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Abstract. In this paper, we present a new parallel architecture to avoid
side-channel analyses such as: timing attack, simple/differential power
analysis, fault induction attack and simple/differential electromagnetic
analysis. We use a Montgomery Multiplication based on Residue Num-
ber Systems. Thanks to RNS, we develop a design able to perform an
RSA signature in parallel on a set of identical and independent copro-
cessors. Of independent interest, we propose a new DPA countermeasure
in the framework of RNS. It is only (slightly) memory consuming (1.5
KBytes). Finally, we synthesized our new architecture on FPGA and it
presents promising performance results. Even if our aim is to sketch a
secure architecture, the RSA signature is performed in less than 160 ms,
with competitive hardware resources. To our knowledge, this is the first
proposal of an architecture counteracting electromagnetic analysis apart
from hardware countermeasures reducing electromagnetic radiations.

Keywords: RSA, Residue Numbers Systems, Side-Channels, SPA, DPA, EMA,
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1 Introduction

Implementation of public key cryptography requests the manipulation
of large numbers, typically 1024 bits for most current applications like
RSA [1]. That is the reason why Residue Number Systems (RNS for short)
can be very useful. RNS have the main advantage of fast additions, fast
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multiplications, carry-free, high speed arithmetic, some fault detection,
possible error correction and foremost parallel implementations.

Many studies have been carried out on RNS [5, 6, 30, 31, 33], but, as
far as we know, only Kawamura et al. propose a full hardware implemen-
tation of RSA with RNS in [30]. They describe a new RNS base extension
algorithm and implement the whole system in an LSI prototype based on
the Cox-Rower architecture [22] that lays in an efficient bases conversion.

Another important objective for crypto-algorithms implementation is
to counteract side-channel analysis. Physical and side-channel attacks re-
fer to attacks that exploit the system implementation. Avoiding these at-
tacks requires hardware and software countermeasures. We consider here
countermeasures that can be directly added in the design of a processor.
Kocher et al. introduced the notion of side-channel analysis in [23, 24]
and showed the importance for an implementation to be resistant against
side-channel analysis and leakages from power consumption. Resistance
against fault analysis [11, 12] is another issue: sensitive information may
leak when the cryptosystem operates under unexpected conditions. More
recently, in [17, 29] a new type of analysis has been found, based on elec-
tromagnetic radiations of the processor when a crypto-algorithm is pro-
cessed, (see also [3]), called ElectroMagnetic Analysis.

In this paper, we try to tackle the problem at its root in order to
design an architecture that can resist some side-channels attacks. A design
able to perform an RSA signature in parallel, in a set of identical and
independent coprocessors denoted cells, is presented here. The concept
has originally been proposed in [27].

This paper is organized as follows: Section 2 briefly introduces basics
on Residue Number Systems. Then, in Section 3, Montgomery multiplica-
tion in RNS is reminded. Section 4 deals with implementation strategies.
Generalized Mersenne numbers allow us to reduce memory requirements
compared to moduli of form 2κ − 1, but also efficient modular reduction.
Then, details on side-channel analysis countermeasures are explained: a
new differential power analysis countermeasure, which is for free in com-
plexity, is presented and a “mobile” architecture to avoid electromagnetic
analysis is proposed. In Section 5, the trade-off between pre-computations
and computing time is presented. Our new architecture has been simu-
lated on FPGA. Further on, in Section 6, implementations strategies and
performance results are presented. Finally, in Section 7, we conclude.

2 Residue Number Systems

Let us introduce the basic terminology [6]:

1. The vector {m1, m2, . . . , mk} forms a set of moduli, called the RNS-
base β, where the mi’s are relatively prime.

2. M is the product
∏k

i=1 mi and defines the dynamic range of the sys-
tem.



3. The vector {x1, x2, . . . , xk} is the RNS representation of an integer
X, less than M , where xi = 〈X〉mi

= X mod mi. Any integer X
belonging to Z/MZ has a unique representation, in base β.

