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Abstra
t

In a ring signature s
heme, a signer in a subset (or ring) of potential signers

produ
es a signature of a message in su
h a way that the re
eiver 
an verify

that the signature 
omes from a member of the ring, but 
annot know whi
h

member has a
tually signed.

In this work, we extend this 
on
ept to that of distributed ring signatures,

where a subset of users 
ooperate to 
ompute a distributed anonymous signature

on a message, on behalf of a family of subsets. We propose two s
hemes, one

for general families of subsets, and a more eÆ
ient one for threshold families

of subsets. The se
urity of both proposals is formally proved, assuming the

hardness of the Computational DiÆe-Hellman problem.

Our two s
hemes run in an identity-based s
enario, where publi
 keys of

the users 
an be derived from their identities. This fa
t avoids the ne
essity of

digital 
erti�
ates, and therefore allows more eÆ
ient implementations of su
h

systems.

1 Introdu
tion

In a standard publi
 key s
enario: ea
h user U has a se
ret key SK

U

, and usually

the mat
hing publi
 key PK

U

is 
omputed from SK

U

. In these s
enarios, a serious

problem appears: how 
an one be sure that PK

U

is a
tually the publi
 key of user U ,

or in other words, that the only person who knows SK

U

is user U? For example, a

di�erent user U

0


an generate SK

U

0

, 
ompute the mat
hing publi
 key and broad
ast

it as if it was the publi
 key of user U .

To solve this problem, the publi
 keys of the users are authenti
ated via a Publi


Key Infrastru
ture (PKI) based on digital 
erti�
ates: a user who wants to use

a publi
 key 
ryptosystem turns to a 
erti�
ation authority, who signs a message

linking the publi
 key PK

U

with the identity of user U . Later, a user who must use

publi
 key PK

U

(to en
rypt a message or to verify a signature, for example) must

�rst verify that the 
erti�
ate whi
h links U and PK

U

is still valid. Other problems

appear when revo
ation of some 
erti�
ate is ne
essary, be
ause a se
ret key SK

U


orresponding to a 
erti�ed PK

U

has been 
ompromised, for instan
e.
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All these fa
ts make the use of 
ryptographi
 proto
ols less eÆ
ient in the real

life. Thus, any possible alternative whi
h avoids the ne
essity of digital 
erti�
ates

is wel
ome in order to design more eÆ
ient publi
 key 
ryptosystems.

Shamir introdu
ed in 1984 the 
on
ept of identity-based (from now on, ID-based)


ryptography [17℄. The idea is that the publi
 key of a user 
an be publi
ly 
om-

puted from his identity (for example, from a 
omplete name, an e-mail or an IP

address). Then, the se
ret key is derived from the publi
 key. In this way, digital


erti�
ates are not ne
essary, be
ause anyone 
an easily verify that some publi
 key

PK

U


orresponds in fa
t to user U .

The pro
ess that generates se
ret keys from publi
 keys must be exe
uted by an

external entity, known as the master. Thus, the master knows the se
ret keys of all

the users of the system. A way to relax this negative point 
ould be to 
onsider a

set of master entities whi
h share the se
ret information.

A 
lear example of 
ryptographi
 s
hemes where the use of digital 
erti�
ates dra-

mati
ally de
reases the eÆ
ien
y of the implementation are ring signature s
hemes,

be
ause of the number of publi
 keys that 
an be involved in any basi
 operation

(signature and veri�
ation).

In a ring signature s
heme, an entity signs a message on behalf of a set (or ring)

of members that in
ludes himself. The veri�er of the signature is 
onvin
ed that it

was produ
ed by some member of the ring, but he does not obtain any information

about whi
h member of the ring a
tually signed.

Ring signatures are a useful tool to provide anonymity in some s
enarios. For

example, if a member of a group wants to leak to the media a se
ret information

about the group, he 
an sign this information using a ring s
heme. Everybody will

be 
onvin
ed that the information 
omes from the group itself, but anybody 
ould

a

use him of leaking the se
ret.

The 
on
ept of ring signatures was formally introdu
ed in [15℄. After that, many

proposals of ring signature s
hemes have been published [4, 1, 20, 10, 6, 12℄. Two of

these proposals [20, 12℄ are ring signature s
hemes whi
h work in ID-based s
enarios.

We 
onsider in this work the following extension of the 
on
ept of ring signature.

Suppose that a set of users U

s

want to anonymously sign some message, in su
h a

way that the veri�er of the signature will be 
onvin
ed that at least the members of

some set have all agreed in signing this message, but he 
ould not know whi
h set

has a
tually 
omputed the signature, among the sets of a 
ertain family of possibly

signing sets (we will denote this family as the a

ess stru
ture of the signature).

Members of U

s


an freely 
hoose the rest of users and the family of sets that will

form the a

ess stru
ture (in an ad-ho
 way). We denote as U = fU

1

; : : : ;U

d

g the

a

ess stru
ture, where the set U

s

must be one of the sets in U .

The resulting signature will be a ring signature, taking as ring the set U . In

this way, the veri�er will be 
onvin
ed that at least all the members of some set in

U have 
ooperated to 
ompute the signature, but he will not have any information

about whi
h set in U is the a
tual author of the signature.

An example of su
h a situation 
an be thought inside a 
ompany: workers of the


ompany are divided in di�erent bran
hes a

ording to their fun
tionality. Suppose

all the workers in some bran
h of the 
ompany want to sign a message where they
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omplain about some point of the politi
s of the 
ompany. They want the head of

the 
ompany to know that many di�erent workers disagree with him, but not to

know who is 
omplaining. Members of the 
omplaining bran
h 
an form an a

ess

stru
ture with all the bran
hes of the 
ompany, and 
ompute a ring signature for

this stru
ture. The head of the 
ompany will be 
onvin
ed that the 
omplaint 
omes

from all the members of some of the bran
hes, but he will never know whi
h bran
h

dared to 
omplain.

This extension of ring signature s
hemes, that we denote distributed ring signa-

ture s
hemes, was �rst 
onsidered in [4℄. Their spe
i�
 RSA-based s
heme, however,

runs only when the ad-ho
 a

ess stru
tures are ne
essarily threshold (that is, they


ontain all the sets with a minimum number of users). Re
ently a more general

proposal, whi
h allows the use of di�erent types of keys, has appeared in [19℄; but

again this s
heme is valid only for threshold a

ess stru
tures. In [11℄, a s
heme

for general a

ess stru
tures is proposed, for s
enarios based on Dis
rete Logarithm

keys.

In Se
tion 3, we provide de�nitions for the proto
ols that take part in a dis-

tributed ring signature s
heme, and the se
urity properties that su
h s
hemes must

satisfy. Then we propose the �rst distributed ring signature s
hemes for ID-based

s
enarios. We �rst propose, in Se
tion 4, a s
heme whi
h works for any general

a

ess stru
ture. Then, in Se
tion 5, we propose a more eÆ
ient s
heme for the

parti
ular 
ase of threshold a

ess stru
tures. We provide formal and exa
t proofs

of the se
urity of the two proposed proto
ols. Roughly speaking, we prove that

they a
hieve un
onditional anonymity and 
omputational unforgeability, assuming

that the Computational DiÆe-Hellman problem is hard to solve. This well-known

problem is explained in Se
tion 2, as long as other tools that we use in the design

and analysis of our s
hemes, for example bilinear pairings. Finally, we 
on
lude the

work in Se
tion 6.

2 Preliminaries

2.1 Bilinear Pairings

Let G

1

be an additive group of prime order q, generated by some element P . Let

G

2

be a multipli
ative group with the same order q.

A bilinear pairing is a map e : G

1

�G

1

! G

2

with the following three properties:

1. It is bilinear, whi
h means that given elements A

1

; A

2

; A

3

2 G

1

, we have

that e(A

1

+ A

2

; A

3

) = e(A

1

; A

3

) � e(A

2

; A

3

) and e(A

1

; A

2

+ A

3

) = e(A

1

; A

2

) �

e(A

1

; A

3

). In parti
ular, for all a; b 2 Z

q

, we have e(aP; bP ) = e(P; P )

ab

=

e(P; abP ) = e(abP; P ).

