Sheduling

Proposition 9.3 For every PPT real adversary C,

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

= h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

^ Sh2

i

�

p

�+ neg(n)
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This proposition is proved via a redution to the above mental experiment. We want to show that if

an adversary sueeds in omputing the orret hash value y

B

in the original protool, then we an build

an adversary whih omputes the orret hash value in the mental experiment (and we know how to upper

bound this suess probability).

In the mental experiment, the adversary C

m

is fored to send (hene ommit to) the value Q

C

be-

fore reeiving y

A

= h

w

0

(f

n+`

(�

A

)). This is analogous to foring the adversary C to open its ommitment



B

= Commit(Q

C

) in the original protool. Roughly speaking, the only di�erene between the original

protool and the mental experiment is that we fore the adversary to open its ommitment 

B

. Thus, a

natural way to build the adversary C

m

in the mental experiment is to run the original adversary until the

ommitment 

B

must be opened, �nd a way to open the ommitment, then ontinue to run the original

adversary.

Our main problem is to open the ommitment 

B

. Intuitively, if the original adversary C an ompute

the orret hash value y

B

, it is beause C inputs an opening of 

B

in the augmented polynomial evaluation

(C;B) (otherwise C would have no idea what �

B

is). However, we annot formally talk about C's input,

sine the polynomial evaluation (C;B) does not our in the stand alone setting. Indeed, C reeives from

A the validation messages depending on Q

A

; w and w

0

while B

2

ours. Nevertheless, there exists an ideal

adversary C

ideal

for whih the input to the (C;B) polynomial evaluation is well-de�ned if this ideal adversary

is given (Q

A

; w; w

0

) as input to simulate the validation messages on its own. The input of C

ideal

(Q

A

; w; w

0

)

to the augmented polynomial evaluation is well-de�ned and is intuitively an opening of 

B

.

We show that at this stage of the protool, w and w

0

are pseudorandom so that given a random password

~w and a random index ~w

0

, C

ideal

(Q

A

; ~w; ~w

0

) will also input to the augmented polynomial evaluation an

opening of 

B

. So to open the ommitment 

B

, we will just run the input funtion of C

ideal

on a random

password and a random index. The details of the proof follow.

Proof: Let us assume that there exists an adversary C in the initial protool suh that

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

) = h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

^ Sh2

i

� �

We will build an adversary C

m

in the mental experiment suh that

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

m

) = h

w

0

(f

n+`

(Q

C

(w))) ^Q

A

(w) 6= Q

C

(w)

i

� �

2

� neg(n)

By Lemma 9.2, we know that the latter probability is bounded by � whih means that � �

p

�.

One the ommitment 

B

= Commit(Q

C

; r

C

) is sent to B, the state of the three parties is desribed by

s

def

= (Q

A

; R

A

; R

C

; �) where:

� Q

A

is the polynomial used by A

� R

A

are the oin tosses of A other than Q

A

� R

C

are the oin tosses of C

� � is C's view up to and inluding the sending of 

B

(this view inludes 

A

and 

B

)

Note that we do not need to inlude the oin tosses of B sine B has not sent any messages yet.

One the ommitment 

B

is sent, we an think of an adversary C

0

as being given s = (Q

A

; R

A

; R

C

; �)

so that C

0

simulates the ontinuation of the augmented polynomial evaluation (A;C) on its own. Given a

state s, we de�ne p

1

(s) to be the probability that the adversary C

0

omputes the value of the hash funtion

h

w

0

(f

n+`

(:)) on a point �

B

6= �

A

. Formally, we write

p

1

(s)

def

= Pr

h

C

hash

(C

0h

w

0

(f

n+`

(�

A

));k

1

(�

A

);B(w;

B

)

(s) = h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

js

i
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Note that we have inluded orale aess to the MAC-key rather than the MAC itself, sine the latter is

easily omputable from the MAC-key and the transript so far. By de�nition of p

1

and �,

E

s

[p

1

℄ � �.

