Scalar Multiplication in Elliptic Curve
Cryptosystems: Pipelining with
Pre-computations

Pradeep Kumar Mishra
Cryptographic Research Group
Indian Statistical Institute
203 B T Road
Kolkata - 700108
(INDIA)
e-mail: pradeep_t@isical.ac.in

Abstract

The pipelining scheme proposed in [24] is an efficient and secure scheme
for computing scalar multiplication in Elliptic Curve Cryptosystems (ECC).
The scheme proposed in [24] does not assume any pre-computation. In
this work we extend the scheme to the situation where the system allows
some pre-computation and is capable of storing some precomputed val-
ues. Like the scheme proposed in [24] our scheme uses an extra multiplier.
On the performance front, it outperforms the best known sequential and
parallel schemes. On the security front, our algorithm uses two counter-
measures against SPA and hence are doubly secured against SPA. Also,
it is secure against DPA using the Joye-Tymen’s curve randomization
countermeasure.

Keywords Elliptic Curve Cryptosystems, Pipelining, Scalar Multiplication,
Jacobian coordinates, Comb methods, Window methods.

1 Introduction

Elliptic Curve Cryptosystems (ECC) since their inception (independently by
Koblitz [18] and Miller [23] in 1985) is constantly gaining popularity due to
intractability of the elliptic curve discrete logarithm problem (ECDLP). For a
carefully chosen curve over a suitable underlying field there is no subexponential
time algorithm to solve ECDLP. This fact enables ECC to provide a high level of
security with much smaller keys in comparison to other popular cryptosystems
based on integer factorisation or finite field based discrete logarithms.
Computationally the most expensive operation in ECC is scalar multiplica-
tion, namely, given an integer m and an elliptic curve point P, the computation

of mP. The point P is generally refered to as the base point. It is computed by
a series of doubling (ECDBL) and addition (ECADD) operation of the point P,
depending upon the bit sequence representing m. Several methods have been
proposed to perform the scalar multiplication securely and efficiently. For an ex-
cellent review the reader can refer to [13]. The performance of all these methods
is dependent on the efficiency of the elliptic curve group operations: ECDBL and
ECADD, which in turn depend upon the choice of the underlying field and the
point representation. In the current work we will refer to ECADD and ECDBL
as EC-operations. In affine coordinates EC-operations involve field inversion, an
expensive operation particularly over fields of characteristic > 3. In the current
work we will concentrate on such fields and use Jacobian coordinates for point
representation.

The methods for computation of scalar multiplication can be broadly divided
into two types: the ones which are suitable if the base point is fixed and the
others are for variable base point. If the based point is fixed, then the some
precomputation can be carried out and stored before the scalar multiplication
actually begins. So the methods prescribed for fixed base point situation are
generally more efficient. However, the methods require more memory and are
less suitable for small devices with restricted resources.

The scalar multiplication is computed by a series of EC-operations. The
pipelining scheme described in [24] is based on a key observation that instead
of computing these operations one after another, they can be cascaded. The
ECADD and ECDBL algorithms have their own set of inputs. These algorithms
can be divided into parts some of which can be executed with only a part of
the input. So one part of the algorithm can begin execution as soon as the
corresponding part of the inputs is available to it. Thus two or more EC-
operations can be executed in a pipeline. We discuss more about the pipelining
scheme in Section 2.3.

In [19], [20], Paul Kocher et al. proposed Side-channel attacks (SCA), which
are considered to be the most dangerous threat against mobile devices and ECC.
The scheme proposed in the current work is doubly secure against simple power
attacks, because it uses two countermeasures. First, like the pipelining scheme
in [24] it uses side-channel atomic blocks to prevent SPA. Besides, the algorithms
used for computing the scalar multiplication use a fixed pattern of EC-operations
to compute the scalar multiplication. This makes the side-channel information
uniform and does not leak out any data on the secret multiplier.

