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INTRODUCTION

In an important class of stream ciphers, called combination generators, the

key stream is produced by combining the outputs of several independent Linear

Feedback Shift Register (LFSR) sequences with a nonlinear Boolean function.

Siegenthaler [12] was the first to point out that the combining function should

possess certain properties in order to resist divide-and-conquer attacks.A Boolean

function to be used in the combination generator (or more general also in stream

ciphers) should satisfy several properties. Balancedness – the Boolean function

has to output zeros and ones with equal probabilities. High nonlinearity - the

Boolean function has to be at sufficiently high distance from any affine func-

tion. Correlation-immunity (of order t) - the output of the function should be

statistically independent of the combination of any t of its inputs. A balanced

correlation-immune function is called resilient.

Besides the divide-and-conquer attacks, another important class of attacks

on combination generators are the algebraic attacks [4, 5]. The central idea in the

algebraic attacks is to use a lower degree approximation of the combining Boolean

function and then to solve an over-defined system of nonlinear multivariate equa-

tions of low degree by efficient methods such as XL or simple linearization [3]. In

order to resist these attacks, the Boolean function should have not only a a high

algebraic degree but also a high distance to lower order degree functions. The

trade-off between resiliency and algebraic degree is well-known. To achieve the



desired trade-off designers typically fix one or two parameters and try to optimize

the others.

In this paper, we investigate the generalization of the trade-off between re-

siliency and algebraic degree. In particular, we study the relation between re-

siliency and distance to lower order degree functions. In order to define a the-

oretic model for combining these properties, Kurosawa et al. [6] have intro-

duced a new covering radius ˆ̺(t, r, n), which measures the maximum distance

between t-resilient functions and r-th degree functions or the r-th order Reed-

Muller code RM(r, n). That is ˆ̺(t, r, n) = max d(f(x), RM(r, n)), where the

maximum is taken over the set Rt,n of t-resilient Boolean functions of n vari-

ables. Note that as the covering radius of Reed-Muller codes is defined by

̺(r, n) = max d(f,RM(r, n)) where the maximum is taken over all Boolean func-

tions f , it holds that 0 ≤ ˆ̺(t, r, n) ≤ ̺(r, n). Kurosawa et al. also provide a table

with certain lower and upper bounds for ˆ̺(t, r, n). In [1] some exact values and

new bounds for the covering radius of the second order Reed-Muller codes in the

set of resilient functions were found.

In this paper we find the exact value of the covering radius of RM(n − 3, n)

in the set of 1-resilient Boolean functions of n variables, when ⌊n/2⌋ = 1mod 2.

We also improve the lower bounds for covering radius of the Reed-Muller codes

RM(r, n) in the set of t-resilient functions, where ⌈r/2⌉ = 0mod 2, t ≤ n− r− 2

and n ≥ r + 3. We start with some background on Boolean functions.

BACKGROUND

Any Boolean function f(x) on F
n
2 can be uniquely expressed in the algebraic

normal form (ANF):

f(x) =
∑

(a1,...,an)∈F
n

2

hf (a1, . . . , an)xa1

1 · · ·xan

n ,

with hf a function on F
n
2 , defined by hf (a) =

∑

x≤a f(x) for any a ∈ F
n
2 , where

x ≤ a means that xi ≤ ai for all i ∈ {1, . . . , n}. The algebraic degree of f , denoted

by deg(f) or shortly d, is defined as the number of variables in the highest term

xa1

1 · · · xan

n in the ANF of f for which hf (a1, . . . , an) 6= 0. The suport of f , denoted

by sup(f), is the set of all vectors x for which f(x) 6= 0. The Walsh transform of



f(x) is a real-valued function over F
n
2 that is defined as

Wf (ω) =
∑

x∈F
n

2

(−1)f(x)+x·ω,

where x · w denotes the dot product of the vectors x and w, i.e., x · w = x1w1 +

· · · + xnwn.

Definition 1 A function f(x) is called t-th order correlation-immune if its Walsh

transform satisfies Wf (ω) = 0, for 1 ≤ wt(ω) ≤ t, where wt(x) denotes the

Hamming weight of x. Balanced t-th order correlation-immune functions are

called t-resilient functions, i.e. Wf (ω) = 0, for 0 ≤ wt(ω) ≤ t.

By the well-known Siegenthaler’s inequality [11] the maximal possible alge-

braic degree of t-resilient function f of n variables is equal to n − t − 1 when

t < n − 1. The problem for constructing resilient functions (in particular such

of maximal possible degree) attracted the attention of many authors in the past.

