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Abstrat

In a ring signature sheme, a signer in a subset (or ring) of potential signers

produes a signature of a message in suh a way that the reeiver an verify

that the signature omes from a member of the ring, but annot know whih

member has atually signed.

In this work, we extend this onept to that of distributed ring signatures,

where a subset of users ooperate to ompute a distributed anonymous signature

on a message, on behalf of a family of subsets. We propose two shemes, one

for general families of subsets, and a more eÆient one for threshold families

of subsets. The seurity of both proposals is formally proved, assuming the

hardness of the Computational DiÆe-Hellman problem.

Our two shemes run in an identity-based senario, where publi keys of

the users an be derived from their identities. This fat avoids the neessity of

digital erti�ates, and therefore allows more eÆient implementations of suh

systems.

1 Introdution

In a standard publi key senario: eah user U has a seret key SK

U

, and usually

the mathing publi key PK

U

is omputed from SK

U

. In these senarios, a serious

problem appears: how an one be sure that PK

U

is atually the publi key of user U ,

or in other words, that the only person who knows SK

U

is user U? For example, a

di�erent user U

0

an generate SK

U

0

, ompute the mathing publi key and broadast

it as if it was the publi key of user U .

To solve this problem, the publi keys of the users are authentiated via a Publi

Key Infrastruture (PKI) based on digital erti�ates: a user who wants to use

a publi key ryptosystem turns to a erti�ation authority, who signs a message

linking the publi key PK

U

with the identity of user U . Later, a user who must use

publi key PK

U

(to enrypt a message or to verify a signature, for example) must

�rst verify that the erti�ate whih links U and PK

U

is still valid. Other problems

appear when revoation of some erti�ate is neessary, beause a seret key SK

U

orresponding to a erti�ed PK

U

has been ompromised, for instane.
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All these fats make the use of ryptographi protools less eÆient in the real

life. Thus, any possible alternative whih avoids the neessity of digital erti�ates

is welome in order to design more eÆient publi key ryptosystems.

Shamir introdued in 1984 the onept of identity-based (from now on, ID-based)

ryptography [17℄. The idea is that the publi key of a user an be publily om-

puted from his identity (for example, from a omplete name, an e-mail or an IP

address). Then, the seret key is derived from the publi key. In this way, digital

erti�ates are not neessary, beause anyone an easily verify that some publi key

PK

U

orresponds in fat to user U .

The proess that generates seret keys from publi keys must be exeuted by an

external entity, known as the master. Thus, the master knows the seret keys of all

the users of the system. A way to relax this negative point ould be to onsider a

set of master entities whih share the seret information.

A lear example of ryptographi shemes where the use of digital erti�ates dra-

matially dereases the eÆieny of the implementation are ring signature shemes,

beause of the number of publi keys that an be involved in any basi operation

(signature and veri�ation).

In a ring signature sheme, an entity signs a message on behalf of a set (or ring)

of members that inludes himself. The veri�er of the signature is onvined that it

was produed by some member of the ring, but he does not obtain any information

about whih member of the ring atually signed.

Ring signatures are a useful tool to provide anonymity in some senarios. For

example, if a member of a group wants to leak to the media a seret information

about the group, he an sign this information using a ring sheme. Everybody will

be onvined that the information omes from the group itself, but anybody ould

ause him of leaking the seret.

The onept of ring signatures was formally introdued in [15℄. After that, many

proposals of ring signature shemes have been published [4, 1, 20, 10, 6, 12℄. Two of

these proposals [20, 12℄ are ring signature shemes whih work in ID-based senarios.

We onsider in this work the following extension of the onept of ring signature.

Suppose that a set of users U

s

want to anonymously sign some message, in suh a

way that the veri�er of the signature will be onvined that at least the members of

some set have all agreed in signing this message, but he ould not know whih set

has atually omputed the signature, among the sets of a ertain family of possibly

signing sets (we will denote this family as the aess struture of the signature).

Members of U

s

an freely hoose the rest of users and the family of sets that will

form the aess struture (in an ad-ho way). We denote as U = fU

1

; : : : ;U

d

g the

aess struture, where the set U

s

must be one of the sets in U .

The resulting signature will be a ring signature, taking as ring the set U . In

this way, the veri�er will be onvined that at least all the members of some set in

U have ooperated to ompute the signature, but he will not have any information

about whih set in U is the atual author of the signature.

An example of suh a situation an be thought inside a ompany: workers of the

ompany are divided in di�erent branhes aording to their funtionality. Suppose

all the workers in some branh of the ompany want to sign a message where they
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omplain about some point of the politis of the ompany. They want the head of

the ompany to know that many di�erent workers disagree with him, but not to

know who is omplaining. Members of the omplaining branh an form an aess

struture with all the branhes of the ompany, and ompute a ring signature for

this struture. The head of the ompany will be onvined that the omplaint omes

from all the members of some of the branhes, but he will never know whih branh

dared to omplain.

This extension of ring signature shemes, that we denote distributed ring signa-

ture shemes, was �rst onsidered in [4℄. Their spei� RSA-based sheme, however,

runs only when the ad-ho aess strutures are neessarily threshold (that is, they

ontain all the sets with a minimum number of users). Reently a more general

proposal, whih allows the use of di�erent types of keys, has appeared in [19℄; but

again this sheme is valid only for threshold aess strutures. In [11℄, a sheme

for general aess strutures is proposed, for senarios based on Disrete Logarithm

keys.

In Setion 3, we provide de�nitions for the protools that take part in a dis-

tributed ring signature sheme, and the seurity properties that suh shemes must

satisfy. Then we propose the �rst distributed ring signature shemes for ID-based

senarios. We �rst propose, in Setion 4, a sheme whih works for any general

aess struture. Then, in Setion 5, we propose a more eÆient sheme for the

partiular ase of threshold aess strutures. We provide formal and exat proofs

of the seurity of the two proposed protools. Roughly speaking, we prove that

they ahieve unonditional anonymity and omputational unforgeability, assuming

that the Computational DiÆe-Hellman problem is hard to solve. This well-known

problem is explained in Setion 2, as long as other tools that we use in the design

and analysis of our shemes, for example bilinear pairings. Finally, we onlude the

work in Setion 6.

2 Preliminaries

2.1 Bilinear Pairings

Let G

1

be an additive group of prime order q, generated by some element P . Let

G

2

be a multipliative group with the same order q.

A bilinear pairing is a map e : G

1

�G

1

! G

2

with the following three properties:

1. It is bilinear, whih means that given elements A

1

; A

2

; A

3

2 G

1

, we have

that e(A

1

+ A

2

; A

3

) = e(A

1

; A

3

) � e(A

2

; A

3

) and e(A

1

; A

2

+ A

3

) = e(A

1

; A

2

) �

e(A

1

; A

3

). In partiular, for all a; b 2 Z

q

, we have e(aP; bP ) = e(P; P )

ab

=

e(P; abP ) = e(abP; P ).

2. The map e an be eÆiently omputed for any possible input pair.

3. The map e is non-degenerate: there exist elements A

1

; A

2

2 G

1

suh that

e(A

1

; A

2

) 6= 1

G

2

.
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Combining properties 1 and 3, it is easy to see that e(P; P ) 6= 1

G

2

and that the

equality e(A

1

; P ) = e(A

2

; P ) implies that A

1

= A

2

.