Consider the adversary

~

C whih on input (s; w; w

0

) simulates the hash h

w

0

(f

n+`

(�

A

)) and the MAC-key

k

1

(�

A

) on its own. We have

Pr

h

C

hash

(

~

C

B(w;

B

)

(s; w; w

0

) = h

w

0

(f

n+`

(�

B

)) ^ �

A

6= �

B

js

i

= p

1

(s)

where the probabilities are taken over the oin tosses of B, whih we denote by R

B

. Sine (

~

C;B) are

exeuting the protool for augmented polynomial evaluation in the stand-alone setting, there exists an ideal

adversary

~

C

ideal

suh that the ideal and real distributions will be omputationally indistinguishable. Reall

that the omputational indistinguishability holds even for �xed inputs (s; w; w

0

) and (w; 

B

). Hene, for

every s; w; w

0

; 

B

,

(�

B;ideal

;

~

C

B(w;

B

)

ideal

(s; w; w

0

))



� (�

B

;

~

C

B(w;

B

)

(s; w; w

0

))

where �

B;ideal

def

= output(B

~

C

ideal

(s;w;w

0

)

(w; 

B

)) and �

B

def

= output(B

~

C(s;w;w

0

)

(w; 

B

)).

Given a state s and

~

C

ideal

, we de�ne p

2

(s) to be the probability that the ideal adversary

~

C

ideal

, given

(s; w; w

0

), opens 

B

suessfully and omputes the value of the hash funtion h

w

0

(f

n+`

(:)) on a point �

B

=

Q

C

(w) 6= Q

A

(w). Formally, we write

p

2

(s)

def

= Pr

�

input(

~

C

ideal

(s; w; w

0

)) = (Q

C

; R) s:t: 

B

= Commit(Q

C

; R)

^ C

hash

(

~

C

B(w;

B

)

ideal

(s; w; w

0

) = h

w

0

(f

n+`

(Q

C

(w))) ^Q

A

(w) 6= Q

C

(w)js℄

where the probability is taken over the oin tosses of B and the oin tosses of

~

C

ideal

, whih we denote by R

B

and R

~

C

ideal

respetively. Sine w and w

0

are independent of the state s, the probability p

2

(s) is the same if

we replae (w;w

0

) by a random pair ( ~w; ~w

0

) 2 D �D

0

.

Intuitively, the adversary C omputes the orret hash value h

w

0

(f

n+`

(�

B

)) beause it an open its om-

mitment 

B

(otherwise, we are in the ase of inorret inputs and B rejets immediately). This relationship

between p

1

and p

2

is formalized in the following lemma.

Lemma 9.4 For every state s = (Q

A

; R

A

; R

C

; �), we have p

2

(s) � p

1

(s)� neg(n)

Proof:

p

2

(s) = Pr

�

input(

~

C

ideal

(s; w; w

0

)) = (Q

C

; R) s:t: 

B

= Commit(Q

C

; R)

^ C

hash

(

~

C

B(w;

B

)

ideal

(s; w; w

0

)) = h

w

0

(f

n+`

(Q

C

(w))) ^Q

A

(w) 6= Q(w)js

�

= Pr

h

C

hash

(

~

C

B(w;

B

)

ideal

(s; w; w

0

)) = h

w

0

(f

n+`

(�

B;ideal

)) ^ �

A

6= �

B;ideal

js

i

(8)

where we de�ne �

A

to be Q

A

(w). Indeed, reall that if

~

C

ideal

does not input an opening to the ommitment



B

, then B has no output and

Pr

h

C

hash

(

~

C

B(w;

B

)

ideal

(s; w; w

0

)) = h

w

0

(f

n+`

(�

B;ideal

)) ^ �

B;ideal

= ?js

i

= 0

By indistinguishability of

~

C

B

ideal

and

~

C

B

, we have:

Claim 9.5 For every state s, jp

2

(s)� p

1

(s)j � neg(n).

Indeed, reall that for every s; w; w

0

; 

B

,

~

C

B

ideal

and

~

C

B

are omputationally indistinguishable. Hene if we

replae Pr

h

C

hash

(

~

C

B(w;

B

))

ideal

(s; w; w

0

)) = h

w

0

(f

n+`

(�

B

)) ^�

B

6= �

A

js

i

by p

1

(s) in Equation (8), there will

be only a negligible di�erene.
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Assume that there exists an adversary C (desribed by three algorithms C

1

; C

0

and C

hash

) in the initial

protool whih breaks the key-math property with suess probability �. We now desribe the adversary

C

m

in the mental experiment:

1. C

m

generates oin tosses R

A

; R

B

; R

C

and R

~

C

ideal

.