2. The map e 
an be eÆ
iently 
omputed for any possible input pair.

3. The map e is non-degenerate: there exist elements A

1

; A

2

2 G

1

su
h that

e(A

1

; A

2

) 6= 1

G

2

.
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Combining properties 1 and 3, it is easy to see that e(P; P ) 6= 1

G

2

and that the

equality e(A

1

; P ) = e(A

2

; P ) implies that A

1

= A

2

.

The typi
al way of obtaining su
h pairings is by deriving them from the Weil

or the Tate pairing on an ellipti
 
urve over a �nite �eld. The interested reader is

referred to [21℄ for a 
omplete bibliography of 
ryptographi
 works based on pairings.

Let H

1

: f0; 1g

�

! G

1

� f0g be a hash fun
tion. The most usual way to design

an ID-based 
ryptosystem is the following. The master has a se
ret key x 2 Z

�

q

, and

he publishes the value Y = xP 2 G

1

.

Every user U of the ID-based system has an identi�er ID

U

2 f0; 1g

�

, that 
an

be an IP address, a telephone number, an e-mail address, et
. The publi
 key of

U is then de�ned to be PK

U

= H

1

(ID

U

) 2 G

1

� f0g. In this way, everybody 
an

verify the authenti
ity of a publi
 key without the ne
essity of 
erti�
ates.

The user U needs to 
onta
t the master to obtain his se
ret key SK

U

= xPK

U

2

G

1

. The drawba
k of this approa
h, as mentioned in the Introdu
tion, is that the

master must be 
ompletely trusted, be
ause he knows the se
ret keys of all the users.

2.2 The Computational DiÆe-Hellman Problem

We 
onsider the following well-known problem in the additive group G

1

of prime

order q, generated by P :

De�nition 1. Given the elements P , aP and bP , for some random values a; b 2 Z

�

q

,

the Computational DiÆe-Hellman problem 
onsists of 
omputing the element abP .

The Computational DiÆe-Hellman Assumption asserts that, if the order of G

1

is q � 2

k

, then any polynomial time algorithm that solves the Computational DiÆe-

Hellman problem has a su

ess probability p

k

whi
h is negligible in the se
urity

parameter k. In other words, for all polynomial f(), there exists an integer k

0

su
h

that p

k

<

1

f(k)

, for all k � k

0

.

The se
urity of the ID-based ring signature s
hemes that we propose in this work

is based on the Computational DiÆe-Hellman Assumption.

2.3 The Splitting Lemma

We �rst state a well-known lemma that we will use in some of the se
urity proofs of

this paper. A proof of this lemma 
an be found, for example, in [14℄.

Lemma 1. (The Splitting Lemma) Let A � X�Y be a set verifying that Pr [(x; y) 2 A℄ �

�. For any � < �, let us de�ne

B = f(x; y) 2 X � Y j Pr

y

0

2Y

�

(x; y

0

) 2 A

�

� �� �g and

�

B = (X � Y )nB:

Then the following statements hold:

1. Pr [B℄ � �.

2. for any (x; y) 2 B, Pr

y

0

2Y

[(x; y

0

) 2 A℄ � �� �.

3. Pr [BjA℄ � �=�.
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2.4 The Random Ora
le Model

Bellare and Rogaway introdu
ed in [3℄ a paradigm that makes easier the task of

proving the se
urity of some 
ryptographi
 s
hemes. This paradigm is the random

ora
le model. In this model, hash fun
tions are seen as ora
les that produ
e a truly

random value for ea
h new input. Obviously, if the same input is asked twi
e, then

the outputs must be identi
al.

The random ora
le model is unreal, be
ause any instantiation of a hash fun
tion

is in fa
t a deterministi
 fun
tion: on
e the instantiation is made publi
, everybody


an know whi
h will be the output 
orresponding to any input. Furthermore, any

realization of a random fun
tion 
an be seen as a list with exponential size. But

hash fun
tions are part of the publi
 key of the 
onsidered 
ryptographi
 s
heme,

and the size of publi
 keys must be polynomial in the se
urity parameter.

Although there are some theoreti
al works whi
h 
riti
ize the paradigm of the

random ora
le model [5, 13, 2℄, it is widely believed that proofs in this model guar-

antee the se
urity of the overall 
ryptographi
 s
heme, provided the employed hash

fun
tion has no weakness.

All the se
urity results that we prove in this work are valid in the random ora
le

model.

2.5 Generi
 Ring Signature S
hemes

Herranz and S�aez de�ne in [10℄ a family of ring signature s
hemes that they 
all

generi
 (in
uen
ed by the work of Point
heval and Stern [14℄, where they give this

name to a family of signature s
hemes whi
h in
ludes S
hnorr's one). Consider a

se
urity parameter k, a hash fun
tion whi
h outputs k-bit long elements, and a ring

U = fU

1

; : : : ; U

d

g of d members. Given the input messagem, a generi
 ring signature

s
heme produ
es a tuple (U ;m;R

1

; : : : ; R

d

; h

1

; : : : ; h

d

; �), where R

1

; : : : ; R

d

take

their values randomly in a large set G in su
h a way that R

i

6= R

j

for all i 6= j, h

i

is the hash value of (U ;m;R

i

), for 1 � i � d, and the value � is fully determined by

R

1

; : : : ; R

d

; h

1

; : : : ; h

d

and the message m.

Another required 
ondition is that no R

i


an appear in a signature with proba-

bility greater than 2=2

k

, where k is the se
urity parameter. This 
ondition 
an be

a
hieved by 
hoosing the set G as large as ne
essary.

In [10℄, the authors prove a result, the Ring Forking Lemma, whi
h is useful to

prove the se
urity of generi
 ring signature s
hemes. We state here a variation of

their result, that we will use throughout Se
tion 4. For integers Q and d su
h that

Q � d � 1, we denote as V

Q;d

the number of d-permutations of Q elements; that is,

V

Q;d

= Q(Q� 1) � : : : � (Q� d+ 1).

Theorem 1. (The Ring Forking Lemma) Consider a generi
 ring signature s
heme

with se
urity parameter k. Let A be a probabilisti
 polynomial time Turing ma
hine

whi
h re
eives as input the digital identi�ers of users in a set U

�

and other publi


data; the ma
hine A 
an ask Q queries to the random ora
le.

We assume that A produ
es, within time bound T and with non-negligible prob-

ability of su

ess ", a valid ring signature (U ;m;R

1

; : : : ; R

d

; h

1

; : : : ; h

d

; �) for a ring
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U � U

�

of d users, su
h that A does not know any of the se
ret keys of the users in

U .

Then, within time T

0

� 2T , and with probability "

0

�

"

2

66V

Q;d

, we obtain two valid

ring signatures (U ;m;R

1

; : : : ; R

d

; h

1

; : : : ; h

d

; �) and (U ;m;R

1

; : : : ; R

d

; h

0

1

; : : : ; h

0

d

; �

0

)

su
h that h

j

6= h

0

j

, for some j 2 f1; : : : ; dg and h

i

= h

0

i

for all i = 1; : : : ; d su
h that

i 6= j.

In a PKI s
enario, the digital identi�er of a user is his publi
 key, whi
h 
an

be veri�ed by means of the 
orresponding digital 
erti�
ate. In ID-based s
enarios,

however, the digital identi�er of a user is simply an e-mail or IP address; the publi


key 
ould be 
omputed dire
tly from this identi�er.

3 Distributed Ring Signatures

A distributed ring signature s
heme 
onsists of three proto
ols:

1. Key generation. This proto
ol is exe
uted individually by ea
h user U

i

of

the system. The input is a se
urity parameter and (possibly) some publi


parameters, 
ommon to all the users of the system. The output 
onsists of a

publi
 key PK

i

, that the user U

i

makes publi
, and a se
ret key SK

i

, that U

i

keeps se
ret. In ID-based s
enarios, this proto
ol is exe
uted with the help of

a master entity.

