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Abstrat

The pipelining sheme proposed in [24℄ is an eÆient and seure sheme

for omputing salar multipliation in Ellipti Curve Cryptosystems (ECC).

The sheme proposed in [24℄ does not assume any pre-omputation. In

this work we extend the sheme to the situation where the system allows

some pre-omputation and is apable of storing some preomputed val-

ues. Like the sheme proposed in [24℄ our sheme uses an extra multiplier.

On the performane front, it outperforms the best known sequential and

parallel shemes. On the seurity front, our algorithm uses two ounter-

measures against SPA and hene are doubly seured against SPA. Also,

it is seure against DPA using the Joye-Tymen's urve randomization

ountermeasure.

Keywords Ellipti Curve Cryptosystems, Pipelining, Salar Multipliation,

Jaobian oordinates, Comb methods, Window methods.

1 Introdution

Ellipti Curve Cryptosystems (ECC) sine their ineption (independently by

Koblitz [18℄ and Miller [23℄ in 1985) is onstantly gaining popularity due to

intratability of the ellipti urve disrete logarithm problem (ECDLP). For a

arefully hosen urve over a suitable underlying �eld there is no subexponential

time algorithm to solve ECDLP. This fat enables ECC to provide a high level of

seurity with muh smaller keys in omparison to other popular ryptosystems

based on integer fatorisation or �nite �eld based disrete logarithms.

Computationally the most expensive operation in ECC is salar multiplia-

tion, namely, given an integer m and an ellipti urve point P , the omputation
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of mP . The point P is generally refered to as the base point. It is omputed by

a series of doubling (ECDBL) and addition (ECADD) operation of the point P ,

depending upon the bit sequene representing m. Several methods have been

proposed to perform the salar multipliation seurely and eÆiently. For an ex-

ellent review the reader an refer to [13℄. The performane of all these methods

is dependent on the eÆieny of the ellipti urve group operations: ECDBL and

ECADD, whih in turn depend upon the hoie of the underlying �eld and the

point representation. In the urrent work we will refer to ECADD and ECDBL

as EC-operations. In aÆne oordinates EC-operations involve �eld inversion, an

expensive operation partiularly over �elds of harateristi > 3. In the urrent

work we will onentrate on suh �elds and use Jaobian oordinates for point

representation.

The methods for omputation of salar multipliation an be broadly divided

into two types: the ones whih are suitable if the base point is �xed and the

others are for variable base point. If the based point is �xed, then the some

preomputation an be arried out and stored before the salar multipliation

atually begins. So the methods presribed for �xed base point situation are

generally more eÆient. However, the methods require more memory and are

less suitable for small devies with restrited resoures.

The salar multipliation is omputed by a series of EC-operations. The

pipelining sheme desribed in [24℄ is based on a key observation that instead

of omputing these operations one after another, they an be asaded. The

ECADD and ECDBL algorithms have their own set of inputs. These algorithms

an be divided into parts some of whih an be exeuted with only a part of

the input. So one part of the algorithm an begin exeution as soon as the

orresponding part of the inputs is available to it. Thus two or more EC-

operations an be exeuted in a pipeline. We disuss more about the pipelining

sheme in Setion 2.3.

In [19℄, [20℄, Paul Koher et al. proposed Side-hannel attaks (SCA), whih

are onsidered to be the most dangerous threat against mobile devies and ECC.

The sheme proposed in the urrent work is doubly seure against simple power

attaks, beause it uses two ountermeasures. First, like the pipelining sheme

in [24℄ it uses side-hannel atomi bloks to prevent SPA. Besides, the algorithms

used for omputing the salar multipliation use a �xed pattern of EC-operations

to ompute the salar multipliation. This makes the side-hannel information

uniform and does not leak out any data on the seret multiplier.