Among other works we mention [11], [2] and [10]. The next theorem shows how

we can easily construct (t + 1)-resilient function on F
n+1
2 from t-resilient function

on F
n
2 .

Lemma 2 [2] Let xn+1 be a linear variable, i.e., f(x1, . . . , xn, xn+1) = g(x1, . . . , xn)

+ xn+1, where g(x1, . . . , xn) is t-resilient. Then f(x1, . . . , xn, xn+1) is (t + 1)-

resilient.

We also make use of the following theorem:

Theorem 3 [7] The covering radius of RM(n − 3, n) is equal to n + 2 if n is

even. If n is odd, the covering radius is equal to n + 1.

To prove the theorem, McLoughlin constructed a coset for which the minimal

weight is equal to n + 2 when n is even, and n + 1 when n is odd. This coset

contains σn−2, the symmetric polynomial consisting of all terms of degree n − 2.

THE COVERING RADIUS OF (N − 3)-RD REED-MULLER CODES IN THE

SET OF 1-RESILIENT BOOLEAN FUNCTIONS

In order to prove the main theorem of this paper we will need the following

lemmas.



Lemma 4 Let σi(x) be the symmetric polynomial of n variables containing all

terms of degree i (σ0(x) = 1) and S(x) =
∑n−2

i=0 σi(x). Then

v ∈ sup(S) if and only if wt(v) =

{

0, n − 1, n when n is even;

0, n − 1 when n is odd.

Proof. Let v ∈ F
n
2 be a vector of weight w. It is easy to see that the number of

terms in σi(v) equal to 1 is
(

w

i

)

(as usual
(

w

i

)

= 0, when w < i). Therefore the

number of terms in S(v) that are equal to 1 is N(w) =
∑n−2

i=0

(

w

i

)

i.e. S(v) =

N(w) mod 2. There are four cases to be considered:

1. If w = 0, then S(0) = 1;

2. If 0 < w < n − 1, then N(w) = 2w and thus S(v) = N(w) mod 2 = 0;

3. If w = n − 1, we have N(n − 1) =
∑n−2

i=0

(

n−1
i

)

= 2n−1 − 1 and therefore

S(v) = 1;

4. If w = n, we have N(n) =
∑n−2

i=0

(

n

i

)

= 2n − (n + 1). Therefore

S(1) =

{

1 when n is even;

0 when n is odd.

This completes the proof. ✷

Lemma 5 Let S(x) be the symmetric Boolean function of n variables, defined in

Lemma 4, where n is equal to 4k + 2 or equal to 4k + 3. Let v be an arbitrary

vector of weight 2k + 1 or of weight 2k + 2. Then the Walsh transform value

WS(v) = 0.

Proof. Let us consider the following two linear functions: L1(x) =
∑2k+1

i=1 xi and

L2(x) =
∑2k+2

i=1 xi. Arranging the set sup(S) in decreasing lexicographic order,

it is easy to see that Lj = 0, j = 1, 2 for the half of the vectors from sup(S).

Since the linear functions are balanced the same is true for the complement set of

sup(S), in which S takes value 0. Therefore L1 and L2 differ from S in 2n−1 points

i.e. d(Lj, S) = 2n−1, j = 1, 2. By using the relation Wf (ω) = 2n − 2 d(〈ω, x〉, f)

we get WS(v) = 0 where v is either the vector having only ones in the first 2k +1

or in the first 2k + 2 coordinates. Since S(x) is a symmetric function this holds

for any vector of weight 2k+1 or 2k+2. ✷



Let T be a subset of F
n
2 . The rank of T , denoted by rank(T ), is defined as

the maximal number of linearly independent elements from T .

Lemma 6 Let n be equal to 4k +2 or equal to 4k +3 and Z = {v ∈ F
n
2 : wt(v) =

2k+1 or 2k+2}. Denote by v1 the vector (1, 1, 1, ..1, 0, 0, 0, ...0) of weight 2k+1.

Then the set Z + v1 has rank n.

Proof. Note that the following vectors of weight 2

(1, 0, 0, ..., 0, 1, 0, ...0), (0, 1, 0, ..., 0, 1, 0...0), . . . , (0, 0, 0, ..., 1, 1, 0...0),

where the second “1” is in the (2k + 2)-nd position, belong to Z + v1. The same

is valid for the vectors having only one “1” in positions 2k + 2 till n. Obviously,

these are n linearly independent vectors and the proof is complete. ✷

Theorem 7 The covering radius of RM(n-3,n) in the set of 1-resilient Boolean

functions of n variables is equal to:

ˆ̺(1, n − 3, n) =

{

n + 2, when n = 4k+2;

n + 1, when n = 4k+3.

