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Abstra
t

The pipelining s
heme proposed in [24℄ is an eÆ
ient and se
ure s
heme

for 
omputing s
alar multipli
ation in Ellipti
 Curve Cryptosystems (ECC).

The s
heme proposed in [24℄ does not assume any pre-
omputation. In

this work we extend the s
heme to the situation where the system allows

some pre-
omputation and is 
apable of storing some pre
omputed val-

ues. Like the s
heme proposed in [24℄ our s
heme uses an extra multiplier.

On the performan
e front, it outperforms the best known sequential and

parallel s
hemes. On the se
urity front, our algorithm uses two 
ounter-

measures against SPA and hen
e are doubly se
ured against SPA. Also,

it is se
ure against DPA using the Joye-Tymen's 
urve randomization


ountermeasure.

Keywords Ellipti
 Curve Cryptosystems, Pipelining, S
alar Multipli
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1 Introdu
tion

Ellipti
 Curve Cryptosystems (ECC) sin
e their in
eption (independently by

Koblitz [18℄ and Miller [23℄ in 1985) is 
onstantly gaining popularity due to

intra
tability of the ellipti
 
urve dis
rete logarithm problem (ECDLP). For a


arefully 
hosen 
urve over a suitable underlying �eld there is no subexponential

time algorithm to solve ECDLP. This fa
t enables ECC to provide a high level of

se
urity with mu
h smaller keys in 
omparison to other popular 
ryptosystems

based on integer fa
torisation or �nite �eld based dis
rete logarithms.

Computationally the most expensive operation in ECC is s
alar multipli
a-

tion, namely, given an integer m and an ellipti
 
urve point P , the 
omputation
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of mP . The point P is generally refered to as the base point. It is 
omputed by

a series of doubling (ECDBL) and addition (ECADD) operation of the point P ,

depending upon the bit sequen
e representing m. Several methods have been

proposed to perform the s
alar multipli
ation se
urely and eÆ
iently. For an ex-


ellent review the reader 
an refer to [13℄. The performan
e of all these methods

is dependent on the eÆ
ien
y of the ellipti
 
urve group operations: ECDBL and

ECADD, whi
h in turn depend upon the 
hoi
e of the underlying �eld and the

point representation. In the 
urrent work we will refer to ECADD and ECDBL

as EC-operations. In aÆne 
oordinates EC-operations involve �eld inversion, an

expensive operation parti
ularly over �elds of 
hara
teristi
 > 3. In the 
urrent

work we will 
on
entrate on su
h �elds and use Ja
obian 
oordinates for point

representation.

The methods for 
omputation of s
alar multipli
ation 
an be broadly divided

into two types: the ones whi
h are suitable if the base point is �xed and the

others are for variable base point. If the based point is �xed, then the some

pre
omputation 
an be 
arried out and stored before the s
alar multipli
ation

a
tually begins. So the methods pres
ribed for �xed base point situation are

generally more eÆ
ient. However, the methods require more memory and are

less suitable for small devi
es with restri
ted resour
es.

The s
alar multipli
ation is 
omputed by a series of EC-operations. The

pipelining s
heme des
ribed in [24℄ is based on a key observation that instead

of 
omputing these operations one after another, they 
an be 
as
aded. The

ECADD and ECDBL algorithms have their own set of inputs. These algorithms


an be divided into parts some of whi
h 
an be exe
uted with only a part of

the input. So one part of the algorithm 
an begin exe
ution as soon as the


orresponding part of the inputs is available to it. Thus two or more EC-

operations 
an be exe
uted in a pipeline. We dis
uss more about the pipelining

s
heme in Se
tion 2.3.

In [19℄, [20℄, Paul Ko
her et al. proposed Side-
hannel atta
ks (SCA), whi
h

are 
onsidered to be the most dangerous threat against mobile devi
es and ECC.

The s
heme proposed in the 
urrent work is doubly se
ure against simple power

atta
ks, be
ause it uses two 
ountermeasures. First, like the pipelining s
heme

in [24℄ it uses side-
hannel atomi
 blo
ks to prevent SPA. Besides, the algorithms

used for 
omputing the s
alar multipli
ation use a �xed pattern of EC-operations

to 
ompute the s
alar multipli
ation. This makes the side-
hannel information

uniform and does not leak out any data on the se
ret multiplier.

