
Extended version of the paper that will appear under the same title in the proceedings
of SAC 2004,

Lecture Notes in Computer Science, Springer-Verlag, 2004.

Extending the Resynchronization Attack
(extended version) ⋆

Frederik Armknecht1⋆⋆ and Joseph Lano2⋆ ⋆ ⋆ and Bart Preneel2

1 Universität Mannheim
Theoretische Informatik

68131 Mannheim, Germany
armknecht@th.informatik.uni-mannheim.de

2 Katholieke Universiteit Leuven
Dept. Elect. Eng.-ESAT/SCD-COSIC,

Kasteelpark Arenberg 10, 3001 Heverlee, Belgium
{joseph.lano,bart.preneel}@esat.kuleuven.ac.be

Abstract. Synchronous stream ciphers need perfect synchronization be-
tween sender and receiver. In practice, this is ensured by a resync mech-
anism. Daemen et al. [9] first described attacks on ciphers using such a
resync mechanism. In this paper, we extend their attacks in several ways
by combining the standard attack with cryptanalytic techniques such as
algebraic attacks and linear cryptanalysis. Our results show that using
linear resync mechanisms should be avoided, and provide lower bounds
for the nonlinearity required from a secure resync mechanism.

1 Introduction

Synchronous stream ciphers generate a key stream independently from the plain-
text. They typically consist of a finite state machine from which at each iteration
a key stream bit is generated by an output function. Synchronous stream ciphers
have the advantage that there is no error propagation. On the other hand, per-
fect synchronization between sender and receiver is required. In order to prevent
synchronization loss or to restore synchronization after synchronization loss is
detected, a resynchronization mechanism is used. Such a mechanism generates a
new initial state for the finite state machine from the secret key and a unique

⋆ This work was supported by the Concerted Research Action (GOA) Mefisto-2000/04
of the Flemish Government.

⋆⋆ This work has been supported by grant 620307 of the DFG (German Research Foun-
dation)

⋆ ⋆ ⋆ Research financed by a Ph.D. grant of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen)

2

initialization vector IV and thus prevents the reuse of key stream. For the sake
of efficiency the resynchronization mechanism should be as fast as possible.

Daemen, Govaerts and Vandewalle [9] observed that this resynchronization
mechanism can lead to a new type of attacks on synchronous stream ciphers.
They also showed an efficient attack on nonlinearly filtered systems using a linear
resynchronization mechanism and using an output Boolean function with few
inputs. Golic and Morgari [12] extended this attack to the case where the output
function is unknown. Borissov et al. [6] showed that a ciphertext-only attack is
also possible in some cases.

In this paper, we extend the resynchronization attack to overcome some limi-
tations of the original attack of Daemen et al. We achieve this by further refining
the original resynchronization attack and by combining the attack with other
attack methodologies, notably with algebraic attacks.

The paper is organized as follows. In Sect. 2, we present some preliminary
notions: Boolean functions, the general framework of a stream cipher, algebraic
attacks and resynchronization attacks. In Sect. 3 we present the Daemen et al.
attack and its limitations. In Sect. 4 we show how to perform the Daemen et al.
attack in real-time by precomputation. In Sect. 5 we describe several methods to
mount a resync attack when the number of resyncs is small. Section. 6 describes
methods to mount attacks when the output function has many inputs. In Sect. 7,
we describe attacks on stream ciphers with memory and in Sect. 8 we discuss
attacks on stream ciphers with nonlinear resynchronization mechanism. In Sect. 9,
we apply some of the attacks described on some stream ciphers: E0 from the
Bluetooth standard, Toyocrypt and the summation generator. We conclude in
Sect. 10.

2 Preliminaries

2.1 Boolean Functions and Related Inputs

In this section we repeat some definitions and known facts about Boolean func-
tions. Additionally, we provide some theorems about Boolean functions and re-
lated inputs. All calculations are done over the finite field GF(2).

Definition 1 For α = (α1, . . . , αn) and x = (x1, . . . , xn) ∈ {0, 1}n, we define
mα(x) :=

∏

i xαi

i and the degree deg mα := |α| := #{i|αi = 1}.

Theorem 2 (Algebraic Normal Form) Let f : {0, 1}n → {0, 1} be a Boolean
function. Then, f(x) can be written as f(x) =

⊕

α∈{0,1}n cα · mα(x) for unique

coefficients cα ∈ {0, 1}. Hence, the value max{deg mα|cα 6= 0} is unique and is
called the degree deg f of f .

Definition 3 For α = (α1, . . . , αn), α′ = (α′
1, . . . , α

′
n) ∈ {0, 1}n we say that

α′ ≤ α if ∀i : α′
i ≤ αi (treated as integers). Consequently, we say that α′ < α if

α′ ≤ α but α′ 6= α. For α′ ≤ α we define α − α′ := (α1 − α′
1, . . . , αn − α′

n).

3

Obviously, α′ ≤ α (resp. α′ < α) implies deg mα′ ≤ deg mα (resp. deg mα′ <
deg mα).

Lemma 4 Let α, δ(1), δ(2) ∈ {0, 1}n be arbitrary. For i = 1, 2 it holds that
mα(x⊕ δ(i)) =

⊕

α′≤α mα′(x)mα−α′ (δ(i)) and mα(x⊕ δ(1))⊕mα(x⊕ δ(2)) has a
degree ≤ deg mα − 1.

Proof. The first equation is obvious. The second one is because of:
mα(x + δ(1)) + mα(x + δ(2))
=

∑

α′≤α

(
mα′(x)mα−α′ (δ(1)) + mα′(x)mα−α′(δ(2))

)

= mα(x) + mα(x)
︸ ︷︷ ︸

=0

+
∑

α′<α

(
mα′(x)mα−α′ (δ(1)) + mα′(x)mα−α′ (δ(2))

)
. ⊓⊔

Theorem 5 Let f be a Boolean function with deg f = d. Then, f(x ⊕ δ(1)) ⊕
f(x ⊕ δ(2)) has a degree ≤ d − 1.

