
1

Classification of Highly Nonlinear Boolean Power
Functions with a Randomised Algorithm for

Checking Normality

An Braeken, Christopher Wolf, and Bart Preneel
{An.Braeken, Christopher.Wolf, Bart.Preneel}@esat.kuleuven.ac.be

K.U.Leuven, ESAT-COSIC
Kasteelpark Arenberg 10

B-3001 Leuven-Heverlee, Belgium http://www.esat.kuleuven.ac.be/cosic/

Abstract. A Boolean function is called normal if it is constant on flats of certain dimen-
sions. This property is relevant for the construction and analysis of cryptosystems. This
paper presents an asymmetric Monte Carlo algorithm to determine whether a given Boolean
function is normal. Our algorithm is far faster than the best known (deterministic) algo-
rithm of Daum et al. In a first phase, it checks for flats of low dimension whether the given
Boolean function is constant on them and combines such flats to flats of higher dimension
in a second phase. This way, the algorithm is much faster than exhaustive search. Moreover,
the algorithm benefits from randomising the first phase. As an application, we determine the
level of normality for several, highly nonlinear Boolean power functions.

Keywords: Normality, Boolean Functions, Asymmetric Monte Carlo, Power Functions

Current Revision: 2005-04-15

First Version: 2004-08-30

First Revision: 2004-10-07
Second Revision: 2004-10-11
Third Revision: 2004-11-04

Cryptology ePrint Archive, Report 2004/214

http:://eprint.iacr.org/

A preliminary version of this article under the title “A Randomised Algorithm for Checking
the Normality of Cryptographic Boolean Functions” has been published in Jean-Jacques
Levy, Ernst W. Mayr, John C. Mitchell (editors): “Exploring New Frontiers of Theoreti-
cal Informatics” as the proceedings of the “3rd International Conference on Theoretical
Computer Science (TCS2004)”, Kluwer Academic Publishers, ISBN 1-4020-8140-5 or 1-
4020-8141-3, pp. 51-66; this conference was a co-located conference within the “IFIP 18th

World Computer Congress (WCC04)”, 22–27 August 2004, Toulouse, France.

2

1 Introduction

1.1 Motivation

Boolean functions and maps play a central role in cryptology. They are basic building
blocks of bit-oriented block and stream ciphers. In order to construct secure cryptographic
ciphers, i.e., ciphers which resist all known attacks, it is important to study the structure
and behaviour of Boolean functions.

Normality of a Boolean function is the property which determines if the function is
constant on a flat of dimension ⌈n/2⌉. This concept was introduced by [Dob94], in order
to construct highly nonlinear balanced Boolean functions. Later, this property was used
to distinguish different classes of bent functions. As the first bent function which is non-
normal occurs for dimension 14 [CDDL03], we need a highly optimised algorithm for
determining the normality of Boolean functions. This is non-trivial as the total number of
flats increases exponentially for increasing dimension n [MS91]. Table 1 lists the number
of flats of dimension ⌈n/2⌉; this clearly shows that even for moderate dimensions (n ≥
13 . . . 15) establishing normality by exhaustive search is infeasible.

Table 1. The number of flats of dimension
˚

n

2

ˇ

to test for different dimensions n

n 8 9 10 11 12 13 14 15 16 17 18 19 20

log2(# flats) 22 26 32 37 44 50 58 65 74 82 92 101 112

1.2 Related Work

The first attempt for determining the normality of a Boolean function, better than exhaus-
tive search, is due to [DDL03]. The main idea of their algorithm is to search exhaustively
all flats of small dimension on which the function is constant and then to combine these
to flats of higher dimension.

Another deterministic algorithm can be found in [Now04]. In terms of running time,
it outperforms both [DDL03] and the algorithm presented in this paper.

1.3 Achievement

In our algorithm, we replace the exhaustive search through all flats of small dimension by a
random search. This has several advantages over the algorithm of Daum et al. First, we do
not need a unique representation of flats which means less conditions to test and therefore
a lower time complexity. Second, the number of repetitions needed to determine with
high probability that a function is non-normal, is far smaller than an exhaustive search
on all flats of small dimension (cf Sect. 5.2). Our algorithm is of the asymmetric Monte
Carlo type and may output “non-normal” with probability 2−c for a normal function and
some confidence level c ∈ N. The output “normal” is always correct. This asymmetric
Monte Carlo algorithm has a far smaller running time than the deterministic algorithm of
[DDL03] — even with a reasonable error-probability (c = 80 in our case). In particular, we
are able to use this algorithm to classify various Boolean power functions of cryptographical
interest.

3

1.4 Outline

This paper is organised as follows. In Sect. 2, we introduce the basic definitions together
with a description of the main ideas in our algorithm. Sect. 3 shows as an application of the
algorithm the results on the computation of normality for highly nonlinear power functions
up to dimension 16. Sect. 4 presents more details and explains several optimisations for
our algorithm. In Sect. 5, we give a detailed complexity analysis of the algorithm and
compare the total time complexity of our algorithm with the time complexity of the
previous algorithm from [DDL03]. This paper concludes with Sect. 6.