The 
omb method is an eÆ
ient method for 
omputing the s
alar multipli
a-

tion. It uses a pre
omputed table and hen
e is 
onsidered suitable for �xed base

point s
enario of s
alar multipli
ation. In the 
urrent work, we apply pipelin-

ing te
hnique to 
omb method. The 
omputation is naturally very eÆ
ient for

�xed base point s
enario. Also we provide an eÆ
ient method for 
omputing

the pre
omputated table online. When the pre
omputation is done online by

our pre
omputation algorithm, the total 
omplexity of pre
omputation and the


omb method be
omes quite a�ordable. Thus the proposed s
heme is eÆ
ent for

variable base point s
enario as well. On the performan
e front our method 
om-

pares favourably against all existing methods using similar amount of resour
es.
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This has been established in Se
tion 4.

The rest of the paper is organised as follows. In Se
tion 2 we brie
y deal

with basi
s of ellipti
 
ure 
ryptography, mainly highlighting the 
on
epts we

need in this work. In Se
tion 3, we des
ribe the proposed method. In Se
tion 4

we examine the performan
e of the s
heme and 
ompare it with other known

methods. Se
tion 5 
on
ludes the paper.

2 Ellipti
 Curve Preliminaries

In the 
urrent work we will 
on
entrate on 
urves over large prime �elds only.

Over a �nite �eld F

q

; q = p

r

of odd 
hara
teristi
 p > 3, an ellipti
 
urve

has an equation of the form y

2

= x

3

+ ax + b where a; b 2 F

q

and 4a

3

+

27b

2

6= 0. The set of points on an ellipti
 
urve forms over a �nite �eld forms a

group under a spe
i�
 operation written additively. A large number of ellipti



urves over suitable underlying �elds exist over whi
h the dis
rete logarithm

problem is believed to be hard. Ellipti
 
urve 
ryptosystems are ElGamal type


ryptosystems built over su
h groups. The most dominant operation in ECC

is s
alar multipli
ation. A lot of resear
h has been 
arried out by resear
h


ommunity for 
omputing it se
urely and eÆ
iently. Several algorithms have

been proposed.

S
alar Multipli
ation is 
arried out by a series of EC-operations. In aÆne


oordinates EC-operations require one �eld inversion ea
h. Over prime �elds

the �eld inversion is a very expensive operation. To avoid these �eld inversions

several point representations for the ellipti
 
urve points have been proposed in

literature. We will use Ja
obian 
oordinates in the 
urrent work. Mixed addi-

tions are quite 
heaper than general adition [7℄, so we will use mixed addition

(Ja
obian + aÆne = Ja
obian) for addition steps in our s
alar multipli
ation

algorithm. Hen
e unless otherwise stated by ECADD we will generally mean

this mixed addition in this paper.

2.1 Comb Methods

Among the s
alar multipli
ation methods with pre
omputation two eÆ
eint ones

are the window method [25, 13℄ and the 
omb method [13℄. The basi
 window

method does not redu
e the number of doublings. The eÆ
ien
y is gained by

redu
ing the number of additions. If the s
alar is n bits in length, the Window

method requires (n � 1) doublings. The binary method requires n=2 additions

on average, whi
h is lesser in window method. Applying pipelining te
hnique to

window method will surely yield a more eÆ
ient method. But 
omb methods

are even more attra
tive as they require quite fewer doublings also. We devote

this se
tion to a brief des
ription of the basi
 
omb method.

The 
omb methods are very eÆ
ient in the �xed base point s
enario of s
alar

multipli
ation.

Let m be the s
alar multiplier. Let the binary representation of m be of

n bits in length. Let w be a small integer and let t = dn=we. We append
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tw�n bits in the left of the binary representation of m and we divide it into w

bit strings of length t ea
h. Let these bit strings be K

w�1

;K

w�2

; � � � ;K

1

;K

0

.

Then the bit strings K

j


an be written as the rows of an exponent array

2

6

6

6

6

6

6

6

6

4

K

0

K

1

.

.

.

K

i

.

.

.

K

w�1

3

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

K

0

t�1

� � � K

0

0

.

.

.

.

.

.

K

i

t�1

� � � K

i

0

.