2. Distributed ring signature generation. Suppose users in a subset U

s

=

fU

1

; U

2

; : : : ; U

n

s

g want to 
ompute a ring signature on a message m on behalf

of a family of subsets (or a

ess stru
ture) U = fU

1

; : : : ;U

s

; : : : ;U

d

g. Then

members of U

s

jointly exe
ute this proto
ol, taking as input the message m,

the publi
 keys of all users in
luded in the a

ess stru
ture U and their own

se
ret keys SK

1

; : : : ; SK

n

s

. The output is a signature �.

3. Veri�
ation of a distributed ring signature. The re
ipient of a dis-

tributed ring signature 
he
ks its validity by running this proto
ol. It takes

as input the message m, the signature � and all the publi
 keys involved in

the a

ess stru
ture U . The output is 1 if the signature is valid, and 0 if it is

invalid.

Note that distributed ring signature s
hemes are related to standard distributed

(or threshold) signature s
hemes [8, 18℄. In both 
ases, the re
ipient of the signature

is 
onvin
ed that all the users in some subset of the a

ess stru
ture have jointly

signed the message, but he does not know whi
h is the signing subset. There are

two main di�eren
es between these two types of signatures.

� In distributed signature s
hemes, the same a

ess stru
ture is �xed from the

initialization of the system on; in distributed ring signature s
hemes, however,

the signing users 
hoose ad-ho
 the a

ess stru
ture, just before signing.
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� In distributed signature s
hemes, there is a unique publi
 key for the whole

set of users, and the mat
hing se
ret key is shared among them. On the other

hand, in distributed ring signature s
hemes, ea
h user has his own publi
 and

se
ret keys, and therefore he 
an use them for other purposes (like individual

signatures or en
ryption).

As we have said in the Introdu
tion, all the distributed ring signature s
hemes

proposed until now work in a traditional PKI s
enario, where the validity of the

publi
 keys of the users must be 
he
ked before using them, by means of digital


erti�
ates. Some of them work only for threshold a

ess stru
tures [4, 19℄, whereas

the only proposal whi
h works for general a

ess stru
tures is [11℄. In the rest of the

work, we use the tools introdu
ed in Se
tion 2 to design and analyze two distributed

ring signature s
hemes whi
h work in ID-based s
enarios.

3.1 Se
urity Requirements

A distributed ring signature s
heme must satisfy three properties, that we informally

des
ribe below.

1. Corre
tness: if a distributed ring signature is generated by properly following

the proto
ol, then the result of the veri�
ation is always 1.

2. Anonymity: any veri�er should not have probability greater than 1=d to

guess the identity of the subset whi
h has a
tually 
omputed a distributed

ring signature on behalf of an a

ess stru
ture whi
h 
ontains d subsets.

3. Unforgeability: among all the proposed de�nitions of unforgeability [9℄, we


onsider the strongest one, existential unforgeability against 
hosen message

atta
ks, adapted to the s
enario of distributed ring signatures. We will 
on-

sider the exa
t unforgeability of a s
heme, that measures all the resour
es and

performan
es of the adversary. Remember that we analyze the se
urity of our

s
hemes in the random ora
le model.

Su
h an adversary is given as input a set U

�

of users, and is allowed to 
orrupt

up to Q

e

users, obtaining their se
ret keys. The adversary 
an also make Q

queries to the random ora
le whi
h models the behavior of a hash fun
tion.

Finally, the adversary 
an require the exe
ution of the signing algorithm for

Q

s

pairs of messages and rings that it adaptively 
hooses, obtaining a valid

ring signature.

We say that this adversary is (T; ";Q;Q

e

; Q

s

)-su

essful if it obtains in poly-

nomial time T and with non-negligible probability " a valid ring signature for

some message m and some ring of users U , su
h that:

(i) the pair formed by the message m and the ring U has not been asked to

the signing ora
le during the atta
k; and

(ii) none of the users in the ring U has been 
orrupted by the adversary.

7



Finally, we say that a distributed ring signature s
heme is (T; ";Q;Q

e

; Q

s

)-

unforgeable if there does not exist any (T; ";Q;Q

e

; Q

s

)-su

essful adversary

against it.

4 An ID-Based Distributed Ring Signature S
heme for

General A

ess Stru
tures

We will assume that any spe
i�
 set of users 
an always have a

ess to an authen-

ti
ated broad
ast 
hannel, while the information in this 
hannel remains se
ret to

the rest of users. This 
an be a
hieved using di�erent 
ryptographi
 te
hniques (for

example, broad
ast en
ryption s
hemes [7℄).

The proto
ols of our distributed ring signature s
heme work as follows:

Key generation: let G

1

be an additive group of prime order q, generated by

some element P . Let G

2

be a multipli
ative group with the same order q. We need

q � 2

k

+

^

d, where k is the se
urity parameter of the s
heme and

^

d is the maximum

possible number of subsets in an a

ess stru
ture. Let e : G

1

�G

1

! G

2

be a bilinear

pairing as de�ned in Se
tion 2.1. Let H

1

: f0; 1g

�

! G

�

1

and H

2

: f0; 1g

�

! Z

q

be

two hash fun
tions.

The master entity 
hooses at random his se
ret key x 2 Z

�

q

and publishes the

value Y = xP .

Se
ret key extra
tion: any user U

i

of the system, with identity ID

i

, has publi


key PK

i

= H

1

(ID

i

). When he requests the master for his mat
hing se
ret key, he

obtains the value SK

i

= xPK

i

.

Distributed ring signature generation: assume that a set U

s

of users (for

simpli
ity, we denote them as U

s

= fU

1

; U

2

; : : : ; U

n

s

g) want to 
ompute an anony-

mous signature. They 
hoose the a

ess stru
ture U = fU

1

; : : : ;U

d

g, su
h that

U

s

2 U .

For ea
h of the sets U

i

2 U , we 
onsider the publi
 value

Y

i

=

X

U

j

2U

i

PK

j

:

The algorithm for 
omputing the ring signature is the following:

1. Ea
h user U

j

2 U

s


hooses at random a

sj

2 Z

�

q

and 
omputes R

sj

= e(a

sj

P; P ).

He broad
asts the value R

sj

.

2. One of the users in U

s

, for example U

1

, 
hooses, for all i = 1; : : : ; d, i 6= s,

random values a

i

2 Z

�

q

, pairwise di�erent, and 
omputes R

i

= e(a

i

P; P ). He

broad
asts these values R

i

, and therefore all the members of U

s


an 
ompute

h

i

= H

2

(U ;m;R

i

), for all i = 1; : : : ; d, i 6= s.

3. Members of U

s


ompute the value

R

s

= e(�Y;

X

i 6=s

h

i

Y

i

)

Y

U

j

2U

s

R

sj

:
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If R

s

= 1

G

2

or R

s

= R

i

for some i = 1; : : : ; d, i 6= s, they return to step 1.

Members of U

s


an then 
ompute h

s

= H

2

(U ;m;R

s

).

4. User U

1


omputes and broad
asts the value �

1

= a

s1

P+h

s

SK

1

+

P

1�i�d;i6=s

a

i

P 2

G

1

.

5. For j = 2; : : : ; n

s

, player U

j


omputes and broad
asts the value �

j

= a

sj

P +

h

s

SK

j

+ �

j�1

2 G

1

.

6. De�ne � = �

n

s

. The resulting valid signature is (U ;m;R

1

; : : : ; R

d

; h

1

; : : : ; h

d

; �).

Veri�
ation of a distributed ring signature: the validity of the signature

is veri�ed by the re
ipient of the message by 
he
king that h

i

= H

2

(U ;m;R

i

), for

i = 1; : : : ; d and that

e(�; P ) = e(Y;

d

X

i=1

h

i

Y

i

)

Y

1�i�d

R

i

;

where Y

i

=

P

U

j

2U

i

PK

j

, for all the sets U

i

in the a

ess stru
ture U .