2. Simulating the (A;C) polynomial evaluation One A sends Q

A

to C

m

, C

m

simulates on its own

the beginning of the augmented polynomial evaluation between A(Q

A

; R

A

) and C

1

and obtains a view

� and a ommitment 

B

.

3. Opening algorithm

� C

m

hooses a random pair ( ~w; ~w

0

) and runs input(

~

C

ideal

(s; ~w; ~w

0

; R

~

C

ideal

)) = (Q

C

; R), where s

def

=

(Q

A

; R

A

; R

C

; �).

� If 

B

= Commit(Q

C

; R), C

m

sends Q

C

to B. Otherwise C

m

aborts.

4. Simulating the (C;B) polynomial evaluation

� C

m

reeives w from B and y

A

= h

w

0

(f

n+`

(�

A

)) from A.

� C

m

omputes k

1

(�

A

) = k

1

(Q

A

(w)).

� C simulates C

0h

w

0

(f

n+`

(�

A

));k

1

(�

A

);B(w;

B

)

.

5. C

m

runs C

hash

(C

0h

w

0

(f

n+`

(�

A

));k

1

(�

A

);B(w;

B

)

(s)) = y

B

and sends y

B

to B.

C

m

sueeds in this exeution of the mental experiment if and only if:

� in this exeution of the initial protool, the adversary C follows sheduling 2.

� the algorithm

~

C

ideal

sueeds in opening the ommitment 

B

� C

hash

sueeds in sending the orret validation message h

w

0

(f

n+`

(�

B

)) for �

B

6= �

A

More preisely:

Pr

h

C

hash

(C

A(Q

A

;w;w

0

);B(w;w

0

)

m

) = h

w

0

(f

n+`

(Q

C

(w))) ^ �

A

6= Q

C

(w)

i

=

E

s

"

E

~w; ~w

0

;R

~

C

ideal

[

~

C

ideal

(s; ~w; ~w

0

; R

~

C

ideal

) opens 

B

℄

E

w;w

0

;R

B

[C

hash

omputes h

w

0

(f

n+`

(Q

C

(w)))℄

#

�

E

s

[p

2

(s) � p

1

(s)℄

�

E

s

�

(p

1

(s))

2

�

� neg(n)

� �

2

� neg(n)

We built an adversary C

m

whih sueeds with probability �

2

� neg(n). By Proposition 9.2, we obtain that

� �

p

�+ neg(n).

10 Adapting the GL Tehniques to our Protool

Now that we have established the key-math property, we will adapt the proofs of [15℄ to our protool for

the following steps:

� Simulation of the (C;B) interation: we show that the interation (C;B) an be simulated by an

adversary C

0

interating only with A, even if the interation (A;C) is onurrent.

� Simulation of the (A;C

0

) interation: we show that the interation (A;C

0

) as a stand-alone an be

simulated.

� Combining the above steps, we obtain a proof of seurity against ative adversaries.

For the sake of larity we will �rst present the simulation of the (A;C

0

) interation. For eah step, the

modi�ations neessary to take into aount the session-key hallenge and De�nition 2.2 are given.
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10.1 Simulation of the (A;C

0

) Exeution

Proposition 10.1 For the ditionary D�D

0

= D�f0; 1g

d

0

, for every polytime hannel C

0

interating with

A only, there exists a non-interative C

00

suh that for every auxiliary input �,

fw;w

0

; k

2

(�

A

); output(C

0A(Q

A

;w;w

0

)

(�))g

�

� fw;w

0

; U

n

; output(C

00

(�))g

Proof:

By Lemma 7.2, we know that after the augmented polynomial evaluation, fw;�

A

g is (1 � �) indistin-

guishable from fw;U

n

g with respet to C

0

's view:

fw;�

A

; C

0A(Q

A

)

g

�

� fw;U

n

; C

0A(Q

A

)

g

Note that w

0

is independent of all the above variables hene

fw;w

0

;�

A

; C

0A(Q

A

)

g

�

� fw;w

0

; U

n

; C

0A(Q

A

)

g

Lemma 10.2

fw;w

0

; k

2

(�

A

); k

1

(�

A

);MAC

k

1

(�

A

)