4. The operations of addition, subtraction and multiplication are defined
over Z/MZ as:

A ± B = (〈a1 ± b1〉m1
, . . . , 〈ak ± bk〉mk

) ,

A × B = (〈a1 × b1〉m1
, . . . , 〈ak × bk〉mk

) .

These equations illustrate the parallel carry-free nature of the RNS.
5. The reconstruction of X from its residues {x1, x2, . . . , xk} is based on

the Chinese Remainder Theorem:

X =

〈
k∑

i=0

〈γixi〉mi
Mi

〉

M

,

where

M =

k∏

i=1

mi; Mi =
M

mi

; γi = 〈M−1
i 〉mi

.

6. The vector {x′

1, . . . , x
′

k}, 0 ≤ x′

i < mi is the Mixed Radix System
(MRS) representation of an integer X smaller than M , such that:

X = x′

1 + x′

2m1 + x′

3m1m2 + . . . + x′

k

k−1∏

i=1

mi .

7. Comparison and division are very difficult operations to perform on
the RNS representation [19, 20, 39]. That is the reason why Mont-
gomery multiplication is well suited to RNS.

3 Montgomery Multiplication in RNS

In 1985, Montgomery introduced a method [26], widely used nowadays,
for modular multiplication that requires no division. Let R be an integer
such that gcd(R, N) = 1 and N ′ = −N−1 mod R then the following
equation holds:

P + (PN ′ mod R)N

R
≡ PR−1 mod N . (1)

This method was adapted to RNS by Posch and Posch [31]. Referring to

Eq. (1), they propose to pick M̃ (product of elements of a base β̃) as R.
Thereby, all operations of multiplication and addition can be performed
in parallel. However, division requires a base extension. Two RNS bases
β and β̃ are chosen large enough to represent all intermediate results.

If 4N < M, M̃ then output length matches input length of the next
modular multiplication of an exponentiation.

In Algorithm 1, we briefly recall how the Montgomery multiplication
algorithm in RNS proceeds [22].



R = MM(A, B, N, M, M̃)

Input: 〈A〉
β∪β̃

, 〈B〉
β∪β̃

(where A, B < 2N)

Output: 〈R〉
β∪β̃

(where R ≡ ABM̃−1 mod N, R < 2N)

Base β Operation Base β̃ Operation

〈s〉β ← 〈A〉β .〈B〉β 〈s〉
β̃
← 〈A〉

β̃
.〈B〉

β̃

– 〈q〉
β̃
← 〈s〉

β̃
.〈−N−1〉

β̃

〈q〉
β∪β̃

⇐= 〈q〉
β̃

〈r′〉β ← 〈q〉β .〈N〉β –

〈r′′〉β ← 〈s〉β + 〈r′〉β –

〈R〉β ← 〈r′′〉β .〈M̃−1〉β –

〈R〉β =⇒ 〈R〉
β∪β̃

Algorithm 1. Montgomery Multiplication algorithm in RNS

Many different methods (more or less efficient depending on the num-
ber of elements in the base) were proposed to perform the base extension
step. The most common are: conversion using MRS [6], conversion using
an extra modulus [36], conversion allowing an offset [5], approximate base
conversion [31] and error-free approximate base conversion [22].

4 Hardware Implementations Strategies

In this section, we present the various strategies used to implement RSA
on FPGA using RNS. In the rest of this paper we implicitly suppose that
the Chinese Remainder Theorem (CRT for short) is used to compute an
exponentiation [28].

4.1 Mersenne numbers

When L = 2κ − 1 is prime, L is usually said to be a Mersenne number

(or a Mersenne prime). Throughout the paper, for the sake of simplicity,
we extend this definition to any number of the form 2κ − 1, be it prime
or not. Its particular form allows modular reduction A mod L with at
most two κ-bit additions, for any A < L2. This shortcut provides a major
speed-up in algorithms based on modular arithmetic.