4.1 Some Remarks

� The ID-based distributed ring signature s
heme proposed above allows to de-

te
t whether some of the signers in the subset U

s

tries to boy
ott the pro
ess

of signing. In e�e
t, the 
orre
tness of the values �

j


an be veri�ed by the rest

of the signers, by using publi
 information. Namely, for j = 1 the equation

e(�

1

; P ) = R

s1

� e(h

s

PK

1

; Y ) �

Y

1�i�d;i6=s

R

i

must be satis�ed. For the rest of users U

j

2 U

s

, with j 6= 1, the equation that

must be 
he
ked is

e(�

j

; P ) = R

sj

� e(h

s

PK

j

; Y ) � e(�

j�1

; P ):

� We 
onsider the 
ase where the signing users form an ad-ho
 a

ess stru
ture.

But the s
heme runs as well if the a

ess stru
ture is �xed. In this 
ase the

resulting s
heme would be in fa
t a distributed signature s
heme (or threshold

signature s
heme, if the a

ess stru
ture is a threshold one).

� Note that this distributed ring signature s
heme 
an be seen as a generi
 ring

signature s
heme, as de�ned in Se
tion 2.5. In e�e
t, we 
an see the subsets

U

i

in the a

ess stru
ture U as individual users of a standard ring signature

s
heme, with publi
 keys PK

i

= Y

i

=

P

U

j

2U

i

PK

j

. There is a random value

R

i

for ea
h subset U

i

, and a parti
ular R

i

appears with probability at most

1=(q �

^

d) � 1=2

k

, as desired. Therefore, in the se
urity analysis, we 
ould use

the Ring Forking Lemma stated in Se
tion 2.5.
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� The eÆ
ien
y of the s
heme depends on the total number of users and the

number of sets in the a

ess stru
ture. Therefore, it is a good solution for

situations where the number of sets is small. If the a

ess stru
ture is a

threshold one, then the number of sets is very large (it is exa
tly

�

`

t

�

, if `

is the total number of users and t is the threshold). We design in Se
tion 5 a

more eÆ
ient proposal, spe
i�
 for the threshold 
ase.

4.2 Corre
tness and Anonymity of the S
heme

A ring signature (U ;m;R

1

; : : : ; R

d

; h

1

; : : : ; h

d

; �) 
omputed by following the method

explained above satis�es the veri�
ation equation. In e�e
t:

e(�; P ) = e(�

n

s

; P ) = e

0

�

(

X

U

j

2U

s

a

sj

P + h

s

SK

j

) + (

X

1�i�d;i6=s

a

i

P ) ; P

1

A

=

0

�

Y

U

j

2U

s

e(a

sj

P; P ) � e(h

s

xPK

j

; P )

1

A

Y

1�i�d;i6=s

e(a

i

P; P ) =

=

0

�

Y

U

j

2U

s

R

sj

� e(h

s

PK

j

; xP )

1

A

Y

1�i�d;i6=s

R

i

=

= R

s

� e(

X

1�i�d;i6=s

h

i

Y

i

; Y ) � e(h

s

X

U

j

2U

s

PK

j

; Y )

Y

1�i�d;i6=s

R

i

= e(

d

X

i=1

h

i

Y

i

; Y )

d

Y

i=1

R

i

With respe
t to the anonymity of the s
heme, we 
an argue as follows: let

Sig = (U ;m;R

1

; : : : ; R

d

; h

1

; : : : ; h

d

; �) be a valid ring signature of a message m on

behalf of the a

ess stru
ture U = fU

1

; : : : ;U

d

g. Let U

s

be a subset of the a

ess

stru
ture. We now �nd the probability that members of U

s


ompute exa
tly the

ring signature Sig, when they produ
e a ring signature of message m on behalf of

the a

ess U , by following the proposed s
heme.

The probability that members of U

s


ompute all the values R

i

6= 1

G

2

of Sig,

pairwise di�erent for 1 � i � d, i 6= s, is

1

q�1

�

1

q�2

� : : : �

1

q�d+1

. Then, the probability

that members of U

s


hoose values a

sj

2 Z

q

that lead to the value R

s

of Sig, among

all possible values for R

s

di�erent to 1

G

2

and di�erent to all R

i

with i 6= s, is

1

q�d

.

Summing up, the probability that users in U

s

generate exa
tly the ring signature

Sig is

1

q � 1

�

1

q � 2

� : : : �

1

q � d+ 1

�

1

q � d

=

1

V

q�1;d

and this probability does not depend on the subset U

s

, so it is the same for all the

subsets of the a

ess stru
ture. This fa
t proves the un
onditional anonymity of the

s
heme.
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4.3 Unforgeability of the S
heme

We �rst remember the de�nition of an adversary against distributed ring signa-

ture s
hemes, introdu
ed in Se
tion 3.1: a (T; ";Q

1

; Q

2

; Q

e

; Q

s

)-su

essful atta
ker

against a ring signature s
heme is an algorithm whi
h is given a list of identities

ID

i

, runs in time T , makes Q

1

queries to the random ora
le H

1

, Q

2

queries to the

random ora
le H

2

, asks for Q

e

se
ret keys of di�erent users and asks for Q

s

valid

ring signatures. With probability ", this algorithm obtains a valid new signature for

a pair (U ;m), su
h that all the sets of the a

ess stru
ture U 
ontain at least one

user whose se
ret key has not been queried by the adversary.

In the following theorem, we relate the diÆ
ulty of forging our ID-based dis-

tributed ring signature s
heme with the diÆ
ulty of solving the Computational

DiÆe-Hellman problem.

Theorem 2. Let A be a (T; ";Q

1

; Q

2

; Q

e

; Q

s

)-su

essful adversary against the ID-

based distributed ring signature s
heme proposed above, su
h that the su

ess proba-

bility " of A is non-negligible in the se
urity parameter k.

We denote by n̂ the maximum possible 
ardinality of the subsets and by

^

d the

maximum possible number of subsets in the a

ess stru
tures 
onsidered in the sys-

tem.

Let � be any value su
h that

�

1�

"

12

�

1=Q

e

� � < 1.

Then the Computational DiÆe-Hellman problem in G

1


an be solved in time

T

0

� 2T + 2Q

1

+ 2Q

2

+ 2(

^

d+ n̂)Q

s

and with probability "

0

�

(1��)

2

^

d+1

200V

Q

2

;

^

d

"

2

.

Proof. Sin
e A's su

ess probability " is non-negligible in k, we 
an assume that

" �

12 V

Q;

^

d

+6(Q+Q

s

)

2

(1��)

^

d

2

k

.

Let (P; aP; bP ) be the input of an instan
e of the Computational DiÆe-Hellman

problem in G

1

. Here P is a generator of G

1

, with prime order q, and the elements

a; b are taken uniformly at random in Z

�

q

.

We 
onstru
t a probabilisti
 polynomial time Turing ma
hine F whi
h will solve

the given instan
e of the Computational DiÆe-Hellman problem; that is, it will


ompute the value abP . This ma
hine B is given as input the digital identi�ers

ID

i

of users U

i

in a set U

�

. It will use the atta
ker A as a sub-routine, so it must

perfe
tly simulate the environment of the atta
ker A. The ma
hine F is also allowed

to make Q

2

queries to the random ora
le for the hash fun
tion H

2

.

The publi
 data (P; aP; bP ) is given to the ma
hine F , and the publi
 key of

the master entity is de�ned to be Y = aP . Then F runs the atta
ker A against

our ID-based distributed ring signature s
heme, answering to all the queries that A

makes. First of all, F gives the publi
 key Y = aP to the atta
ker A.

Without loss of generality, we 
an assume that A asks the random ora
le H

1

for

the value H

1

(ID) before asking for the se
ret key of ID.

The ma
hine F 
onstru
ts a table TAB

H

1

to simulate the random ora
le H

1

.