2 Background

In this section we present some definitions and a simplified algorithm to test the normality
of a Boolean function.

2.1 Definitions

Before we can describe our algorithm, we need to define several objects. We start with
vectors and vector spaces and finish with some definitions concerning Boolean functions.

Let a vector u ∈ F
n
2 be represented by the n-tuple (un−1, . . . , u0) with the coefficients

ui ∈ F2 from the field with 2 elements. Let u1, . . . , uk ∈ F
n
2 be k linearly independent

vectors. Then they form the base of the subspace

<U> := <u1, . . . , uk> := {α1u1 ⊕ . . . ⊕ αkuk | αi ∈ F2}.

Here, the dimension of <U> is k. For a given vector a ∈ F
n
2 , we represent the coset of

this subspace by Ua := a⊕ <U>. Throughout this paper, we call the coset Ua a flat. The
vector a of the flat Ua is called the offset of this flat. In addition, two flats are said to be
parallel if they are cosets of the same subspace <U>, i.e., all flats of the form Ua, a ∈ F

n
2

are parallel flats by this definition. Finally, we denote the set of all flats of dimension s by
Flats, i.e.,

Flats := {Ua | a ∈ F
n
2 , <U>⊆ F

n
2 , dim <U>= s}.

We now move on to Boolean functions. A Boolean function f is a mapping from F
n
2

into F2. The property of normality for a Boolean function f is defined as follows:

Definition 1. A Boolean function f : F
n
2 → F2 is called normal if there exists a flat

Wa ⊂ F
n
2 of dimension ⌈n/2⌉ such that f is constant on Wa, i.e., ∀w ∈ Wa : f(w) = c for

some fixed c ∈ {0, 1}. We call the flat Wa a witness for the normality of the function f .

As we see from Definition 1, the property of normality is related to the question
of the highest dimension of the flats on which the function f is constant. As a conse-
quence, it is natural to generalise the previous definition by the introduction of k-normality
[Dub01,Car01]:

Definition 2. For a natural number k : 1 ≤ k ≤ n, a Boolean function f : F
n
2 → F2, is

said to be “k-normal” if there exists a flat Va ∈ Flatk such that f is constant on Va, i.e.,
∀v ∈ Va : f(v) = c for some fixed c ∈ {0, 1}. We call the flat Va a “k-witness” for the
normality of the function f .

Remark 1. It is clear that a constant function f(x) = c,∀x ∈ F
n
2 , c ∈ F2 is n-normal. An

affine function f(x) = a · x ⊕ b,∀x, a ∈ F
n
2 , b ∈ F2 is (n − 1)-normal, because it is normal

on the flats {x : a · x ⊕ b = 0} and {x : a · x ⊕ b = 1} of dimension n − 1.

4

2.2 A Simple Algorithm

The previous section shows that it is important for the definition of normality and k-
normality, i.e., for a given dimension e := k (k-normality) or e := ⌈n/2⌉ (ordinary normal-
ity), to find a witness Wa ∈ Flate. To ease the understanding of the algorithm of Sect. 5,
we start with a highly non-optimised version of it (cf Fig. 1). Both algorithms are based
on the observation made by [DDL03], that a Boolean function which is constant on a flat
Wa is also constant on all flats contained in Wa, i.e., f|Wa

= c for some c ∈ {0, 1} implies
f|V

b
= c for all Vb ⊆ Wa. We call the flat Vb a sub-witness of Wa.

Fig. 1. Simplified Algorithm for Checking Normality

Input: function f , start dimension s, end dimension e, repetitions r

Output: 1 if the function is e-normal
for i← 1 to r do

pick a flat Ua ∈R Flats at random
if f|Ua

= c for some c ∈ {0, 1} then SearchFurther(Ua, e)
endfor

procedure SearchFurther(Ua, e)
c = f|Ua

if dim Ua = e then

OUTPUT 1
endif

forall b ∈ F
n
2 \ Ua do

if (f|U
b

= c) then SearchFurther(a ⊕ <U, a⊕ b>, e)

endfor

endproc

Our algorithm starts with a randomly chosen flat Ua of dimension s, the starting
dimension. If this flat is a sub-witness, the function f must be constant on it. So, if the
function f is constant on the flat Ua, this is a possible candidate for a sub-witness and we
search for a parallel flat U

b
, on which the function is constant, too. Both flats Ua, Ub

can
now be combined to a flat of higher dimension, namely a⊕ <U, a ⊕ b>. We repeat this
process recursively until we reach the “end dimension” e. In this case, we have found a
witness Wa and output 1.

Depending on the “confidence level” c we want to achieve, we need to repeat the above
algorithm several times. The value for r, i.e., the number of repetitions, depends on c. We
discuss the choice of r in Corollary 1 (cf Sect. 5.1).

3 Applications: Classification of Highly Nonlinear Power functions

Using our algorithm for normality, we investigated the level of normality and weakly nor-
mality of some non quadratic highly nonlinear Boolean power functions. For even dimen-
sion of n, we consider the Kasami class [Kas71], the Cusick and Dobbertin classes ([CD96])
and the Dobbertin classes [Dob98]. For odd dimensions, the Welch class, [CCD00] and
[DHKM01] and also the Niho class, [DHKM01] and [Dob99], are considered. The inverse
class, [Nyb93], is investigated for all dimensions n = 8...16.

