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Abstract. This note describes an SPA-based side channel attack against a CRT implementation of an RSA
function. In contrast with Novak’s attack [8], it concentrates on the initial modular reduction. With the help of
lattice reduction it applies even to implementations which use a common randomising technique to ensure
resistance against certain side channel attacks.
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Introduction
In an RSA function using the Chinese Remainder Transformation (CRT), the input text x is reduced modulo the
secret prime factors p and q of the RSA modulus qp ⋅ , before its powers modulo p and q are taken. To prevent

Differential Power Analysis like in [2] and Differential Fault Analysis like in [3], in a secured RSA-CRT
implementation on smartcards, p and q are multiplied by a secret random integer z. Then )(mod zpx ⋅  is
calculated as the base of the first exponentiation, and likewise with q for the second exponentiation. Let us
assume a side channel leaks the integral quotient  )( zpxs ⋅=  during the reduction of x modulo zp ⋅ . This
assumption is conceivable in case of Simple Power Analysis (SPA) of a bitwise ’pencil-and-paper’
implementation of the integer division (cf. ch. 3 of [5]), which is used for this modular reduction. Then we can
retrieve the secret primes from qpn ⋅=  and from s provided that

1. x has approximately the same size as n, i.e. x and n have similar bit lengths,
2. an approximation x~  of x is known ( xx ≈~ ),
3. z is not unusually big.

Later we concentrate on a concrete bound of z. Now we illustrate the idea of the attack. Firstly let us assume that
z equals one. Then s has approximately the same size as q by assumption 1. Therefore,  sxu /~=  is an
approximation of p by assumption 2. So, in this case, we can find p by checking the candidates in the
neighbourhood of u for dividing n. Now let us consider the situation of an unknown number z. Then, under the
assumptions 1 to 3, we have

zpsxx ⋅⋅≈≈~ , and therefore  sxu /~=  is an approximation of zp ⋅ .
Hence n and u have an “approximate integer common divisor“ p in the sense of [4]. By a lattice reduction
technique we can retrieve p from n and u as will be illustrated in the following.

Description of Algorithm
In [4] Howgrave-Graham suggests a method with lattices of rather high rank and with rather big entries for
searching common divisors. In this section we present a lattice of rank three which is tailor-made for solving the
computational problem of finding the prime p in the above context (notation like before):
Input: qpn ⋅= , xx ≈~ ,  )( zpxs ⋅=  for an unknown number z

Output: p, q
1. Calculate  sxu /~=  (By assumptions 1 to 3 this implies )(mod0 pru ≡+  for a small integer r.)

2. Find a short vector ( )
210

,, vvv  of the Z-lattice with base ( )0,0,n , ( )0,1,u , 


 ⋅ 1,2,2 uu . (If regarded as

polynomials, like in [4], these base vectors have r as a root modulo p, hence also every vector of the lattice.)

3. Calculate an integer root r of the quadratic polynomial 2

210
rvrvv ⋅+⋅+ . (Because of the small coefficients

the root exists in Z, and not only modulo p.)



4. Output ),gcd( nru +  and ),gcd(/ nrun + .
For finding a short lattice vector in step 2 you can use the LLL algorithm of [5] or variants of it.

Bound

In step 2 the LLL algorithm produces a vector of norm 3/12/32 n⋅≤ . So the deviation r  of the approximation u

of zp ⋅  should be significantly smaller than 3/1n . By assumption 1 and 2 this is the case when zp ⋅  is

significantly smaller than 3/2n . To see this define zpm ⋅=  and ) (modmxt =  so that mt  0 <≤ . Then

)/(/ txmxsxu −⋅=≈ , and therefore 
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But with x of size n and 3/2nm <<  the last summand can be neglected and the first summand is significantly

smaller than 3/1n . This asserts the upper bound 3/2n  of zp ⋅ . Hence, for RSA primes p and q of about the same

length, the security parameter z must be significantly smaller than 6/1n  to ensure correctness of the algorithm. In
practice the length of z is even not more than 1/16 of the length of the RSA modulus n.

Experimental Results
We implemented the algorithm with Maple 6.0 on a Pentium III 700 MHz machine and tested RSA moduli of
different bit lengths up to 2048. For the bit lengths of n, xx ~− , z in the ratio 16 : 2 : 1 we applied the program

several thousands of times to random input numbers x and z, each time with success and each time with a few
seconds of computation only.

Countermeasures
The two following countermeasures obviously prevent from the presented attack:
•  SPA protected implementation of the modular reduction,
•  blinding of x by addition of a random multiple of the RSA modulus n.
Algorithm D in chapter 4.3.1 of [6] can serve as a draft for implementation of an SPA protected division. It
operates with words of any length given by the respective platform.
For the latter countermeasure longer operands in the RSA implementation must be taken into account.

Conclusion
We have shown a very efficient SPA-based attack against an RSA-CRT implementation which uses random
factors of the prime moduli. The presented algorithm overcomes the protection with the random factors by using
a lattice reduction technique. Our attack applies to RSA signing and verifying as well as to RSA decryption,
since these operations do not keep secret the exponentiation base x. Even probabilistic signature schemes like
that in [1] provide no inherent security against our attack. In these schemes random ‘salt‘ is used in the signing
algorithm for preparation of x. But it can not be regarded as secret, since it is revealed by the verifying algorithm.
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