(t

A

); h

w

0

(f

n+`

(�

A

)); C

0A(Q

A

)

g

�

�fw;w

0

; U

1

n

; U

`

;MAC

U

`

(t

A

); U

m

; C

0A(Q

A

)

g

Proof: From the above disussion, we know that

fw;w

0

;�

A

; C

0A(Q

A

)

g

�

� fw;w

0

; U

n

; C

0A(Q

A

)

g

) fw;w

0

; k

2

(�

A

); k

1

(�

A

); f

n+`

(�

A

); C

0A(Q

A

)

g

�

� fw;w

0

; k

2

(U

n

); k

1

(U

n

); f

n+`

(U

n

); C

0A(Q

A

)

g

fw;w

0

; k

2

(�

A

); k

1

(�

A

); f

n+`

(�

A

); C

0A(Q

A

)

g

�

� fw;w

0

; U

1

n

; U

`

; U

2

n

; C

0A(Q

A

)

g

fw;w

0

; k

2

(�

A

);MAC

k

1

(�

A

)

(t

A

); h

w

0

(f

n+`

(�

A

)); C

0A(Q

A

)

g

�

� fw;w

0

; U

1

n

;MAC

U

`

(t

A

); U

m

; C

0A(Q

A

)

g

where t

A

is A(Q

A

)'s transript of the ommitment and the augmented polynomial evaluation, whih an be

omputed from C

0A(Q

A

)

.

The non-interative adversary C

00

(�) will do the following:

1. Generate a random non-onstant linear polynomial Q

A

.

2. Simulate the interation between C

0

(�) and A(Q

A

), from whih it an ompute the transript t

A

.

3. Generate random strings U

`

and U

m

4. Output (C

0A(Q

A

)

; U

m

;MAC

U

`

(t

A

)).

Augmented de�nition We know that

fw;w

0

; k

2

(�

A

); C

0A(Q

A

;w;w

0

)

(�)g

�

� fw;w

0

; U

n

; C

00

(�)g

The session-key hallenge is given only after the entire exeution (A;C

0

) has been ompleted (reall that

in our protool A always aepts). The session-key hallenge an be generated from eah distribution by the

distinguisher. We de�ne C

0A(Q

A

;w;w

0

)

(�;K

�

)

def

= (C

0A(Q

A

;w;w

0

)

(�);K

�

) and C

00

(�;K

�

)

def

= (C

00

(�);K

�

). By

the above disussion we have:

fw;w

0

; k

2

(�

A

); C

0A(Q

A

;w;w

0

)

(�;K

�

); �g

�

� fw;w

0

; U

n

; C

00

(�;K

�

); �g

where on the left-hand side K

�

is given when A onludes and is de�ned as:

K

�

=

(

k

2

(�

A

) if � = 1

U

0

n

if � = 0

and on the right-hand side K

�

is de�ned as

K

�

=

(

U

n

if � = 1

U

0

n

if � = 0
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10.2 Simulation of the (C;B) Exeution

Proposition 10.3 For the ditionary D�D

0

= D� f0; 1g

d

0

, for every real adversary C interating with A

and B, there exists a PPT C

0

interating only with A suh that for every auxiliary input � 2 f0; 1g

poly(n)

fw;w

0

; k

2

(�

A

); output(C

0A(Q

A

;w;w

0

)

(�))g

�+�

� fw;w

0

; k

2

(�

A

); output(C

A(Q

A

;w;w

0

);B(w;w

0

)

(�))g

where � =

p

�+ �+ �.

The proof of this proposition relies on two fats:

� it is easy to simulate B in the augmented polynomial evaluation by seurity of two-party omputation

(see Lemma 10.4)

� B's deision bit an be simulated with high probability beause of the key-math property (see

Lemma 10.6). We need for C

0

to simulate B's deision bit beause the view of the real adversary

C

A(Q

A

;w;w

0

);B(w;w

0

)

inludes B's deision bit.

Lemma 10.4 Let

~

C be a real adversary interating with A and a modi�ed party B

6de

(B

6de

does the same

as B exept that it does not output a deision bit). There exists C

0

interating only with A suh that:

fw;w

0

; k

2

(�

A

); output(C

0A(Q

A

;w;w

0

)

(�))g



� fw;w

0

; k

2

(�

A

); output(

~

C

A(Q

A

;w;w

0

);B

6de

(w)

(�))g

where on the left-hand side k

2

(�

A

) refers to the output of A in the exeution C

0A(Q

A

;w;w

0

)

(�) and on the

right-hand side k

2

(�

A

) refers to the output of A in the exeution

~

C

A(Q

A

;w;w

0

);B

6de

(w)

(�).