The results can be found below. Note that all these power functions in odd dimensions
n ≥ 15 are non

⌈

n
2

⌉

-normal and weakly normal. For even dimension and n ≥ 16, all these

5

power functions are non-normal except the power function with power 21931 belonging

to the Dobbertin class (
∑

n
2

i=0 2ik with k = 7). As expected, the level of normality highly
decreases with respect to the dimension. It is left as an open problem how to prove these
results analytically. For instance, the inverse function is normal on exactly one flat for
dimensions 8, 10, 12, 14, and 16.

The inverse: 2n − 2, n = 0 mod 2

n Power # n
2 -flats (nor)

8 254 27

10 1022 1

12 4094 1

14 16382 1

16 65534 1

The inverse: 2n − 2, n = 1 mod 2

n Power #
⌊

n
2

⌋

-flats (nor) #
⌊

n
2

⌋

-flats (w-nor)

9 510 0 35.496

11 2046 0 1122

13 8190 0 0

15 32766 0 0

Kasami: 22k − 2k + 1, n = 2 mod 4, gcd(k, n) = 2, k < n
2

n k Power # n
2 -Flats (nor)

10 2 13 110
10 4 241 7

14 2 13 1
14 4 241 1

Kasami: 22k − 2k + 1, n = 1 mod 2, gcd(k, n) = 1, k < n
2 , k 6= 1

n k Power #
⌊

n
2

⌋

-flats (nor) #
⌊

n
2

⌋

-flats (w-nor)

9 2 13 3798 76.416
9 4 241 1773 38.988

11 2 13 2574 98.766
11 3 57 77 3354
11 4 241 88 1892
11 5 993 33 1793

13 2 13 0 13.390
13 3 57 0 0
13 4 241 0 0
13 5 993 0 0
13 6 4033 0 0

15 2 13 0 0
15 4 241 0 0
15 6 4033 0 0
15 7 16257 0 0

6

Cusick and Dobbertin: 2
n
2 + 2

n+2

4 + 1, n = 2 mod 4

n Power # n
2 -Flats

10 41 432

14 145 0

Cusick and Dobbertin: 2
n
2 + 2

n
2
−1 + 1, n = 2 mod 4

n Power # n
2 -Flats

10 49 592

14 193 2142

Dobbertin:
∑

n
2

i=0 2ik, n = 0 mod 4, gcd(k, n) = 1, k < n
2

n k Power # n
2 -Flats

8 1 31 65
8 3 91 117

12 1 127 1
12 5 1387 18

16 1 511 1
16 3 37741 1
16 5 51001 1
16 7 21931 257

Dobbertin: 2
n
2 + 2

n
4 + 1, n = 4 mod 8

n Power # n
2 -Flats

12 73 3800

Welch: 2
n−1

2 , n = 1 mod 2

n Power #
⌊

n
2

⌋

-flats (nor) #
⌊

n
2

⌋

-flats (w-nor)

9 19 3546 76.416

11 35 2453 98.766

13 67 195 13.338

15 131 0 0

Niho (1): 2
n−1

2 + 2
n−1

4 − 1, n = 1 mod 4

n Power #
⌊

n
2

⌋

-flats (nor) #
⌊

n
2

⌋

-flats (w-nor)

9 19 3546 76.416

13 71 0 0

Niho (2): 2
3n−1

4 + 2
n−1

2 − 1, n = 3 mod 4

n Power #
⌊

n
2

⌋

-flats (nor) #
⌊

n
2

⌋

-flats (w-nor)

11 287 55 1694

15 2175 0 0

7

4 Optimisations

After given a short outline of our algorithm and also showing an application to different,
cryptographically important power functions, we describe how to optimise it. We want
to stress that the results of the previous section would not have been possible with the
simplified algorithm as it has a far too high time-complexity. Hence, the optimisations of
the following section are worthwhile.

4.1 Complement Vector Space

There are in total 2n − 2s parallel flats Ua, a ∈ F
n
2\ <U> for a given subspace <U> of

dimension s. However, some parallel flats are equivalent as they contain the same points.

Example 1. Consider some parallel flats of the following subspace of dimension 2 which is
defined by <U> := <(0, 0, 1), (0, 1, 0)>⊆ F

3
2.

(1, 0, 0) ⊕ <(0, 0, 1), (0, 1, 0)> = (1, 1, 0) ⊕ <(0, 0, 1), (0, 1, 0)>

= (1, 1, 1) ⊕ <(0, 0, 1), (0, 1, 0)>

= (1, 0, 1) ⊕ <(0, 0, 1), (0, 1, 0)>

As a consequence, the parallel flats can be divided into equivalence classes. Therefore, we
use the complement of a subspace <U>, i.e., the subspace <U> which satisfies

<U> ⊕ <U> = F
n
2 and <U> ∩ <U>= {0}.