The typial way of obtaining suh pairings is by deriving them from the Weil

or the Tate pairing on an ellipti urve over a �nite �eld. The interested reader is

referred to [21℄ for a omplete bibliography of ryptographi works based on pairings.

Let H

1

: f0; 1g

�

! G

1

� f0g be a hash funtion. The most usual way to design

an ID-based ryptosystem is the following. The master has a seret key x 2 Z

�

q

, and

he publishes the value Y = xP 2 G

1

.

Every user U of the ID-based system has an identi�er ID

U

2 f0; 1g

�

, that an

be an IP address, a telephone number, an e-mail address, et. The publi key of

U is then de�ned to be PK

U

= H

1

(ID

U

) 2 G

1

� f0g. In this way, everybody an

verify the authentiity of a publi key without the neessity of erti�ates.

The user U needs to ontat the master to obtain his seret key SK

U

= xPK

U

2

G

1

. The drawbak of this approah, as mentioned in the Introdution, is that the

master must be ompletely trusted, beause he knows the seret keys of all the users.

2.2 The Computational DiÆe-Hellman Problem

We onsider the following well-known problem in the additive group G

1

of prime

order q, generated by P :

De�nition 1. Given the elements P , aP and bP , for some random values a; b 2 Z

�

q

,

the Computational DiÆe-Hellman problem onsists of omputing the element abP .

The Computational DiÆe-Hellman Assumption asserts that, if the order of G

1

is q � 2

k

, then any polynomial time algorithm that solves the Computational DiÆe-

Hellman problem has a suess probability p

k

whih is negligible in the seurity

parameter k. In other words, for all polynomial f(), there exists an integer k

0

suh

that p

k

<

1

f(k)

, for all k � k

0

.

The seurity of the ID-based ring signature shemes that we propose in this work

is based on the Computational DiÆe-Hellman Assumption.

2.3 The Splitting Lemma

We �rst state a well-known lemma that we will use in some of the seurity proofs of

this paper. A proof of this lemma an be found, for example, in [14℄.

Lemma 1. (The Splitting Lemma) Let A � X�Y be a set verifying that Pr [(x; y) 2 A℄ �

�. For any � < �, let us de�ne

B = f(x; y) 2 X � Y j Pr

y

0

2Y

�

(x; y

0

) 2 A

�

� �� �g and

�

B = (X � Y )nB:

Then the following statements hold:

1. Pr [B℄ � �.

2. for any (x; y) 2 B, Pr

y

0

2Y

[(x; y

0

) 2 A℄ � �� �.

3. Pr [BjA℄ � �=�.
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2.4 The Random Orale Model

Bellare and Rogaway introdued in [3℄ a paradigm that makes easier the task of

proving the seurity of some ryptographi shemes. This paradigm is the random

orale model. In this model, hash funtions are seen as orales that produe a truly

random value for eah new input. Obviously, if the same input is asked twie, then

the outputs must be idential.

The random orale model is unreal, beause any instantiation of a hash funtion

is in fat a deterministi funtion: one the instantiation is made publi, everybody

an know whih will be the output orresponding to any input. Furthermore, any

realization of a random funtion an be seen as a list with exponential size. But

hash funtions are part of the publi key of the onsidered ryptographi sheme,

and the size of publi keys must be polynomial in the seurity parameter.

Although there are some theoretial works whih ritiize the paradigm of the

random orale model [5, 13, 2℄, it is widely believed that proofs in this model guar-

antee the seurity of the overall ryptographi sheme, provided the employed hash

funtion has no weakness.

All the seurity results that we prove in this work are valid in the random orale

model.

2.5 Generi Ring Signature Shemes

Herranz and S�aez de�ne in [10℄ a family of ring signature shemes that they all

generi (inuened by the work of Pointheval and Stern [14℄, where they give this

name to a family of signature shemes whih inludes Shnorr's one). Consider a

seurity parameter k, a hash funtion whih outputs k-bit long elements, and a ring

U = fU

1

; : : : ; U

d

g of d members. Given the input messagem, a generi ring signature

sheme produes a tuple (U ;m;R

1

; : : : ; R

d

; h

1

; : : : ; h

d

; �), where R

1

; : : : ; R

d

take

their values randomly in a large set G in suh a way that R

i

6= R

j

for all i 6= j, h

i

is the hash value of (U ;m;R

i

), for 1 � i � d, and the value � is fully determined by

R

1

; : : : ; R

d

; h

1

; : : : ; h

d

and the message m.

Another required ondition is that no R

i

an appear in a signature with proba-

bility greater than 2=2

k

, where k is the seurity parameter. This ondition an be

ahieved by hoosing the set G as large as neessary.

In [10℄, the authors prove a result, the Ring Forking Lemma, whih is useful to

prove the seurity of generi ring signature shemes. We state here a variation of

their result, that we will use throughout Setion 4. For integers Q and d suh that

Q � d � 1, we denote as V

Q;d

the number of d-permutations of Q elements; that is,

V

Q;d

= Q(Q� 1) � : : : � (Q� d+ 1).

Theorem 1. (The Ring Forking Lemma) Consider a generi ring signature sheme

with seurity parameter k. Let A be a probabilisti polynomial time Turing mahine

whih reeives as input the digital identi�ers of users in a set U

�

and other publi

data; the mahine A an ask Q queries to the random orale.

We assume that A produes, within time bound T and with non-negligible prob-

ability of suess ", a valid ring signature (U ;m;R

1

; : : : ; R

d

; h

1

; : : : ; h

d

; �) for a ring
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U � U

�

of d users, suh that A does not know any of the seret keys of the users in

U .

Then, within time T

0

� 2T , and with probability "

0

�

"

2

66V

Q;d

, we obtain two valid

ring signatures (U ;m;R

1

; : : : ; R

d

; h

1

; : : : ; h

d

; �) and (U ;m;R

1

; : : : ; R

d

; h

0

1

; : : : ; h

0

d

; �

0

)

suh that h

j

6= h

0

j

, for some j 2 f1; : : : ; dg and h

i

= h

0

i

for all i = 1; : : : ; d suh that

i 6= j.

In a PKI senario, the digital identi�er of a user is his publi key, whih an

be veri�ed by means of the orresponding digital erti�ate. In ID-based senarios,

however, the digital identi�er of a user is simply an e-mail or IP address; the publi

key ould be omputed diretly from this identi�er.

3 Distributed Ring Signatures

A distributed ring signature sheme onsists of three protools:

1. Key generation. This protool is exeuted individually by eah user U

i

of

the system. The input is a seurity parameter and (possibly) some publi

parameters, ommon to all the users of the system. The output onsists of a

publi key PK

i

, that the user U

i

makes publi, and a seret key SK

i

, that U

i

keeps seret. In ID-based senarios, this protool is exeuted with the help of

a master entity.

2. Distributed ring signature generation. Suppose users in a subset U

s

=

fU

1

; U

2

; : : : ; U

n

s

g want to ompute a ring signature on a message m on behalf

of a family of subsets (or aess struture) U = fU

1

; : : : ;U

s

; : : : ;U

d

g. Then

members of U

s

jointly exeute this protool, taking as input the message m,

the publi keys of all users inluded in the aess struture U and their own

seret keys SK

1

; : : : ; SK

n

s

. The output is a signature �.