Proof: Note that these distributions do not refer to B

6de

's output from the polynomial evaluation, hene

we an swith B

6de

's input from w to a random password ~w 2 D via the following laim.

Claim 10.5 For every w;w

0

; Q

A

; ~w and auxiliary input � 2 f0; 1g

poly(n)

,

foutput(A); C

A(Q

A

;w;w

0

);B

6de

(w)

(�)g



� foutput(A); C

A(Q

A

;w;w

0

);B

6de

( ~w)

(�)g

where on the left-hand side output(A) refers to the output of A in the exeution C

A(Q

A

;w;w

0

);B

6de

(w)

(�) and

on the right-hand side output(A) refers to the output of A in the exeution C

A(Q

A

;w;w

0

);B

6de

( ~w)

(�).

Proof of laim: De�ne C

0

whih on input (w;w

0

; Q

A

) simulates the entire (A;C) exeution,

inluding omputing output(A), on its own:

C

0B

6de

(w)

(w;w

0

; Q

A

; �) � foutput(A); C

A(Q

A

;w;w

0

);B

6de

(w)

(�)g

C

0B

6de

( ~w)

(w;w

0

; Q

A

; �) � foutput(A); C

A(Q

A

;w;w

0

);B

6de

( ~w)

(�)g

Sine C

0

and B

6de

are exeuting the seure polynomial evaluation protool in the stand-alone

setting, there exists an ideal adversary C

0

ideal

suh that for every w;w

0

; Q

A

; ~w; �,

C

0

ideal

(w;w

0

; Q

A

; �)



� C

0B

6de

(w)

(w;w

0

; Q

A

; �)

C

0

ideal

(w;w

0

; Q

A

; �)



� C

0B

6de

( ~w)

(w;w

0

; Q

A

; �)

By transitivity of indistinguishability, we obtain the lemma. �

By Claim 10.5, we have:

fw;w

0

;�

A

; output(

~

C

A(Q

A

;w;w

0

);B

6de

( ~w)

(�))g



� fw;w

0

;�

A

; output(

~

C

A(Q

A

;w;w

0

);B

6de

(w)

(�))g

Hene for any adversary

~

C interating with A and B

6de

, we build an adversary C

0

whih will simulate on

its own B

6de

by using an arbitrary element ~w for the polynomial evaluation (C;B).
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Augmented de�nition In the ase of the augmented de�nition, the proof of the �rst lemma still holds

beause Claim 10.5 will hold for every session-key hallenge given by A. Hene we have

fw;w

0

; k

2

(�

A

); output(C

0A(Q

A

;w;w

0

)

(�;K

�

)); �g



� fw;w

0

; k

2

(�

A

); output(

~

C

A(Q

A

;w;w

0

);B

6de

(w)

(�;K

�

)); �g

where K

�

is given when A onludes and is de�ned as:

K

�

=

(

k

2

(�

A

) if � = 1

U

0

n

if � = 0

Lemma 10.6 Let C be a real adversary interating with A and B. There exists

~

C interating with A and

B

6de

suh that

fw;w

0

; k

2

(�

A

); output(

~

C

A(Q

A

;w;w

0

);B

6de

(w)

(�))g

�+�

� fw;w

0

; k

2

(�

A

); output(C

A(Q

A

;w;w

0

);B(w;w

0

)

(�))g

The proof of this lemma relies on the fat that the deision bit of B an be predited by C with high

probability beause of the key-math property and the following laim.

Claim 10.7 For every C interating with A and B

6de

, the probability that t

B

6= t

A

and C omputes

MAC

k

1

(�

A

)

(t

B

) is at most �+ neg(n).

Proof of laim: First, we will remove B by modifying C into C

0

from Lemma 10.4, whih

simulates B in the polynomial evaluation phase. We know from Lemma 10.2 that:

fw;w

0

; k

2

(�

A

); k

1

(�

A

);MAC

k

1

(�

A

)

(t

A

); h

w

0

(f

n+`

(�

A

)); C

0A(Q

A

)

g

�

� fw;w

0

; U

1

n

; U

`

;MAC

U

`

(t

A

); U

m

; C

0A(Q

A

)

g

We will bound from above, for t 6= t

A

, the probability

Pr

h

C

ma

(C

0A(Q

A

)

; h

w

0

(f

n+`

(�

A

));MAC

k

1

(�

A

)