Proof. By the result of McLoughlin [7] (see Theorem 3), the Boolean function

S(x) defined in Lemma 4, belongs to the coset of RM(n − 3, n) with a maximal

possible minimal weight. By Lemma 5 and Lemma 6 and using the procedure for

“change the basis” described by Maitra and Pasalic [9] the function S(x) is affine

reducible to 1-resilient function. ✷

Finally, let us consider the case n = 4. It is easy to see that σ2 is affine

equivalent to some function in the coset of RM(1, 4) containing the function f =

x1x2 + x3x4. However f is a bent function and therefore the coset σ2 + RM(1, 4)

contains no balanced functions. By Dickson [8] theorem the remaining two types

of cosets (which are interesting when consider 1−resilient functions of 4 variables),

are RM(1,4) itself and these equivalent to x1x2 + RM(1, 4). In fact the function

g = x1x2 + x3 + x4 is 1-resilient and the minimal weight of its coset is 4. Hence

the covering radius of interest is 4 (see also numerical results in [6]).



DERIVING NEW LOWER BOUNDS ON THE COVERING RADIUS OF REED-

MULLER CODE IN THE SET OF RESILIENT FUNCTIONS

By induction, using Theorem 3 and Theorem 7, we can also generalize the

lower bounds for RM(r, n) in the set of t-resilient functions where ⌈r/2⌉ =

0 mod 2, t ≤ n − r − 2 and n ≥ r + 3.

Theorem 8 The covering radius of the Reed-Muller code RM(r, n) in the set

Rt,n for ⌈r/2⌉ = 0 mod 2, t ≤ n− r − 2 and n ≥ r + 3 is bounded from below by

2n−3.

In particular, for r = 3 and r = 4, this leads to the following lower bound:

Corollary 9 The covering radius of the Reed-Muller code RM(3, n) in the set

Rt,n for t ≤ n − 5 is bounded from below by 2n−3, when n ≥ 6. The covering

radius of the Reed-Muller code RM(4, n) in the set Rt,n for t ≤ n− 6 is bounded

from below by 2n−3, when n ≥ 7, i.e.

ˆ̺(t, 3, n) ≥ 2n−3 for t ≤ n − 5, n ≥ 6

ˆ̺(t, 4, n) ≥ 2n−3 for t ≤ n − 6, n ≥ 7.

CONCLUSION

In this paper, we continued the study of the covering radius in the set of

resilient functions, which has been defined by Kurosawa et al. [6]. This new

concept is meaningful to cryptography especially in the context of the new class

of algebraic attacks on stream ciphers proposed by Courtois and Meier at Euro-

crypt 2003 [4] and Courtois at Crypto 2003 [5]. In order to resist such attacks

the combining Boolean function should be at high distance from lower degree

functions.

Using a result from coding theory on the covering radius of (n− 3)-rd Reed-

Muller codes, we establish exact values of the the covering radius of RM(n−3, n)

in the set of 1-resilient Boolean functions of n variables, when ⌊n/2⌋ = 1mod 2.

We also improve the lower bounds for covering radius of the Reed-Muller codes

RM(r, n) in the set of t-resilient functions, where ⌈r/2⌉ = 0mod 2, t ≤ n− r− 2

and n ≥ r + 3.

In the table below we present the improved numerical values of the covering

radius for resilient functions. The entry α − β means that α ≤ ˆ̺(t, r, n) ≤ β.



Table 1: Numerical data of the bounds on ˆ̺(t, r, n)

n 1 2 3 4 5 6 7
r = 1 0 2 4 12 26 56
r = 2 0 2 6 16 40 − 44

t = 0 r = 3 0 2 8 20 − 22
r = 4 0 2 8
r = 5 0 2
r = 6 0

n 1 2 3 4 5 6 7
r = 1 0 4 12 24 56
r = 2 0 6 16 36 − 44

t = 1 r = 3 0 8 20 − 22
r = 4 0 8
r = 5 0

n 1 2 3 4 5 6 7
r = 1 0 8 24 56
r = 2 0 16 32 − 44

t = 2 r = 3 0 16 − 22
r = 4 0

n 1 2 3 4 5 6 7
r = 1 0 24 48
r = 2 0 32

t = 3 r = 3 0
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