RNS base elements uniquely composed of Mersenne numbers are in a
large range since they must be relatively prime. This leads to inefficient
hardware implementations since every operation should be thought for
the longest element. For example, considering two suiting bases for 1024-
bit representations: β = {2κ1 − 1, . . . , 2κ12 − 1} with κi = 37, 47, 59, 67,
73, 83, 97, 103, 109, 119, 123, 125 and similarly for β̃ (κ̃i from 43 to 127).
To be timing analysis resistant, the implementation must process all data
as 126-bit element.



Pairwise elements (2κ1 ± 1) as suggested in [37] could lead to better
balanced bases. However, it does not completely fix this issue and more
seriously adds higher design complexity.

Among Generalized Mersenne numbers [38, 42], we chose to work with
the following special form: 2κ1 − 2κ2 − 1. This solution offers to choose
bases in smaller range and keeps the efficiency of the modulo reduction.
For L = 2κ1 −2κ2 −1 and A < L2, the modular reduction A mod L takes
at most 6 additions of κ1-bits, if 0 < κ2 < κ1+1

2 . Moreover, if κ2 is chosen
bigger than 1, simple combinations of the terms can reduce the number
of additions to 4. The careful reader sees that the remainder of the re-
duction might require a final subtraction of L to be completely reduced.
This issue happens to be required only during the base conversions where
the moduli are mixed.

4.2 Side-channels countermeasures

The most generally known side-channel analysis is Timing Attack pre-
sented by Kocher [23], see also [32] in the case of use of CRT. The
countermeasures consist of a modification of the well-known Montgomery
multiplication [16, 18, 40, 41], i.e. avoiding the final substraction such as
obtaining timing independent processes.

Another side-channel analysis uses power consumption, suggested by
Kocher et al. in [24]. Two families have to be considered. The first one
uses a single trace of a power consumption and is called Simple Power

Analysis (SPA for short). The second one is more sophisticated and needs
statistical treatment of several power traces, see [2, 8, 13]. This is called
Differential Power Analysis (DPA for short). To avoid SPA, a variant
of the ‘square-and-multiply always’ algorithm has been used [14]. Ran-
domization of the message and of the exponent are classically applied
to defeat DPA. However, thanks to RNS, independent randomization for
each base can be performed. Another efficient DPA countermeasure can
be used (that can be combined with the most classical ones): instead of
fixing two bases, we propose to use random bases for computations. This
generic countermeasure can be efficiently applied because special num-
bers for RNS have been chosen. Indeed, since relatively primes of form
2κ1 − 2κ2 − 1 are used, we are able to store several of these bases with
(very) small memory requirements and randomly select the bases for each
process. Indeed, the use of generalized Mersenne numbers (prime to each
others), as already seen, has many nice properties. If these bases are such
that 58 ≤ κ1 ≤ 64 and 0 < κ2 < κ1+1

2 , at least 69 generalized Mersenne
numbers primes to each others can be generated with very small memory
requirements: κ1 is represented as its distance to 64, and κ2 to 0. As ex-
plained below (Section 5), we limit the number of moduli to 63. Only 18
(= 9·2) moduli are needed since CRT is used. We wanted that it is very
unlikely that two traces have some correlation. In this way, we avoided



all permutations inside a base1 because in the beginning of Algorithm 1
all data are processed in parallel. Then the number of ways that we can
choose 2 sets of 9 moduli among 63 is:

(
63
9

)
·
(
54
9

)
≈ 266 possible combina-

tions. Then, each base is randomly chosen for each RNS exponentiation,
in combination with the more classical randomization methods of mes-
sage and exponent for each base. Just remark that our countermeasure is
only (small) memory consuming2. It is also worth noticing that each cell’s
process can be very simply desynchronized by adding random delays.

Another threat must be taken into account. It is called Fault Induction

Attacks (also sometimes ‘Differential Fault Analysis’, DFA for short) [11,
12]. We decided to combine two countermeasures. The first one was first
proposed by Yen et al. in [43], see also [9, 44]. To our knowledge, this is
the best way to prevent fault attack against DFA, since no “if” test is
needed contrary to some other efficient methods [4, 34, 35]. The second
one is directly related to the use of RNS. Single-error detection can be
done using redundant modulus mr such that: ∀i ∈ {1 · · · k}, mi < mr.
The error is detected checking if the converted value is outside the range
[0, M − 1], see [39] for further details.