(t

A

)) = MAC

k

1

(�

A

)

(t)

i

� Pr

h

C

ma

(C

0A(Q

A

)

; U

m

;MAC

U

`

(t

A

)) = MAC

U

`

(t)

i

+ �+ neg(n)

� �+ neg(n)

where the last inequality omes from the one-time MAC property. �

Using Claim 10.7, we obtain the following adversary

~

C:

~

C interats with A and B

6de

by passing their mes-

sages to C. Sine

~

C has the transript of the interations (A;C) and (C;B),

~

C an tell whether C was reliable

or not. If C was reliable,

~

C predits that de

B

= aept (sine B always aepts if C is reliable), otherwise, it

predits de

B

= rejet. We know that Pr

h

~

C predits inorretly

i

= Pr [de

B

= aept^ reliable

C

= false℄.

In order to prove Lemma 10.6, it remains to show that for any C,

Pr [de

B

= aept^ reliable

C

= false℄ < �+ � + neg(n)

Pr [de

B

= aept^ reliable

C

= false℄

= Pr [de

B

= aept^ reliable

C

= false ^ �

A

6= �

B

℄

+Pr [de

B

= aept^ reliable

C

= false^ �

A

= �

B

℄

� (� + neg(n)) from the key-math property

+(�+ neg(n)) from Claim 10.7

� �+ � + neg(n)
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Augmented de�nition

C is not reliable and B onludes �rst:

~

C will set B's simulated deision bit to be de

B

= rejet and

its simulated session-key hallenge to be ?. Note that if B onludes �rst, then with high probability

B would indeed rejet (whih follows from the fat that if C is not reliable, then with high probability

B will rejet as shown above).

A onludes �rst: Lemma 10.6 must be slightly modi�ed. One an show using Lemma 10.2 that the

probability that t

B

6= t

A

and C omputes MAC

k

1

(�

A

)

(t

B

) is at most �+ neg(n) even if k

2

(�

A

) = k

A

is given.

From the above two arguments, we have:

fw;w

0

; k

2

(�

A

); output(

~

C

A(Q

A

;w;w

0

);B

6de

(w)

(�;K

�

)); �g

�+�

� fw;w

0

; k

2

(�

A

); output(C

A(Q

A

;w;w

0

);B(w;w

0

)

(�;K

�

)); �g

where on left-hand side K

�

is given when A onludes and is de�ned as:

K

�

=

(

k

2

(�

A

) if � = 1

U

0

n

if � = 0

and on the right-hand side the session-key hallengeK

�

is given one the �rst party (either A or B) onludes

with output L

1

and is de�ned as:

K

�

=

(

L

1

if � = 1 or L

1

= ?

U

0

n

if � = 0 and L

1

6= ?

10.3 Seurity Theorem

Theorem 10.8 For the ditionary D � D

0

= D � f0; 1g

d

0

, for every PPT real adversary C, there exists a

polytime ideal model hannel

^

C suh that for any � 2 f0; 1g

poly(n)

fIDEAL

^

C

(D; �)g

3�+2�

� fREAL

C

(D; �)g

where � =

p

�+ �+ �.

Proof: From the previous two setions, we know that there exists a non-interative C

00

suh that

fw;w

0

; U

n

; C

00

(�)g

2�+�

� fw;w

0

; k

2

(�

A

); output(C

A;B

(�))g

The ideal model adversary

^

C does the following:

�

^

C deides that A will onlude �rst and aept in the ideal model.

� C invokes C

00

, whih is non-interative.

� Aording to the view output by C

00

,

^

C will deide whether B aepts or not in the ideal exeution.

�

^

C outputs the output of C

00

.

) fw;w

0

; U

n

;

^

C(�)g

2�+�

� fw;w

0

; k

2

(�

A

); output(C

A;B

(�))g (9)

We now need to inlude B's output in the above distributions. Let D be a distinguisher for IDEAL

^

C

and REAL

C

. We will onsider the di�erent ases, whether B aepts or not.
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If B rejets

Pr

�

D(IDEAL

^

C

) = 1 ^ de

B

= rejet

�

= Pr

h

D(w;w

0

; U

n

;?;

^

C) = 1 ^ de

B

= rejet

i

Pr [D(REAL

C

) = 1 ^ de

B

= rejet℄ = Pr

�

D(w;w

0

; k

2

(�

A

);?; C

A;B

) = 1 ^ de

B

= rejet

�

In the ideal model, we are guaranteed that when B rejets,

^

C will send b = 0 to the trusted party,

ausing B to output ?. In the real protool, when B rejets, it always outputs ?. But B's deision bit

is ontained in the view

^

C (as simulated by C

00

) and in the view C

A;B

so by Equation (9) the di�erene

between Pr

�

D(IDEAL

^

C

) = 1 ^ de

B

= rejet

�

and Pr [D(REAL

C

) = 1 ^ de

B

= rejet℄ is at most

2�+ � + neg(n).