Every time an identity ID

j

is asked by A to the ora
le H

1

, the ma
hine F �rst


he
ks if this input is already in the table; if this is the 
ase, then F returns to

A the 
orresponding relation H

1

(ID

j

) = PK

j

. Otherwise, F a
ts as follows: with

11



probability �, it 
hooses the random bit 


j

= 0; in this 
ase, F 
hooses a di�erent

x

j

2 Z

�

q

at random and de�nes PK

j

= x

j

P and SK

j

= x

j

Y . On the other hand,

with probability 1 � �, the ma
hine F 
hooses 


j

= 1; in this 
ase, it 
hooses a

di�erent �

j

2 Z

�

q

at random and de�nes PK

j

= (�

j

)bP and SK

j

=?. The values

(ID

j

; PK

j

; x

j

or �

j

; SK

j

; 


j

) are stored in a new entry of TAB

H

1

, and the relation

H

1

(ID

j

) = PK

j

is sent to A. The 
ondition PK

j

6= PK

`

must be satis�ed for all

the di�erent entries j 6= ` of the table; if this is not the 
ase, the pro
ess is repeated

for one of these users.

Sin
e we are assuming that H

1

behaves as a random fun
tion, and the values

PK

j

are all randomly 
hosen, this step is 
onsistent.

For any possible set of users U

i

, we de�ne the value Y

i

=

P

U

j

2U

i

PK

j

. Be
ause

of the way in whi
h we have 
omputed the values PK

j

, we have that

Y

i

= 


i

P + Æ

i

(bP )

for some values 


i

; Æ

i

2 Z

q

that the ma
hine F knows.

When A asks for the se
ret key 
orresponding to an identity ID

i

, the ma
hine

F looks for ID

i

in the table TAB

H

1

. If 


i

= 0, then F sends SK

i

= x

i

Y to A. If




i

= 1, the ma
hine F 
annot answer and halts. Note that the probability that F

halts in this pro
ess is less than 1� �

Q

e

�

"

12

.

Every time A makes a query to the random ora
le H

2

, the ma
hine F queries

the same input to this random ora
le H

2

(be
ause it is allowed to do this), and sends

the obtained answer to A.

The adversary A is allowed to query for Q

s

valid ring signatures for messages

and a

ess stru
tures of its 
hoi
e. The ma
hine F must simulate the information

that A would obtain from these exe
ution of the signing algorithm. Let B be the

set of the users for whom A has asked for their se
ret keys (we 
all them 
orrupted

users). When A asks for a valid signature for a message m

0

and an a

ess stru
-

ture U

0

= fU

0

1

; : : : ;U

0

d

g, the ma
hine F 
hooses at random one of the sets of U

0

to be the \real" author of the ring signature; for simpli
ity, we denote this set as

U

0

s

= fU

0

1

; U

0

2

; : : : ; U

0

n

s

g. The information that A would obtain from su
h a real


omputation 
onsists of all the information broad
ast in the private broad
ast 
han-

nel of U

0

s

(be
ause we 
an 
onsider the worst 
ase where some of the users in U

0

s

is


orrupted, and so A has a

ess to this 
hannel), as well as the se
ret information

generated by the 
orrupted players, in B \ U

0

s

. The ma
hine F must exe
ute the

following algorithm in order to simulate this information:

1. For ea
h user U

0

`

2 U

0

s

\B, 
hoose at random a

s`

2 Z

�

q

, 
ompute and broad
ast

R

0

s`

= e(a

s`

P; P ).

2. Choose, for all i = 1; : : : ; d, i 6= s, random values a

i

2 Z

�

q

, pairwise di�erent,

and 
ompute R

0

i

= e(a

i

P; P ) and h

i

= H

2

(U

0

;m

0

; R

i

) (by querying the random

ora
le H

2

); we 
an assume that A will later ask the random ora
le H

2

with

these inputs, to verify the 
orre
tness of the signature.

3. Choose at random h

0

s

2 Z

q

.

12



4. For user U

0

1

:

� if U

0

1

2 B (sin
e F has not halted, this means that the ma
hine F knows

the se
ret key SK

1

of this 
orrupted user, as well as the value a

s1

),


ompute �

1

= a

s1

P + h

0

s

SK

1

+

P

1�i�d;i6=s

a

i

P ;

� if U

0

1

=2 B, 
hoose at random �

1

2 G

1

and 
ompute

R

0

s1

= e(�

1

; P ) � e(h

0

s

PK

1

;�Y ) �

Y

1�i�d;i6=s

(R

0

i

)

�1

:

5. For user U

0

j

, for j = 2; : : : ; n

s

:

� if U

0

j

2 B (sin
e F has not halted, this means that the ma
hine F knows

the se
ret key SK

j

of this 
orrupted user, as well as the value a

sj

), 
om-

pute �

j

= a

sj

P + h

0

s

SK

j

+ �

j�1

;

� if U

0

j

=2 B, 
hoose at random �

j

2 G

1

and 
ompute

R

0

sj

= e(�

j

� �

j�1

; P ) � e(h

0

s

PK

j

;�Y ):

6. Compute the value

R

0

s

= e(�Y;

X

1�i�d;i6=s

h

0

i

Y

i

)

Y

U

j

2U

s

R

0

sj

:

If R

0

s

= 1 or R

0

s

= R

0

i

for some i = 1; : : : ; d, i 6= s, then return to step 1.

7. Impose the relation H

2

(U

0

;m

0

; R

0

s

) = h

0

s

. Later, if A asks the random ora
le

H

2

for this input, then F will answer with h

0

s

. Sin
e h

0

s

is a random value and

we are in the random ora
le model for H

2

, this relation is 
onsistent for A.

The resulting signature (U

0

;m

0

; R

0

1

; : : : ; R

0

d

; h

0

1

; : : : ; h

0

d

; �

0

) is valid. However, the

assignment H

2

(U

0

;m

0

; R

0

s

) = h

0

s

, in step 7 of the simulating algorithm, 
an 
ause

some 
ollision if the query (U

0

;m

0

; R

0

s

) has been previously made to the random

ora
le H

2

, or if the same tuple (U

0

;m

0

; R

0

s

) is produ
ed two times in two di�erent

runs of the signature simulation algorithm.

Sin
e no R

0

i

appears with probability greater than 2=2

k

in a simulated ring sig-

nature, we 
an bound the probability that su
h 
ollisions o

ur:

� The probability that a tuple (U

0

;m

0

; R

0

s

) that F outputs, as part of a simulated

ring signature, has been asked before to the random ora
le by A is less than

Q

2

�Q

s

�

2

2

k

�

"

6

.

� The probability that the same tuple (U

0

;m

0

; R

0

s

) is output two times by F in

two di�erent signature simulations is less than

Q

2

s

2

�

2

2

k

�

"

6

.
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Altogether, the probability of 
ollisions is less than "=3. The probability that

the ma
hine F su

eeds in obtaining a valid ring signature is the following:

~"

F

= Pr[F obtains a valid distributed ring signature℄ =

Pr[F does not halt AND no-
ollisions in the simulations AND A su

eeds℄ �

� Pr[A su

eeds j F does not halt AND no-
ollisions in the simulations ℄ �

� Pr[F halts OR 
ollisions in the simulations℄ � "�

�

"

12

+

"

3

�

=

7"

12

:

However, assuming that A provides F with a valid distributed ring signature

for a pair (m;U), where U = fU

1

; : : : ;U

d

g has d �

^

d subsets, we need to be sure

that F does not know any of the d \se
ret keys" in U . In this 
ase, the \se
ret

key" of a subset U

i

, mat
hing with the \publi
 key" PK

i

= Y

i

=

P

U

j

2U

i

PK

j

, is

SK

i

=

P

U

j

2U

i

SK

j

. Otherwise, if F knows some of this se
ret keys, it 
ould have

generated this forged signature by itself, and then it would not be a real forgery.

F will know SK

i

if and only if he knows the se
ret keys of all the members of

U

i

, or in other words, if 


j

= 0, for all U

j

2 U

i

. Therefore, the probability that F

does not know any of the d \se
ret keys" in U is

Pr[8i = 1; : : : ; d; 9U

j

2 U

i

s.t. 


j

= 1℄ � (1� �)

d

:

Summing up, with probability "

F

= (1 � �)

d

~"

F

� (1 � �)

^

d

7"

12

�

7V

Q

2

;

^

d

2

k

, the

ma
hine F obtains a valid forged ring signature for an a

ess stru
ture where he

does not know any \se
ret key". The exe
ution time of the ma
hine F is T

F

�

T +Q

1

+Q

2

+ (

^

d+ n̂)Q

s

.