.

.

.

.

.

K

w�1

t�1

� � � K

w�1

0

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

k

t�1

� � � k

0

.

.

.

.

.

.

k

t(i+1)�1

� � � k

ti

.

.

.

.

.

.

k

wt�1

� � � k

(w�1)t

3

7

7

7

7

7

7
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whi
h is then pro
essed 
olumnwise, one after another. The 
omputation is

a

elerated by pre
omputing the points

[a

w�1

; � � � ; a

1

; a

0

℄P = a

w�1

2

w�1

P + � � �+ a

1

2P + a

0

P

for all ve
tors (a

w�1

; � � � ; a

1

; a

0

) 2 f0; 1g

w

. That is, pre
ompute the points

0P; 1P; � � � ; (2

w

� 1)P and store in a table T [ ℄ su
h that T [i℄ = iP for all

i 2 f0; 1; � � � ; 2

w

� 1g. The s
alar multipli
ation is then 
omputed by Algo-

rithm 1.

Algorithm 1 (The Main Algorithm for Comb Method)

Input: The point P and the integer m in the form spe
i�ed and the table T [℄.

Output: mP .

1. Let j = K

w�1

t�1

2

w�1

+ � � �+K

1

t�1

2 +K

0

t�1

2. Let Q = T [j℄

3. For i = t� 2 down to 0

4. j = K

w�1

i

2

w�1

+ � � �+K

1

i

2 +K

0

i

5. Q ECDBL(Q)

6. Q = ECADD(Q;T [j℄)

7. return Q

Proposition 1 Algorithm 1 needs t� 1 invo
ation of ECDBL and on average

�

2

w

�1

2

w

t� 1

�

invo
ations of ECADD to 
ompute the s
alar multipli
ation.

Proof : As ECDBL is invoked in the i-loop at Step 3 of the algorithm, the

number of invo
ation of ECDBL is (t�1). ECADD is also invoked same number

of times. But a
tually an addition is not 
arried out if j = 0. Assuming all

possibilities to be equally likely, the expe
ted number of additions 
arried out

at Step 6 is

�

2

w

�1

2

w

t� 1

�

.

2.2 Side-
hannel Atta
ks

Side-
hannel atta
ks (SCA), proposed by Paul Ko
her et al. [19℄, [20℄ are very

serious threat to ECC. SCA reveals the se
ret information by sampling and an-

alyzing the side-
hannel information like timing, power 
onsumption and EM
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radiation tra
es of an ele
troni
 
omputation. ECC is a very 
ryptosystem

suitable for mobile and hand held devi
es, whi
h are used in hostile outdoor

environments. Hen
e an implementation must be side-
hannel resistant. Power

atta
ks subsumes timing atta
ks [14℄ and 
an be divided into simple power at-

ta
ks (SPA) and di�erential power atta
ks (DPA). Simple power atta
ks use

information from one observation to break the se
ret. Di�erential power at-

ta
ks use data from several observations and reveal the se
ret information by

statisti
ally analyzing them. Power analysis is the most serious of all side-


hannel atta
ks as these 
an be laun
hed with very simple and easily available

hardwares.

Several 
ountermeasures have been proposed in literature to guard ECC

against SPA and DPA (see [3℄, [8℄, [14℄, [17℄, [5℄ for example). The pipelining

s
heme proposed in [24℄ uses the side-
hannel atomi
ity to immunize against

SPA. In the 
urrent work we use the same 
ountermeasure. Also to fa
ilitate

pipelining, we use the same division of the EC-operations into atomi
 blo
ks

as proposed in [24℄. We provide the tables depi
ting the EC-operations as

sequen
es of atomi
 blo
ks in the Appendix.

2.2.1 Curve Randomisation Countermeasure Against DPA

To immunize ECC from DPA, many 
ountermeasures have been proposed. Most

of them involve randomization of the pro
essed data, su
h as the representation

of the point or of the 
urve or of the s
alar. For a details dis
ussion on the topi


the reader 
an refer to [5℄. In the proposed s
heme, we use Joye-Tymen's 
oun-

termeasure to resist DPA [17℄. The 
ountermeasure is based on the following

prin
iple. Let C be the ellipti
 
urve and let C

0

be a randomly 
hosen 
urve

isomporphi
 to C. Let P

0

be the point on C

0


orresponding to the base point

P . The 
ountemeasure shifts the 
omputation of s
alar multipli
ation to the


urve C

0

and 
omputes mP

0

. After the 
omputation the result is transformed

ba
k to the original 
urve. Put more su

in
tly,

Let z be a random nonzero �eld element. The steps are as follows.