The omb method is an eÆient method for omputing the salar multiplia-

tion. It uses a preomputed table and hene is onsidered suitable for �xed base

point senario of salar multipliation. In the urrent work, we apply pipelin-

ing tehnique to omb method. The omputation is naturally very eÆient for

�xed base point senario. Also we provide an eÆient method for omputing

the preomputated table online. When the preomputation is done online by

our preomputation algorithm, the total omplexity of preomputation and the

omb method beomes quite a�ordable. Thus the proposed sheme is eÆent for

variable base point senario as well. On the performane front our method om-

pares favourably against all existing methods using similar amount of resoures.
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This has been established in Setion 4.

The rest of the paper is organised as follows. In Setion 2 we briey deal

with basis of ellipti ure ryptography, mainly highlighting the onepts we

need in this work. In Setion 3, we desribe the proposed method. In Setion 4

we examine the performane of the sheme and ompare it with other known

methods. Setion 5 onludes the paper.

2 Ellipti Curve Preliminaries

In the urrent work we will onentrate on urves over large prime �elds only.

Over a �nite �eld F

q

; q = p

r

of odd harateristi p > 3, an ellipti urve

has an equation of the form y

2

= x

3

+ ax + b where a; b 2 F

q

and 4a

3

+

27b

2

6= 0. The set of points on an ellipti urve forms over a �nite �eld forms a

group under a spei� operation written additively. A large number of ellipti

urves over suitable underlying �elds exist over whih the disrete logarithm

problem is believed to be hard. Ellipti urve ryptosystems are ElGamal type

ryptosystems built over suh groups. The most dominant operation in ECC

is salar multipliation. A lot of researh has been arried out by researh

ommunity for omputing it seurely and eÆiently. Several algorithms have

been proposed.

Salar Multipliation is arried out by a series of EC-operations. In aÆne

oordinates EC-operations require one �eld inversion eah. Over prime �elds

the �eld inversion is a very expensive operation. To avoid these �eld inversions

several point representations for the ellipti urve points have been proposed in

literature. We will use Jaobian oordinates in the urrent work. Mixed addi-

tions are quite heaper than general adition [7℄, so we will use mixed addition

(Jaobian + aÆne = Jaobian) for addition steps in our salar multipliation

algorithm. Hene unless otherwise stated by ECADD we will generally mean

this mixed addition in this paper.

2.1 Comb Methods

Among the salar multipliation methods with preomputation two eÆeint ones

are the window method [25, 13℄ and the omb method [13℄. The basi window

method does not redue the number of doublings. The eÆieny is gained by

reduing the number of additions. If the salar is n bits in length, the Window

method requires (n � 1) doublings. The binary method requires n=2 additions

on average, whih is lesser in window method. Applying pipelining tehnique to

window method will surely yield a more eÆient method. But omb methods

are even more attrative as they require quite fewer doublings also. We devote

this setion to a brief desription of the basi omb method.

The omb methods are very eÆient in the �xed base point senario of salar

multipliation.

Let m be the salar multiplier. Let the binary representation of m be of

n bits in length. Let w be a small integer and let t = dn=we. We append
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tw�n bits in the left of the binary representation of m and we divide it into w

bit strings of length t eah. Let these bit strings be K

w�1

;K

w�2

; � � � ;K

1

;K

0

.

Then the bit strings K

j

an be written as the rows of an exponent array

2

6

6

6

6

6

6

6

6

4

K

0

K

1

.

.

.

K

i

.

.

.

K

w�1

3

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

K

0

t�1

� � � K

0

0

.

.

.

.

.

.

K

i

t�1

� � � K

i

0

.

.

.

.

.

.

K

w�1

t�1

� � � K

w�1

0

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

k

t�1

� � � k

0

.

.

.

.

.

.

k

t(i+1)�1

� � � k

ti

.

.

.

.

.