Finally, recently a new type of attack has been proposed, based on
electromagnetic radiations of the chip on which the crypto-algorithm is
processed [17, 29]. This attack is called ElectroMagnetic Analysis (EMA
for short), with its counterpart using a statistical treatment Differential

ElectroMagnetic Analysis (DEMA for short). It seems difficult to provide
software countermeasures to counteract this type of attack. It is not re-
ally clear either how to proceed in hardware apart from the reduction of
electromagnetic emanations. One of our aims in designing this new archi-
tecture is to make an EMA/DEMA harder to mount. The basic idea is
to design an architecture with independent cells that randomly proceed.
Indeed, one of the advantage of EMA in comparison to power analysis is
that better Signal-to-Noise Ratio (SNR) is obtained, since the probe can
be located above the interesting area with much discarding the emanation
produced by the rest of the chip.

Let us now give briefly the skeleton of the global algorithm, with
the classical countermeasures included. Let µ be the hashed and padded
message to be signed. The secret exponent D (of size d) is given in its
CRT form: Dp = D mod p − 1, Dq = D mod q − 1. The principle of our
architecture is as follows:

1. Compute µ(p) = µ mod p and µ(q) = µ mod q,

2. For each µ(i), randomly choose two bases β: {m1, · · · , mk}, and β̃

3. Represent each µ(i) in β as {µ
(i)
1 , · · · , µ

(i)
k }, where µ

(i)
j = µ(i) mod mj ,

4. Add randomizations (to the exponent and to the message) to avoid

DPA to each µ
(i)
j ,

1 However permutations between the two bases are allowed
2 This is the first DPA countermeasure for RSA for free in complexity.



5. Compute the exponentiation using RNS-Montgomery multiplication

for each µ
(i)
j with D

(j)
i (by Algorithm1); at each operation randomly

choose a cell,

6. Use the CRT to recover
(
µ(i)

)Di
mod i,

7. Use the CRT and output µD mod N .

More implementation details of our architecture are given in Section 6.
Summarizing our strategies implementations, we can simply say that

all side-channel constrains have been taken into account at the begin-
ning of the implementation design in such a way that attacks are de-
feated/counteracted or at least really more difficult to exploit.

5 Pre and on-the-fly computations of constants

5.1 Choice of a suited conversion algorithm

As quoted above, there are many different base extension algorithms. For
the sake of simplicity, we decided to discard solutions using an approxi-
mate base conversion. We compare in Table 1 the efficiency of Algorithm 1
with different base conversion methods.

Operations MRS Shenoy et al. Bajard et al.

Multiplications 3 · k2 + 2 · k 2 · k2 + 13 · k + 5 2 · k2 + 10 · k + 4

Additions 2 · k2 − k 2 · k2 + 5 · k + 1 2 · k2 + 3 · k + 1

Subtractions k2 − 1 2 · k + 4 k + 1

Total 6 · k2 + k − 1 4 · k2 + 20 · k + 10 4 · k2 + 14 · k + 6

Table 1. Comparison between the total numbers of operations for Algorithm 1 de-
pending of the base extension method.

As explained in Subsection 6.2, if the basic operations are well orga-
nized, the bottleneck of the system is not the operations themselves but
the data transmission between the memory and the different basic cells.
In Table1, we took into account all basic operations in our comparison.
The method of Shenoy et al. requires one extra modulo per base in order
to evaluate α [36] while Bajard et al.’s method needs only one additional
modulo in one of the two bases. From these considerations, we can deduce
that Bajard et al. method is faster than MRS one if k ≥ 7.