This allows us to determine the representatives of the equivalence classes of the parallel
flats, namely the flats Ua, for a ∈<U>. Because the dimension of <U> is equal to n − s,
there are in total 2n−s different parallel flats. To compute the complement <U> of a given
subspace <U> efficiently, we make use of the Permuted Gauss Basis (PGB) of a subspace.
To define the PGB, we need to introduce the concept of left-most-one of a vector first.

Definition 3. For a given vector u = (un−1, . . . , u0), we define the left-most-one as the
position of the left-most one in its representation:

ν(u) := min{i ∈ {−1, . . . , n − 1} | uj = 0 for i < j ≤ n}.

Definition 4. The vectors u1, . . . , uk form a PGB basis iff

ν(ui) 6= ν(uj), 0 ≤ i < j < n .

Remark 2. The name Permuted Gauss Basis is motivated as follows. Thinking about the
base vectors u1, . . . , uk as a matrix, we would perform Gaussian elimination on it, without
swapping rows. The result would not be a triangular structure but a row permutation.

For a subspace <U>, we denote the set of the different left-most-ones of its elements

Υ (<U>) := {ν(u) | u ∈<U> \{0}}.

The complement <U> of a subspace <U> where <U> is in PGB can be computed as
follows:

<U>= {a ∈ F
n
2 | ai = 0, where i ∈ Υ (<U>)} .

8

4.2 Random Points instead of Random Bases

Instead of selecting a random flat with a PGB, we choose (s + 1) points at random. This
is cheaper than selecting a vector space at random which satisfies the PGB-criterion. In
addition, we only need to transfer a set of (s + 1) points into a PGB if the function f
is constant on the corresponding flat. As this only happens with probability 2−2s+1, we
obtain very low costs on average. For s points, we can compute the PGB by the iterative
algorithm from Fig. 2. The point p0 is the offset of the flat p0 ⊕ <p1, . . . , ps > and has to
be reduced as outlined in the previous section.

Fig. 2. Algorithm for computing the PGB of a set of points

procedure ComputePGB(p1, . . . , ps)
Input: s points p1, . . . , ps

Output: a PGB of the p1, . . . , ps

for k ← 2 to s do

while ν(pk) ∈ {ν(p1), . . . , ν(pk−1)} do

for i← 1 to k − 1 do

if ν(pi) = ν(pk) then pk⊕ ← pi

endproc

Finally, we have to check whether the (s + 1) points form a flat of dimension s. The
contrary happens only with very small probability:

(2n)(2n − 1) · · · (2n − 2s)/2n·(s+1).

4.3 Combining

In the original algorithm, we searched for all parallel flats and started a recursion on
each of them. This is obviously superfluous as we will find the same witness several times
this way. As we know from the previous section, we will obtain at least 2e−s parallel
flats U

bi
on which the function is constant. Here, e denotes the end-dimension and s the

start-dimension.
To avoid this costly computation, we use a different strategy, based on [DDL03]: instead

of recursively searching for all parallel flats of higher dimension, we combine flats of low
dimension to obtain flats of higher dimension. This is based on the following observation:

(bi ⊕ <U>) ∪ (bj ⊕ <U>) = bi ⊕ <U, bi ⊕ bj> .

Hence, we only need to consider pairs (bi, bj) ∈<U > × <U > which lead to the same
sum and then combine them recursively until we obtain a flat of dimension e. To do this
efficiently, we introduce 2n lists (depending on a vector v ∈ F

n
2) which hold an offset for

each possible sum, i.e., Append(Lbi⊕bj , bi). In the following section, we develop a branching
condition for the combine method, which allows to decrease its running time even further.

4.4 Branching

Let the function f take a constant value c ∈ {0, 1} on the flat Ua of dimension d. Denote
with P (Ua) the set of all flats parallel to Ua on which the function yields the same constant.
The following branching condition defined by the cardinality of the set P (Ua) has been
observed by [DDL03]. We are able to improve their result by giving a shorter proof.

9

Theorem 1. If |P (Ua)| < 2e−d, we can terminate the current branch of the combine-
method in <U> without violating its correctness.

Proof. Let W
b

be a witness and Ua ⊂ W
b

its subwitness. Now, there exist exactly (e − d)
linearly independent vectors w1, . . . , we−d ∈<W > with w1, . . . , we−d /∈<U> and conse-
quently w1, . . . , we−d ∈<U>. These vectors exist due to dimension reasons as dimW

b
= e

and dimUa = d. Therefore, for any subwitness Ua ⊂ Wb exist 2e−d parallel subwitnesses.
This implies that |P (Ua)| ≥ 2e−d. As a consequence, we can stop at any step in the algo-
rithm if this condition is violated because we will not be able to extend the flat Ua to a
witness of dimension e. ⊓⊔

5 The Improved Algorithm

Using the ideas from the previous section, we obtain the algorithm of Fig. 3. The method
SearchForParallelFlats can be found in Fig. 4 and the optimised version of the combine-
method is presented in Fig. 5. In the following sections, we analyse this optimised algo-
rithm.