Proof. By theorem 2 we can write f(x) as
∑

α,|α|≤d cαmα(x). Then, by lemma 4

it is f(x⊕ δ(1))⊕ f(x⊕ δ(2)) =
⊕

α,|α|≤d cα

(

mα(x ⊕ δ(1)) ⊕ mα(x ⊕ δ(2))
)

︸ ︷︷ ︸

deg≤d−1

. ⊓⊔

The following corollary is obvious:

Corollary 6 For any even number m and any vectors δ(1), . . . , δ(m), the degree
of the function

⊕m
i=1 f(x ⊕ δ(i)) is ≤ deg f − 1.

Theorem 7 is a special case of theorem 5 and will be of use in this paper:

Theorem 7 Let f be a Boolean function with deg f = d. Let ei ∈ {0, 1}n be the
unit vector with its only 1 in position i. Then the function f1(x

′) = f(x)⊕f(x⊕ei)
has degree ≤ d − 1, where x′ = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ {0, 1}n−1.

Proof. We first split the function f(x) into two parts, the first part consisting of
the monomials containing xi, and the second part consisting of the monomials
not containing xi as a factor:

f(x) = xi · f1(x
′) ⊕ f2(x

′) , (1)

where it is straightforward to see that deg f1 ≤ d − 1 and deg f2 ≤ d. We do the
same for the function f(x ⊕ ei):

f(x ⊕ ei) = (xi ⊕ 1) · f1(x
′) ⊕ f2(x

′) . (2)

Taking the XOR of the equations (1) and (2) and eliminating terms occurring
twice yields: f(x) ⊕ f(x ⊕ ei) = f1(x

′). ⊓⊔

4

2.2 General Framework for Synchronous Stream Ciphers

We consider a synchronous stream cipher with n-bit state S updated by a linear
function represented by a matrix L (e.g., one or more LFSRs) over Z2, and with
a nonlinear output function f that takes ϕ input bits coming from S to produce
one output bit zt. Some designs (e.g., the combiners with memory) also include
a m-bit memory M that has a nonlinear update function h. This results in the
following general framework for a synchronous stream cipher:

zt = f(St, Mt)
ct = pt ⊕ zt

St+1 = L · St

Mt+1 = h(St, Mt) ,

(3)

where pt, zt and ct are respectively the plaintext, the key stream and the cipher-
text at time t = 0, 1, 2 . . .

The initial state (S0, M0) is determined by the resynchronization mechanism,
which combines a k-bit secret key K and a ι-bit known initialization vector IV i

with an initialization function finit:

(S0, M0) = finit(K, IV i) . (4)

2.3 Algebraic Attacks

In this section we repeat some facts about algebraic attacks against LFSR-based
key stream generators. We describe the general attack on combiners with memory
introduced in [2] as this includes the special case of memoryless combiners [7].

An algebraic attack works as follows: first find a Boolean function F 6≡ 0
(called an ad-hoc equation) such that for all t it holds

0 = F (Lt · K, . . . , Lt+r−1 · K, zt, . . . , zt+r−1) . (5)

Such a function F can be found with the algorithm of [2] if ϕ · r is not too large.
Secondly, recover the secret key K by solving this system of equations. For this

purpose, several methods (Linearization, XL, XSL, Groebner bases, . . .) exist.
Amongst them only the linearization method allows a general estimation of the
work effort. We give now a description of the linearization method. Due to the
linearity of L, all equations (5) have degree ≤ d := deg F . Therefore, the number
M of different monomials occurring is limited by:

M ≤
(

k

0

)

+ . . . +

(
k

d

)

=: β(k, d) ∈ O(kd). (6)

By replacing each monomial by a new variable, the attacker gets a linear system
of equations in M unknowns. It can be solved by Gaussian elimination or more
refined methods like the one by Strassen [26]. As β(k, d) ∈ O(kd), the lower the
degree d, the faster the attack.

5

2.4 Resynchronization Attacks

For a synchronous stream cipher, perfect synchronization between sender and
receiver is required. The aim of the resynchronization mechanism is to achieve
this in a secure fashion.

A first solution is fixed resync. In this scenario, the message is divided into
frames, and each frame i is encrypted with a unique IV i, a frame counter up-
dated in a deterministic way. An attack under this scenario is called a known IV
resynchronization attack. The frequency at which resynchronization should occur
depends on the risk of synchronization loss. Examples of stream ciphers that use
fixed resync are the E0 algorithm used in the Bluetooth [5] wireless communica-
tion standard, and A5 [1] used in GSM cellular voice and data communication.

A second scenario is that the receiver sends a resynchronization request to the
sender as soon as synchronization loss is detected. This is called requested resync.
In this scenario, the receiver may be allowed to choose the nonce IV i used in the
frame. This may enable a chosen IV resynchronization attack, as described e.g.
by Joux and Muller [15]. Security under the chosen IV attack scenario implies
security under the known IV attack scenario. Hence, a good resynchronization
mechanism should be resistant against a chosen IV attack.

Table 1 shows the general setting for a resync attack as used throughout this
paper. For R frames, the attacker knows the first T key stream bits.3 He also
knows the initial value IV i of each frame.

Frame Clock 0 . . . Clock T − 1
State Output State Output

0 (S0
0 , M0

0) = z0
0 = . . . (S0

T−1, M
0
T−1) z0

T−1 =
finit(K, IV 0) f(S0

0 , M0
0) f(S0

T−1, M
0
T−1)

1 (S1
0 , M1

0) = z1
0 = . . . (S1

T−1, M
1
T−1) z1

T−1 =
finit(K, IV 1) f(S1

0 , M1
0) f(S1

T−1, M
1
T−1)

...
...

... . . .
...

...

R-1 (SR−1
0 , MR−1

0) = zR−1
0 = . . . (SR−1

T−1 , MR−1
T−1 0) zR−1

T−1 =

finit(K, IV R−1) f(SR−1
0 , MR−1

0) f(SR−1
T−1 , MR−1

T−1)

Table 1. The situation of a frequently reinitialized key stream generator

We now describe a first resynchronization attack by Daemen et al. [9] on a
simplified version of this framework and point out its limitations.