Moreover the main problem with the MRS extension [6] concerns the
pre-computation of the constants. As we would have to store all 〈mi〉mj

for all i, j ∈ 1, . . . , 63 and i 6= j, it would lead to significant space of
recent smart card memory (64∗62∗63 ≃ 31.2 kBytes). Hence we focused
our attention on the algorithm proposed by Bajard et al. The main idea
is to let an offset occur during the first base extension and to use the



Shenoy et al. conversion for the second one. Then, it adds the condition
(k + 2)2N < M, M̃ .

Basically, the conversion from β to β̃ of Shenoy et al. works as follows3:

α =

〈〈
M−1

〉

mr

·

〈〈 k∑

i=1

〈
ai · 〈M

−1
i 〉mi

〉
mi

· Mi

〉
mr

− ar

〉

mr

〉
(2)

ãj =

〈〈 k∑

i=1

〈
ai · 〈M

−1
i 〉mi

〉
mi

· Mi

〉
m̃j

−
〈
α · M

〉
m̃j

〉

m̃j

(3)

The difficulty remains in the computation of 〈M−1
i 〉mi

for i = 1, . . . , 63.
Again, if they are pre-computed and stored, it would fill up a signifi-
cant part of the memory. A solution is simply to store Ki = 〈S−1

i 〉mi

where S = Π63
i=1mi and Si = S

mi
. Hence, the on-the-fly computation of

all 〈M−1
i 〉mi

is simply obtained by multiplying (in the basic cells) each
of the required Ki by all the moduli that were not gathered for the ex-
ponentiation. For instance, let us define the sets of the randomly chosen
moduli by σ and σ̃. The product of all elements of σ is M . Then 〈M−1

i 〉mi

is computed in the following way:

Input: Ki

Output: 〈M−1

i 〉mi

R = Si

for j from 1 to 63 do

if mj /∈ σ then

R = 〈R · mj〉mi

end

end

return R

Algorithm 2. Algorithm for computing 〈M−1

i 〉mi
.

The memory requirements are 62 ·63 = 496 Bytes to store all Ki. The
computing overhead is negligible compared to the whole algorithm since
it requires 18 · 54 multiplications in parallel.

5.2 Montgomery representation

When starting an exponentiation, the problem is that we should perform

the Montgomery product of the initial message µ with M̃2 mod N . But

3
〈
ai · 〈M

−1

i 〉mi

〉
mi

are computed only once.



M̃ is the product of 9 randomly chosen moduli and it seems impossible
to store all possible pre-computed value in a memory. Indeed, there are(
63
9

)
≈ 234 possible sets which leads to a memory space of around 4

TBytes.

We propose here a solution inspired from an idea of Bajard et al.[7] As
they suggested, we use few calls to our RNS Montgomery multiplication
to solve this problem.

Again, we have S = Π63
i=1mi and we store 〈S mod N〉mi

for all i. The
two randomly sets of moduli are σ and σ̃. The corresponding products are
M and M̃ . Then our idea is to use our RNS Montgomery multiplication
to divide 〈S mod N〉mi

by all not chosen moduli. At each time, we change
the second base in order to divide the µ · S (mod N) by all non selected

moduli in M̃ . For that reason, the whole set of moduli must be a multiple
of k, then l = k.r where l, k, r ∈ N (in our case r = 7, l = 63 and k = 9).
The Mi for i = 3, . . . , r are all formed sets of k moduli that were not
chosen.

Input: µ and S mod N

Output: µM = µ · M̃ mod N

Compute constants: 〈M̃−1

i 〉m̃i
, 〈M−1

i 〉mi
, 〈M−1〉m̃i

µM = MM(µ, S mod N, N, M̃, M)

for j from 3 to r do

Compute constants: 〈M−1

j, 〉mi
, 〈M−1

j 〉m̃i
.

µM = MM(µM , 1, N, M̃, Mj)

end

return µM

Algorithm 3. Algorithm for computing µM = µ · M̃ (mod N).

So the following relation holds: µM = µ · S · M−1 · M−1
3 · · ·M−1

r mod

N = µ · M̃ mod N . In terms of memory requirements, we need 〈S mod
N〉mi

for i = 1, . . . , 63, then 64 · 63 = 496 Bytes.