If B aepts � suppose C was reliable: in the real model, B always aepts and outputs k

2

(�

A

); in the

ideal model, B outputs U

n

. C is ating like a passive adversary, so we know that IDEAL

^

C



�

REAL

C

.

� suppose C was not reliable, but B aepts. From the proof of Theorem 10.3, we know that

Pr [de

B

= aept^ reliable

C

= false℄ � �+�+neg(n), whether in the real model or in the one

simulated by

^

C.

jPr

�

D(IDEAL

^

C

) = 1 ^ de

B

= aept^ reliable

C

= false

�

� Pr [D(REAL

C

) = 1 ^ de

B

= aept^ reliable

C

= false℄ j

� �+ � + neg(n)

Combining all the above ases, we have that the ideal distribution and the real distribution are distin-

guishable with probability at most 3�+ 2�.

Augmented de�nition From the previous setions, we know that

fw;w
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n

; C

00
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); �g

2�+�

� fw;w

0

; k

2
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); C
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(�;K
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); �g

where on the left-hand side K

�

is de�ned as

K

�

=

(

U

n

if � = 1

U

0

n

if � = 0

and on the right-hand side the session-key hallengeK

�

is given one the �rst party (either A or B) onludes

with output L

1

:

K

�

=

(

L

1

if � = 1 or L

1

= ?

U

n

if � = 0 and L

1

6= ?

The ideal adversary

^

C does the following:

�

^

C deides that A will onlude �rst and aept. The trusted party hooses �

R

 f0; 1g and gives

^

C the

string K

�

where

K

�

=

(

U

n

if � = 1

U

0

n

if � = 0

� C invokes C

00

(�;K

�

), whih is non-interative.

� Aording to the view output by C

00

,

^

C will deide whether B aepts or not in the ideal exeution.

�

^

C outputs the output of C

00

(�;K

�
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A Seure Two-Party Computation

This presentation is taken from [14℄. We will desribe seure two-party omputation for the speial ase of

single-output funtionalities, i.e. funtionalities where only one party obtains an output. Indeed, we will only

use tools from seure two-party omputation when dealing with the augmented polynomial evaluation fun-

tionality, whih is a single-output funtionality. Furthermore, for simpliity, we will restrit our desription

to the ase where none of the parties aborts and at least one of the two parties is honest.

Let f : f0; 1g

�

� f0; 1g

�

! f0; 1g

�

� f0; 1g

�

be a deterministi single-output funtionality, i.e. f is of the

form f(x; y) = (f

1

(x; y); �).

We �rst de�ne the ideal model:

Inputs Eah party obtains an input, denoted u.

Sending inputs to the trusted party An honest party will always send its input u to the trusted party.

A maliious party will send some input u

0

, whih may depend on its initial input and auxiliary input.

Answer of the trusted party Upon obtaining (x; y), the trusted party will reply f

1

(x; y) to the �rst party.

Output An honest party will always output the message obtained from the trusted party. A maliious party

may output a polytime omputable funtion of its initial input, its auxiliary input and the message

obtained from the trusted party.

Let (B

1

; B

2

) be a pair of PPT representing strategies in the ideal model, suh that at least one of the two

parties is honest. The joint distribution of f under (B

1

; B

2

) in the ideal model, on input pair (x; y) and

auxiliary input z, denoted by IDEAL

f;B

1

(z);B

2

(z)

, is:

� in the ase where B

1

is honest, IDEAL

f;B

1

(z);B

2

(z)

(x; y) = (f

1

(x;B

2

(y; z)); B

2

(y; z; �))

� in the ase where B

2

is honest, IDEAL

f;B

1

(z);B

2

(z)

(x; y) = (B

1

(x; z; f

1

(B

1

(x; z); y)); �)

We now desribe the real model. Let � be a two-party protool for omputing f . Let (A

1

; A

2

) be a

pair of PPT representing strategies in the real model, suh that at least one of two parties is honest (i.e.

follows the strategy spei�ed by �). The joint exeution of � under (A

1

; A

2

) in the real model, on input

pair (x; y) and auxiliary input z, denoted by REAL

�;A

1

(z);A

2

(z)

is de�ned as the output pair resulting from

the interation between A

1

(x; z) and A

2

(x; z).