Applying the Ring Forking Lemma (Theorem 1) to the ma
hine F , we have

that, by exe
uting two times F , we will obtain in time T

0

� 2T

F

and with prob-

ability ~"

0

�

"

2

F

66V

Q

2

;

^

d

two valid ring signatures (U ;m;R

1

; : : : ; R

d

; h

1

; : : : ; h

d

; �) and

(U ;m;R

1

; : : : ; R

d

; h

0

1

; : : : ; h

0

d

; �

0

) su
h that h

j

6= h

0

j

, for some j 2 f1; : : : ; dg and

h

i

= h

0

i

for all i = 1; : : : ; d su
h that i 6= j.

By de�nition of valid forgery against a distributed ring signature s
heme, there

exists at least one non-
orrupted user in ea
h subset U

i

2 U ; in parti
ular there exists

a non-
orrupted user U

z

2 U

j

nB in the subset U

j

. Remember that Y

j

= 


j

P+Æ

j

(bP ),

where 


j

and Æ

j

are values known by the ma
hine F .

For this non-
orrupted user U

z

2 U

j

, we have 


z

= 1 with probability 1 � �,

whi
h means that PK

z

= �

z

(bP ). So the value �

z

is one of the terms added in the

fa
tor Æ

j

that appears in Y

j

. If this is the 
ase, then with overwhelming probability

we will have that Æ

j

6= 0mod q.

If now we 
ome ba
k to the two forged signatures, and we write the 
orresponding

veri�
ation equations, we have:

e(�; P ) = R

1

� : : : �R

d

� e(Y; h

1

Y

1

) � : : : � e(Y; h

d

Y

d

)
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e(�

0

; P ) = R

1

� : : : � R

d

� e(Y; h

0

1

Y

1

) � : : : � e(Y; h

0

d

Y

d

)

Dividing these two equations, we obtain e(� � �

0

; P ) = e(Y; (h

j

� h

0

j

)Y

j

) =

e(aP; (h

j

� h

0

j

)(


j

P + Æ

j

(bP ))) = e(aP; (h

j

� h

0

j

)


j

P ) � e(aP; (h

j

� h

0

j

)Æ

j

(bP )).

We 
an 
on
lude from this relation the equality

e(abÆ

j

(h

j

� h

0

j

)P; P ) = e(� � �

0

� [a


j

(h

j

� h

0

j

)℄P; P ):

Sin
e the pairing is non-degenerate, this implies that abÆ

j

(h

j

� h

0

j

)P = � � �

0

�

[a


j

(h

j

� h

0

j

)℄P . Therefore, one 
an 
ompute the solution of the given instan
e of

the Computational DiÆe-Hellman problem:

abP =

1

Æ

j

(h

j

� h

0

j

)

(� � �

0

)�

a


j

Æ

j

P :

The inverses are 
omputed modulo q, and they always exists be
ause h

j

6= h

0

j

and

Æ

j

6= 0mod q with overwhelming probability.

Summing up, the ma
hine F has solved the Computational DiÆe-Hellman prob-

lem with probability

"

0

= (1� �)~"

0

� (1� �)

"

2

F

66V

Q

2

;n̂

� (1� �)

((1� �)

^

d

7"=12)

2

66V

Q

2

;

^

d

�

(1� �)

2

^

d+1

200V

Q

2

;

^

d

"

2

:

And the total time needed to solve the problem has been T

0

� 2T

F

� 2T + 2Q

1

+

2Q

2

+ 2(

^

d + n̂)Q

s

.

5 An ID-Based Distributed Ring Signature S
heme for

Threshold A

ess Stru
tures

We next propose a di�erent s
heme for 
omputing threshold ring signatures in a more

eÆ
ient way, in an ID-based s
enario. The proposal follows the ideas introdu
ed in

[19℄, where threshold ring signatures are designed for PKI s
enarios (with users

having either Dis
-Log or RSA keys, for example).

In the design of the new s
heme, Shamir's threshold se
ret sharing s
heme [16℄ is

used as a primitive. We will assume, again, that any spe
i�
 set of users 
an always

have a

ess to a private and authenti
ated broad
ast 
hannel. The proto
ols of our

proposed s
heme are des
ribed below.

Key generation: let G

1

be an additive group of prime order q, generated by

some element P . Let G

2

be a multipli
ative group with the same order q. We need

q � 2

k

, where k is the se
urity parameter of the s
heme. Let e : G

1

� G

1

! G

2

be a

bilinear pairing as de�ned in Se
tion 2.1. Let H

1

: f0; 1g

�

! G

�

1

and H

2

: f0; 1g

�

!

Z

q

be two hash fun
tions.

The master entity 
hooses at random his se
ret key x 2 Z

�

q

and publishes the

value Y = xP .
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Se
ret key extra
tion: any user U

i

of the system, with identity ID

i

, has publi


key PK

i

= H

1

(ID

i

). When he requests the master for his mat
hing se
ret key, he

obtains the value SK

i

= xPK

i

.

Threshold ring signature generation: assume that a subset of users fU

1

; U

2

; : : : ; U

t

g

want to 
ompute an anonymous signature on behalf of a set U = fU

1

; : : : ; U

t

;

U

t+1

; : : : ; U

`

g, where 1 � t � `. The t signing users jointly exe
ute the following

proto
ol:

1. For non-signing users U

i

2 U , with i = t+ 1; : : : ; `, they 
hoose uniformly at

random 


i

2 Z

q

and A

i

2 G

1

; they 
ompute and broad
ast the value

z

i

= e(A

i

; P ) � e(Y; 


i

PK

i

):

2. The signing users U

j

, with j = 1; : : : ; t, 
hoose uniformly at random T

j

2 G

1

;

they 
ompute and broad
ast the value

z

j

= e(T

j

; P ):

3. They 
ompute 
 = H

2

(U ;m; z

1

; : : : ; z

`

).

4. They 
onstru
t, by using Lagrange interpolation, the only polynomial f(x) 2

Z

q

[X℄ of degree `� t whi
h veri�es f(0) = 
 and f(i) = 


i

, for i = t+1; : : : ; `.

5. For j = 1; : : : ; t, player U

j


omputes 


j

= f(j) and then 
omputes and broad-


asts the value

A

j

= T

j

� 


j

SK

j

:

6. The resulting signature is (U ;m; f(x); A

1

; : : : ; A

`

).

Veri�
ation of a threshold ring signature: the re
ipient of the message �rst

veri�es that the degree of f(x) is exa
tly ` � t. Then he 
omputes 


i

= f(i), for

every user U

i

2 U , with i = 1; : : : ; `, and the values

z

i

= e(A

i

; P ) � e(Y; 


i

PK

i

):

The signature is valid if f(0) = H

2

(U ;m; z

1

; : : : ; z

`

).

5.1 Corre
tness and Anonymity of the S
heme

A signature whi
h has been generated following the above method is 
orre
t, be
ause

z

i

= e(A

i

; P ) � e(Y; 


i

PK

i

) for i = t+ 1; : : : ; `, by 
onstru
tion. On the other hand,

for j = 1; : : : ; t, we have that

z

j

= e(T

j

; P ) = e(A

j

+


j

SK

j

; P ) = e(A

j

; P )�e(


j

xPK

j

; P ) = e(A

j

; P )�e(


j

PK

j

; Y );

as desired. Therefore, the signature satis�es that 
 = f(0) = H

2

(U ;m; z

1

; : : : ; z

`

).

With respe
t to anonymity, the reasoning is similar to the one that we have al-

ready used in Se
tion 4.2: given a valid threshold ring signature (U ;m; f(x); A

1

; : : : ; A

`

)
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on behalf of a set of users U , the probability that a parti
ular subset B � U of t

users have 
omputed this signature is exa
tly

1

q

2(`�t)

�

1

q

t

=

1

q

2`�t

:

This probability depends only on ` and t. Therefore, all the subsets of U with t

users have the same probability to be the a
tual authors of the signature.