The comb method is an efficient method for computing the scalar multiplica-
tion. It uses a precomputed table and hence is considered suitable for fixed base
point scenario of scalar multiplication. In the current work, we apply pipelin-
ing technique to comb method. The computation is naturally very efficient for
fixed base point scenario. Also we provide an efficient method for computing
the precomputated table online. When the precomputation is done online by
our precomputation algorithm, the total complexity of precomputation and the
comb method becomes quite affordable. Thus the proposed scheme is efficent for
variable base point scenario as well. On the performance front our method com-
pares favourably against all existing methods using similar amount of resources.

This has been established in Section 4.

The rest of the paper is organised as follows. In Section 2 we briefly deal
with basics of elliptic cure cryptography, mainly highlighting the concepts we
need in this work. In Section 3, we describe the proposed method. In Section 4
we examine the performance of the scheme and compare it with other known
methods. Section 5 concludes the paper.

2 Elliptic Curve Preliminaries

In the current work we will concentrate on curves over large prime fields only.
Over a finite field F,, ¢ = p" of odd characteristic p > 3, an elliptic curve
has an equation of the form y*> = 2* + ax + b where a,b € F, and 4a® +
27b% £ 0. The set of points on an elliptic curve forms over a finite field forms a
group under a specific operation written additively. A large number of elliptic
curves over suitable underlying fields exist over which the discrete logarithm
problem is believed to be hard. Elliptic curve cryptosystems are ElGamal type
cryptosystems built over such groups. The most dominant operation in ECC
is scalar multiplication. A lot of research has been carried out by research
community for computing it securely and efficiently. Several algorithms have
been proposed.

Scalar Multiplication is carried out by a series of EC-operations. In affine
coordinates EC-operations require one field inversion each. Over prime fields
the field inversion is a very expensive operation. To avoid these field inversions
several point representations for the elliptic curve points have been proposed in
literature. We will use Jacobian coordinates in the current work. Mixed addi-
tions are quite cheaper than general adition [7], so we will use mixed addition
(Jacobian + affine = Jacobian) for addition steps in our scalar multiplication
algorithm. Hence unless otherwise stated by ECADD we will generally mean
this mixed addition in this paper.

2.1 Comb Methods

Among the scalar multiplication methods with precomputation two efficeint ones
are the window method [25, 13] and the comb method [13]. The basic window
method does not reduce the number of doublings. The efficiency is gained by
reducing the number of additions. If the scalar is n bits in length, the Window
method requires (n — 1) doublings. The binary method requires n/2 additions
on average, which is lesser in window method. Applying pipelining technique to
window method will surely yield a more efficient method. But comb methods
are even more attractive as they require quite fewer doublings also. We devote
this section to a brief description of the basic comb method.

The comb methods are very efficient in the fixed base point scenario of scalar
multiplication.

Let m be the scalar multiplier. Let the binary representation of m be of
n bits in length. Let w be a small integer and let ¢ = [n/w]. We append

tw — n bits in the left of the binary representation of m and we divide it into w
bit strings of length t each. Let these bit strings be K¥~ 1, K*~2,... K KO,
Then the bit strings K7 can be written as the rows of an exponent array

ST
Kl K, - Kj k1 ko
K = K{, - K = Eiivry—1 - ki

Ku}—1 J Kptoee Ky kwt—1 o kw—1)t

which is then processed columnwise, one after another. The computation is
accelerated by precomputing the points

[aw—1, " ,a1,a0]P = apy_12""'P +--- + a12P + ao P

for all vectors (aw—1,-+,a1,a9) € {0,1}*. That is, precompute the points
0P,1P,---,(2¥ — 1)P and store in a table T[] such that T[i] = iP for all
i € {0,1,---,2% — 1}. The scalar multiplication is then computed by Algo-
rithm 1.

Algorithm 1 (The Main Algorithm for Comb Method)

Input: The point P and the integer m in the form specified and the table T7).
Output: mP.