Fig. 3. Main loop for the optimised algorithm

Input: function f , start dimension s, end dimension e, repetitions r

Output: one witness if the function is e-normal
for i← 1 to r do

S0 ← {}, S1 ← {}
for i← 1 to 2s + 1 do

p ∈R F
n
2

c← f(p)
Sc∪ ← {p}

endfor

if ((|S0| 6= s + 1) and (|S1| 6= s + 1)) then continue

c← |S1| − s

if f | p0⊕<p0⊕p1,..., p0⊕ps > (pi ∈ Sc, i ∈ {0, . . . , s}) not constant then continue

a⊕ <U> ← ComputePGB(p0, . . . , ps)
if dim<U> 6= s then continue

SearchForParallelFlats(<U>)
endfor

Fig. 4. SearchForParallelFlats for the optimised algorithm

procedure SearchForParallelFlats(<U>)

<U>← ComputeComplement(<U>)
L← ∅, c← f(a)

for b ∈<U> \{a} do

if f|U
b

= c then Append(L,b)

if |L| ≥ 2e−s then Combine(<U> ,L)
endproc

10

Fig. 5. Combine-method for the optimised algorithm

Global Initialisation:
forall a ∈ F

n
2 do

La ← ∅

procedure Combine(<U>, L)
d← dim <U>

if d ≥ e then

Let a ∈ L

OUTPUT Ua

endif

forall (bi, bj) ∈ L× L : i < j do

Append(Lbi⊕bj , bi)

forall (bi, bj) ∈ L× L : i < j do

a← bi ⊕ bj

if |La| ≥ 2e−d−1 then

L′ ← ∅
forall b ∈ La do

if b ∈<U,a> then Append(L′, b) else Append(L′, a⊕ b)
Combine(<U, a>, L′)

endif

La ← ∅
endfor

endproc

5.1 Complexity Analysis

We start the analysis of the algorithm with determining the number r of repetitions.
Then we analyse the complexity of the main loop from Fig. 3, the complexity of the
SearchForParallelFlats from Fig. 4 and the complexity of the Combine-procedure from
Fig. 5 in different steps.

Number of Repetitions

For determining the number of repetitions, we need the following lemma from [MS91],
concerning the number of subspaces and flats of a certain dimension in a vector space.

Lemma 1. The number of subspaces of dimension s in a vector space of dimension n is
given by

NS(n, s) :=
s−1
∏

i=0

2n−i − 1

2s−i − 1
.

The number of flats of dimension s in a vector space of dimension n is given by

NF (n, s) := 2n−s

s−1
∏

i=0

2n−i − 1

2s−i − 1
= 2n−sNS(n, s).

Before determining a bound on r, we first introduce the term complaisant flat.

Definition 5. A flat Ua is called complaisant if the function is constant on the flat, the
flat is parallel to a sub-witness, but the flat is not contained in any witness.

11

Theorem 2. When choosing (s + 1) points p0, . . . , ps ∈ F
n
2 at random, the probability

PF (n, s, e) that the flat Ua formed by these (s+1) points pass the first step in the algorithm
is equal to

PF (n, s, e) = Pr(Ua is a sub-witness) + Pr(Ua is a complaisant flat) ,

where

Pr(Ua is a sub-witness) := 2e−n ·
s

∏

i=1

2e − 2i−1

2n

Pr(Ua is a complaisant flat) := 2−2s+1 ·
2n−eNS(n, s) − NF (e, s)

NS(n, s)
.

In the above formula, e is the dimension of the witness. The formulas for NS(·, ·) and
NF (·, ·) are given in Lemma 1.

Proof. We first determine the probability that the flat Ua is a sub-witness. This probability
is justified with an inductive argument on the dimension of the sub-witness: for one point
(i.e., a flat of dimension 0), the probability of being a sub-witness is 2e

2n . Here, the witness
has 2e points. This probability is also true for extending the sub-witness from dimension
(i − 1) to dimension i (we have 1 ≤ i ≤ s). In addition, we have to consider the case
pi ∈ p0+ <p1, . . . , pi−1>, i.e., the new point pi lies in the sub-witness of dimension (i− 1)
generated by the points p0, . . . , pi−1.

The probability that Ua is a complaisant flat is equal to the probability that the
function is constant on Ua times the number of flats which are parallel with a witness but
not part of a witness. This is exactly expressed in the formula. ⊓⊔

From the previous theorem we can deduce the following corollary.

Corollary 1. For a given start dimension s and an end dimension e, we need at most

Rep(n, s, e, c) =
c

PF (n, s, e)

repetitions to achieve a confidence of 2−c that the function f is not e-normal.

Table 2 shows some numerical values of r in log2. In this and all following tables, we
concentrate on even choices for n and fix e = n

2 as these cases are particularly relevant in
cryptography.

Table 2. Number of repetitions (in log2) for different values of n and s

s\n 8 10 12 14 16 18 20

2 18.60 21.46 24.39 27.35 30.33 33.33 36.32

3 23.02 26.65 30.48 34.40 38.36 42.34 46.33

4 32.06 36.67 41.49 46.40 51.36 56.34

12

Complexity of the main loop

Obviously, picking (s + 1) random points and checking if the function is constant for a
given flat, will be the most expensive operations. Therefore, we start with a lemma on the
average complexity for checking that a function is constant on a given set of points.