.

k

wt�1

� � � k

(w�1)t

3

7

7

7

7

7

7

5

whih is then proessed olumnwise, one after another. The omputation is

aelerated by preomputing the points

[a

w�1

; � � � ; a

1

; a

0

℄P = a

w�1

2

w�1

P + � � �+ a

1

2P + a

0

P

for all vetors (a

w�1

; � � � ; a

1

; a

0

) 2 f0; 1g

w

. That is, preompute the points

0P; 1P; � � � ; (2

w

� 1)P and store in a table T [ ℄ suh that T [i℄ = iP for all

i 2 f0; 1; � � � ; 2

w

� 1g. The salar multipliation is then omputed by Algo-

rithm 1.

Algorithm 1 (The Main Algorithm for Comb Method)

Input: The point P and the integer m in the form spei�ed and the table T [℄.

Output: mP .

1. Let j = K

w�1

t�1

2

w�1

+ � � �+K

1

t�1

2 +K

0

t�1

2. Let Q = T [j℄

3. For i = t� 2 down to 0

4. j = K

w�1

i

2

w�1

+ � � �+K

1

i

2 +K

0

i

5. Q ECDBL(Q)

6. Q = ECADD(Q;T [j℄)

7. return Q

Proposition 1 Algorithm 1 needs t� 1 invoation of ECDBL and on average

�

2

w

�1

2

w

t� 1

�

invoations of ECADD to ompute the salar multipliation.

Proof : As ECDBL is invoked in the i-loop at Step 3 of the algorithm, the

number of invoation of ECDBL is (t�1). ECADD is also invoked same number

of times. But atually an addition is not arried out if j = 0. Assuming all

possibilities to be equally likely, the expeted number of additions arried out

at Step 6 is

�

2

w

�1

2

w

t� 1

�

.

2.2 Side-hannel Attaks

Side-hannel attaks (SCA), proposed by Paul Koher et al. [19℄, [20℄ are very

serious threat to ECC. SCA reveals the seret information by sampling and an-

alyzing the side-hannel information like timing, power onsumption and EM
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radiation traes of an eletroni omputation. ECC is a very ryptosystem

suitable for mobile and hand held devies, whih are used in hostile outdoor

environments. Hene an implementation must be side-hannel resistant. Power

attaks subsumes timing attaks [14℄ and an be divided into simple power at-

taks (SPA) and di�erential power attaks (DPA). Simple power attaks use

information from one observation to break the seret. Di�erential power at-

taks use data from several observations and reveal the seret information by

statistially analyzing them. Power analysis is the most serious of all side-

hannel attaks as these an be launhed with very simple and easily available

hardwares.

Several ountermeasures have been proposed in literature to guard ECC

against SPA and DPA (see [3℄, [8℄, [14℄, [17℄, [5℄ for example). The pipelining

sheme proposed in [24℄ uses the side-hannel atomiity to immunize against

SPA. In the urrent work we use the same ountermeasure. Also to failitate

pipelining, we use the same division of the EC-operations into atomi bloks

as proposed in [24℄. We provide the tables depiting the EC-operations as

sequenes of atomi bloks in the Appendix.

2.2.1 Curve Randomisation Countermeasure Against DPA

To immunize ECC from DPA, many ountermeasures have been proposed. Most

of them involve randomization of the proessed data, suh as the representation

of the point or of the urve or of the salar. For a details disussion on the topi

the reader an refer to [5℄. In the proposed sheme, we use Joye-Tymen's oun-

termeasure to resist DPA [17℄. The ountermeasure is based on the following

priniple. Let C be the ellipti urve and let C

0

be a randomly hosen urve

isomporphi to C. Let P

0

be the point on C

0

orresponding to the base point

P . The ountemeasure shifts the omputation of salar multipliation to the

urve C

0

and omputes mP

0

. After the omputation the result is transformed

bak to the original urve. Put more suintly,

Let z be a random nonzero �eld element. The steps are as follows.

1. Compute z

2

; z

3

; z

4

; z

6

.

2. Transform the base point P (x; y) to (z

2

x; z

3

y).

3. Transform the urve oeÆients (a; b) to a

0

= z

4

a; b

0

= z

6

b.