1. Compute z

2

; z

3

; z

4

; z

6

.

2. Transform the base point P (x; y) to (z

2

x; z

3

y).

3. Transform the 
urve 
oeÆ
ients (a; b) to a

0

= z

4

a; b

0

= z

6

b.

4. Compute s
alar multipli
ation with the new point on the new 
urve.

5. Transform the result (x; y) ba
k to the original 
urve using (x; y)! (x=z

2

; y=z

3

).

The additional 
ost of obtaining DPA resistan
e is 4[m℄ for Step 1; 2[m℄ for

Step 2; 2[m℄ for Step 3 and �nally 1[i℄ + 2[m℄ for Step 5. We resort to this


ountermeasure as the base point 
an be kept in aÆne 
oordinates and eÆ
ien
y


an be gained from mixed additions. Any other DPA 
ountermeasure whi
h

allows mixed additions 
an easily be in
orporated into our s
heme. Also, we

use a variation of this s
heme as our method uses a pre
omputed table (see

Se
tion 3.3).
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2.3 The Pipelining S
heme

The s
alar multipli
ation is generally 
omputed by a sequen
e of ECDBL and

ECADD, 
omputed one after another in a sequential exe
ution. The pipelining

s
heme proposed in [24℄ is based on a simple observation. Both of these oper-

ations are a sequen
e of �eld operations. ECDBL takes as input a point P of

the ellipti
 
urve and 
omputes it double, 2P . ECADD takes as input 2 points

P

1

; P

2

and returns their sum P

1

+ P

2

. In the s
alar multipli
ation algorithm

whenever ECADD is invoked one of the addend is �xed, the base point. Hen
e

in the 
ontext of s
alar multipli
ation, ECADD also has only one input point.

Thus, input to both the EC-operations are three �eld elements, the x, y and z-


oordinates of the input point. As mentioned earlier, we use the mixed addition

for the addition operations in the s
alar multipli
ation algorithm.

In both the EC-operations there are some operations whi
h 
an be 
om-

puted with the z-
oordinate only, some 
an be 
omputed with only the x and z


oordinates. Also, the 
omputation of the output z-
oordinate needs minimum

amount of 
omputation and hen
e it 
an be 
omputed �rst. Next, the output of

x-
oordinate needs lesser amount of 
omputation than y 
oordinates and hen
e


an be 
omputed next. The 
omputation of y-
oordinates 
an be done at the

last. This observation leads to a very eÆ
ient s
alar multipli
ation method. In

the left-to-right s
alar multipli
ation algorithm, the �rst EC-operation is always

an ECDBL. It is followed by an ECADD or an ECDBL a

ording as the 
orre-

sponding bit is 1 or 0. In a sequential exe
ution, the subsequent EC-operation

is invoked when the 
urrent one exits. In the pipelining s
heme, the 
urrent

operation outputs its �rst output as soon as it is 
omputed and the next EC-

operation begins in parallel. Both the operation 
ontinue exe
ution, the earlier

one produ
ing its outputs and the subsequent operation using it as input. As

the �rst pro
ess exits, the se
ond pro
ess rea
hes the stage of produ
ing its

outputs and a third pro
ess starts exe
ution in parallel with the se
ond using

the outputs of the se
ond as its inputs.

In [24℄, the author has shown that the 
as
ading of the EC-operations is

nearly perfe
t in the sense that on
e an EC-operation starts exe
uting it seldom

waits for an input. In the refered work the author has used the side-
hannel

atomi
 blo
ks 
ountermeasure against SPA. In the Appendix we have produ
ed

the division of atomi
 blo
ks into atomi
 blo
ks 
ondu
ive to the pipelining

s
heme. Also, we have presented the table des
ribing how the EC-operations

take part in the pipelining s
heme in di�erent s
enarios of the s
alar multipli-


ation (e.g. when an ECDBL is followed by an ECADD or ECDBL; or when

an ECDBL follows an ECADD).