3 For most attacks described in this paper, the observed key stream bits need not be
successive. Where this is really a requirement, we will specify this.

6

3 The Daemen et al. Resynchronization Attack

3.1 Description

The resynchronization attack of Daemen et al. is a known plaintext attack for
the special case of a simple memoryless combiner with a linear resynchronization
mechanism.

The framework of the attack can be described as follows:

Si
0 = A · K ⊕ B · IV i

zi
t = f(Π · Si

t)
Si

t+1 = L · Si
t .

(7)

In these equations, A, B, L and Π are known binary matrices, A ∈ Z
n×k
2 , B ∈

Z
n×ι
2 , L ∈ Z

n×n
2 and Π ∈ Z

ϕ×n
2 . The matrices A and B represent the fact that

the resync mechanism is linear, the projection matrix Π shows that the output
function f uses only a subset of ϕ bits of Si

t. The initialization vector of the ith
frame is IV i, and zi

t is the key stream bit at time t of the ith frame.
We introduce the key-dependent unknown values kt and the known values

iv
i
t as follows:

{
kt = Π · Lt · A · K
iv

i
t = Π · Lt · B · IV i .

(8)

Using the setting from Table 1, the attacker can then rewrite this system into a
system of equations built as follows:

zi
t = f(kt ⊕ iv

i
t) for 0 ≤ i ≤ R − 1, 0 ≤ t ≤ T − 1. (9)

Now we try to find a solution of this system of equations for each t. Assume
without loss of generality that t = 0. If ϕ is not too large, we can perform an
exhaustive search over k0, and check whether the guess satisfies the R equations
for t = 0. If R ≥ ϕ, it is expected that a unique solution for k0 exists. Hence the
correct value of k0 has been found, and thus ϕ linear equations in the bits of the
secret key. This is repeated for t = 1, 2, ..., p − 1, such that p = ⌈k/ϕ⌉, until the
entire secret key is deduced.

The complete attack requires on average ⌈k/ϕ⌉ · 2ϕ evaluations of the func-
tion f , at least ϕ resyncs and about k bits of key stream in total (ϕ frames of
length ⌈k/ϕ⌉). Note that the computational complexity of the attack increases
exponentially with the number ϕ of inputs of the Boolean function f .

3.2 Limitations

The Daemen et al. attack can be seen as a divide-and-conquer attack. Standard
cryptanalytic attacks such as correlation and algebraic attacks work chronologi-
cally on a key stream, which corresponds to a row in Table 1. On the contrary,
the Daemen et al. attack tries to solve the system column by column. One of the
motivations of the paper is to combine both approaches. Of special interest is the
combination of the resynchronization attack with algebraic attacks.

In many cases, it is not obvious whether the column by column approach by
Daemen et al. works or not. We have identified the following limitations:

7

1. The attack does not work in real time.
2. The number of resyncs R has to be at least the number ϕ of input bits of the

output function f .
3. The complexity is prohibitively large for large values of ϕ.
4. The divide-and-conquer approach does not work if the key stream generator

uses additional memory.
5. The initialization function finit has to be linear.

In this paper, we will address each of these limitations and show how to overcome
them.

4 Real-time Attack

The attack of Daemen et al. shows that ciphers that use a linear resynchronization
mechanism and that have a Boolean function f with few inputs are insecure. This
enables a passive attack on such designs. A real-time attack in which the attacker
can discover the plaintext immediately (and even modify it in a controlled way) is
not possible, because the time required to perform the p exhaustive searches will
be too high. Here we show how to easily replace this iterated exhaustive search
by a precomputation step. This enables real-time active attacks on such ciphers.

We start from the realistic assumption that the IV is are chosen in a de-
terministic way, for instance by a counter or a fixed update mechanism. In the
precomputation step, we first calculate the values iv

i
t for 0 ≤ i ≤ ϕ − 1 and

0 ≤ t ≤ T − 1. Then we calculate the following ϕ bits, and repeat this for all
values of gt (a guess for kt) going from 0 to 2ϕ − 1, and this for all t.

f(gt ⊕ iv
0
t) = b0

gt,t

f(gt ⊕ iv
1
t) = b1

gt,t

...

f(gt ⊕ iv
ϕ−1
t) = bϕ−1

gt,t .

(10)

For each time t, we obtain 2ϕ sequences b0
gt,tb

1
gt,t . . . bϕ−1

gt,t . Because the length of
these sequences is ϕ, every value of gt is expected to correspond with a unique
sequence b0

gt,tb
1
gt,t . . . bϕ−1

gt,t . We then sort the gt values based on the numerical
value of the corresponding sequence, and store this in memory.

The attack now goes as follows. We group the outputs observed at say t = 0
in a sequence z0

0z1
0 ...z

ϕ−1
0 . We jump to this position in our table built for t = 0,

and the value found there is the correct value of k0. We do the same for the times
t = 1, 2, ...p − 1, and we have then found the necessary ki to directly determine
the secret key K.

The total complexity of the precomputation step is about k · 2ϕ evaluations
of f (but this can of course be replaced by 2ϕ evaluations of f and k · 2ϕ table
look-ups). The memory requirement is about k ·2ϕ bits, which is feasible for many
stream ciphers (e.g., for a secret key of k = 256 bits, and a Boolean function with
ϕ = 20 inputs, 32 Mbyte is required).

8

5 Attack with a Small Number of Resynchronizations

In [9], the authors made the assumption that the number of solutions converges
to 1 if R & ϕ. Actually, the number of required resyncs depends on the cipher
and the observed public parameters IV i. In [14], Golic and Morgari discussed the
number of IV s that are needed for the Daemen et al. attack to work. They showed
that with a non-negligible probability more than ϕ known IV s are necessary. This
results in an increased attack complexity, both for the original attack and for the
precomputation attack.

We will here follow different approaches. We want the attacks to work in any
case and with a minimal number of known IV s. Simulations on various Boolean
functions have confirmed that the standard resynchronization attack does not
always work in practice with ϕ IV s. This is due to two reasons, the first being
imperfect behavior of the function f . However, this effect is not very important
because in most stream ciphers the function f has good statistical properties,
which typically include balancedness and high nonlinearity. A second reason is
that sometimes collisions occur between two values iv

a
t and iv

b
t where a 6= b. We

will show several ways to overcome this problem.