3. Veri�ation of a distributed ring signature. The reipient of a dis-

tributed ring signature heks its validity by running this protool. It takes

as input the message m, the signature � and all the publi keys involved in

the aess struture U . The output is 1 if the signature is valid, and 0 if it is

invalid.

Note that distributed ring signature shemes are related to standard distributed

(or threshold) signature shemes [8, 18℄. In both ases, the reipient of the signature

is onvined that all the users in some subset of the aess struture have jointly

signed the message, but he does not know whih is the signing subset. There are

two main di�erenes between these two types of signatures.

� In distributed signature shemes, the same aess struture is �xed from the

initialization of the system on; in distributed ring signature shemes, however,

the signing users hoose ad-ho the aess struture, just before signing.
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� In distributed signature shemes, there is a unique publi key for the whole

set of users, and the mathing seret key is shared among them. On the other

hand, in distributed ring signature shemes, eah user has his own publi and

seret keys, and therefore he an use them for other purposes (like individual

signatures or enryption).

As we have said in the Introdution, all the distributed ring signature shemes

proposed until now work in a traditional PKI senario, where the validity of the

publi keys of the users must be heked before using them, by means of digital

erti�ates. Some of them work only for threshold aess strutures [4, 19℄, whereas

the only proposal whih works for general aess strutures is [11℄. In the rest of the

work, we use the tools introdued in Setion 2 to design and analyze two distributed

ring signature shemes whih work in ID-based senarios.

3.1 Seurity Requirements

A distributed ring signature sheme must satisfy three properties, that we informally

desribe below.

1. Corretness: if a distributed ring signature is generated by properly following

the protool, then the result of the veri�ation is always 1.

2. Anonymity: any veri�er should not have probability greater than 1=d to

guess the identity of the subset whih has atually omputed a distributed

ring signature on behalf of an aess struture whih ontains d subsets.

3. Unforgeability: among all the proposed de�nitions of unforgeability [9℄, we

onsider the strongest one, existential unforgeability against hosen message

attaks, adapted to the senario of distributed ring signatures. We will on-

sider the exat unforgeability of a sheme, that measures all the resoures and

performanes of the adversary. Remember that we analyze the seurity of our

shemes in the random orale model.

Suh an adversary is given as input a set U

�

of users, and is allowed to orrupt

up to Q

e

users, obtaining their seret keys. The adversary an also make Q

queries to the random orale whih models the behavior of a hash funtion.

Finally, the adversary an require the exeution of the signing algorithm for

Q

s

pairs of messages and rings that it adaptively hooses, obtaining a valid

ring signature.

We say that this adversary is (T; ";Q;Q

e

; Q

s

)-suessful if it obtains in poly-

nomial time T and with non-negligible probability " a valid ring signature for

some message m and some ring of users U , suh that:

(i) the pair formed by the message m and the ring U has not been asked to

the signing orale during the attak; and

(ii) none of the users in the ring U has been orrupted by the adversary.
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Finally, we say that a distributed ring signature sheme is (T; ";Q;Q

e

; Q

s

)-

unforgeable if there does not exist any (T; ";Q;Q

e

; Q

s

)-suessful adversary

against it.

4 An ID-Based Distributed Ring Signature Sheme for

General Aess Strutures

We will assume that any spei� set of users an always have aess to an authen-

tiated broadast hannel, while the information in this hannel remains seret to

the rest of users. This an be ahieved using di�erent ryptographi tehniques (for

example, broadast enryption shemes [7℄).

The protools of our distributed ring signature sheme work as follows:

Key generation: let G

1

be an additive group of prime order q, generated by

some element P . Let G

2

be a multipliative group with the same order q. We need

q � 2

k

+

^

d, where k is the seurity parameter of the sheme and

^

d is the maximum

possible number of subsets in an aess struture. Let e : G

1

�G

1

! G

2

be a bilinear

pairing as de�ned in Setion 2.1. Let H

1

: f0; 1g

�

! G

�

1

and H

2

: f0; 1g

�

! Z

q

be

two hash funtions.

The master entity hooses at random his seret key x 2 Z

�

q

and publishes the

value Y = xP .

Seret key extration: any user U

i

of the system, with identity ID

i

, has publi

key PK

i

= H

1

(ID

i

). When he requests the master for his mathing seret key, he

obtains the value SK

i

= xPK

i

.

Distributed ring signature generation: assume that a set U

s

of users (for

simpliity, we denote them as U

s

= fU

1

; U

2

; : : : ; U

n

s

g) want to ompute an anony-

mous signature. They hoose the aess struture U = fU

1

; : : : ;U

d

g, suh that

U

s

2 U .

For eah of the sets U

i

2 U , we onsider the publi value

Y

i

=

X

U

j

2U

i

PK

j

:

The algorithm for omputing the ring signature is the following:

1. Eah user U

j

2 U

s

hooses at random a

sj

2 Z

�

q

and omputes R

sj

= e(a

sj

P; P ).

He broadasts the value R

sj

.

2. One of the users in U

s

, for example U

1

, hooses, for all i = 1; : : : ; d, i 6= s,

random values a

i

2 Z

�

q

, pairwise di�erent, and omputes R

i

= e(a

i

P; P ). He

broadasts these values R

i

, and therefore all the members of U

s

an ompute

h

i

= H

2

(U ;m;R

i

), for all i = 1; : : : ; d, i 6= s.

3. Members of U

s

ompute the value

R

s

= e(�Y;

X

i 6=s

h

i

Y

i

)

Y

U

j

2U

s

R

sj

:
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If R

s

= 1

G

2

or R

s

= R

i

for some i = 1; : : : ; d, i 6= s, they return to step 1.

Members of U

s

an then ompute h

s

= H

2

(U ;m;R

s

).

4. User U

1

omputes and broadasts the value �

1

= a

s1

P+h

s

SK

1

+

P

1�i�d;i6=s

a

i

P 2

G

1

.

5. For j = 2; : : : ; n

s

, player U

j

omputes and broadasts the value �

j

= a

sj

P +

h

s

SK

j

+ �

j�1

2 G

1

.

6. De�ne � = �

n

s

. The resulting valid signature is (U ;m;R

1

; : : : ; R

d

; h

1

; : : : ; h

d

; �).

Veri�ation of a distributed ring signature: the validity of the signature

is veri�ed by the reipient of the message by heking that h

i

= H

2

(U ;m;R

i

), for

i = 1; : : : ; d and that

e(�; P ) = e(Y;

d

X

i=1

h

i

Y

i

)

Y

1�i�d

R

i

;

where Y

i

=

P

U

j

2U

i

PK

j

, for all the sets U

i

in the aess struture U .

4.1 Some Remarks

� The ID-based distributed ring signature sheme proposed above allows to de-

tet whether some of the signers in the subset U

s

tries to boyott the proess

of signing. In e�et, the orretness of the values �

j

an be veri�ed by the rest

of the signers, by using publi information. Namely, for j = 1 the equation

e(�

1

; P ) = R

s1

� e(h

s

PK

1

; Y ) �

Y

1�i�d;i6=s

R

i

must be satis�ed. For the rest of users U

j

2 U

s

, with j 6= 1, the equation that

must be heked is

e(�

j

; P ) = R

sj

� e(h

s

PK

j

; Y ) � e(�

j�1

; P ):

� We onsider the ase where the signing users form an ad-ho aess struture.

But the sheme runs as well if the aess struture is �xed. In this ase the

resulting sheme would be in fat a distributed signature sheme (or threshold

signature sheme, if the aess struture is a threshold one).