In [24℄, the author has shown how the pipelining s
heme 
an be implemented

with just one extra multiplier and some more memory. The author has used the


omputation time of one atomi
 blo
k as one unit of 
omputation time. In fa
t,


omputation time of an atomi
 blo
k is roughly same as that of a multipli
ation.

The author has shown that ex
ept for the �rst EC-operation, whi
h is always

an ECDBL, ea
h subsequent EC-operation 
an be 
omputed in 6 units of time

in the pipelining s
heme. The �rst ECDBL takes 7 or 10 units of time a

ording
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as the base point is in aÆne or Ja
obian 
oordinates. Following [24℄, we assume

that the 
ost of a squaring to be the same as that of a multipli
ation. This is

however, not true in general.

3 Pipelined Comb Method

In this se
tion we will apply the pipelining te
hnique of [24℄ to 
omb method of


omputing the s
alar multipli
ation des
ribed in Se
tion 2.1.

3.1 Pre
omputations

We need to pre
ompute the table T [ ℄ des
ribed in Se
tion 2.1. That is we have

to pre
ompute

[a

w�1

; � � � ; a

1

; a

0

℄P = a

w�1

2

w�1

P + � � �+ a

1

2P + a

0

P

for all ve
tors (a

w�1

; � � � ; a

1

; a

0

) 2 f0; 1g

w

. As the ve
tor (a

w�1

; � � � ; a

1

; a

0

)

ranges over all ve
tors in f0; 1g

w

, the point [a

w�1

; � � � ; a

1

; a

0

℄P ranges over

all points in f0:P; 1P; � � � ; (2

w

� 1)Pg. Hen
e we pre
ompute iP for all i 2

f0; 1; � � � ; 2

w

� 1g and store the pre
omputed values in a table T [ ℄ su
h that

T [i℄ = iP .

Let us denote T [i℄ by T

i

. As ea
h T

i

is a point on the ellipti
 
urve, it has

three 
oordinates, say, T

i

x

; T

i

y

and T

i

z

, ea
h of whi
h is a �eld element. We have

T

0

= 0 and T

1

= P . As we keep the base point in aÆne 
oordinates, we have

T

1

x

= x, T

1

y

= y and T

1

z

= 1, where (x; y) are the 
oordinates of the base point

P . We 
an use the Algorithm 2 for pre
omputation.

Algorithm 2 (Pre
omputation for Comb Method)

Input: The point P and the integer w.

Output: The table T [ ℄ su
h that T [j℄ = jP8j 2 f0; 1; � � � ; 2

w

� 1g.

1. Let T [0℄ = 0

2. Let T [1℄ = P

3. For i = 1 to 2

w�1

� 1

4. T [2i℄ = ECDBL(T [i℄)

5. T [2i+ 1℄ = ECADD(T [2i℄ + T [1℄)

Observe that the ECADD abd ECDBL in Agorithm 2 
an be 
omputed in a

pipeline. As the ECDBL of one iteration exits, the ECDBL of the next operation


an enter the pipeline. In the pipeline s
heme of [24℄, the EC-operations get

their input and write ba
k their outputs to the same lo
ations, namely, T

6

, T

7

and T

8

. In this pre
omputation s
heme a slight 
hange to that has to be made.

The ECDBL gets its input from T

i

x

, T

i

y

and T

i

z

and writes ba
k its output to

T

2i

x

, T

2i

y

and T

2i

z

. The ECADD gets its input from T

2i

x

, T

2i

y

and T

2i

z

and writes

ba
k its output to T

2i+1

x

, T

2i+1

y

and T

2i+1

z

.
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The pre
omputation algorithm invokes ECADD and ECDBL 2

w�1

�1 times

ea
h. Hen
e it 
omputes (2

w

� 2) EC-operations. The �rst doubling takes 7

units of time and the subsequent ones take 6 units of time ea
h. Hen
e we have;

Proposition 2 Algorithm 2 takes 7+ 6� (2

w

� 3) = 6� 2

w

� 11 units of time

to 
ompute the table T [ ℄.

All entries in the table T [ ℄, ex
ept T [0℄ and T [1℄ 
omputed by Algorithm 2

are in Ja
obian 
oordinates. We wish to store them in aÆne 
oordinates as we

wish to take advantage of mixed addition in the s
alar multipli
ation algorithm.