Lemma 2. For a given random function f : F
n
2 → F2 and a given set of points P ⊆ F

n
2 ,

the algorithm from Fig. 6 needs on average 3 evaluations of f to check if this function is
constant when restricted to vectors in the set P .

Fig. 6. Algorithm to determine if a function is constant on a set of points

Input: function f , a set P with p := |P | points
Output: 1 if f is constant on P and 0 otherwise
Let q1 ∈ P , c← f(q1)
for q ∈ P \ {q1} do

if f(q) 6= c then OUTPUT 0
OUTPUT 1

Proof. The average number of evaluations depends on the number of points p := |P | of
this algorithm; it is given by

Ev(p) :=

p−1
∑

i=1

1

2i
(i + 1) +

1

2p−1
p = 3 −

1

2p−2
.

To justify this formula, we observe that we need to evaluate f at least once to obtain the
constant c. As the function is a random function by definition, we have a probability of 1

2
to obtain a different constant for every further evaluation, i.e., to terminate this algorithm.
After checking a total of p points, the algorithm terminates. For this last check, we still
have a probability of 1

2 to output 0. However, the workload of outputting 0 or 1 is exactly
the same, namely p evaluations. ⊓⊔

As a consequence, the complexity of the main loop so far depends on the costs of picking
the (s + 1) random points at random, evaluating the function f on the corresponding flat
and some other negligible operations whose complexity we set to one, i.e., (3+3+1)r = 7r,
where r represents the number of repetitions.

Complexity of the SearchForParallelFlats-method

From a computational point of view, the for-loop is very expensive, as we have to check
2n−s − 1 parallel flats every time. However, each flat costs only 3 operations on average
(cf Lemma 2). In addition, we only need this for-loop in 2−2s+1 of all cases as this is the
probability that the function is constant on the corresponding flat. The other steps in the
method are negligible in comparison to the for-loop. We therefore identify their average
workload as 1. Consequently, the complexity of the SearchForParallelFlats-method can be
approximated by 3 · 2n−2s−s+1r, where r denotes the number of repetitions.

Consequently, the total complexity of the main loop without the combine procedure
equals to (7 + 3 · 2n−2s−s+1)r. Numerical values for the time-complexity (in log2) of the
main loop without the combine procedure are presented in Table 3.

Comparing these numbers with the results of the overall complexity of exhaustive
search (cf Table 1 on Sect. 1), we see that we achieve far lower numbers. This completes
our complexity analysis of the main loop. We go on with an analysis of the combine-
procedure.

13

Table 3. Time-complexity (in log2) of the main loop and “search for parallel flats”

n s = 2 s = 3 s = 4 s = 5

8 24.83 24.94

10 31.22 29.40 33.65

12 38.02 35.23 38.27 44.67

14 44.95 42.32 43.12 50.27

16 51.92 50.03 48.16 56.08

18 58.91 57.95 53.59 61.99

20 65.91 65.92 59.92 67.95

Complexity of the Combine-procedure

The complexity analysis of the combine-procedure is a little more tricky. In particular, we
have to deal with the problem that its complexity depends quadratically on the number
of parallel flats we find, i.e., the number |P (Ua)| for a given flat Ua. Therefore, we cannot
simply take the average number of flats for this analysis as the result does not reflect the
real time complexity of this algorithm. In addition, we have to deal with the branching
condition (cf Sect. 4.4).

As we did not expect to find a closed formula for the time complexity of the combine-
procedure, we used [MAG] to compute it numerically. As all computations are done with
rational numbers, there are no rounding errors in MAGMA. In particular, we computed the
probability for the different numbers of parallel flats we obtain in the searchForParallelFlats-
method. We only took numbers ≥ 2e−s into account (cf Thm. 1) and neglected levels of
recursion which appear with too small probability (< 2−40), due to the branching condi-
tion. In addition, we truncated the sum at points which did not contribute to the overall
workload anymore (expected workload smaller than 1). We present the corresponding
values (log2) for different choices of n and s in Table 4.

Table 4. Numerical results for the time-complexity (in log2) of the Combine-method

n s = 2 s = 3 s = 4 s = 5

8 24.17 15.97

10 31.15 22.87 ≈ 0

12 38.03 15.76 ≈ 0 ≈ 0

14 44.97 23.68 ≈ 0 ≈ 0

16 51.93 35.02 ≈ 0 ≈ 0

18 43.34 ≈ 0 ≈ 0

20 51.33 ≈ 0 ≈ 0

These computations were matched by our empirical results. In particular, the branching
condition proved to be very powerful for s ≥ 3 and n ≥ 12 (note difference between n = 10
and n = 12 for s = 3). In these cases, we never needed a recursive call of the combine-
method for non-normal functions. In addition, the probability for a function to be constant
on a given flat decreases exponentially with increasing dimension of the flat. Therefore,
we expect to find less than 2e−s flats for s ≥ 4 and n ≤ 20 which means that the combine-
method is never invoked in these cases (fields with ≈ 0 in the above table).