5.1 Computational Approach

Two-phase attack. We implement the algorithm in two steps. The first step,
the resynchronization attack, retains a set of values for each of the k0,k1 . . .kp−1.
In a second step, we then search through all possible combinations until we have
found the correct secret key.

Simulations have shown that for ϕ (or more) known IV s, the time complexity
of the second step is negligible. In other words, the resynchronization attack (ex-
tended with the fast search step) is always successful under realistic assumptions
with ϕ known IV s.

Using this two-step algorithm, one can also mount a resynchronization attack
with R < ϕ known IV s. The time complexity of the second step can then be

shown to be about 2(ϕ−R)· k
ϕ . Even if this complexity increases exponentially

with decreasing R, this shows that a resynchronization attack is still feasible for
R smaller than (but close to) ϕ.

Overlapping bits. There is also another interesting way to perform a resyn-
chronization attack when R < ϕ. Let’s take the case R = ϕ − 1. For kt, we will
get two possibilities after the exhaustive search. But looking at the bits of these
two possibilities kt,1 and kt,2, about half of these will be equal, and will therefore
certainly be the correct values for these bits of kt. This implies that we have still
found ϕ/2 linear equations in K, and we will just need frames that are twice as
long as in the standard attack, i.e., have length T ≥ 2k/ϕ each. This is still very
realistic in most cases. We can develop a similar reasoning for smaller values of
R, but the length of the frames and the complexity required increases rapidly:

they can be shown to be 22ϕ−R−1 · k/ϕ and 22ϕ−R−1 · k/ϕ · 2ϕ respectively (see
App. A).

9

In Table 2, we summarize the complexities of the attacks. We also give a
realistic example for a secret key of k = 300 bits and ϕ = 30. This clearly shows
that limiting the number of allowed resyncs per secret key to less than ϕ will not
prevent a resynchronization attack. We will also give an example of this later on
when we discuss the attack on Bluetooth.

Table 2. The complexities of the practical resynchronization attacks

Attack Resyncs needed Length of each frame Total complexity

Daemen et al. ϕ k/ϕ /ϕ · 2ϕ

30 10 bit 233

Two-phase attack R(< ϕ) k/ϕ k/ϕ · 2ϕ + 2(ϕ−R)·k/ϕ

29 10 bit 233

28 10 bit 233

27 10 bit 233

26 10 bit 240

Overlapping bits R(< ϕ) 22ϕ−R
−1 · k/ϕ 22ϕ−R

−1 · k/ϕ · 2ϕ

29 20 bit 234

28 80 bit 236

27 1280 bit 240

26 328 kb 248

5.2 Using Algebraic Attacks

As we have pointed out, Table 1 implies the following system of equations:

zi
t = f(kt ⊕ iv

i
t), 0 ≤ i ≤ R − 1, 0 ≤ t ≤ T − 1. (11)

Hence, another possibility is to try to solve it as a whole instead of “column-
by-column.” The linearization method described in 2.3 requires that the number
of linearly independent equations exceeds the number of occurring monomials
M. This requires T · R ≥ M. As M is upper bounded by β(k, d′) ∈ O(kd′

)
with d′ = deg f , the lower the degree of the equations the faster the attack.
In the literature [7, 8, 18, 4], several conditions and methods are described for
transforming (11) into a new system of equations

g(kt ⊕ iv
i
t, z

i
t) = 0, 0 ≤ i ≤ R − 1, 0 ≤ t ≤ T − 1. (12)

with d := deg g < deg f . Next, we will show how to use the resync setting to
decrease the degree of (12) further.

10

The Degree-d-1 attack. The first approach is to construct new equations of
degree ≤ d − 1. We express g by

g(kt ⊕ iv
i
t, z

i
t) =

⊕

j

gj(kt ⊕ iv
i
t) · g̃j(z

i
t) . (13)

Observe that the functions gj and g̃j depend only on g and are all known to the
attacker. The idea is to find appropriate linear combinations of (13) to reduce
the degree. Let I := {j| deg gj = d} and rewrite (13) to

g =
⊕

j∈I

gj · g̃j

︸ ︷︷ ︸

deg gj = d

⊕
⊕

j 6∈I

gj · g̃j

︸ ︷︷ ︸

deg gj<d

. (14)

Theorem 8 provides a method for decreasing the degree at least by 1:

Theorem 8 Let g be expressed as described in (13). For any known iv
0
t , . . . , iv

|I|
t

and corresponding known outputs zi
t, coefficients c0, . . . , c|I| ∈ {0, 1} with at least

one ci 6= 0 can be computed such that the degree of
⊕|I|

i=0 ci · g(kt ⊕ iv
i
t, z

(i)
t) is

≤ deg g − 1.

Proof. We set gi
j := gj(kt ⊕ iv

i
t) and g̃i

j := g̃j(z
i
t) ∈ {0, 1}. With (13), we can

write

|I|
⊕

i=0

ci · g(kt ⊕ iv
i
t, z

i
t) =

⊕

j∈I

|I|
⊕

i=0

ci · g̃i
j · gi

j ⊕
⊕

j 6∈I

|I|
⊕

i=0

ci · g̃i
j · gi

j

The second part of the right hand side has a degree ≤ d − 1 by definition of
I. The idea is to find coefficients c0, . . . , c|I| ∈ {0, 1} such that the first part of
the right hand side has degree ≤ d − 1 too. By Corollary 6, it is sufficient that
∑|I|

i=0 ci · g̃i
j (treated as an integer) is an even number for all j ∈ I.