To 
onvert the entries into aÆne we need to 
ompute inverse of z-
oordinate

of ea
h of T [i℄; 2 � i � 2

w

� 1. By Montgomery's tri
k it will take 1 inversion

and 3� 2

w

� 3 multipli
ations. After 
omputing the inverses, 
omputing their

squares and 
ubes and multiplying them with the 
orresponding x and y 
oor-

dinates will take 4 multipli
ations per point of the table T [ ℄ (re
all that we are

assuming the 
osts of multipli
ation and squaring to be the same). Hen
e, the


onversion to aÆne stage of the pre
omputation will take 1[i℄+(7�2

w

�17)[m℄


omputation, where [i℄ and [m℄ denote the 
omputation time of an inversion

and a multipli
ation respe
tively.

3.2 The Main Algorithm

The main algorithm for 
omb method has been presented in Se
tion 2.1. Observe

that the algorithm 
an again be pro
essed in a pipelined manner. The ECDBL

at Step 5 and ECADD at step 6 
an be 
as
aded. When ECDBL exits, the

ECADD 
an be 
as
aded with the ECDBL of next iteration. As the points

stored in Table T [ ℄ are in aÆne 
oordinates, one 
an take advantage of mixed

additions.

3.3 Se
urity Against SCA

The pipelined s
heme we use is the same as the one proposed in [24℄. In the

s
heme the author has used side-
hannel atomi
 blo
ks for se
urity against SPA.

So our s
heme is also se
ure against SPA. At Step 6 of Algorithm 1, if a whole


olumn of the exponent array is zero (i.e. j = 0) then no addition takes pla
e.

If this 
an be dete
ted by the adversary from the side 
hannel information,

then he/she 
an obtain a partial information about the se
ret key. Although

this is least likely, we 
an add further se
urity measure by 
omputing a dummy

addition there. Thus the 
omputation pattern be
omes more uniform and the

algorithm is now doubly se
ure against SPA. Proposition 1 states that the Al-

gorithm 1 needs

�

2

w

�1

2

w

t� 1

�

invo
ations of ECADD on average to 
ompute the

s
alar multipli
ation. If dummy additions are 
arried out the 
omputational

requirement will be t� 1 ECDBL and t� 1 ECADD. Thus, the 
omputational

overhead for this extra se
urity is only t=2

w

additions on average.

To prevent DPA, we 
an use Joye-Tymen 
urve randomisation method. We

shift the whole 
omputation to a random isomorphi
 
urve and pull ba
k the
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result to the original 
urve after the 
omputation is over. We have to transform

all points in the table T [ ℄ to the 
orresponding points on the random 
urve.

3.4 Resistan
e Against DPA

We dis
uss a method for making the algorithm resistant against DPA. Re
all

that we use a look-up table T [ ℄ of t points. The steps for the 
ounter-measure

are as follows.

1. Choose a random nonzero �eld element z.

2. Compute the relevant powers of z. (see Subse
tion 2.2.1)

3. Transform the 
urve parameters.

4. Transform ea
h of the 2

w

� 1 nonzero points of T [ ℄.

5. Perform s
alar multipli
ation using Algorithm 1.

6. Transform the result ba
k to the original 
urve.

Step 2 needs 3[m℄ (z

6

is not required), Step 3 requires 1[m℄ (transformation

of b is not required), Step 4 requires 2�(2

w

�1)[m℄ and Step 6 requires 1[i℄+5[m℄.

Hen
e total 
ost is 1[i℄ + (2

w+1

+ 7)[m℄ taking [m℄ = [s℄.

3.5 Cost of the Main Algorithm

The main algorithm invokes ECADD and ECDBL t � 1 times ea
h. So it


omputes 2t � 2 EC-operations. The �rst doubling takes 7 units of tie as the

input point is in aÆne 
oordinates. Then ea
h subsequent operation takes 6

units of time. Hen
e the whole 
omputation takes 6(2t � 3) + 7 = 12t � 11

units of time. The DPA 
ountermeasure takes 1[i℄ + (2

w+1

+ 7)[m℄ amount of


omputation. Assuming [i℄ = 30 units of time, the DPA 
ountermeasure takes

2

w+1

+ 37 units of time. Hen
e 
omputation time of the s
alar multipli
ation

is 12t+2

w+1

+26 time units. In Table 4 we present the 
omputational 
ost for

some typi
al values of w and t assuming n = 160.