5.2 Unforgeability of the S
heme

In the parti
ular 
ase of threshold a

ess stru
tures, the de�nition of a (T; ";Q

1

; Q

2

; Q

e

; Q

s

)-

su

essful atta
ker against a ID-based threshold ring signature s
heme is the follow-

ing: it re
eives as input the identities of a set of users, then it runs in time T , makes

Q

1

queries to the random ora
le H

1

, Q

2

queries to the random ora
le H

2

, asks for Q

e

se
ret keys of di�erent users and asks for Q

s

valid threshold ring signatures. With

probability ", this algorithm obtains a valid new signature for a pair (U ;m) and a

threshold t, su
h that it has asked for the se
ret key of at most t� 1 of the users in

U .

In the following theorem, we prove the unforgeability of our ID-based thresh-

old ring signature s
heme, by redu
ing the problem of forging a signature to the

Computational DiÆe-Hellman problem.

Theorem 3. Let A be a (T; ";Q

1

; Q

2

; Q

e

; Q

s

)-su

essful adversary against the pro-

posed ID-based threshold ring signature s
heme, su
h that the su

ess probability "

of A is non-negligible in the se
urity parameter k.

We denote by

^

` the maximum 
ardinality of the sets for whi
h A asks for a valid

signature.

Let � be any value satisfying

�

1�

"

6

�

1=Q

e

� � < 1.

Then the Computational DiÆe-Hellman problem in G

1


an be solved in time

T

0

� 2T + 2Q

1

+ 2Q

2

+ 2

^

`Q

s

and with probability "

0

�

(1��)"

2

128Q

2

.

Proof. The �rst thing to remark is the fa
t that we 
an bound " �

3(Q

s

+Q

2

)

2

2

k

.

Otherwise, the su

ess probability " would be negligible in the se
urity parameter

k.

We are going to 
onstru
t a probabilisti
 polynomial time Turing ma
hine F

whi
h will use the atta
ker A as a sub-routine in order to solve the given instan
e of

the Computational DiÆe-Hellman problem. Therefore, F must perfe
tly simulate

the environment of the atta
ker A.

The ma
hine F re
eives a list of identities and the publi
 data (P; aP; bP ), and

its goal is to 
ompute the value abP . The publi
 key of the master entity is de�ned

to be Y = aP . Then F runs the atta
ker A against the threshold ID-based ring

signature s
heme, answering to all the queries that Amakes. The publi
 key Y = aP

is also sent to the atta
ker A.

Without loss of generality, we 
an assume that A asks the random ora
le H

1

for

the value H

1

(ID) before asking for the se
ret key of ID.
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The ma
hine F 
onstru
ts a table TAB

H

1

to simulate the random ora
le H

1

.

Every time an identity ID

i

is asked by A to the ora
le H

1

, the ma
hine F a
ts as

follows: �rst F 
he
ks if this input is already in the table; if this is the 
ase, then F

sends to A the 
orresponding relation H

1

(ID

i

) = PK

i

. Otherwise, with probability

�, the ma
hine F 
hooses the bit d

i

= 0 and a di�erent x

i

2 Z

�

q

at random, and

de�nes PK

i

= x

i

P and SK

i

= x

i

Y . On the other hand, with probability 1� �, the

ma
hine F 
hooses the bit d

i

= 1 and a di�erent �

i

2 Z

�

q

at random, and de�nes

PK

i

= (�

i

)bP and SK

i

=?. The values (ID

i

; PK

i

; x

i

or �

i

; SK

i

; d

i

) are stored in a

new entry of TAB

H

1

, and the relation H

1

(ID

i

) = PK

i

is sent to A. The 
ondition

PK

i

6= PK

j

must be satis�ed for all the di�erent entries i 6= j of the table; if this is

not the 
ase, the pro
ess is repeated for one of these users.

Sin
e we are assuming that H

1

behaves as a random fun
tion, and the values

PK

i

are all randomly 
hosen, this simulation of the hash fun
tion H

1

is 
onsistent.

Later, every time A asks for the se
ret key 
orresponding to an identity ID

i

, the

ma
hine F looks for ID

i

in the table TAB

H

1

. If d

i

= 0, then F sends SK

i

= x

i

Y

to A. If d

i

= 1, the ma
hine F 
annot answer and halts. The probability that F

halts in this pro
ess is less than 1� �

Q

e

� "=6.

As well, F 
onstru
ts a table TAB

H

2

to simulate the random ora
le H

2

. Every

time A makes a query to this ora
le, F looks for this value in the table. If it is

already there, then F sends the 
orresponding relation to A; if not, F 
hooses at

random an output of the random ora
le for the queried input, di�erent from the

outputs whi
h are already in the table, sends the relation to A and stores it in the

table TAB

H

2

.

Finally, the atta
ker A 
an ask Q

s

times for valid threshold ring signatures for

messages m

0

, sets U

0

of `

0

users and thresholds t

0

. To answer su
h queries, the

ma
hine F pro
eeds as follows:

1. Choose at random `

0

� t

0

+ 1 values 


0

; 


0

t

0

+1

; : : : ; 


0

`

0

2 Z

q

.

2. Using Lagrange interpolation, 
onstru
t the only polynomial f

0

(x) 2 Z

q

[X℄

with degree `

0

� t

0

su
h that f

0

(0) = 


0

and f

0

(i) = 


0

i

, for i = t

0

+ 1; : : : ; `

0

.

3. Compute the values 


0

j

= f

0

(j), for j = 1; : : : ; t

0

.

4. Choose at random `

0

values A

0

1

; : : : ; A

0

`

0

2 G

1

.

5. Compute, for i = 1; : : : ; `

0

, the values z

0

i

= e(A

0

i

; P ) � e(Y; 


0

i

PK

i

)..

6. Impose and store in the table TAB

H

2

the new relation H

2

(U

0

;m

0

; z

0

1

; : : : ; z

0

`

) =




0

.

7. De�ne the signature to be (U

0

;m

0

; f

0

(x); A

0

1

; : : : ; A

0

`

).

The pro
ess results in a valid threshold ring signature, be
ause we are assuming

that H

2

behaves as a random fun
tion, and 


0

is taken uniformly at random in Z

q

.

However, the assignment H

2

(U

0

;m

0

; z

0

1

; : : : ; z

0

`

) = 


0


an produ
e some 
ollisions in

the management of the table TAB

H

2

that simulates the random ora
le H

2

.
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A �rst possible 
ollision o

urs if a tuple (U

0

;m

0

; z

0

1

; : : : ; z

0

`

) produ
ed in the

simulation of a signature has been already queried to the random ora
le H

2

. The

probability of this event is less than

Q

s

Q

2

q

.

A se
ond possible 
ollision o

urs when the same tuple (U

0

;m

0

; z

0

1

; : : : ; z

0

`

) is pro-

du
ed in two di�erent signature simulations. The probability of this event is less

than

Q

2

s

2q

.

We denote by ! the whole set of random tapes that take part in an atta
k by

A, with the environment simulated by F , but ex
luding the randomness related to

the ora
le H

2

. The su

ess probability of A in forging a valid ring signature s
heme

is then taken over the spa
e (!;H

2

).

In an exe
ution of the atta
ker A, we use the notation Q

1

;Q

2

; : : : ;Q

Q

2

for the

di�erent queries that A makes to the random ora
le H

2

. If A produ
es a valid

forged signature (U ;m; f(x); A

1

; : : : ; A

`

), by the ideal randomness of the ora
le H

2

,

the probability that A has not asked for the tuple (U ;m; z

1

; : : : ; z

`

) to this ora
le

(and so A must have guessed the 
orresponding output), is less than

1

q

. We de�ne

� = 1 in this 
ase; otherwise, � denotes the index of the query where the tuple

above was asked. That is, Q

�

= (U ;m; z

1

; : : : ; z

`

).