1. Letj = K/“7'2v" '+ -+ K} 2+ K,

2. Let Q =Tj]

3. Fori=1t—2 down to 0

4. j=Krtov-t 4 K12+ KD
5. Q + ECDBL(Q)

6 Q= ECADD(Q,T[j])

7. return Q

Proposition 1 Algorithm 1 needs t — 1 invocation of ECDBL and on average

(T;jlt — 1) invocations of ECADD to compute the scalar multiplication.

Proof : As ECDBL is invoked in the i-loop at Step 3 of the algorithm, the
number of invocation of ECDBL is (t—1). ECADD is also invoked same number
of times. But actually an addition is not carried out if j = 0. Assuming all
possibilities to be equally likely, the expected number of additions carried out

at Step 6 is (2;;175—1).]

2.2 Side-channel Attacks

Side-channel attacks (SCA), proposed by Paul Kocher et al. [19], [20] are very
serious threat to ECC. SCA reveals the secret information by sampling and an-
alyzing the side-channel information like timing, power consumption and EM

radiation traces of an electronic computation. ECC is a very cryptosystem
suitable for mobile and hand held devices, which are used in hostile outdoor
environments. Hence an implementation must be side-channel resistant. Power
attacks subsumes timing attacks [14] and can be divided into simple power at-
tacks (SPA) and differential power attacks (DPA). Simple power attacks use
information from one observation to break the secret. Differential power at-
tacks use data from several observations and reveal the secret information by
statistically analyzing them. Power analysis is the most serious of all side-
channel attacks as these can be launched with very simple and easily available
hardwares.

Several countermeasures have been proposed in literature to guard ECC
against SPA and DPA (see [3], [8], [14], [17], [5] for example). The pipelining
scheme proposed in [24] uses the side-channel atomicity to immunize against
SPA. In the current work we use the same countermeasure. Also to facilitate
pipelining, we use the same division of the EC-operations into atomic blocks
as proposed in [24]. We provide the tables depicting the EC-operations as
sequences of atomic blocks in the Appendix.

2.2.1 Curve Randomisation Countermeasure Against DPA

To immunize ECC from DPA, many countermeasures have been proposed. Most
of them involve randomization of the processed data, such as the representation
of the point or of the curve or of the scalar. For a details discussion on the topic
the reader can refer to [5]. In the proposed scheme, we use Joye-Tymen’s coun-
termeasure to resist DPA [17]. The countermeasure is based on the following
principle. Let C' be the elliptic curve and let C’ be a randomly chosen curve
isomporphic to C. Let P’ be the point on C’ corresponding to the base point
P. The countemeasure shifts the computation of scalar multiplication to the
curve C" and computes mP’. After the computation the result is transformed
back to the original curve. Put more succinctly,
Let z be a random nonzero field element. The steps are as follows.

Compute 22, 23, 24, 25.

Transform the base point P(z,y) to (z%z, 2%y).

Transform the curve coefficients (a,b) to a’ = z%a, b’ = 250b.

Compute scalar multiplication with the new point on the new curve.

Transform the result (z,y) back to the original curve using (z,y) — (z/2%,y/23).

Ol Lo =

The additional cost of obtaining DPA resistance is 4[m] for Step 1; 2[m] for
Step 2; 2[m] for Step 3 and finally 1[i] + 2[m] for Step 5. We resort to this
countermeasure as the base point can be kept in affine coordinates and efficiency
can be gained from mixed additions. Any other DPA countermeasure which
allows mixed additions can easily be incorporated into our scheme. Also, we
use a variation of this scheme as our method uses a precomputed table (see
Section 3.3).

2.3 The Pipelining Scheme

The scalar multiplication is generally computed by a sequence of ECDBL and
ECADD, computed one after another in a sequential execution. The pipelining
scheme proposed in [24] is based on a simple observation. Both of these oper-
ations are a sequence of field operations. ECDBL takes as input a point P of
the elliptic curve and computes it double, 2P. ECADD takes as input 2 points
Py, P, and returns their sum P; + P». In the scalar multiplication algorithm
whenever ECADD is invoked one of the addend is fixed, the base point. Hence
in the context of scalar multiplication, ECADD also has only one input point.
Thus, input to both the EC-operations are three field elements, the z, y and z-
coordinates of the input point. As mentioned earlier, we use the mixed addition
for the addition operations in the scalar multiplication algorithm.