4 Performan
e

In this se
tion we will see the performan
e of the s
heme for some representative

values of n and w and 
ompare performan
e of the s
heme with other known

methods requiring the same amount of resour
es. In Table 4 we have presented

the 
ost of 
omputing the s
alar multipli
ation for n = 160 and di�erent values

of w. The values in Columns 2, 3 and 4 refer to the 
ost of pre
omputation,

main and total amount of 
omputation required for s
alar multipli
ation in time

units. Negle
ting the �eld additions the unit of time is equal to the time of a

�eld multipli
ation. The Storage-
olumn in Table 4 refers to the number of

points to be stored.

9



w t Pre
omputation Main Total Storage

2 80 54 994 1048 3

3 54 106 660 766 7

4 40 210 538 758 15

5 32 418 474 892 31

If the base point is �xed, so that the pre
omputation 
an be done o�ine,

then the s
alar multipli
ation 
an be 
arried out with only 474 units of time

with a storage of 31 points or 538 units of time with a storage of 15 points. The


omputational requirement 
an be further redu
ed if storage of more points is

allowed. If the base point is not �xed and the pre
omputation is done o�ine,

then the 
omputation takes 758 units of time with a storage of 15 points and 766

units of time with a storage of 7 points only. The original pipeline s
heme [24℄

with similar storage requirement requires 1152 units of time.

Our sheme requires one additional multiplier. Let us 
ompare its perfor-

man
e vis-a-vis other known parallel methods.

Computation of s
alar multipli
ation on ECC is not a new 
on
ept. Koyama

and Tsuruoka [21℄ had proposed one su
h method as early as 1992. A spe
ial

hardware was used to 
arry out the 
omputation in their proposal. We 
ompare

our s
heme with some of the re
ent proposals whi
h are SCA resistant. The

s
heme proposed in [9℄, uses a parallelized en
apsulated-add-and-double algo-

rithm using Montgomery arithmeti
. This algorithm uses two multipliers and

takes 10[m℄ 
omputations per bit of the s
alar. So 
omputation of the s
alar

multipli
ation for a 160 bit s
alar will take 1600[m℄ or 1600 time units. In [11℄,

the authors propose a parallel s
heme, whi
h 
omputes the s
alar multipli
a-

tion with two multipliers in time equivalent to n doulings and n=4 additions in

a sequential implementation. If we translate that into time units it is more than

2000[m℄. In [16℄, the authors have proposed several s
hemes for parallel 
ompu-

tation of s
alar multipli
ation in ECC. Their best s
heme requires 1592.4 units

of time. Of
ourse their method does not require a pre
omputed table and hen
e

requires less memory. In [1℄, the authors have proposed eÆ
ient algorithms

for 
omputing the s
alar multipli
ation with SIMD (Single Instru
tion Multiple

data). Similar and more eÆ
ient algorithms are also proposed in [15℄. In [15℄ the

authors have given two proposals. The �rst proposal, like our s
heme, does not

use pre
omputations and takes 1629[m℄ to 
ompute the s
alar multipli
ation.

They have taken [s℄ = 0:8[m℄. Their se
ond proposal uses pre
omputed points,

applies signed window expansions of the s
alar and is quite eÆ
ient. Their best

s
heme requires storage of 16 points and 
omputes the s
alar multipli
ation in

942.4 units of time. Our proposal with similar memory requirement needs only

758 units of time.

5 Con
lusion

In the 
urrent work we extend the simple pipelining s
heme proposed in [24℄ for

s
alar multipli
ation in ECC to in
lude pre
omputation. The method 
ombines

10



the pipelining te
hnique with 
omb method of 
omputing the s
alar multipli-


ation. The resultant method is se
ure against SCA and preforms better than

many existing sequential and parallel s
hemes.
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A ECADD and ECDBL in Atomi
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ECDBL Algorithm in Atomi
 Blo
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ECADD Algorithm in Atomi
 Blo
ks
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EC-operations in the Pipeline
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