We show now that it is always possible. For each i we define the vector
−→
Vi :=

(

g̃
(i)
1 , . . . , g̃

(i)
|I|

)

∈ {0, 1}|I|. Then the assumption above is equivalent to
⊕

i ci·
−→
Vi =

−→
0 . By the theory of linear algebra, the |I|+1 vectors of the |I|-dimensional vector
space {0, 1}|I| are linearly dependent. Therefore, such coefficients ci exist. ⊓⊔

Let Me be the number of monomials of degree ≤ e occurring in (12). The
attack complexity is as follows. First we have to calculate (for a fixed clock t) the
coefficients ci. This requires O(|I|3) operations. Then, the computation of the
function of degree ≤ d − 1 is equivalent to the summation of (several) vectors of
size Md−1. The two steps have to be repeated about Md−1 times to get enough
linearly independent equations of degree ≤ d−1. The final step is to use Gaussian
elimination to solve the linearized system of equations ≈ (Md−1)

3. Therefore the
overall number of operations is about

(
|I|3 + Md−1

)
· Md−1 + (Md−1)

3. (15)

11

Because of Me ≤ β(k, e), an upper bound is

(
|I|3 + β(k, d − 1)

)
· β(k, d − 1) + β(k, d − 1)3. (16)

Note that it may happen that
⊕

i ci · g(kt ⊕ iv
i
t, z

i
t) is equal to zero for some t.4

As opposed to fast algebraic attacks [8, 3], this approach does not require the
highest-degree monomials to be independent of the key stream bits. Moreover,
the number of key stream bits required is ≤ β(k, d− 1)+ |I| instead of ≤ β(k, d).
On the other hand, fast algebraic attacks benefit from the fact that the most
time consuming part can be sourced out in a precomputation step. This is not
possible here. Another advantage is that its applicability is independent of the
values of iv

i
t and zi

t and that it does not require ϕ to be low.

The Degree-e attack. So far, we concentrated only on decreasing the degree
by 1. But clever combinations may reduce the degree even further. In the worst
case these combinations may be linear, even if the degree of g is high. This is for
example the case for the E0 key stream generator.5 We develop now the theory
how to compute the lowest possible degree. In the following, we treat k as ϕ
unknowns.

Definition 9 We set S(g) := {g(k⊕ iv, z) | iv ∈ {0, 1}ϕ, z ∈ {0, 1}} and define
by < g >:=< S(g) > the linear span of S(g) (i.e., all possible linear combina-
tions). <g> is a vector space over the finite field GF(2). By dim g we define the
dimension of < g > and by B(g) an arbitrary basis of < g >. Further on we set
Md(g) to be all monomials of degree ≤ d which occur in S(g).

From the theory of linear algebra, the following theorem is obvious:

Theorem 10 A function of degree ≤ e exists in < g > only if the vectors in
B(g) ∪Me(g) are linearly dependent.

Let S be a set of Boolean functions. We now describe an algorithm to compute
a linearly independent set of functions < S > with the lowest possible degree e:
We treat the functions in S like rows of a matrix where each column reflects one
occuring monomial. Then, we apply Gaussian elimination in such way that the
monomials with the highest degree are eliminated first and so on. Finally, we just
pick those functions in the result with the lowest degree.

If S = B(g), the algorithm computes the lowest possible value for e. Let
B̃ := {g(kt ⊕ iv

i
t, z

i
t) | 0 ≤ i ≤ R − 1} be the set of functions available to the

attacker. < B̃ > might be only a subset of < g >. In this case, the lowest possible
degree can be higher.

We try now to estimate the complexity of the Degree-e attack. The first
step is to find an appropriate linear combination in B̃. The effort is about
(dim g)2 · |Md(g)| to find the linear combination and about Me to compute

4 For example, this can not be avoided if g is linear. But in this case, the cipher is weak
anyhow.

5 The best before was a system of equations of degree 3 (see [8]).

12

the corresponding vector of size Me. This has to be repeated at least Me times.
Finally, a system of equations in Me has to be solved (≈ M3

e). Hence, the overall
number of operations is about

((dim g)2 · |Md(g)| + Me) · Me + M3
e. (17)

Because of Me ≤ β(k, e) and dim g ≤ Md ≤ β(k, d), the following expression is
an upper bound for the complexity

(β(ϕ, d)3 + β(k, d)) · β(k, e) + β(k, e)3 (18)

In the individual case, the applicability of this attack depends on many pa-
rameters: the function g, the number R of accessible frames and the corresponding
values of iv

i and zi
t. Hence the attack does not work in every case. On the other

hand, it puts on the designer the responsibility of making sure that these attacks
are not feasible.

Moreover, if the set B̃ is a basis of < g >, then an equation of the lowest
possible degree can be constructed. What is the probability that this happens?
Let s := dim g and R ≥ s. If we assume that each expression g(kt ⊕ iv

i
t, z

i
t) is a

random vector in {0, 1}s then by [29], the probability that B̃ is a basis of < g >
is

Prob =

m∏

i=R−s+1

(

1 − 1

2i

)

(19)

6 Resynchronization Attacks with Large ϕ

The Daemen et al. attack only works when the number ϕ of inputs to the Boolean
function is not too large. However, we will show in this section that using a
linear resynchronization mechanism will inevitably induce weaknesses into stream
ciphers, even when ϕ is very large. We will show a chosen IV attack, a known
IV attack and an algebraic attack.

6.1 A Chosen IV Attack

The standard attack has a large time complexity of ⌈n/ϕ⌉ · 2ϕ evaluations of the
function f , but it only requires ϕ resyncs. We will now show that a tradeoff is
possible.

Let kt in (9) consist of the bits k0, k1, . . . kϕ−1. We make the reasonable
assumption that in the chosen IV attack, the attacker can control the values of
iv

i
t, consisting of the bits iv0, iv1, . . . ivϕ−1. We now start the chosen IV attack.

We first take a constant C. We then perform resyncs with all the values iv
i
t =

C⊕i, where we let i take all values6 going from 0 (00 . . . 0) to 2u−1 (00. . . 011. . . 1)

6 The impact of this choice of i is that the last u input bits of f will take all possible
values. Of course we can do the same with any combination of u bits by choosing i
as needed.

13

for some u. Let’s consider the first two values of our resynchronization attack.
We denote ki ⊕ iv i as xi. We know that:

{
f(x0, x1, . . . xϕ−1) = z0

0

f(x0, x1, . . . xϕ−1 ⊕ 1) = z1
0 .