In both the EC-operations there are some operations which can be com-
puted with the z-coordinate only, some can be computed with only the x and z
coordinates. Also, the computation of the output z-coordinate needs minimum
amount of computation and hence it can be computed first. Next, the output of
z-coordinate needs lesser amount of computation than y coordinates and hence
can be computed next. The computation of y-coordinates can be done at the
last. This observation leads to a very efficient scalar multiplication method. In
the left-to-right scalar multiplication algorithm, the first EC-operation is always
an ECDBL. It is followed by an ECADD or an ECDBL according as the corre-
sponding bit is 1 or 0. In a sequential execution, the subsequent EC-operation
is invoked when the current one exits. In the pipelining scheme, the current
operation outputs its first output as soon as it is computed and the next EC-
operation begins in parallel. Both the operation continue execution, the earlier
one producing its outputs and the subsequent operation using it as input. As
the first process exits, the second process reaches the stage of producing its
outputs and a third process starts execution in parallel with the second using
the outputs of the second as its inputs.

In [24], the author has shown that the cascading of the EC-operations is
nearly perfect in the sense that once an EC-operation starts executing it seldom
waits for an input. In the refered work the author has used the side-channel
atomic blocks countermeasure against SPA. In the Appendix we have produced
the division of atomic blocks into atomic blocks conducive to the pipelining
scheme. Also, we have presented the table describing how the EC-operations
take part in the pipelining scheme in different scenarios of the scalar multipli-
cation (e.g. when an ECDBL is followed by an ECADD or ECDBL; or when
an ECDBL follows an ECADD).

In [24], the author has shown how the pipelining scheme can be implemented
with just one extra multiplier and some more memory. The author has used the
computation time of one atomic block as one unit of computation time. In fact,
computation time of an atomic block is roughly same as that of a multiplication.
The author has shown that except for the first EC-operation, which is always
an ECDBL, each subsequent EC-operation can be computed in 6 units of time
in the pipelining scheme. The first ECDBL takes 7 or 10 units of time according

as the base point is in affine or Jacobian coordinates. Following [24], we assume
that the cost of a squaring to be the same as that of a multiplication. This is
however, not true in general.

3 Pipelined Comb Method

In this section we will apply the pipelining technique of [24] to comb method of
computing the scalar multiplication described in Section 2.1.

3.1 Precomputations

We need to precompute the table T[] described in Section 2.1. That is we have
to precompute

[a”w—la"'aalaao]P:aw—12wilp+"'+a12p+afop

for all vectors (aw—1,--",a1,a9) € {0,1}*. As the vector (ay—_1, -, a1,a0)
ranges over all vectors in {0,1}*, the point [ay_1, -, a1,ap]P ranges over
all points in {0.P,1P,---,(2¥ — 1)P}. Hence we precompute iP for all i €
{0,1,---,2*% — 1} and store the precomputed values in a table T[] such that
T[i] =iP .

Let us denote T'[i] by T?. As each T is a point on the elliptic curve, it has
three coordinates, say, T}, T,y and T?, each of which is a field element. We have
T° =0 and T' = P. As we keep the base point in affine coordinates, we have
T, =z, T, =y and T} = 1, where (z,y) are the coordinates of the base point
P. We can use the Algorithm 2 for precomputation.

Algorithm 2 (Precomputation for Comb Method)

Input: The point P and the integer w.

Output: The table T[] such that T[j] = jPVj € {0,1,---,2% — 1}.
1. Let T[0] =0

2. LetT[1]=P

3. Fori=1to2v ' -1

4. T[2i] = ECDBL(T[i])

5. T[2i+ 1] = ECADD(T[2i])+ T[1])

Observe that the ECADD abd ECDBL in Agorithm 2 can be computed in a
pipeline. As the ECDBL of one iteration exits, the ECDBL of the next operation
can enter the pipeline. In the pipeline scheme of [24], the EC-operations get
their input and write back their outputs to the same locations, namely, T, T
and Tg. In this precomputation scheme a slight change to that has to be made.
The ECDBL gets its input from T}, ng and T! and writes back its output to
T}, T}" and T2'. The ECADD gets its input from 7%, T2" and T2' and writes
back its output to T;*", T)**" and T2**".