4. Compute salar multipliation with the new point on the new urve.

5. Transform the result (x; y) bak to the original urve using (x; y)! (x=z

2

; y=z

3

).

The additional ost of obtaining DPA resistane is 4[m℄ for Step 1; 2[m℄ for

Step 2; 2[m℄ for Step 3 and �nally 1[i℄ + 2[m℄ for Step 5. We resort to this

ountermeasure as the base point an be kept in aÆne oordinates and eÆieny

an be gained from mixed additions. Any other DPA ountermeasure whih

allows mixed additions an easily be inorporated into our sheme. Also, we

use a variation of this sheme as our method uses a preomputed table (see

Setion 3.3).
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2.3 The Pipelining Sheme

The salar multipliation is generally omputed by a sequene of ECDBL and

ECADD, omputed one after another in a sequential exeution. The pipelining

sheme proposed in [24℄ is based on a simple observation. Both of these oper-

ations are a sequene of �eld operations. ECDBL takes as input a point P of

the ellipti urve and omputes it double, 2P . ECADD takes as input 2 points

P

1

; P

2

and returns their sum P

1

+ P

2

. In the salar multipliation algorithm

whenever ECADD is invoked one of the addend is �xed, the base point. Hene

in the ontext of salar multipliation, ECADD also has only one input point.

Thus, input to both the EC-operations are three �eld elements, the x, y and z-

oordinates of the input point. As mentioned earlier, we use the mixed addition

for the addition operations in the salar multipliation algorithm.

In both the EC-operations there are some operations whih an be om-

puted with the z-oordinate only, some an be omputed with only the x and z

oordinates. Also, the omputation of the output z-oordinate needs minimum

amount of omputation and hene it an be omputed �rst. Next, the output of

x-oordinate needs lesser amount of omputation than y oordinates and hene

an be omputed next. The omputation of y-oordinates an be done at the

last. This observation leads to a very eÆient salar multipliation method. In

the left-to-right salar multipliation algorithm, the �rst EC-operation is always

an ECDBL. It is followed by an ECADD or an ECDBL aording as the orre-

sponding bit is 1 or 0. In a sequential exeution, the subsequent EC-operation

is invoked when the urrent one exits. In the pipelining sheme, the urrent

operation outputs its �rst output as soon as it is omputed and the next EC-

operation begins in parallel. Both the operation ontinue exeution, the earlier

one produing its outputs and the subsequent operation using it as input. As

the �rst proess exits, the seond proess reahes the stage of produing its

outputs and a third proess starts exeution in parallel with the seond using

the outputs of the seond as its inputs.

In [24℄, the author has shown that the asading of the EC-operations is

nearly perfet in the sense that one an EC-operation starts exeuting it seldom

waits for an input. In the refered work the author has used the side-hannel

atomi bloks ountermeasure against SPA. In the Appendix we have produed

the division of atomi bloks into atomi bloks onduive to the pipelining

sheme. Also, we have presented the table desribing how the EC-operations

take part in the pipelining sheme in di�erent senarios of the salar multipli-

ation (e.g. when an ECDBL is followed by an ECADD or ECDBL; or when

an ECDBL follows an ECADD).

In [24℄, the author has shown how the pipelining sheme an be implemented

with just one extra multiplier and some more memory. The author has used the

omputation time of one atomi blok as one unit of omputation time. In fat,

omputation time of an atomi blok is roughly same as that of a multipliation.

The author has shown that exept for the �rst EC-operation, whih is always

an ECDBL, eah subsequent EC-operation an be omputed in 6 units of time

in the pipelining sheme. The �rst ECDBL takes 7 or 10 units of time aording
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as the base point is in aÆne or Jaobian oordinates. Following [24℄, we assume

that the ost of a squaring to be the same as that of a multipliation. This is

however, not true in general.

3 Pipelined Comb Method

In this setion we will apply the pipelining tehnique of [24℄ to omb method of

omputing the salar multipliation desribed in Setion 2.1.