� Note that this distributed ring signature sheme an be seen as a generi ring

signature sheme, as de�ned in Setion 2.5. In e�et, we an see the subsets

U

i

in the aess struture U as individual users of a standard ring signature

sheme, with publi keys PK

i

= Y

i

=

P

U

j

2U

i

PK

j

. There is a random value

R

i

for eah subset U

i

, and a partiular R

i

appears with probability at most

1=(q �

^

d) � 1=2

k

, as desired. Therefore, in the seurity analysis, we ould use

the Ring Forking Lemma stated in Setion 2.5.

9



� The eÆieny of the sheme depends on the total number of users and the

number of sets in the aess struture. Therefore, it is a good solution for

situations where the number of sets is small. If the aess struture is a

threshold one, then the number of sets is very large (it is exatly

�

`

t

�

, if `

is the total number of users and t is the threshold). We design in Setion 5 a

more eÆient proposal, spei� for the threshold ase.

4.2 Corretness and Anonymity of the Sheme

A ring signature (U ;m;R

1

; : : : ; R

d

; h

1

; : : : ; h

d

; �) omputed by following the method

explained above satis�es the veri�ation equation. In e�et:

e(�; P ) = e(�

n

s

; P ) = e

0

�

(

X

U

j

2U

s

a

sj

P + h

s

SK

j

) + (

X

1�i�d;i6=s

a

i

P ) ; P

1

A

=

0

�

Y

U

j

2U

s

e(a

sj

P; P ) � e(h

s

xPK

j

; P )

1

A

Y

1�i�d;i6=s

e(a

i

P; P ) =

=

0

�

Y

U

j

2U

s

R

sj

� e(h

s

PK

j

; xP )

1

A

Y

1�i�d;i6=s

R

i

=

= R

s

� e(

X

1�i�d;i6=s

h

i

Y

i

; Y ) � e(h

s

X

U

j

2U

s

PK

j

; Y )

Y

1�i�d;i6=s

R

i

= e(

d

X

i=1

h

i

Y

i

; Y )

d

Y

i=1

R

i

With respet to the anonymity of the sheme, we an argue as follows: let

Sig = (U ;m;R

1

; : : : ; R

d

; h

1

; : : : ; h

d

; �) be a valid ring signature of a message m on

behalf of the aess struture U = fU

1

; : : : ;U

d

g. Let U

s

be a subset of the aess

struture. We now �nd the probability that members of U

s

ompute exatly the

ring signature Sig, when they produe a ring signature of message m on behalf of

the aess U , by following the proposed sheme.

The probability that members of U

s

ompute all the values R

i

6= 1

G

2

of Sig,

pairwise di�erent for 1 � i � d, i 6= s, is

1

q�1

�

1

q�2

� : : : �

1

q�d+1

. Then, the probability

that members of U

s

hoose values a

sj

2 Z

q

that lead to the value R

s

of Sig, among

all possible values for R

s

di�erent to 1

G

2

and di�erent to all R

i

with i 6= s, is

1

q�d

.

Summing up, the probability that users in U

s

generate exatly the ring signature

Sig is

1

q � 1

�

1

q � 2

� : : : �

1

q � d+ 1

�

1

q � d

=

1

V

q�1;d

and this probability does not depend on the subset U

s

, so it is the same for all the

subsets of the aess struture. This fat proves the unonditional anonymity of the

sheme.

10



4.3 Unforgeability of the Sheme

We �rst remember the de�nition of an adversary against distributed ring signa-

ture shemes, introdued in Setion 3.1: a (T; ";Q

1

; Q

2

; Q

e

; Q

s

)-suessful attaker

against a ring signature sheme is an algorithm whih is given a list of identities

ID

i

, runs in time T , makes Q

1

queries to the random orale H

1

, Q

2

queries to the

random orale H

2

, asks for Q

e

seret keys of di�erent users and asks for Q

s

valid

ring signatures. With probability ", this algorithm obtains a valid new signature for

a pair (U ;m), suh that all the sets of the aess struture U ontain at least one

user whose seret key has not been queried by the adversary.

In the following theorem, we relate the diÆulty of forging our ID-based dis-

tributed ring signature sheme with the diÆulty of solving the Computational

DiÆe-Hellman problem.

Theorem 2. Let A be a (T; ";Q

1

; Q

2

; Q

e

; Q

s

)-suessful adversary against the ID-

based distributed ring signature sheme proposed above, suh that the suess proba-

bility " of A is non-negligible in the seurity parameter k.

We denote by n̂ the maximum possible ardinality of the subsets and by

^

d the

maximum possible number of subsets in the aess strutures onsidered in the sys-

tem.

Let � be any value suh that

�

1�

"

12

�

1=Q

e

� � < 1.

Then the Computational DiÆe-Hellman problem in G

1

an be solved in time

T

0

� 2T + 2Q

1

+ 2Q

2

+ 2(

^

d+ n̂)Q

s

and with probability "

0

�

(1��)

2

^

d+1

200V

Q

2

;

^

d

"

2

.

Proof. Sine A's suess probability " is non-negligible in k, we an assume that

" �

12 V

Q;

^

d

+6(Q+Q

s

)

2

(1��)

^

d

2

k

.

Let (P; aP; bP ) be the input of an instane of the Computational DiÆe-Hellman

problem in G

1

. Here P is a generator of G

1

, with prime order q, and the elements

a; b are taken uniformly at random in Z

�

q

.

We onstrut a probabilisti polynomial time Turing mahine F whih will solve

the given instane of the Computational DiÆe-Hellman problem; that is, it will

ompute the value abP . This mahine B is given as input the digital identi�ers

ID

i

of users U

i

in a set U

�

. It will use the attaker A as a sub-routine, so it must

perfetly simulate the environment of the attaker A. The mahine F is also allowed

to make Q

2

queries to the random orale for the hash funtion H

2

.

The publi data (P; aP; bP ) is given to the mahine F , and the publi key of

the master entity is de�ned to be Y = aP . Then F runs the attaker A against

our ID-based distributed ring signature sheme, answering to all the queries that A

makes. First of all, F gives the publi key Y = aP to the attaker A.

Without loss of generality, we an assume that A asks the random orale H

1

for

the value H

1

(ID) before asking for the seret key of ID.

The mahine F onstruts a table TAB

H

1

to simulate the random orale H

1

.

Every time an identity ID

j

is asked by A to the orale H

1

, the mahine F �rst

heks if this input is already in the table; if this is the ase, then F returns to

A the orresponding relation H

1

(ID

j

) = PK

j

. Otherwise, F ats as follows: with

11



probability �, it hooses the random bit 

j

= 0; in this ase, F hooses a di�erent

x

j

2 Z

�

q

at random and de�nes PK

j

= x

j

P and SK

j

= x

j

Y . On the other hand,

with probability 1 � �, the mahine F hooses 

j

= 1; in this ase, it hooses a

di�erent �

j

2 Z

�

q

at random and de�nes PK

j

= (�

j

)bP and SK

j

=?. The values

(ID

j

; PK

j

; x

j

or �

j

; SK

j

; 

j

) are stored in a new entry of TAB

H

1

, and the relation

H

1

(ID

j

) = PK

j

is sent to A. The ondition PK

j

6= PK

`

must be satis�ed for all

the di�erent entries j 6= ` of the table; if this is not the ase, the proess is repeated

for one of these users.