The precomputation algorithm invokes ECADD and ECDBL 2%~ —1 times
each. Hence it computes (2 — 2) EC-operations. The first doubling takes 7
units of time and the subsequent ones take 6 units of time each. Hence we have;

Proposition 2 Algorithm 2 takes 7+ 6 x (2% — 3) = 6 x 2% — 11 units of time
to compute the table T[].

|
All entries in the table T[], except T'[0] and T[1] computed by Algorithm 2
are in Jacobian coordinates. We wish to store them in affine coordinates as we
wish to take advantage of mixed addition in the scalar multiplication algorithm.
To convert the entries into affine we need to compute inverse of z-coordinate
of each of T[i],2 < i < 2% — 1. By Montgomery’s trick it will take 1 inversion
and 3 x 2% — 3 multiplications. After computing the inverses, computing their
squares and cubes and multiplying them with the corresponding = and y coor-
dinates will take 4 multiplications per point of the table T[] (recall that we are
assuming the costs of multiplication and squaring to be the same). Hence, the
conversion to affine stage of the precomputation will take 1[i] 4 (7 x 2¥ —17)[m]
computation, where [i] and [m] denote the computation time of an inversion
and a multiplication respectively.

3.2 The Main Algorithm

The main algorithm for comb method has been presented in Section 2.1. Observe
that the algorithm can again be processed in a pipelined manner. The ECDBL
at Step 5 and ECADD at step 6 can be cascaded. When ECDBL exits, the
ECADD can be cascaded with the ECDBL of next iteration. As the points
stored in Table T[] are in affine coordinates, one can take advantage of mixed
additions.

3.3 Security Against SCA

The pipelined scheme we use is the same as the one proposed in [24]. In the
scheme the author has used side-channel atomic blocks for security against SPA.
So our scheme is also secure against SPA. At Step 6 of Algorithm 1, if a whole
column of the exponent array is zero (i.e. 7 = 0) then no addition takes place.
If this can be detected by the adversary from the side channel information,
then he/she can obtain a partial information about the secret key. Although
this is least likely, we can add further security measure by computing a dummy
addition there. Thus the computation pattern becomes more uniform and the
algorithm is now doubly secure against SPA. Proposition 1 states that the Al-
gorithm 1 needs (2571t — 1) invocations of ECADD on average to compute the
scalar multiplication. If dummy additions are carried out the computational
requirement will be t — 1 ECDBL and ¢ — 1 ECADD. Thus, the computational
overhead for this extra security is only ¢/2* additions on average.

To prevent DPA, we can use Joye-Tymen curve randomisation method. We
shift the whole computation to a random isomorphic curve and pull back the

result to the original curve after the computation is over. We have to transform
all points in the table T[] to the corresponding points on the random curve.

3.4 Resistance Against DPA

We discuss a method for making the algorithm resistant against DPA. Recall
that we use a look-up table T[] of ¢ points. The steps for the counter-measure
are as follows.

Choose a random nonzero field element z.

Compute the relevant powers of z. (see Subsection 2.2.1)
Transform the curve parameters.

Transform each of the 2 — 1 nonzero points of TT].
Perform scalar multiplication using Algorithm 1.
Transform the result back to the original curve.

O Lt W=

Step 2 needs 3[m] (2° is not required), Step 3 requires 1[m] (transformation
of b is not required), Step 4 requires 2x (2% —1)[m] and Step 6 requires 1[i]+5[m)].
Hence total cost is 1[i] + (2¥*! + 7)[m] taking [m] = [s].