3.1 Preomputations

We need to preompute the table T [ ℄ desribed in Setion 2.1. That is we have

to preompute

[a

w�1

; � � � ; a

1

; a

0

℄P = a

w�1

2

w�1

P + � � �+ a

1

2P + a

0

P

for all vetors (a

w�1

; � � � ; a

1

; a

0

) 2 f0; 1g

w

. As the vetor (a

w�1

; � � � ; a

1

; a

0

)

ranges over all vetors in f0; 1g

w

, the point [a

w�1

; � � � ; a

1

; a

0

℄P ranges over

all points in f0:P; 1P; � � � ; (2

w

� 1)Pg. Hene we preompute iP for all i 2

f0; 1; � � � ; 2

w

� 1g and store the preomputed values in a table T [ ℄ suh that

T [i℄ = iP .

Let us denote T [i℄ by T

i

. As eah T

i

is a point on the ellipti urve, it has

three oordinates, say, T

i

x

; T

i

y

and T

i

z

, eah of whih is a �eld element. We have

T

0

= 0 and T

1

= P . As we keep the base point in aÆne oordinates, we have

T

1

x

= x, T

1

y

= y and T

1

z

= 1, where (x; y) are the oordinates of the base point

P . We an use the Algorithm 2 for preomputation.

Algorithm 2 (Preomputation for Comb Method)

Input: The point P and the integer w.

Output: The table T [ ℄ suh that T [j℄ = jP8j 2 f0; 1; � � � ; 2

w

� 1g.

1. Let T [0℄ = 0

2. Let T [1℄ = P

3. For i = 1 to 2

w�1

� 1

4. T [2i℄ = ECDBL(T [i℄)

5. T [2i+ 1℄ = ECADD(T [2i℄ + T [1℄)

Observe that the ECADD abd ECDBL in Agorithm 2 an be omputed in a

pipeline. As the ECDBL of one iteration exits, the ECDBL of the next operation

an enter the pipeline. In the pipeline sheme of [24℄, the EC-operations get

their input and write bak their outputs to the same loations, namely, T

6

, T

7

and T

8

. In this preomputation sheme a slight hange to that has to be made.

The ECDBL gets its input from T

i

x

, T

i

y

and T

i

z

and writes bak its output to

T

2i

x

, T

2i

y

and T

2i

z

. The ECADD gets its input from T

2i

x

, T

2i

y

and T

2i

z

and writes

bak its output to T

2i+1

x

, T

2i+1

y

and T

2i+1

z

.
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The preomputation algorithm invokes ECADD and ECDBL 2

w�1

�1 times

eah. Hene it omputes (2

w

� 2) EC-operations. The �rst doubling takes 7

units of time and the subsequent ones take 6 units of time eah. Hene we have;

Proposition 2 Algorithm 2 takes 7+ 6� (2

w

� 3) = 6� 2

w

� 11 units of time

to ompute the table T [ ℄.

All entries in the table T [ ℄, exept T [0℄ and T [1℄ omputed by Algorithm 2

are in Jaobian oordinates. We wish to store them in aÆne oordinates as we

wish to take advantage of mixed addition in the salar multipliation algorithm.

To onvert the entries into aÆne we need to ompute inverse of z-oordinate

of eah of T [i℄; 2 � i � 2

w

� 1. By Montgomery's trik it will take 1 inversion

and 3� 2

w

� 3 multipliations. After omputing the inverses, omputing their

squares and ubes and multiplying them with the orresponding x and y oor-

dinates will take 4 multipliations per point of the table T [ ℄ (reall that we are

assuming the osts of multipliation and squaring to be the same). Hene, the

onversion to aÆne stage of the preomputation will take 1[i℄+(7�2

w

�17)[m℄

omputation, where [i℄ and [m℄ denote the omputation time of an inversion

and a multipliation respetively.