(20)

By XORing both equations and using Theorem 7 we get:

f1(x0, x1, . . . xϕ−2) = z0
0 ⊕ z1

0 , (21)

where the Boolean function f1 has many properties that are desirable for an
attacker. The degree of f1 is lower, it has fewer monomials and it depends on less
variables than f . This makes many attacks much easier.

In our attack, we will apply this method with 2u chosen IV s in an iterative
way. As an illustration, these are the equations for u = 2.

f(. . . xϕ−2, xϕ−1) = z0
0

f(. . . xϕ−2, xϕ−1 ⊕ 1) = z1
0

}

⇒ f1(. . . xϕ−2) =
z0
0 ⊕ z1

0

f(. . . xϕ−2 ⊕ 1, xϕ−1) = z2
0

f(. . . xϕ−2 ⊕ 1, xϕ−1 ⊕ 1) = z3
0

}

⇒ f1(. . . xϕ−2 ⊕ 1) =
z2
1 ⊕ z3

0

⇒ f2(x0 . . . xϕ−3) =
z0
0 ⊕ z1

0 ⊕ z2
0 ⊕ z3

0

(22)
The basic attack requires at every time 2u · ϕ resyncs, in order to obtain ϕ − u
equations in the Boolean function fu(x0 . . . xϕ−u−1) which can then be used in a
normal resynchronization attack.

In practice, however, we note that the number of monomials, variables and
the degree of the equation decreases very rapidly, making the attack work with
very small complexity. We will give an example using the Boolean function of
Toyocrypt in Sect. 9.2.

6.2 A Known IV Attack

We now describe another attack, which shows that the linear resynchronization
mechanisms introduces weaknesses in the fixed resync setting for all Boolean
functions.

The principle of the attack is similar to the linear cryptanalysis method,
developed by Matsui for attacking block ciphers [17]. First we search for a linear
expression for the Boolean function that holds with probability p 6= 0.5. We then
collect sufficiently many resyncs such that we can determine key bits using a
maximum likelihood method. We will now describe this in more detail.

Our starting point is the fact that for any ϕ-input nonlinear Boolean function
f , we can always find a subset S ⊂ {0, 1, . . . ϕ − 1} for which the equation

⊕

i∈S

xi = f(x0, . . . xϕ−1) (23)

holds with probability 0.5 + ǫ, where ǫ 6= 0. Suppose that the best bias we have
found is ǫ (0 < ǫ ≤ 0.5). For each time t, with R known IV s, we get the following

14

equations:

⊕

i∈S ki =
⊕

i∈S iv0
i ⊕z1

t
...
⊕

i∈S ki =
⊕

i∈S iv I−1
i ⊕zI−1

t ,

(24)

each of which holds with probability 0.5+ǫ. We now count for how many of these
equations the right hand side is 1 respectively 0. We assume then that the correct
right hand side is the value (0 or 1) that occurs most if ǫ > 0, and the value that
occurs least if ǫ < 0.

We now have found one linear equation in the state bits that is true with
some probability. This probability increases with the value of R and is dependent
on the magnitude of ǫ. As in [17], the probability that the equation is correct,
given R resyncs and a bias ǫ, is equal to:

∫ ∞

−2·
√

R·|ǫ|

1√
2 · π

· e−x2/2 · dx = 0.5 + 0.5 · erf (
√

2 · R · |ǫ|) , (25)

where erf is the error function. If we want the probability of correctness to
approach one, we need the number of resyncs R to be c · ǫ−2 for a small constant
value c.

The output of a Boolean function is correlated to at least one linear function
of the inputs, see Xiao and Massey [28]. The smallest bias ǫ that can be found7 is
at least 2−

ϕ
2
−1. This implies that any linear resynchronization mechanism with a

ϕ-input Boolean function f can be broken by this resynchronization attack using
at most about 2ϕ+2 known IV s.

How to search for the best linear approximation has been well-studied. The
Walsh-Hadamard transform can be used to find the best linear approximation,
see [23] for a thorough treatment. In the context of correlation attacks, such
linear approximations have been studied in the literature, both for memoryless
combiners and nonlinear filter generators [23] as for combiners with memory [12,
19].

The biases found in actual Boolean functions used in stream ciphers will
be much higher than the lower bounds described above. This is due to several
reasons: the functions have to be balanced, they have to be easily implementable,
and for combiners they will also have to take into account the trade-off that has
to be made between nonlinearity and resilience, see Sarkar and Maitra [25]. It
can be expected that most Boolean functions used in practice are vulnerable to
this known IV attack on a linear resynchronization mechanism.

7 This lower bound for ǫ follows from the universal nonlinearity bound for Boolean
functions. Equality applies to the so-called bent functions. Stream ciphers typically
do not use bent functions because they are not balanced. The size of the smallest
bias to be found in balanced Boolean functions is still an open problem, but some
bounds have been presented, see [11] for an overview. For simplicity, we take the bias
of bent functions, but the bias for actual functions will be higher and therefore less
resyncs will be needed in practice.

15

6.3 An Algebraic Attack

As said in Sect. 5.2, the goal is to find a solution to the equations:

g(kt ⊕ iv
i
t, z

i
t), 0 ≤ i ≤ R − 1, 0 ≤ t ≤ T − 1 (26)

Again, the approaches to reduce the degree as described in Sect. 5.2 can be also
applied here.

If all bits of kt are uniquely specified by the equations, use Gröbner bases
or the linearization method to solve (26) clock by clock. If the degree of the
equations is low (e.g., Toyocrypt), it might be faster and require less IV s than
the approach described in 6.2.

6.4 The Degree-1 Attack

Another approach is to apply the methods described in Sect. 5.2 if e = 1 is
possible. In this case, we get at least one linear equation in the bits of kt directly.
If we repeat this for enough values of t the corresponding K can be reconstructed
by solving a system of linear equations.

The exact effort depends on many parameters: the function g, the number R
of frames, the corresponding values of iv

i and zi
t and so on (see also Sect. 5.2).

