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Abstract. This note describes an SPA-based side channel attaclstaga@RT implementation of an RSA
function. In contrast with Novak’s attack [8], it concentsaba the initial modular reduction. With the help of
lattice reduction it applies even to implementations whish a common randomising technique to ensure
resistance against certain side channel attacks.
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Introduction
In an RSA function using the Chinese Remainder Transfoom (CRT), the input text is reduced modulo the
secret prime factons andq of the RSA modulusplq, before its powers modulpandq are taken. To prevent
Differential Power Analysis liken [2] and Differential Fault Analysis like in [3], in a secdr®&SA-CRT
implementation on smartcardg, and q are multiplied by a secret random integerThen xmod(p(Z) is
calculated as the base of the first exponentiation, litmedise with q for the second exponentiation. Let us
assume a side channel leaks the integral quosientx/(p[Z)[ during the reduction af modulo p(z. This
assumption is conceivable in case of Simple Power yasal (SPA) of a bitwise pencil-and-paper’
implementation of the integer division (cf. ch. 3 of [3}hich is used for this modular reduction. Then we can
retrieve the secret primes from= plq and froms provided that

1. xhas approximately the same sizenaise.x andn have similar bit lengths,

2. an approximatiorx of x is known (X = x),

3. zis not unusually big.
Later we concentrate on a concrete bound bfow we illustrate the idea of the attack. Firstlydstassume that

z equals one. Thes has approximately the same sizecaby assumption 1. Thereforej=[X/s[ is an
approximation ofp by assumption 2. So, in this case, we can finty checking the candidates in the
neighbourhood ofi for dividing n. Now let us consider the situation of an unknown nurab&hen, under the
assumptions 1 to 3, we have

X = x=s[plz, and thereforai = [X/ s[ is an approximation op(z.
Hencen andu have an “approximate integer common divisprin the sense of [4]. By a lattice reduction
technigue we can retrieyefrom n andu as will be illustrated in the following.

Description of Algorithm

In [4] Howgrave-Graham suggests a method with lattices oérdtlgh rank and with rather big entries for
searching common divisors. In this section we presertieel@f rank three which is tailor-made for solving the
computational problem of finding the primpén the above context (notation like before):

Input: n=plq, X=x, s=[x/(p)[ for an unknown number

Output: P, q

1. Calculateu =[X/s[ (By assumptions 1 to 3 this impliestr =0 (modp fdr a small integer.)

2. Find a short vectokvo,vl,vz) of theZ-lattice with base(n,O, O), (u,],O), ﬁf , Zm,lﬁ. (If regarded as

polynomials, like in [4], these base vectors haas a root modulp, hence also every vector of the lattice.)

3. Calculate an integer rootof the quadratic polynomialo +v, 0+ v, [t 2. (Because of the small coefficients
the root exists iz, and not only modulp.)



4. Outputgcd@+r ,n)andn/gcdu+r n).
For finding a short lattice vector in step 2 you can hed.t L algorithm of [5] or variants of it.

Bound

In step 2 the LLL algorithm produces a vector of nar2*? [h*'®. So the deviatiorr| of the approximation
of plz should be significantly smaller thant’®. By assumption 1 and 2 this is the case wpén is
significantly smaller tham?3. To see this definen= p[z andt = x (modm) so that0<t <m. Then

xn xn tn m?> m? m?
- = < =+

u=x/s=xm/(x-t), and thereforai—m= .
x-t X Xx-t x-m x Xxx-m)

But with x of sizen and m<<n?® the last summand can be neglected and the first sumimaigsificantly
smaller thann'’®. This asserts the upper boun#® of plz. Hence, for RSA primes andq of about the same

length, the security parametemust be significantly smaller tham’® to ensure correctness of the algorithm. In
practice the length afis even not more than 1/16 of the length of the RSAutusn.

Experimental Results
We implemented the algorithm with Maple 6.0 on a Pentidm00 MHz machine and tested RSA moduli of
different bit lengths up to 2048. For the bit lengths,dk~X|, zin the ratio 16 : 2 : 1 we applied the program

several thousands of times to random input numbarglz, each time with success and each time with a few
seconds of computation only.

Countermeasures

The two following countermeasures obviously preventftbe presented attack:

»  SPA protected implementation of the modular reduction,

* blinding ofx by addition of a random multiple of the RSA moduius

Algorithm D in chapter 4.3.1 of [6] can serve as a draftrifgplementation of an SPA protected division. It
operates with words of any length given by the respectatfopin.

For the latter countermeasure longer operands in theilRBl&mentation must be taken into account.

Conclusion

We have shown a very efficient SPA-based attacknaga@n RSA-CRT implementation which uses random
factors of the prime moduli. The presented algorithmawees the protection with the random factors by using
a lattice reduction technique. Our attack applies to RgAirgg and verifying as well as to RSA decryption,
since these operations do not keep secret the expormntigsex. Even probabilistic signature schemes like
that in [1] provide no inherent security against ourcitttén these schemes random ‘salt' is used in the signing
algorithm for preparation of. But it can not be regarded as secret, since it &ated by the verifying algorithm.
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