3.2 The Main Algorithm

The main algorithm for omb method has been presented in Setion 2.1. Observe

that the algorithm an again be proessed in a pipelined manner. The ECDBL

at Step 5 and ECADD at step 6 an be asaded. When ECDBL exits, the

ECADD an be asaded with the ECDBL of next iteration. As the points

stored in Table T [ ℄ are in aÆne oordinates, one an take advantage of mixed

additions.

3.3 Seurity Against SCA

The pipelined sheme we use is the same as the one proposed in [24℄. In the

sheme the author has used side-hannel atomi bloks for seurity against SPA.

So our sheme is also seure against SPA. At Step 6 of Algorithm 1, if a whole

olumn of the exponent array is zero (i.e. j = 0) then no addition takes plae.

If this an be deteted by the adversary from the side hannel information,

then he/she an obtain a partial information about the seret key. Although

this is least likely, we an add further seurity measure by omputing a dummy

addition there. Thus the omputation pattern beomes more uniform and the

algorithm is now doubly seure against SPA. Proposition 1 states that the Al-

gorithm 1 needs

�

2

w

�1

2

w

t� 1

�

invoations of ECADD on average to ompute the

salar multipliation. If dummy additions are arried out the omputational

requirement will be t� 1 ECDBL and t� 1 ECADD. Thus, the omputational

overhead for this extra seurity is only t=2

w

additions on average.

To prevent DPA, we an use Joye-Tymen urve randomisation method. We

shift the whole omputation to a random isomorphi urve and pull bak the
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result to the original urve after the omputation is over. We have to transform

all points in the table T [ ℄ to the orresponding points on the random urve.

3.4 Resistane Against DPA

We disuss a method for making the algorithm resistant against DPA. Reall

that we use a look-up table T [ ℄ of t points. The steps for the ounter-measure

are as follows.

1. Choose a random nonzero �eld element z.

2. Compute the relevant powers of z. (see Subsetion 2.2.1)

3. Transform the urve parameters.

4. Transform eah of the 2

w

� 1 nonzero points of T [ ℄.

5. Perform salar multipliation using Algorithm 1.

6. Transform the result bak to the original urve.

Step 2 needs 3[m℄ (z

6

is not required), Step 3 requires 1[m℄ (transformation

of b is not required), Step 4 requires 2�(2

w

�1)[m℄ and Step 6 requires 1[i℄+5[m℄.

Hene total ost is 1[i℄ + (2

w+1

+ 7)[m℄ taking [m℄ = [s℄.

3.5 Cost of the Main Algorithm

The main algorithm invokes ECADD and ECDBL t � 1 times eah. So it

omputes 2t � 2 EC-operations. The �rst doubling takes 7 units of tie as the

input point is in aÆne oordinates. Then eah subsequent operation takes 6

units of time. Hene the whole omputation takes 6(2t � 3) + 7 = 12t � 11

units of time. The DPA ountermeasure takes 1[i℄ + (2

w+1

+ 7)[m℄ amount of

omputation. Assuming [i℄ = 30 units of time, the DPA ountermeasure takes

2

w+1

+ 37 units of time. Hene omputation time of the salar multipliation

is 12t+2

w+1

+26 time units. In Table 4 we present the omputational ost for

some typial values of w and t assuming n = 160.

4 Performane

In this setion we will see the performane of the sheme for some representative

values of n and w and ompare performane of the sheme with other known

methods requiring the same amount of resoures. In Table 4 we have presented

the ost of omputing the salar multipliation for n = 160 and di�erent values

of w. The values in Columns 2, 3 and 4 refer to the ost of preomputation,

main and total amount of omputation required for salar multipliation in time

units. Negleting the �eld additions the unit of time is equal to the time of a

�eld multipliation. The Storage-olumn in Table 4 refers to the number of

points to be stored.
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w t Preomputation Main Total Storage

2 80 54 994 1048 3

3 54 106 660 766 7

4 40 210 538 758 15

5 32 418 474 892 31

If the base point is �xed, so that the preomputation an be done o�ine,

then the salar multipliation an be arried out with only 474 units of time

with a storage of 31 points or 538 units of time with a storage of 15 points. The

omputational requirement an be further redued if storage of more points is

allowed. If the base point is not �xed and the preomputation is done o�ine,

then the omputation takes 758 units of time with a storage of 15 points and 766

units of time with a storage of 7 points only. The original pipeline sheme [24℄

with similar storage requirement requires 1152 units of time.