Due to (17), the number of operations is about

((dim g)2 · |Md(g)| + k) · k + k3 (27)

or more general
(β(ϕ, d)3 + k) · k + k3 (28)

Expression (28) shows that the approach might be feasible if the degree d is small.

7 Attacks on Combiners with Memory

Many stream ciphers use their linear state in conjunction with a (small) non-
linear memory in order to avoid the trade-off between correlation immunity and
nonlinearity for the combining function, see Rueppel [22].

In this section we demonstrate that resynchronization attacks can also be
performed on stream ciphers with memory. Note that the known IV attack of
Sect. 6 can also be applied on combiners with memory.

7.1 A Standard Resynchronization Attack

We will use the following model based on the general case of the combiners with
memory:

Si
0 = A · K ⊕ B · IV i (29)

M i
0 = const (30)

Si
t+1 = C · Si

t (31)

M i
t+1 = h(D · Si

t, M
i
t) = h(kt ⊕ iv

i
t, M

i
t) (32)

zi
t = f(D · Si

t, E · M i
t) = f(kt ⊕ iv

i
t, E · M i

t) . (33)

16

In practice, some designs only start outputting key stream when t = µ; this
results in an improved diffusion of the key and the initialization vector into the
nonlinear state. We will discuss both the cases µ = 0 and µ > 0. Note that in
some designs M i

0 is also dependent on the key and the IV . This can in our model
be treated in the same way as the case µ > 0.

µ = 0. In the case µ = 0, the resynchronization attack can easily be adapted
to work also with combiners with memory. We again describe the attack with ϕ
resyncs.

The first series of outputs can be written as zi
0 = f(k0 ⊕ iv

i
0, M

i
0). Because

M i
0 is known, the attacker can recover k0 by exhaustive search. He can then

determine M i
1 for all the resyncs using (32). Now he knows all inputs to (33) for

t = 1 except k1, which he can again recover through exhaustive search, and so
on. All complexities of this attack are exactly the same as for the case without
memory. The only difference is that each step now consists of one evaluation of
f and of ϕ evaluations of h.

µ > 0. The attacker does not know the initial contents of the m-bit memory
M . Moreover, this memory is different for each resync. The attack now works
exactly as above, except that the attacker will first have to guess the contents of
M at t = µ. The time complexity of the attack now becomes 2ϕ·m · ⌈n/ϕ⌉ · 2ϕ

evaluations of the f and h function. As ϕ and m are quite small in most actual
designs, the attacks are feasible.

Let’s take as an example a combiner consisting of 5 LFSRs with total length
320 bits, and with 5 memory bits. The complexity of the resynchronization attack
is then equal to 236 function evaluations.

Practical considerations of the attack. As for the case without memory,
we would like that the attack always works with ϕ resyncs. At some times, we
will have several possible values for ki. In a second phase, we cannot use the
exhaustive search method of the memoryless case, because we would then have
to try all possible values for updating the memory bits, which would increase the
complexity enormously.

This problem can be easily overcome by implementing the algorithm with a
depth-first search. When at some time t we have several possibilities for kt, we
pick the first one and go to t + 1. If we have no solution at time t, we go back
to t− 1 and try the next possibility there. When we have arrived at time ⌈k/ϕ⌉,
we have found a sufficient number of values and we check if we have found the
correct key. Simulations indicate that when the number of resyncs R is equal to
or larger than ϕ, the attack will find the correct values very quickly and has to
search very few states.

The same approach can also be used when the attacker disposes of less than
ϕ resyncs, i.e., R < ϕ. In the case µ > 0 this may even be advantageous from a
complexity viewpoint, because we have to perform an exhaustive search over less
than ϕ initial memory states. But again the complexity of the search algorithm

17

will increase exponentially with decreasing R, making this attack feasible only
when R is close to ϕ.

A particularity is the case when the Boolean output function f is linear. In
that case we don’t get new information at each new resync, because all equations
zi
0 = f(k0⊕iv

i
0, M

i
0) are equivalent. This problem can be easily overcome by using

the memory update function h to do the checks during the search. An example
of such a linear output function is E0, which we will describe in Sect. 9.1.

7.2 Using Ad-hoc Equations

Another possibility is the use of ad-hoc equations which have been introduced in
[2]. The authors showed that for a combiner with memory with m memory bits
Mt, an equation

F (Si
t, . . . , S

i
t+m, zi

t, . . . , z
i
t+m) = 0 (34)

of degree ≤ ⌈ϕ·(m+1)
2 ⌉ always exists which is completely independent of the mem-

ory bits. They also propose an algorithm to find ad-hoc equations

G(Si
t , . . . , S

i
t+r−1, z

i
t, . . . , z

i
t+r−1) = 0 (35)

with the lowest possible degree d if ϕ · r is not too large. For example, an ad-hoc
equation of degree 4 using r = 4 successive clocks exists for the E0 key stream
generator.

As (35) is independent of the memory bits, these equations can be used for
all attacks described in the previous sections. An additional requirement is now
that the attacker knows enough successive key stream bits.

If ϕ·r is small the Daemen et al. attack is applicable. The number of operations
is about

⌈k/(ϕ · r)⌉ · 2ϕ·r + k3 (36)

The methods described in Sect. 5.2 to reduce the degree of the equations can be
easily adapted to the case of ad-hoc equations.

8 Attacks on Stream Ciphers with Nonlinear
Resynchronization

In this section, we will show that stream ciphers with a nonlinear resynchro-
nization mechanism can also be vulnerable to resynchronization attacks. A first
attack is a chosen IV attack; its principle is similar to that of Daemen et al. The
second attack is a known IV attack that uses the principle of linear approxima-
tions as used in the known IV attack of Sect. 6.2. We will demonstrate these
attacks on the two-level memoryless combiner. The framework of the attack is
shown in Fig. 1. In a first level, the key and an IV are linearly loaded into the
LFSRs. The input to f at time t of the level 1 initialization is denoted xt. The
following holds:

xt = (x0
t , x

1
t , . . . , x

ϕ−1
t) = kt⊕ ivt = (k0

t ⊕ iv0
t , k

1
t ⊕ iv1

t , . . . , k
ϕ−1
t ⊕ ivϕ−1

t) . (37)

18

The output yi of level 1 is collected and is used as the initial state for the level 2
generator. We take here the simplifying assumption that this is done as shown
in the figure. Level 2 generates the key stream zi.