3.5 Cost of the Main Algorithm

The main algorithm invokes ECADD and ECDBL ¢ — 1 times each. So it
computes 2t — 2 EC-operations. The first doubling takes 7 units of tie as the
input point is in affine coordinates. Then each subsequent operation takes 6
units of time. Hence the whole computation takes 6(2t — 3) + 7 = 12¢ — 11
units of time. The DPA countermeasure takes 1[i] + (2**! + 7)[m] amount of
computation. Assuming [i] = 30 units of time, the DPA countermeasure takes
2w+l 4 37 units of time. Hence computation time of the scalar multiplication
is 12t 4+ 2%*! 4+ 26 time units. In Table 4 we present the computational cost for
some typical values of w and ¢ assuming n = 160.

4 Performance

In this section we will see the performance of the scheme for some representative
values of n and w and compare performance of the scheme with other known
methods requiring the same amount of resources. In Table 4 we have presented
the cost of computing the scalar multiplication for n = 160 and different values
of w. The values in Columns 2, 3 and 4 refer to the cost of precomputation,
main and total amount of computation required for scalar multiplication in time
units. Neglecting the field additions the unit of time is equal to the time of a
field multiplication. The Storage-column in Table 4 refers to the number of
points to be stored.

w | t | Precomputation | Main | Total | Storage
2|80 54 994 | 1048 3

3| 54 106 660 766 7

4 |40 210 538 758 15

5 | 32 418 474 892 31

If the base point is fixed, so that the precomputation can be done offline,
then the scalar multiplication can be carried out with only 474 units of time
with a storage of 31 points or 538 units of time with a storage of 15 points. The
computational requirement can be further reduced if storage of more points is
allowed. If the base point is not fixed and the precomputation is done offline,
then the computation takes 758 units of time with a storage of 15 points and 766
units of time with a storage of 7 points only. The original pipeline scheme [24]
with similar storage requirement requires 1152 units of time.

Our sheme requires one additional multiplier. Let us compare its perfor-
mance vis-a-vis other known parallel methods.

Computation of scalar multiplication on ECC is not a new concept. Koyama
and Tsuruoka [21] had proposed one such method as early as 1992. A special
hardware was used to carry out the computation in their proposal. We compare
our scheme with some of the recent proposals which are SCA resistant. The
scheme proposed in [9], uses a parallelized encapsulated-add-and-double algo-
rithm using Montgomery arithmetic. This algorithm uses two multipliers and
takes 10[m] computations per bit of the scalar. So computation of the scalar
multiplication for a 160 bit scalar will take 1600[m] or 1600 time units. In [11],
the authors propose a parallel scheme, which computes the scalar multiplica-
tion with two multipliers in time equivalent to n doulings and n/4 additions in
a sequential implementation. If we translate that into time units it is more than
2000[m]. In [16], the authors have proposed several schemes for parallel compu-
tation of scalar multiplication in ECC. Their best scheme requires 1592.4 units
of time. Ofcourse their method does not require a precomputed table and hence
requires less memory. In [1], the authors have proposed efficient algorithms
for computing the scalar multiplication with SIMD (Single Instruction Multiple
data). Similar and more efficient algorithms are also proposed in [15]. In [15] the
authors have given two proposals. The first proposal, like our scheme, does not
use precomputations and takes 1629[m] to compute the scalar multiplication.
They have taken [s] = 0.8[m]. Their second proposal uses precomputed points,
applies signed window expansions of the scalar and is quite efficient. Their best
scheme requires storage of 16 points and computes the scalar multiplication in
942 .4 units of time. Our proposal with similar memory requirement needs only
758 units of time.

5 Conclusion

In the current work we extend the simple pipelining scheme proposed in [24] for
scalar multiplication in ECC to include precomputation. The method combines

10

the pipelining technique with comb method of computing the scalar multipli-
cation. The resultant method is secure against SCA and preforms better than
many existing sequential and parallel schemes.