Sine we are assuming that H

1

behaves as a random funtion, and the values

PK

j

are all randomly hosen, this step is onsistent.

For any possible set of users U

i

, we de�ne the value Y

i

=

P

U

j

2U

i

PK

j

. Beause

of the way in whih we have omputed the values PK

j

, we have that

Y

i

= 

i

P + Æ

i

(bP )

for some values 

i

; Æ

i

2 Z

q

that the mahine F knows.

When A asks for the seret key orresponding to an identity ID

i

, the mahine

F looks for ID

i

in the table TAB

H

1

. If 

i

= 0, then F sends SK

i

= x

i

Y to A. If



i

= 1, the mahine F annot answer and halts. Note that the probability that F

halts in this proess is less than 1� �

Q

e

�

"

12

.

Every time A makes a query to the random orale H

2

, the mahine F queries

the same input to this random orale H

2

(beause it is allowed to do this), and sends

the obtained answer to A.

The adversary A is allowed to query for Q

s

valid ring signatures for messages

and aess strutures of its hoie. The mahine F must simulate the information

that A would obtain from these exeution of the signing algorithm. Let B be the

set of the users for whom A has asked for their seret keys (we all them orrupted

users). When A asks for a valid signature for a message m

0

and an aess stru-

ture U

0

= fU

0

1

; : : : ;U

0

d

g, the mahine F hooses at random one of the sets of U

0

to be the \real" author of the ring signature; for simpliity, we denote this set as

U

0

s

= fU

0

1

; U

0

2

; : : : ; U

0

n

s

g. The information that A would obtain from suh a real

omputation onsists of all the information broadast in the private broadast han-

nel of U

0

s

(beause we an onsider the worst ase where some of the users in U

0

s

is

orrupted, and so A has aess to this hannel), as well as the seret information

generated by the orrupted players, in B \ U

0

s

. The mahine F must exeute the

following algorithm in order to simulate this information:

1. For eah user U

0

`

2 U

0

s

\B, hoose at random a

s`

2 Z

�

q

, ompute and broadast

R

0

s`

= e(a

s`

P; P ).

2. Choose, for all i = 1; : : : ; d, i 6= s, random values a

i

2 Z

�

q

, pairwise di�erent,

and ompute R

0

i

= e(a

i

P; P ) and h

i

= H

2

(U

0

;m

0

; R

i

) (by querying the random

orale H

2

); we an assume that A will later ask the random orale H

2

with

these inputs, to verify the orretness of the signature.

3. Choose at random h

0

s

2 Z

q

.
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4. For user U

0

1

:

� if U

0

1

2 B (sine F has not halted, this means that the mahine F knows

the seret key SK

1

of this orrupted user, as well as the value a

s1

),

ompute �

1

= a

s1

P + h

0

s

SK

1

+

P

1�i�d;i6=s

a

i

P ;

� if U

0

1

=2 B, hoose at random �

1

2 G

1

and ompute

R

0

s1

= e(�

1

; P ) � e(h

0

s

PK

1

;�Y ) �

Y

1�i�d;i6=s

(R

0

i

)

�1

:

5. For user U

0

j

, for j = 2; : : : ; n

s

:

� if U

0

j

2 B (sine F has not halted, this means that the mahine F knows

the seret key SK

j

of this orrupted user, as well as the value a

sj

), om-

pute �

j

= a

sj

P + h

0

s

SK

j

+ �

j�1

;

� if U

0

j

=2 B, hoose at random �

j

2 G

1

and ompute

R

0

sj

= e(�

j

� �

j�1

; P ) � e(h

0

s

PK

j

;�Y ):

6. Compute the value

R

0

s

= e(�Y;

X

1�i�d;i6=s

h

0

i

Y

i

)

Y

U

j

2U

s

R

0

sj

:

If R

0

s

= 1 or R

0

s

= R

0

i

for some i = 1; : : : ; d, i 6= s, then return to step 1.

7. Impose the relation H

2

(U

0

;m

0

; R

0

s

) = h

0

s

. Later, if A asks the random orale

H

2

for this input, then F will answer with h

0

s

. Sine h

0

s

is a random value and

we are in the random orale model for H

2

, this relation is onsistent for A.

The resulting signature (U

0

;m

0

; R

0

1

; : : : ; R

0

d

; h

0

1

; : : : ; h

0

d

; �

0

) is valid. However, the

assignment H

2

(U

0

;m

0

; R

0

s

) = h

0

s

, in step 7 of the simulating algorithm, an ause

some ollision if the query (U

0

;m

0

; R

0

s

) has been previously made to the random

orale H

2

, or if the same tuple (U

0

;m

0

; R

0

s

) is produed two times in two di�erent

runs of the signature simulation algorithm.

Sine no R

0

i

appears with probability greater than 2=2

k

in a simulated ring sig-

nature, we an bound the probability that suh ollisions our:

� The probability that a tuple (U

0

;m

0

; R

0

s

) that F outputs, as part of a simulated

ring signature, has been asked before to the random orale by A is less than

Q

2

�Q

s

�

2

2

k

�

"

6

.

� The probability that the same tuple (U

0

;m

0

; R

0

s

) is output two times by F in

two di�erent signature simulations is less than

Q

2

s

2

�

2

2

k

�

"

6

.
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Altogether, the probability of ollisions is less than "=3. The probability that

the mahine F sueeds in obtaining a valid ring signature is the following:

~"

F

= Pr[F obtains a valid distributed ring signature℄ =

Pr[F does not halt AND no-ollisions in the simulations AND A sueeds℄ �

� Pr[A sueeds j F does not halt AND no-ollisions in the simulations ℄ �

� Pr[F halts OR ollisions in the simulations℄ � "�

�

"

12

+

"

3

�

=

7"

12

:

However, assuming that A provides F with a valid distributed ring signature

for a pair (m;U), where U = fU

1

; : : : ;U

d

g has d �

^

d subsets, we need to be sure

that F does not know any of the d \seret keys" in U . In this ase, the \seret

key" of a subset U

i

, mathing with the \publi key" PK

i

= Y

i

=

P

U

j

2U

i

PK

j

, is

SK

i

=

P

U

j

2U

i

SK

j

. Otherwise, if F knows some of this seret keys, it ould have

generated this forged signature by itself, and then it would not be a real forgery.

F will know SK

i

if and only if he knows the seret keys of all the members of

U

i

, or in other words, if 

j

= 0, for all U

j

2 U

i

. Therefore, the probability that F

does not know any of the d \seret keys" in U is

Pr[8i = 1; : : : ; d; 9U

j

2 U

i

s.t. 

j

= 1℄ � (1� �)

d

:

Summing up, with probability "

F

= (1 � �)

d

~"

F

� (1 � �)

^

d

7"

12

�

7V

Q

2

;

^

d

2

k

, the

mahine F obtains a valid forged ring signature for an aess struture where he

does not know any \seret key". The exeution time of the mahine F is T

F

�

T +Q

1

+Q

2

+ (

^

d+ n̂)Q

s

.