De�nition A.1 Let f : f0; 1g

�

� f0; 1g

�

! f0; 1g

�

� f0; 1g

�

be a deterministi single-output funtionality

and � be a two-party protool for omputing f . Protool � seurely omputes f if for every PPT pair

(A

1

; A

2

) (suh that at least one party follows the strategy spei�ed by �), there exists a PPT pair (B

1

; B

2

)

(suh that the orresponding party is honest in the ideal model) suh that:

fIDEAL

f;B

1

(z);B

2

(z)

(x; y)g

x;y;z



� fREAL

�;A

1

(z);A

2

(z)

(x; y)g

x;y;z

Assuming the existene of trapdoor permutations, it is known how to obtain a seure protool for any

two-party omputation ([29℄).

B Almost Pairwise Independene

Lemma B.1 For a given ditionary D

0

= f0; 1g

d

0

� f0; 1g

n

, there exists a family of almost pairwise inde-

pendent hash funtions H = fh

w

0

: f0; 1g

n

! f0; 1g

m

g for � = O

�

n

jD

0

j

1=3

log jD

0

j

�

= O

�

n

d

0

2

d

0

=3

�

.

Proof Sketh: Let F be a �nite �eld of harateristi 2 (the size of F will be determined below). Let

k be an integer (its value will be determined below). An element p of F

k

an be seen as a polynomial of

degree (k � 1) over F. Given an index (�; �; ) 2 F

?

� F � F, we de�ne the hash funtion h

�;�;

as follows:

h

�;�;

: F

k

! f0; 1g

m

; p 7! b�p(�) + 

m

, i.e. we onsider the m-bit pre�x of �p(�) +  2 F.
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We will now verify that H = fh

�;�;

: F

k

! f0; 1g

m

g is a family of almost pairwise independent hash

funtions. First, note that when we hoose (�; �; )

R

 F

?

� F � F, for every p 2 F

k

, h

�;�;

(p) is uniform

over f0; 1g

m

just by randomness of . Also, for a �xed triple (�; �; ) 2 F

?

� F � F and a �xed element

y 2 f0; 1g

m

, Pr

p2F

k
[h

�;�;

(p) = y℄ = 2

�m

, hene the funtion h

�;�;

is regular.

We will now prove that 8p 6= q 2 F

k

, 8y

1

; y

2

2 f0; 1g

m

,

Pr

�;�;

[h

�;�;

(p) = y

1

^ h

�;�;

(q) = y

2

℄ �

k � 1

jFj2

m

+

1

2

2m

Consider the ase where y

1

6= y

2

:

� Suppose that � is a root of the polynomial p�q. It is impossible to have h

�;�;

(p) = y

1

and h

�;�;

(p) =

y

2

.

� Suppose that � is not a root of the polynomial p� q.

Pr

�;�;

[h

�;�;

(p) = y

1

^ h

�;�;

(q) = y

2

jp(�) 6= q(�)℄ �

jFj

2

2m

(jFj � 1)

Consider the ase where y

1

= y

2

:

� Suppose that � is a root of the polynomial p� q (whih happens with probability at most

k�1

jFj

). Then

by the regularity property,

Pr

�;�;

[h

�;�;

(p) = y

1

^ h

�;�;

(q) = y

1

jp(�) = q(�)℄ = 2

�m

� Suppose that � is not a root of the polynomial p� q.

Pr

�;�;

[h

�;�;

(p) = y

1

^ h

�;�;

(q) = y

1

jp(�) 6= q(�)℄ �

1

2

2m

By hoosing jFj =

3

p

jD

0

j, k =

3n

log jD

0

j

, we obtain the parameters � = O

�

n

jD

0

j

1=3

log jD

0

j

�

= O

�

n

d

0

2

d

0

=3

�

and m �

1

3

d

0

+ log d

0

� logn�O(1). �
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