5.3 RNS SCA Protected Exponentiation Algorithm

We gather all the operations necessary to achieve the SCA protected
exponentiation algorithm. Moreover, we give the time and memory cost
for the latter.

All pre-computations and computations are processed in parallel. So
the number of operation gives a clear idea of the total time for the whole
algorithm, since the time depends on the number of operations and not



Input: m1, . . . , m63 a set of relatively Generalized Mersenne

prime, µ the message, N the modulo, E the exponent

of size e and 〈S−1

i 〉mi
, 〈S mod N〉mi

, 〈N〉mi

for all i = 1, . . . , 63 stored in the memory.

Output: C = µD mod N

Pick randomly 2k moduli and form two bases M and M̃ .

Use Algorithm 3 to obtain µM .

Compute constants with Algorithm 2: 〈M−1

i 〉mi
, 〈M̃−1

i 〉m̃i
,

〈M̃−1〉mi
.

R0 := 1, R1 := µM , i := 0, g := 1

while (i ≤ d − 1) do

g := g ⊕ Di

Rg := MM(Rg, R1, N, M, M̃)

i := i + g

end

C = MM(R0, 1, N, M, M̃)

return C

Algorithm 4. RNS SCA Protected Exponentiation Algorithm.

on the computing time of each of them. First µM is obtained by 6 Mont-
gomery multiplication and some on-the-fly computations of constants,
the total of operations is: 9 · 54 · 3 + 6 · 456 + 9 · 54 · 2 · 5 = 9054.
The computation of the constants with Algorithm 2 are evaluated as
9 · 54 · 3 = 1458 basic operations. The exponentiation algorithm takes on
average 1.5 · 512 · 456 = 350208 basic operations and finally the last con-
version from the Montgomery representation needs 456 basic operations.
Then the time overhead caused by the pre-computation due to our pro-
posed countermeasure is evaluated as 3% of the global computing time
while the memory requirements are evaluated as 3 · 496 Bytes, i.e less
than 1.5 KBytes.

6 Implementation Results

6.1 Implementation

The main core of our design is a set of all alike, independent and paral-
lel coprocessors. They can perform basic modular operations using any
modulus of the bases. Each cell is connected to one common 16-bit wide
communication bus on which they can interact with a defined protocol.
They are managed by a multiplier controller containing the sequence
of operations to perform one 512-bit multiplication of the ‘square-and-
multiply’ algorithm. The combination of the control unit and the set of



cells forms a large multiplication processor. Following the current key bit,
the exponentiation processor feeds (A, A) or (A, X) into the multiplica-
tion processor. However, the latter processes the given data in the same
way, no matter if the operation is a square or a multiply. Fig. 5 illustrates
all parts connected together by the data bus.

..multiplier controller

data

multiplier processor
exponentiation processor

PC

µCode

RAM

ROM

key

FSM RAM

exponentiation controller
cell cell cell cell

cell cellcell

cellcell cell

cellcellcellcell

cell

cell

...

. ...

Fig. 5. Architectural structure of the 512-bit exponentiation processor

Cells have been implemented using the less hardware resources pos-
sible with minimal loss in frequency. They integrated the three basic op-
erations: the addition and the multiplication are quite similar, while the
subtraction requires extra hardware resources (multiplexors). The cell
presents a fair tradeoff between complexity and efficiency.

Our first try was based on Scaling Accumulator technic. So the prin-
ciple is to compute a complete multiplication, to store the results in reg-
isters, and finally to process the modular reduction by carrying out the
different numbers to be added (see [42]). As explained only 4 additions
are required. Based on this structure, modular addition and subtraction
can also be easily treated.

Another direction is the following. Instead of separating the operation
and the reduction, it seems interesting to interleave both. At each step,
the result (say S1) from addition of previous outcome and new partial
product is truncated after κ1 bit (S′

1). The overflowing bits (MSBs of S1)
are then used to produce the remainder of the number (say R1). Finally
S′

1 is added to R1. If κ2 ≥ 4 is verified, the remainder generation is
simplified. Using some shifters, it has been easily adapted to a pipelined
version. Implementation details of this cell are given in Figure 6.