Applying the Ring Forking Lemma (Theorem 1) to the mahine F , we have

that, by exeuting two times F , we will obtain in time T

0

� 2T

F

and with prob-

ability ~"

0

�

"

2

F

66V

Q

2

;

^

d

two valid ring signatures (U ;m;R

1

; : : : ; R

d

; h

1

; : : : ; h

d

; �) and

(U ;m;R

1

; : : : ; R

d

; h

0

1

; : : : ; h

0

d

; �

0

) suh that h

j

6= h

0

j

, for some j 2 f1; : : : ; dg and

h

i

= h

0

i

for all i = 1; : : : ; d suh that i 6= j.

By de�nition of valid forgery against a distributed ring signature sheme, there

exists at least one non-orrupted user in eah subset U

i

2 U ; in partiular there exists

a non-orrupted user U

z

2 U

j

nB in the subset U

j

. Remember that Y

j

= 

j

P+Æ

j

(bP ),

where 

j

and Æ

j

are values known by the mahine F .

For this non-orrupted user U

z

2 U

j

, we have 

z

= 1 with probability 1 � �,

whih means that PK

z

= �

z

(bP ). So the value �

z

is one of the terms added in the

fator Æ

j

that appears in Y

j

. If this is the ase, then with overwhelming probability

we will have that Æ

j

6= 0mod q.

If now we ome bak to the two forged signatures, and we write the orresponding

veri�ation equations, we have:

e(�; P ) = R

1

� : : : �R

d

� e(Y; h

1

Y

1

) � : : : � e(Y; h

d

Y

d

)

14



e(�

0

; P ) = R

1

� : : : � R

d

� e(Y; h

0

1

Y

1

) � : : : � e(Y; h

0

d

Y

d

)

Dividing these two equations, we obtain e(� � �

0

; P ) = e(Y; (h

j

� h

0

j

)Y

j

) =

e(aP; (h

j

� h

0

j

)(

j

P + Æ

j

(bP ))) = e(aP; (h

j

� h

0

j

)

j

P ) � e(aP; (h

j

� h

0

j

)Æ

j

(bP )).

We an onlude from this relation the equality

e(abÆ

j

(h

j

� h

0

j

)P; P ) = e(� � �

0

� [a

j

(h

j

� h

0

j

)℄P; P ):

Sine the pairing is non-degenerate, this implies that abÆ

j

(h

j

� h

0

j

)P = � � �

0

�

[a

j

(h

j

� h

0

j

)℄P . Therefore, one an ompute the solution of the given instane of

the Computational DiÆe-Hellman problem:

abP =

1

Æ

j

(h

j

� h

0

j

)

(� � �

0

)�

a

j

Æ

j

P :

The inverses are omputed modulo q, and they always exists beause h

j

6= h

0

j

and

Æ

j

6= 0mod q with overwhelming probability.

Summing up, the mahine F has solved the Computational DiÆe-Hellman prob-

lem with probability

"

0

= (1� �)~"

0

� (1� �)

"

2

F

66V

Q

2

;n̂

� (1� �)

((1� �)

^

d

7"=12)

2

66V

Q

2

;

^

d

�

(1� �)

2

^

d+1

200V

Q

2

;

^

d

"

2

:

And the total time needed to solve the problem has been T

0

� 2T

F

� 2T + 2Q

1

+

2Q

2

+ 2(

^

d + n̂)Q

s

.

5 An ID-Based Distributed Ring Signature Sheme for

Threshold Aess Strutures

We next propose a di�erent sheme for omputing threshold ring signatures in a more

eÆient way, in an ID-based senario. The proposal follows the ideas introdued in

[19℄, where threshold ring signatures are designed for PKI senarios (with users

having either Dis-Log or RSA keys, for example).

In the design of the new sheme, Shamir's threshold seret sharing sheme [16℄ is

used as a primitive. We will assume, again, that any spei� set of users an always

have aess to a private and authentiated broadast hannel. The protools of our

proposed sheme are desribed below.

Key generation: let G

1

be an additive group of prime order q, generated by

some element P . Let G

2

be a multipliative group with the same order q. We need

q � 2

k

, where k is the seurity parameter of the sheme. Let e : G

1

� G

1

! G

2

be a

bilinear pairing as de�ned in Setion 2.1. Let H

1

: f0; 1g

�

! G

�

1

and H

2

: f0; 1g

�

!

Z

q

be two hash funtions.

The master entity hooses at random his seret key x 2 Z

�

q

and publishes the

value Y = xP .
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Seret key extration: any user U

i

of the system, with identity ID

i

, has publi

key PK

i

= H

1

(ID

i

). When he requests the master for his mathing seret key, he

obtains the value SK

i

= xPK

i

.

Threshold ring signature generation: assume that a subset of users fU

1

; U

2

; : : : ; U

t

g

want to ompute an anonymous signature on behalf of a set U = fU

1

; : : : ; U

t

;

U

t+1

; : : : ; U

`

g, where 1 � t � `. The t signing users jointly exeute the following

protool:

1. For non-signing users U

i

2 U , with i = t+ 1; : : : ; `, they hoose uniformly at

random 

i

2 Z

q

and A

i

2 G

1

; they ompute and broadast the value

z

i

= e(A

i

; P ) � e(Y; 

i

PK

i

):

2. The signing users U

j

, with j = 1; : : : ; t, hoose uniformly at random T

j

2 G

1

;

they ompute and broadast the value

z

j

= e(T

j

; P ):

3. They ompute  = H

2

(U ;m; z

1

; : : : ; z

`

).

4. They onstrut, by using Lagrange interpolation, the only polynomial f(x) 2

Z

q

[X℄ of degree `� t whih veri�es f(0) =  and f(i) = 

i

, for i = t+1; : : : ; `.

5. For j = 1; : : : ; t, player U

j

omputes 

j

= f(j) and then omputes and broad-

asts the value

A

j

= T

j

� 

j

SK

j

:

6. The resulting signature is (U ;m; f(x); A

1

; : : : ; A

`

).

Veri�ation of a threshold ring signature: the reipient of the message �rst

veri�es that the degree of f(x) is exatly ` � t. Then he omputes 

i

= f(i), for

every user U

i

2 U , with i = 1; : : : ; `, and the values

z

i

= e(A

i

; P ) � e(Y; 

i

PK

i

):

The signature is valid if f(0) = H

2

(U ;m; z

1

; : : : ; z

`

).

5.1 Corretness and Anonymity of the Sheme

A signature whih has been generated following the above method is orret, beause

z

i

= e(A

i

; P ) � e(Y; 

i

PK

i

) for i = t+ 1; : : : ; `, by onstrution. On the other hand,

for j = 1; : : : ; t, we have that

z

j

= e(T

j

; P ) = e(A

j

+

j

SK

j

; P ) = e(A

j

; P )�e(

j

xPK

j

; P ) = e(A

j

; P )�e(

j

PK

j

; Y );

as desired. Therefore, the signature satis�es that  = f(0) = H

2

(U ;m; z

1

; : : : ; z

`

).

With respet to anonymity, the reasoning is similar to the one that we have al-

ready used in Setion 4.2: given a valid threshold ring signature (U ;m; f(x); A

1

; : : : ; A

`

)
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on behalf of a set of users U , the probability that a partiular subset B � U of t

users have omputed this signature is exatly

1

q

2(`�t)

�

1

q

t

=

1

q

2`�t

:

This probability depends only on ` and t. Therefore, all the subsets of U with t

users have the same probability to be the atual authors of the signature.