14

All in all, it is necessary to chose the starting dimension s correctly, i.e., high enough
such that the combine-method is still efficient and low enough such that SearchForParal-
lelFlats and the main loop do not need too much time. For dimension n ≥ 10, the choice
s = 3 turns out to be optimal.

Asymptotic Analysis

Here we sketch the asymptotic analysis of the above algorithm: we begin with the obser-
vation that for large n and subsequently large s, the running time will only depend on
the number of repetitions necessary. We justify this reasoning as follows: as we saw for
the combine-method, we have a very powerful branching condition, i.e., asymptotically,
this part will not contribute to the overall complexity. The same is true for the search of
parallel flats: we have a complexity of O(2(−2s+1)(n−s)) here, i.e., negligible for n → ∞.
For our analysis, we chose s = 1

4n and e = 1
2n and obtain the following asymptotically

upper bound on the number of repetitions and thus the running time of the algorithm:

Rep(n,
1

4
n,

1

2
n, c) = O(c.2

1

8
n2+ 3

4
n) ,

where c is the target confidence level. To obtain this upper bound, we observe that the
probability to have a complaisant flat is asymptotically very small. In addition, we no-
tice that for large n the factor 2e−n+s(e−1−n) is a tight lower bound on the probability
PF (n, s, e). Using Theorem 2 and Corollary 1 yields the result.

5.2 Comparison with the Algorithm from Daum et al.

In Table 5 we compare the time complexities of our algorithm with that of [DDL03], for
computing the normality of a function in dimension n. We are not aware of an asymptotic
analysis of the algorithm from [DDL03].

Table 5. Comparison of the time-complexity (in log2)

n s [DDL03] Our alg.

14 2 43 45
3 46 42

4 52 43

16 2 52 52
3 54 50

4 62 48

n s Daum et al. Our alg.

18 2 61 > 60
3 61 58
4 > 61 54

20 2 71 > 60
3 71 58
4 >71 60

The time complexity of algorithm of [DDL03], is computed using the formulas given there.
According to these results, we expect that it is outperformed by our algorithm for increas-
ing dimension n, cf Fig. 7.

5.3 Empirical Results

We have implemented our algorithm in a programme with 14,000 lines of C++ code.
Checking random functions on an AMD Athlon XP 2000+, we obtained the following
results for e = n

2 (normality) and s = 3:

15

Fig. 7. Time-complexity (in log2) of this paper (⋆) and from [DDL03] (•)

✲

✻

40

60

time

(logn)

14 16 18 20 n

⋆

⋆
⋆

⋆

•

•

•

•

n 8 10 12 14 16

time [min] 0.020 0.364 16.6 300.8 21,320

As we see in this table, the running time gets quickly out of hand. According to
[DDL03], their programme needs approximately 50 h on a Pentium IV 1.5 GHz for the
case n = 14. Our algorithm needs approximately 5 h for n = 14 and approximately 15 d
for n = 16. Using the complexity analysis of [DDL03], we expect a running time of more
than a year for their algorithm to handle functions of dimension n = 16.

For our C++ implementation, we have included several improvements:

Combinatorial Gray codes In order to compute vectors more efficiently for a given basis,
we used combinatorial Gray codes [Sav97] and computed all intermediate values in a Gray
code like fashion. This way, we only needed one computation on average rather than n

2
when computing elements of the vector space <U>.

Optimised Pseudo-Random Number Generator As the programme spends approx. 60% of
its time computing random numbers, we concluded that it could benefit from a fast way
of generating pseudo-random numbers. However, due to the high number of repetitions,
we still need a long period for the pseudo-random number generator. To meet both aims,
we used a pseudo-random number generator from [Rho] which combines a multiply with
carry generator and a simple multiplicative generator. It achieves a period of more than
260, has good statistical properties, and is also very fast according to our measurements.
For the future, tests with the cryptographically secure pseudo-random number generator
using Shamir’s T-functions class [KS04] are certainly an interesting option.

Function storage For the Boolean function to be checked, we can use several ways of
storing it: bit-wise, byte-wise or in processor-words (32 bit). To make the best use of the
internal cache of the processor, a bit-wise storage turned out to have the best performance
for dimensions n ≥ 12. For dimensions n ≤ 10, an word-wise storage was clearly better as
we do not have the overhead of retrieving single bits from a word.

16

6 Conclusions

In this paper, we present a fast asymmetric Monte Carlo algorithm to determine the
normality of Boolean functions. It uses the fact that a function which is constant on a flat
of a certain dimension is also constant on all sub-flats of lower dimension. Starting with
flats of dimension s and combining them until a flat of dimension e is obtained, we achieve
a far lower time-complexity than with exhaustive search on flats of dimension e.

In particular, this algorithm is far faster than the previously known algorithm (5 h
in comparison to 50 h) for dimension 14 (cf 5.2). Moreover, it is the first time that the
important case n = 16 can be computed on non-specialised hardware (previously: more
than a year). Using the fact that our algorithm can be parallelised easily, this figure can
even be improved.