References

[1]

[2]

[10]

[11]

[12]

K. Aoki, F. Hoshino, T. Kobayashi and H. Oguro. Elliptic Curve Arithmetic
Using SIMD, In ISC, 2001, LNCS 2200, pp. 235-247, Springer-Verlag, 2001

R. M. Avanzi. On Multi-exponentiation in Cryptography, To appear in
J. Cryptology. Available at TACR eprint Archive, Technical Report No
2002/154, http://www.iacr.org.

E. Briér and M. Joye. Weierstrass Elliptic Curves and Side-Channel At-
tacks. In PKC 2002, LNCS 2274, pages 335-345, Springer-Verlag,2002.

B. Chevallier-Mames, M. Ciet and M. Joye. Low-cost Solutions for Prevent-
ing Simple Side-Channel Analysis: Side-Channel Atomicity, IEEE Trans.
on Computers

M. Ciet. Aspects of Fast and Secure Arithmetics for Elliptic Curve Cryp-
tography, Ph. D. Thesis, Louvain-la-Neuve, Belgique.

C. Clavier and M. Joye. Universal Exponentiation Algorithm — A First
Step Towards SPA Resistance, In CHES, 2001, LNCS 2162, pp. 300-308,
Springer-Verlag, 2001.

H. Cohen, A. Miyaji, and T. Ono. Efficient Elliptic Curve Exponentia-
tion Using Mixed coordinates, In ASTACRYPT’98, LNCS 1514, pp. 51-65,
Springer-Verlag, 1998.

J. -S. Coron. Resistance against Differential Power Analysis for Elliptic
Curve Cryptosystems, In CHES 1999, pages 292-302.

W. Fischer, C. Giraud, E. W. Knudsen, J. -P. Seifert. Parallel Scalar
Multiplication on General Elliptic Curves over F, hedged against Non-
Differential Side-Channel Attacks, Available at TACR eprint Archive, Tech-
nical Report No 2002/007, http://www.iacr.org.

K. Fong and D. Hankerson and J. Lépez and A. Menezes. Field inversion
and point halving revisited, Technical Report, CORR 2003-18, Department
of Combinatorics and Optimization, University of Waterloo, Canada, 2003.

J. M. G. Garcia, R. M. Garcia. Parallel Algorithm for Multiplication on El-
liptic Curves. Cryptology ePrint Archive, Report 2002/179, (2002), Avail-
able at http://eprint.iacr.org

D. Gordon. A survey of fast exponentiation methods, J. Algorithms,
27(1):129-146, 1998.

11

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

D. Hankerson, A. Menezes and S. Vanstone. Guide to Elliptic Curve Cryp-
tography, Springer-Verlag, 2004.

T. Izu, B. Méller and T. Takagi. Improved Elliptic Curve Multiplication
Methods Resistant Against Side Channel Attacks, Proceedings of Indocrypt
2002, LNCS 2551, pp 296-313, Springer-Verlag.

T. Izu and T. Takagi. Fast Elliptic Curve Multiplications with SIMD op-
eration, ICICS 2002, LNCS, pp 217-230, Springer-Verlag.

T. Izu and T. Takagi. A Fast Parallel Elliptic Curve Multiplication Re-
sistant against Side Channel Attacks, ICICS 2002, LNCS, pp 217-230,
Springer-Verlag.

M. Joye and C. Tymen. Protection against differential attacks for elliptic
curve cryptography, CHES 2001, LNCS 2162, pp 402-410, Springer-Verlag.

N. Koblitz. Elliptic Curve Cryptosystems, Mathematics of Computations,
48:203-209, 1987.

P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS and Other Systems, CRYPT(0O’96, LNCS 1109, pp. 104-113, Springer-
Verlag, 1996.

P. Kocher, J. Jaffe and B, Jun. Differential Power Analysis, CRYPTQ’99,
LNCS 1666, pp. 388-397, Springer-Verlag, 1999.

K. Koyama, Y. Tsuruoka. Speeding up elliptic Curve Cryptosystems Using
a Signed Binary Windows Method, In CRYPT0’92, LNCS 740, pp 345-357,
Springer-Verlag, 1992.