5.2 Unforgeability of the Sheme

In the partiular ase of threshold aess strutures, the de�nition of a (T; ";Q

1

; Q

2

; Q

e

; Q

s

)-

suessful attaker against a ID-based threshold ring signature sheme is the follow-

ing: it reeives as input the identities of a set of users, then it runs in time T , makes

Q

1

queries to the random orale H

1

, Q

2

queries to the random orale H

2

, asks for Q

e

seret keys of di�erent users and asks for Q

s

valid threshold ring signatures. With

probability ", this algorithm obtains a valid new signature for a pair (U ;m) and a

threshold t, suh that it has asked for the seret key of at most t� 1 of the users in

U .

In the following theorem, we prove the unforgeability of our ID-based thresh-

old ring signature sheme, by reduing the problem of forging a signature to the

Computational DiÆe-Hellman problem.

Theorem 3. Let A be a (T; ";Q

1

; Q

2

; Q

e

; Q

s

)-suessful adversary against the pro-

posed ID-based threshold ring signature sheme, suh that the suess probability "

of A is non-negligible in the seurity parameter k.

We denote by

^

` the maximum ardinality of the sets for whih A asks for a valid

signature.

Let � be any value satisfying

�

1�

"

6

�

1=Q

e

� � < 1.

Then the Computational DiÆe-Hellman problem in G

1

an be solved in time

T

0

� 2T + 2Q

1

+ 2Q

2

+ 2

^

`Q

s

and with probability "

0

�

(1��)"

2

128Q

2

.

Proof. The �rst thing to remark is the fat that we an bound " �

3(Q

s

+Q

2

)

2

2

k

.

Otherwise, the suess probability " would be negligible in the seurity parameter

k.

We are going to onstrut a probabilisti polynomial time Turing mahine F

whih will use the attaker A as a sub-routine in order to solve the given instane of

the Computational DiÆe-Hellman problem. Therefore, F must perfetly simulate

the environment of the attaker A.

The mahine F reeives a list of identities and the publi data (P; aP; bP ), and

its goal is to ompute the value abP . The publi key of the master entity is de�ned

to be Y = aP . Then F runs the attaker A against the threshold ID-based ring

signature sheme, answering to all the queries that Amakes. The publi key Y = aP

is also sent to the attaker A.

Without loss of generality, we an assume that A asks the random orale H

1

for

the value H

1

(ID) before asking for the seret key of ID.
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The mahine F onstruts a table TAB

H

1

to simulate the random orale H

1

.

Every time an identity ID

i

is asked by A to the orale H

1

, the mahine F ats as

follows: �rst F heks if this input is already in the table; if this is the ase, then F

sends to A the orresponding relation H

1

(ID

i

) = PK

i

. Otherwise, with probability

�, the mahine F hooses the bit d

i

= 0 and a di�erent x

i

2 Z

�

q

at random, and

de�nes PK

i

= x

i

P and SK

i

= x

i

Y . On the other hand, with probability 1� �, the

mahine F hooses the bit d

i

= 1 and a di�erent �

i

2 Z

�

q

at random, and de�nes

PK

i

= (�

i

)bP and SK

i

=?. The values (ID

i

; PK

i

; x

i

or �

i

; SK

i

; d

i

) are stored in a

new entry of TAB

H

1

, and the relation H

1

(ID

i

) = PK

i

is sent to A. The ondition

PK

i

6= PK

j

must be satis�ed for all the di�erent entries i 6= j of the table; if this is

not the ase, the proess is repeated for one of these users.

Sine we are assuming that H

1

behaves as a random funtion, and the values

PK

i

are all randomly hosen, this simulation of the hash funtion H

1

is onsistent.

Later, every time A asks for the seret key orresponding to an identity ID

i

, the

mahine F looks for ID

i

in the table TAB

H

1

. If d

i

= 0, then F sends SK

i

= x

i

Y

to A. If d

i

= 1, the mahine F annot answer and halts. The probability that F

halts in this proess is less than 1� �

Q

e

� "=6.

As well, F onstruts a table TAB

H

2

to simulate the random orale H

2

. Every

time A makes a query to this orale, F looks for this value in the table. If it is

already there, then F sends the orresponding relation to A; if not, F hooses at

random an output of the random orale for the queried input, di�erent from the

outputs whih are already in the table, sends the relation to A and stores it in the

table TAB

H

2

.

Finally, the attaker A an ask Q

s

times for valid threshold ring signatures for

messages m

0

, sets U

0

of `

0

users and thresholds t

0

. To answer suh queries, the

mahine F proeeds as follows:

1. Choose at random `

0

� t

0

+ 1 values 

0

; 

0

t

0

+1

; : : : ; 

0

`

0

2 Z

q

.

2. Using Lagrange interpolation, onstrut the only polynomial f

0

(x) 2 Z

q

[X℄

with degree `

0

� t

0

suh that f

0

(0) = 

0

and f

0

(i) = 

0

i

, for i = t

0

+ 1; : : : ; `

0

.

3. Compute the values 

0

j

= f

0

(j), for j = 1; : : : ; t

0

.

4. Choose at random `

0

values A

0

1

; : : : ; A

0

`

0

2 G

1

.

5. Compute, for i = 1; : : : ; `

0

, the values z

0

i

= e(A

0

i

; P ) � e(Y; 

0

i

PK

i

)..

6. Impose and store in the table TAB

H

2

the new relation H

2

(U

0

;m

0

; z

0

1

; : : : ; z

0

`

) =



0

.

7. De�ne the signature to be (U

0

;m

0

; f

0

(x); A

0

1

; : : : ; A

0

`

).

The proess results in a valid threshold ring signature, beause we are assuming

that H

2

behaves as a random funtion, and 

0

is taken uniformly at random in Z

q

.

However, the assignment H

2

(U

0

;m

0

; z

0

1

; : : : ; z

0

`

) = 

0

an produe some ollisions in

the management of the table TAB

H

2

that simulates the random orale H

2

.
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A �rst possible ollision ours if a tuple (U

0

;m

0

; z

0

1

; : : : ; z

0

`

) produed in the

simulation of a signature has been already queried to the random orale H

2

. The

probability of this event is less than

Q

s

Q

2

q

.

A seond possible ollision ours when the same tuple (U

0

;m

0

; z

0

1

; : : : ; z

0

`

) is pro-

dued in two di�erent signature simulations. The probability of this event is less

than

Q

2

s

2q

.

We denote by ! the whole set of random tapes that take part in an attak by

A, with the environment simulated by F , but exluding the randomness related to

the orale H

2

. The suess probability of A in forging a valid ring signature sheme

is then taken over the spae (!;H

2

).

In an exeution of the attaker A, we use the notation Q

1

;Q

2

; : : : ;Q

Q

2

for the

di�erent queries that A makes to the random orale H

2

. If A produes a valid

forged signature (U ;m; f(x); A

1

; : : : ; A

`

), by the ideal randomness of the orale H

2

,

the probability that A has not asked for the tuple (U ;m; z

1

; : : : ; z

`

) to this orale

(and so A must have guessed the orresponding output), is less than

1

q

. We de�ne

� = 1 in this ase; otherwise, � denotes the index of the query where the tuple

above was asked. That is, Q

�

= (U ;m; z

1

; : : : ; z

`

).

We denote by S the set of suessful exeutions of A, with F simulating its

environment, and suh that � 6= 1. We also de�ne the following subsets of S: for

every i = 1; 2; : : : ; Q

2

, the set S

i

ontains the suessful exeutions suh that � = i.