We denote by S the set of su

essful exe
utions of A, with F simulating its

environment, and su
h that � 6= 1. We also de�ne the following subsets of S: for

every i = 1; 2; : : : ; Q

2

, the set S

i


ontains the su

essful exe
utions su
h that � = i.

This gives us a partition fS

i

g

i=1;:::;Q

2

of S in exa
tly Q

2


lasses.

The probability that an exe
ution (!;H

2

) of A with the environment simulated

by F results in a valid forgery with � 6=1 is

~" = Pr[(!;H

2

) 2 S℄ � "� (1� �

Q

e

)�

Q

s

Q

2

q

�

Q

2

s

2q

�

1

q

�

� "�

"

6

�

"

6

�

"

6

=

"

2

:

Now we de�ne the set of indexes whi
h are more likely to appear as

I = fi s.t. Pr[(!;H

2

) 2 S

i

j (!;H

2

) 2 S℄ �

1

2Q

2

g:

And the 
orresponding subset of su

essful exe
utions as S

I

= f(!;H

2

) 2 S

i

s.t.

i 2 Ig.

For a spe
i�
 index i 2 I, we have that

Pr[(!;H

2

) 2 S

i

℄ = Pr[(!;H

2

) 2 S℄ � Pr[(!;H

2

) 2 S

i

j (!;H

2

) 2 S℄ �

� ~" �

1

2Q

2

:

Lemma 2. It holds that Pr[(!;H

2

) 2 S

I

j (!;H

2

) 2 S℄ � 1=2.

Proof. Sin
e the sets S

i

are disjoint, we have

Pr[(!;H

2

) 2 S

I

j (!;H

2

) 2 S℄ =

X

i2I

Pr[(!;H

2

) 2 S

i

j (!;H

2

) 2 S℄ =
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1�

X

i=2I

Pr[(!;H

2

) 2 S

i

j (!;H

2

) 2 S℄:

Sin
e the 
omplement of I 
ontains at most Q

2

indexes, we have that this probability

is greater than 1�Q

2

�

1

2Q

2

= 1=2.

We 
ome ba
k to the exe
ution of A with the environment simulated by F .

With probability at least ~", su
h an exe
ution (!;H

2

) results in a valid forgery with

� 6= 1. In this 
ase, applying Lemma 2, we know that this su

essful exe
ution

belongs to S

I

with probability at least 1=2.

Now we split H

2

as (H

0

2

; 
), where H

0

2


orresponds to the answers of all the

queries to H

2

ex
ept the query Q

�

, whose answer is denoted as 
.

We apply the Splitting Lemma (lemma 1), taking X = (!;H

0

2

), Y = 
, A = S

�

,

Æ =

~"

2Q

2

and � =

~"

4Q

2

. The lemma says that there exists a subset of exe
utions 


�

su
h that

Pr[(!;H

2

) 2 


�

j (!;H

2

) 2 S

�

℄ �

�

Æ

=

1

2

and su
h that, for any (!;H

2

) 2 


�

:

Pr

~


[(!;H

0

2

; ~
) 2 S

�

℄ � Æ � � =

~"

4Q

2

:

With probability at least

~"

2

, the �rst exe
ution (!;H

0

2

; 
) of A simulated by F

is su

essful and the index � belongs to the set I. Furthermore, in this 
ase we

have that (!;H

0

2

; 
) 2 


�

with probability at least 1=2. If we now repeat this

simulated exe
ution of A with �xed (!;H

0

2

) and randomly 
hosen ~
 2 Z

q

, we know

that (!;H

0

2

; ~
) 2 S

�

and furthermore ~
 6= 
 with probability at least

~"

4Q

2

�

1

q

.

Now 
onsider the two su

essful exe
utions of the atta
k, (!;H

0

2

; 
) and (!;H

2

; ~
),

that the algorithm F has obtained by exe
uting the atta
k A. We denote by

(U ;m; f(x); A

1

; : : : ; A

`

) and (

~

U ; ~m;

~

f(x);

~

A

1

; : : : ;

~

A

`

), respe
tively, the forged thresh-

old ring signatures. Sin
e the random tapes and H

1

are identi
al, and the answers

of the random ora
le H

2

are the same until the query Q

�

= (U ;m; z

1

; : : : ; z

`

), we

have in parti
ular that

~

U = U , ~m = m and ~z

i

= z

i

, for i = 1; : : : ; `.

Sin
e f(0) = 
 6= ~
 =

~

f(0) and the degree of both f(x) and

~

f(x) is `� t, the two

polynomials f(x) and

~

f(x) 
an 
oin
ide at most at ` � t points. Therefore, there

are at least t values j

1

; : : : ; j

t

2 f1; : : : ; `g su
h that f(j

i

) 6=

~

f(j

i

), for i = 1; : : : ; t.

Furthermore, the forgery against the threshold ring signature s
heme has been valid,

so the atta
ker A has asked for the se
ret key of at most t � 1 members of the

signing ring U . This means that there is at least one member U

j

2 U su
h that




j

= f(j) 6=

~

f(j) = ~


j

and su
h that the se
ret key of U

j

has not been asked by A.

In this 
ase, with probability 1� � we have d

j

= 1 and so PK

j

= �

j

bP .

The equality ~z

j

= z

j

be
omes e(A

j

; P ) � e(Y; 


j

PK

j

) = e(

~

A

j

; P ) � e(Y; ~


j

PK

j

).

This is equivalent to

e(A

j

�

~

A

j

; P ) = e(Y; (~


j

� 


j

)PK

j

) = e(aP; (~


j

� 


j

)�

j

bP ) = e(a(~


j

� 


j

)�

j

bP; P ):
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This implies that A

j

�

~

A

j

= a(~


j

� 


j

)�

j

bP . Therefore, the ma
hine F obtains

the solution of the given instan
e of the Computational DiÆe-Hellman problem as

abP =

1

(~


j

� 


j

)�

j

(A

j

�

~

A

j

):

The inverse 
an be taken modulo q, sin
e �

j

2 Z

�

q

and 


j

6= ~


j

.

The total su

ess probability "

0

of the atta
k performed by F is

"

0

� (1� �)

~"

2

�

1

2

�

~"

4Q

2

�

1

q

�

� (1� �)

~"

4

�

~"

8Q

2

�

�

(1� �)~"

2

32Q

2

�

(1� �)("=2)

2

32Q

2

�

(1� �)"

2

128Q

2

:

The total exe
ution time T

0

of the ma
hine F 
onsists of running two times the

ma
hine A, simulating its environment. That is, T

0

� 2(T +Q

1

+Q

2

+

^

`Q

s

).

This last proposal, apart from being more eÆ
ient for the 
ase of threshold

stru
tures, enjoys a better se
urity redu
tion, sin
e the fa
tor V

Q

2

;

^

d

does not appear

in the relation between the probabilities "

0

and ". This is due to the fa
t that the

Ring Forking Lemma for generi
 ring signature s
hemes is not used in the proof of

the se
urity of this threshold proposal.

6 Con
lusion

In this work we have dealt with distributed ring signature s
hemes in identity-based

s
enarios. Su
h s
hemes provide anonymity to a subset of users who want to sign a

message on behalf of a larger set of users. Furthermore, in identity-based s
enarios,

publi
 keys of the users are derived from publi
ly veri�able data (for example, an

e-mail address), and so digital 
erti�
ates are not ne
essary to authenti
ate the

validity of publi
 keys. This allows more eÆ
ient implementations of publi
 key


ryptographi
 systems, spe
ially for those 
ases where basi
 operations involve many

di�erent publi
 keys, as it happens in (distributed) ring signatures.

We have proposed the two �rst distributed ring signature s
hemes whi
h run in an

identity-based framework. The �rst one 
an be used for general families of possible

signing subsets, whereas the se
ond one is spe
i�
, and more eÆ
ient, for the 
ase of

threshold families. The design of the s
hemes uses di�erent mathemati
al tools, as

bilinear pairings or Shamir's se
ret sharing s
heme. In the se
urity analysis, we use

some results of probability theory and we assume that the well-known Computational

DiÆe-Hellman problem is intra
table.
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