Our sheme requires one additional multiplier. Let us ompare its perfor-

mane vis-a-vis other known parallel methods.

Computation of salar multipliation on ECC is not a new onept. Koyama

and Tsuruoka [21℄ had proposed one suh method as early as 1992. A speial

hardware was used to arry out the omputation in their proposal. We ompare

our sheme with some of the reent proposals whih are SCA resistant. The

sheme proposed in [9℄, uses a parallelized enapsulated-add-and-double algo-

rithm using Montgomery arithmeti. This algorithm uses two multipliers and

takes 10[m℄ omputations per bit of the salar. So omputation of the salar

multipliation for a 160 bit salar will take 1600[m℄ or 1600 time units. In [11℄,

the authors propose a parallel sheme, whih omputes the salar multiplia-

tion with two multipliers in time equivalent to n doulings and n=4 additions in

a sequential implementation. If we translate that into time units it is more than

2000[m℄. In [16℄, the authors have proposed several shemes for parallel ompu-

tation of salar multipliation in ECC. Their best sheme requires 1592.4 units

of time. Ofourse their method does not require a preomputed table and hene

requires less memory. In [1℄, the authors have proposed eÆient algorithms

for omputing the salar multipliation with SIMD (Single Instrution Multiple

data). Similar and more eÆient algorithms are also proposed in [15℄. In [15℄ the

authors have given two proposals. The �rst proposal, like our sheme, does not

use preomputations and takes 1629[m℄ to ompute the salar multipliation.

They have taken [s℄ = 0:8[m℄. Their seond proposal uses preomputed points,

applies signed window expansions of the salar and is quite eÆient. Their best

sheme requires storage of 16 points and omputes the salar multipliation in

942.4 units of time. Our proposal with similar memory requirement needs only

758 units of time.

5 Conlusion

In the urrent work we extend the simple pipelining sheme proposed in [24℄ for

salar multipliation in ECC to inlude preomputation. The method ombines

10



the pipelining tehnique with omb method of omputing the salar multipli-

ation. The resultant method is seure against SCA and preforms better than

many existing sequential and parallel shemes.

Referenes

[1℄ K. Aoki, F. Hoshino, T. Kobayashi and H. Oguro. Ellipti Curve Arithmeti

Using SIMD, In ISC, 2001, LNCS 2200, pp. 235-247, Springer-Verlag, 2001

[2℄ R. M. Avanzi. On Multi-exponentiation in Cryptography, To appear in

J. Cryptology. Available at IACR eprint Arhive, Tehnial Report No

2002/154, http://www.iar.org.

[3℄ E. Bri�er and M. Joye. Weierstrass Ellipti Curves and Side-Channel At-

taks. In PKC 2002, LNCS 2274, pages 335-345, Springer-Verlag,2002.

[4℄ B. Chevallier-Mames, M. Ciet and M. Joye. Low-ost Solutions for Prevent-

ing Simple Side-Channel Analysis: Side-Channel Atomiity, IEEE Trans.

on Computers

[5℄ M. Ciet. Aspets of Fast and Seure Arithmetis for Ellipti Curve Cryp-

tography, Ph. D. Thesis, Louvain-la-Neuve, Belgique.

[6℄ C. Clavier and M. Joye. Universal Exponentiation Algorithm { A First

Step Towards SPA Resistane, In CHES, 2001, LNCS 2162, pp. 300-308,

Springer-Verlag, 2001.

[7℄ H. Cohen, A. Miyaji, and T. Ono. EÆient Ellipti Curve Exponentia-

tion Using Mixed oordinates, In ASIACRYPT'98, LNCS 1514, pp. 51-65,

Springer-Verlag, 1998.