A. J. Menezes, P. C. van Oorschot and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

V. S. Miller. Use of Elliptic Curves in Cryptography. In CRYPTO’85,
LNCS 218, pp. 417-426, Springer-Verlag, 1985.

P. K. Mishra. Pipelined Computation of Scalar Multiplication in Elliptic
Curve Cryptosystems. To appear in CHES 2004.

B. Moller. Securing Elliptic Curve Point Multiplication against Side-
Channel Attacks. In Proc. of ISC 2001, pages 324-334, 2001.

J. Solinas. Efficient arithmetic on Koblitz curves, in Designs, Codes and
Cryptography, 19:195-249, 2000.

12

A ECADD and ECDBL in Atomic Blocks

ECDBL Algorithm in Atomic Blocks
Input: PZ(X“ Y;', Zl)

Input: Pz = (XZ,Y;,ZZ)

0utput 2Pz = (Xi+1,}/;+1, Zi+1)

Ay | Ry =715 x T4 (z3) Ag | Ra=17 x 17 2
* Ry = Ry + Ry (2Y2)
* Ry = Rq + Rq (2Y7)
* *
* *
Ay | ry =Ry xRy (zhH A7 | Ry =16 x Ro (2X;v7?)
* R4 = R4 + Rq (S)
* R4 = —Rg (=5)
* R = Rq + R4 (—25)
Az | Ry =axn; (az}) Ag | Rrs = Ry x Ry (M2)
* Tg = R3 + Ry (m)
* *
* R4 =Tg + Ry (Xj41 —5)
Ay | Ry =15 x T4 (x3) Ag | Ry =Rs x Ry (av)
R3 = Ry + Ra(2X7) Ry = Ry + Ra(8Y}Y)
*

Rg = Rg + R (3X2)

AB Tg =T7 X Tg (Y;Z;) A1p T7 = Ry X Rg (M(X;41 — S))
Ty =Tg + Tg (Z;41) T7 =T7 + Ra (=Y;41)
%
T7 = —-T7 (Yit1)

Ri = Ry + Ry (M)

13

ECADD Algorithm in Atomic Blocks
Input: P = (T,,Ty), P, = (X3,Y:, Z;)
Output: P+ P = (Xi+1,Y;'+1, Zi+1).

Iy | ri=mg x5 (22) Iy Ro = Ry X Ry (—UyW2)

Rs = Ro + R (—2U1 W2)

Ly | Ry =Ta xRy (1) I's | ri=rRaxr (W3
* Rq = Ry + R (W3 — 2U; w?2)
Ry = —Rz (-Up) R3 = —R3 (=S51)
* Rs = Rg + T7 (S3 — S1 = —R)
I3 | rs=ryxms vz | Iy Tg = R5 x Rp (R?)

Te =T + Ry (X;41)

Ro = Tg + Ra (X;41 — U1 W?)

F4 R3 = Rg X Ry (S1) F10 Ro = Rp X Ry (—R(X;41 — U1 W?2))
Ry = Ry + Tg (-W) *
Rj = —R1 (W)
% %

Iy | 7g=ri x75 zig) | i1 | 77 = Ry x Ry (=51w2)

T7 =T7 + Ra (Yiyq1)

T'¢ | Ra=r1 x Ry (W2)

14

EC-operations in the Pipeline

DBL-DBL DBL-ADD ADD-DBL
Time | PSI [PS2 || PSI | PS2 | PSI | PS2
k : : :

k+1 | A |- AP |- T -
k+2 || AY |- AP |- i |-
E+3 | AP |- AP |-) -
k+4 || AY |- AP |-)]
k+5 || AY |- AP |- -
k+6 || AV P AD i Al A
E+7 Agi+1) A’(rl) ng+1) A’(rl) Agi+1) ng)
k+8 A§i+1) Ag;l) F§i+1) Ag;l) A§i+1) Fé(32)
k+9 | AP LAl ot Al | r{)
k+10 | * AW i Al A | el
411 Aéi+1) " 11((32'+1) * pgll)
k+ 12 AT N NG

15