As an application of the algorithm developed in this paper, we investigated several
classes of highly nonlinear Boolean power functions up to dimension n = 16. Our exper-
iments suggest that the property of normality is not satisfied anymore for increasing n
(cf Sect. 3). We have to leave it as an open problem for the cryptographic community to
prove these experimental results on the normality of (highly nonlinear) power functions in
an analytic way.

7 Acknowledgements

We want to thank the authors of [DDL03], for helpful remarks and sending us both an
early and an extended version of their work. Moreover, we want to thank Krzysztof Nowak
(University of Silesia, Poland) for helpful remarks, in particular by pointing out errors in
our tables, cf Sect. 3, helping us tracking down an error in our implementation of the
algorithm, and sending us a preliminary version of his article [Now04].

The authors were partially supported by Concerted Research Action GOA-MEFISTO-
666 of the Flemish Government and An Braeken is research assistant of the Fund for
Scientific research - Flanders (Belgium).

17

References

[Car01] Claude Carlet. On the complexity of cryptographic Boolean functions. In 6th Conference

on Finite Fields and Applications, 21th – 25th May, pages 53–69. Gary L. Mullen, Henning
Stichtenoth, and Horacio Tapia-Recillas, editors, Springer, 2001.

[CCD00] A. Canteaut, P. Charpin, and H. Dobbertin. A three-valued crosscorrelation function for binary
m-sequences: a proof of welch’s conjecture. IEEE Transactions on Information Theory, IT-
46(1):4–8, 2000.

[CD96] T. Cusick and H. Dobbertin. Some new 3-valued crosscorrelation functions on binary m-
sequences. IEEE Transactions on Information Theory, IT-42:1238–1240, 1996.

[CDDL03] Anne Canteaut, Magnus Daum, Hans Dobbertin, and Gregor Leander. Normal and non-normal
bent functions. In WCC [WCC03]. 19 pages.

[DDL03] Magnus Daum, Hans Dobbertin, and Gregor Leander. An algorithm for checking normality of
boolean functions. In WCC [WCC03]. 14 pages.

[DHKM01] H. Dobbertin, T. Helleseth, V. Kumar, and H. Martinson. Ternary m-sequences with three-
valued crosscorrelation: New decimations of welch and niho type. IEEE Transactions on In-

formation Theory, IT-47:1473–1481, November 2001.
[Dob94] Hans Dobbertin. Construction of Bent functions and balanced Boolean functions with high

nonlinearity. In Fast Software Encryption — FSE 1994, volume 1008 of Lecture Notes in

Computer Science, pages 61–74. Bart Preneel, editor, Springer, 1994.
[Dob98] H. Dobbertin. One-to-one highly nonlinear power functions on gf(2n). Applicable Algebra in

Engineering, Communication, and Computation, 9:139–152, 1998.
[Dob99] H. Dobbertin. Almost perfect nonlinear power functions on gf(2n): The niho case. Information

and Computation, 151(1-2):57–72, 1999.
[Dub01] Sylvie Dubuc. Etude des propriétés de dégénérescene et de normalité des fonctions booléennes

et construction des fonctions q-aires parfaitement non-linéaires. PhD thesis, Université de
Caen, 2001.

[Kas71] T. Kasami. The weight enumerators for several classes of subcodes of the second order binary
reed-muller codes. Information and Control, 18:369–394, 1971.

[KS04] Alexander Klimov and Adi Shamir. New cryptographic primitives based on multiword t-
functions. In Fast Software Encryption — FSE 2004, volume 3017 of Lecture Notes in Computer

Science, pages 1–15. Bimal K. Roy and Willi Meier, editors, Springer, 2004.
[LB00] David Landau and Kurt Binder. A Guide to Monte Carlo Simulations in Statistical Physics.

Cambridge University Press, 2000. ISBN 0-521-65314-2.
[MAG] Computational Algebra Group, University of Sydney. The MAGMA Com-

putational Algebra System for Algebra, Number Theory and Geometry.
http://magma.maths.usyd.edu.au/magma/.

[MS91] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. Elsevier Science
Publisher, 1991. ISBN 0-444-85193-3.

[Now04] Krzysztof Nowak. Checking normality of Boolean functions. Tatra Mountins, 2004. 12 pages,
to appear.

[Nyb93] K. Nyberg. Differentially uniform mappings for cryptography. In Advances in Cryptology

— EUROCRYPT 1993, volume 765 of Lecture Notes in Computer Science, pages 55–64. Tor
Helleseth, editor, Springer, 1993.

[Rho] Glenn Rhoads. Random number generator in c. http://remus.rutgers.edu/ rhoads/Code/rands.c.
[Sav97] Carla Savage. A survey of combinatorical Gray codes. SIAM Review, 39(4):605–629, 1997.

http://www.csc.ncsu.edu/faculty/savage/AVAILABLE FOR MAILING/survey.ps.
[WCC03] Daniel Augot, Pascal Charpin, and Grigory Kabatianski, editors. Workshop on Coding and

Cryptography 2003. l’Ecole Supérieure et d’Appliction des Transmissions, 2003. ISBN 2-7261-
1205-6.