[8℄ J. -S. Coron. Resistane against Di�erential Power Analysis for Ellipti

Curve Cryptosystems, In CHES 1999, pages 292-302.

[9℄ W. Fisher, C. Giraud, E. W. Knudsen, J. -P. Seifert. Parallel Salar

Multipliation on General Ellipti Curves over F

p

hedged against Non-

Di�erential Side-Channel Attaks, Available at IACR eprint Arhive, Teh-

nial Report No 2002/007, http://www.iar.org.

[10℄ K. Fong and D. Hankerson and J. L�opez and A. Menezes. Field inversion

and point halving revisited, Tehnial Report, CORR 2003-18, Department

of Combinatoris and Optimization, University of Waterloo, Canada, 2003.

[11℄ J. M. G. Garia, R. M. Garia. Parallel Algorithm for Multipliation on El-

lipti Curves. Cryptology ePrint Arhive, Report 2002/179, (2002), Avail-

able at http://eprint.iar.org

[12℄ D. Gordon. A survey of fast exponentiation methods, J. Algorithms,

27(1):129{146, 1998.

11



[13℄ D. Hankerson, A. Menezes and S. Vanstone. Guide to Ellipti Curve Cryp-

tography, Springer-Verlag, 2004.

[14℄ T. Izu, B. M�oller and T. Takagi. Improved Ellipti Curve Multipliation

Methods Resistant Against Side Channel Attaks, Proeedings of Indorypt

2002, LNCS 2551, pp 296-313, Springer-Verlag.

[15℄ T. Izu and T. Takagi. Fast Ellipti Curve Multipliations with SIMD op-

eration, ICICS 2002, LNCS, pp 217-230, Springer-Verlag.

[16℄ T. Izu and T. Takagi. A Fast Parallel Ellipti Curve Multipliation Re-

sistant against Side Channel Attaks, ICICS 2002, LNCS, pp 217-230,

Springer-Verlag.

[17℄ M. Joye and C. Tymen. Protetion against di�erential attaks for ellipti

urve ryptography, CHES 2001, LNCS 2162, pp 402-410, Springer-Verlag.

[18℄ N. Koblitz. Ellipti Curve Cryptosystems, Mathematis of Computations,

48:203-209, 1987.

[19℄ P. Koher. Timing Attaks on Implementations of DiÆe-Hellman, RSA,

DSS and Other Systems, CRYPTO'96, LNCS 1109, pp. 104-113, Springer-

Verlag, 1996.

[20℄ P. Koher, J. Ja�e and B, Jun. Di�erential Power Analysis, CRYPTO'99,

LNCS 1666, pp. 388-397, Springer-Verlag, 1999.

[21℄ K. Koyama, Y. Tsuruoka. Speeding up ellipti Curve Cryptosystems Using

a Signed Binary Windows Method, In CRYPTO'92, LNCS 740, pp 345-357,

Springer-Verlag, 1992.

[22℄ A. J. Menezes, P. C. van Oorshot and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1997.

[23℄ V. S. Miller. Use of Ellipti Curves in Cryptography. In CRYPTO'85,

LNCS 218, pp. 417-426, Springer-Verlag, 1985.

[24℄ P. K. Mishra. Pipelined Computation of Salar Multipliation in Ellipti

Curve Cryptosystems. To appear in CHES 2004.

[25℄ B. M�oller. Seuring Ellipti Curve Point Multipliation against Side-

Channel Attaks. In Pro. of ISC 2001, pages 324-334, 2001.

[26℄ J. Solinas. EÆient arithmeti on Koblitz urves, in Designs, Codes and

Cryptography, 19:195-249, 2000.

12



A ECADD and ECDBL in Atomi Bloks

ECDBL Algorithm in Atomi Bloks
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ECADD Algorithm in Atomi Bloks
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EC-operations in the Pipeline
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