This gives us a partition fS

i

g

i=1;:::;Q

2

of S in exatly Q

2

lasses.

The probability that an exeution (!;H

2

) of A with the environment simulated

by F results in a valid forgery with � 6=1 is

~" = Pr[(!;H

2

) 2 S℄ � "� (1� �

Q

e

)�

Q

s

Q

2

q

�

Q

2

s

2q

�

1

q

�

� "�

"

6

�

"

6

�

"

6

=

"

2

:

Now we de�ne the set of indexes whih are more likely to appear as

I = fi s.t. Pr[(!;H

2

) 2 S

i

j (!;H

2

) 2 S℄ �

1

2Q

2

g:

And the orresponding subset of suessful exeutions as S

I

= f(!;H

2

) 2 S

i

s.t.

i 2 Ig.

For a spei� index i 2 I, we have that

Pr[(!;H

2

) 2 S

i

℄ = Pr[(!;H

2

) 2 S℄ � Pr[(!;H

2

) 2 S

i

j (!;H

2

) 2 S℄ �

� ~" �

1

2Q

2

:

Lemma 2. It holds that Pr[(!;H

2

) 2 S

I

j (!;H

2

) 2 S℄ � 1=2.

Proof. Sine the sets S

i

are disjoint, we have

Pr[(!;H

2

) 2 S

I

j (!;H

2

) 2 S℄ =

X

i2I

Pr[(!;H

2

) 2 S

i

j (!;H

2

) 2 S℄ =
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1�

X

i=2I

Pr[(!;H

2

) 2 S

i

j (!;H

2

) 2 S℄:

Sine the omplement of I ontains at most Q

2

indexes, we have that this probability

is greater than 1�Q

2

�

1

2Q

2

= 1=2.

We ome bak to the exeution of A with the environment simulated by F .

With probability at least ~", suh an exeution (!;H

2

) results in a valid forgery with

� 6= 1. In this ase, applying Lemma 2, we know that this suessful exeution

belongs to S

I

with probability at least 1=2.

Now we split H

2

as (H

0

2

; ), where H

0

2

orresponds to the answers of all the

queries to H

2

exept the query Q

�

, whose answer is denoted as .

We apply the Splitting Lemma (lemma 1), taking X = (!;H

0

2

), Y = , A = S

�

,

Æ =

~"

2Q

2

and � =

~"

4Q

2

. The lemma says that there exists a subset of exeutions 


�

suh that

Pr[(!;H

2

) 2 


�

j (!;H

2

) 2 S

�

℄ �

�

Æ

=

1

2

and suh that, for any (!;H

2

) 2 


�

:

Pr

~

[(!;H

0

2

; ~) 2 S

�

℄ � Æ � � =

~"

4Q

2

:

With probability at least

~"

2

, the �rst exeution (!;H

0

2

; ) of A simulated by F

is suessful and the index � belongs to the set I. Furthermore, in this ase we

have that (!;H

0

2

; ) 2 


�

with probability at least 1=2. If we now repeat this

simulated exeution of A with �xed (!;H

0

2

) and randomly hosen ~ 2 Z

q

, we know

that (!;H

0

2

; ~) 2 S

�

and furthermore ~ 6=  with probability at least

~"

4Q

2

�

1

q

.

Now onsider the two suessful exeutions of the attak, (!;H

0

2

; ) and (!;H

2

; ~),

that the algorithm F has obtained by exeuting the attak A. We denote by

(U ;m; f(x); A

1

; : : : ; A

`

) and (

~

U ; ~m;

~

f(x);

~

A

1

; : : : ;

~

A

`

), respetively, the forged thresh-

old ring signatures. Sine the random tapes and H

1

are idential, and the answers

of the random orale H

2

are the same until the query Q

�

= (U ;m; z

1

; : : : ; z

`

), we

have in partiular that

~

U = U , ~m = m and ~z

i

= z

i

, for i = 1; : : : ; `.

Sine f(0) =  6= ~ =

~

f(0) and the degree of both f(x) and

~

f(x) is `� t, the two

polynomials f(x) and

~

f(x) an oinide at most at ` � t points. Therefore, there

are at least t values j

1

; : : : ; j

t

2 f1; : : : ; `g suh that f(j

i

) 6=

~

f(j

i

), for i = 1; : : : ; t.

Furthermore, the forgery against the threshold ring signature sheme has been valid,

so the attaker A has asked for the seret key of at most t � 1 members of the

signing ring U . This means that there is at least one member U

j

2 U suh that



j

= f(j) 6=

~

f(j) = ~

j

and suh that the seret key of U

j

has not been asked by A.

In this ase, with probability 1� � we have d

j

= 1 and so PK

j

= �

j

bP .

The equality ~z

j

= z

j

beomes e(A

j

; P ) � e(Y; 

j

PK

j

) = e(

~

A

j

; P ) � e(Y; ~

j

PK

j

).

This is equivalent to

e(A

j

�

~

A

j

; P ) = e(Y; (~

j

� 

j

)PK

j

) = e(aP; (~

j

� 

j

)�

j

bP ) = e(a(~

j

� 

j

)�

j

bP; P ):
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This implies that A

j

�

~

A

j

= a(~

j

� 

j

)�

j

bP . Therefore, the mahine F obtains

the solution of the given instane of the Computational DiÆe-Hellman problem as

abP =

1

(~

j

� 

j

)�

j

(A

j

�

~

A

j

):

The inverse an be taken modulo q, sine �

j

2 Z

�

q

and 

j

6= ~

j

.

The total suess probability "

0

of the attak performed by F is

"

0

� (1� �)

~"

2

�

1

2

�

~"

4Q

2

�

1

q

�

� (1� �)

~"

4

�

~"

8Q

2

�

�

(1� �)~"

2

32Q

2

�

(1� �)("=2)

2

32Q

2

�

(1� �)"

2

128Q

2

:

The total exeution time T

0

of the mahine F onsists of running two times the

mahine A, simulating its environment. That is, T

0

� 2(T +Q

1

+Q

2

+

^

`Q

s

).

This last proposal, apart from being more eÆient for the ase of threshold

strutures, enjoys a better seurity redution, sine the fator V

Q

2

;

^

d

does not appear

in the relation between the probabilities "

0

and ". This is due to the fat that the

Ring Forking Lemma for generi ring signature shemes is not used in the proof of

the seurity of this threshold proposal.

6 Conlusion

In this work we have dealt with distributed ring signature shemes in identity-based

senarios. Suh shemes provide anonymity to a subset of users who want to sign a

message on behalf of a larger set of users. Furthermore, in identity-based senarios,

publi keys of the users are derived from publily veri�able data (for example, an

e-mail address), and so digital erti�ates are not neessary to authentiate the

validity of publi keys. This allows more eÆient implementations of publi key

ryptographi systems, speially for those ases where basi operations involve many

di�erent publi keys, as it happens in (distributed) ring signatures.

We have proposed the two �rst distributed ring signature shemes whih run in an

identity-based framework. The �rst one an be used for general families of possible

signing subsets, whereas the seond one is spei�, and more eÆient, for the ase of

threshold families. The design of the shemes uses di�erent mathematial tools, as

bilinear pairings or Shamir's seret sharing sheme. In the seurity analysis, we use

some results of probability theory and we assume that the well-known Computational

DiÆe-Hellman problem is intratable.
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