As explained in § 4.1, the remainder might not be fully reduced and
it could lead to a problem, especially in bases conversion. An extra final
substraction is performed to tackle this issue. If an underflow occurs, the



previous value is kept and the other one is discarded. This extra step
protects against conversion error in a simple and timing-resistant way.

Not2  &

1

FSM

Adder 64b

<<1

Reg_mod

Adder 64b

Reg_out

A B ops
data

<<1
cell

Fig. 6. Detail of a 2-stage pipeline cell.

The purpose of the multiplication processor is to orchestrate the set
of cells in order to perform one 512-bit multiplication. The operands ex-
pressed in the 9 moduli of both bases are sent through data by the expo-
nentiation processor. Once the data are set, the multiplication processor
shares out the computations to idle cells. When the result of a cell is
available, the corresponding cell uploads its result. And so on till the
whole multiplication is completed. The global results in both bases are
sent back to the exponentiation processor. There is clearly no difference
in the operation sequence whether the general computation is a square
or a multiply.

It is basically built as a microcontroller: the 10-bit program counter
refers to the current operation and to the address of the operands in the
memory; the microcode is fetched and then interpreted by the processor
which enables the memory to send or receive data in burst mode.

The 512 bits of the secret key are stored in a register inside the expo-
nentiation processor. The latter is scanned from left to right to perform
a variant of the ‘square-and-multiply-always’ algorithm.

6.2 Performances

The average number of clock cycles per operation (addition, subtraction,
multiplication or write back) is about 11. Hence, if the operations are well
scheduled in the program, a basic operation in the base β or β̃ requires



virtually 22 cycles on the data bus (a multiplication requires a bit more
than 64 cycles).

Our design has been synthesized on a Virtex2 xc2v6000 clocked at
50 Mhz. The synthesis is performed with FPGA Compiler 2 3.7.1 (Synopsys)
and the implementation with XILINX ISE-5. Moreover, 9 RAM blocks,
4956 slices of which 2788 registers and 8185 LUTs, are needed for a 512
bits exponentiation. The signature is achieved in 158 ms. Since the goal is
to evaluate our methodology on general reconfigurable hardware devices,
we did not take the most particular features of Virtex2 (such as internal
18 by 18 bits multipliers). Performing a 1024 bits exponentiation in the
same time would only require doubling hardware resources, since CRT
is used. The design contains the hardware needed to receive the message
µ in RNS and perform the exponentiation. Compare our design with a
Cox-Rower architecture seems to be very difficult. Indeed, many choices
differ from their implementation, especially all the side-channels consid-
erations. But, we think that implementing their architecture in an FPGA
is certainly more hardware consuming than ours regarding the number of
adders and multipliers they need for one single cell.

7 Conclusion

A new architecture to avoid side-channels analysis (based on timing,
power consumptions and electromagnetic radiations that leak when a
crypto-algorithm is processed) but also fault induction resistance has
been proposed. Our design is based on Residue Number Systems that
permits fast additions and multiplications, carry-free, high speed arith-
metic, some faults detection, possible error correction and mostly parallel
implementations. Generalized Mersenne numbers provide well balanced
bases and offer efficient modular reductions. They are also useful to ef-
ficiently implement our new and general DPA countermeasure based on
RNS by reducing the memory requirements. Moreover, we proposed dif-
ferent hardware strategies to manage a multiplication within the cells.

Finally, we gave a concrete implementation of our architecture on
FPGA. Although our aim is to design a side-channel secure implementa-
tion, our FPGA implementation results in promising efficiency: less than
150 ms for a 1024-bit RSA, with competitive hardware resources. Our
implementation cannot be compared to those proposed by Nozaki et al.

as the objectives are really different, different circuit types are used, and
less hardware requirements are needed in our case.
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