Fig. 1. Model for a two-level combiner

8.1 A Chosen IV Attack

We will show an attack scenario on this construction which holds under the
assumption that the attacker can choose the value of the ivs which go into the
Boolean function (this is for instance the case when the initial state equals the
XOR of the key and the initialization vector).

We start with t = 0. We let iv0 take j different values, while keeping the
other ivs constant. We obtain the following equations:

f(f(k0 ⊕ iv
1
0), y1, . . . yϕ−1) = z1

0

f(f(k0 ⊕ iv
2
0), y1, . . . yϕ−1) = z2

0

. . .

f(f(k0 ⊕ iv
j
0), y1, . . . yϕ−1) = zj

0 .

(38)

Denote the vector (y1, . . . yϕ−1) by r. In half of the cases, we will see that all zi
0

are equal (either all 0 or all 1). This is due to the fact that f(0,r) = f(1,r). In
the other half of the cases, which is of interest here, the zi

0 take both the values
0 and 1 in a random-looking way; which is due to the fact that f(0,r) 6= f(1,r).

Assume that we are in the latter case. We now guess the ϕ− 1 bits of r, let’s
call this guess g. If f(0,g) = f(1,g), then our guess is certainly not correct and
we proceed to the next guess. If f(0,g) 6= f(1,g), the guess is possible; we now
get j equations in k0 of the form:

f(k0 ⊕ iv
i
0) = zi

0 ⊕ f(0,g) . (39)

The equations we have obtained are exactly the same as in the case of the linear
resynchronization mechanism. If j is large enough, we expect to find a unique
solution for k0 over all the guesses for g. It can be shown that we need about
2 · ϕ chosen IV s to achieve this.

19

In the same way, we can also recover k1,k2, . . . which gives us the whole secret
key of the system. The attack requires a total of about 2 ·k chosen IV s and has a
time complexity of ⌈k/ϕ⌉ · 22·ϕ−1. This attack has been implemented on various
8-bit Boolean functions, and we can easily recover the key.

8.2 A Known IV Attack

In this attack, we extend the approach in which we search a bias in the ϕ-input
Boolean function (see the known IV attack in Sect. 6) in a straightforward way to
the case of the two-level combiners. Each bit now goes twice through the function
f , but we can show that a bias still persists. The equation we want to hold is as
follows:

⊕

j∈BS

kj =
⊕

j∈BS

iv i
j ⊕ zi

0 , (40)

where the set BS consists of the bits of the set S involved in the linear bias, for
all times t ∈ S of the first level of the combiner. Similar equations can be written
for the next iterations. Let’s denote the cardinality of the set S by s. Of course
it holds that s ≤ ϕ. The cardinality of the set BS is then evidently s2.

The piling-up lemma [17] learns that the probability that this equation holds
is equal to 1/2+2s · ǫs+1, where ǫ is the bias of the Boolean function. The bias of
this equation is thus 2s · ǫs+1, which means we need R = 2−2·s · ǫ−2·s−2 resyncs
to break this system by a known IV attack.

We will show what this implies for actual Boolean functions. We take Boolean
functions with ϕ inputs and resilience ρ. We will use two well-known lower bounds
for the bias ǫ:

{
ǫ ≥ 2−ϕ/2−1

ǫ ≥ 2ρ+1−ϕ ,
(41)

where the first bound is due to Parseval’s relation and the second to the trade-off
between nonlinearity and resilience, see [27]. The cardinality of the set S is now8

s = ρ + 1. We can calculate an upper bound for the number of resyncs needed
for a successful attack as a function of ϕ and of the resilience ρ. This is shown in
Fig. 2 for some values of ϕ. These graphs show that memoryless combiners with
few inputs cannot be made resistant against resynchronization attacks on a two-
level combiner. For larger functions it should be checked whether the Boolean
function is strong enough to withstand the above attack. The bounds given here
may be refined by a more careful examination of the properties of the various
classes of Boolean functions.

8 We conjecture that we will find the bias for ρ+1 in practice. We will certainly find a
bias for ρ+1, as f is ρ-th order correlation immune but not ρ+1-th order correlation
immune. As the cases we discuss are optimal from a designer’s point of view, we
expect the Walsh spectrum to be flattened as much as possible over the values with
Hamming weight > ρ and therefore to find a bias (very close) to ǫ for Hamming
weight ρ + 1. This conjecture can be easily verified for a popular class of functions,
the plateaued functions [30].

20

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

resiliency of the function

lo
g2

(M
ax

im
um

 n
um

be
r

of
 r

es
yn

cs
 n

ee
de

d)

phi=5
phi=10
phi=15
phi=20

Fig. 2. Upper bound for the number of resyncs as a function of the resilience ρ with as
parameter the number ϕ of input bits of the Boolean function

8.3 Implications of the Attacks

The known IV attack described above for the two-level memoryless combiner
can be easily extended to other nonlinear resynchronization mechanisms. It is
also possible to apply the attack on other designs, such as combiners with mem-
ory, nonlinearly filtered generators and irregularly clocked shift registers. We can
use techniques as described by Golic [12, 13] to find suitable linear approxima-
tions. Our attack can be used to evaluate the strength of any resynchronization
mechanism, and resistance against this attack is a minimum requirement for any
design. We are currently investigating the impact of this attack on some actual
designs, such as the resynchronization mechanisms of E0 and the NESSIE [21]
candidates.

9 Application to some Key stream Generators

In this section we will describe some actual implementions of the attacks described
in the previous sections. We will describe attacks on E0, Toyocrypt and the
summation generator.

9.1 Attacks on E0

Description of E0. The stream cipher E0 is used in the Bluetooth wireless
standard [5] to encrypt data. The general design of E0 is inspired by the sum-
mation combiner of Rueppel. It is depicted in Fig. 3. E0 consists of 4 LFSRs
(ϕ = 4), with total length of 128 bits (25 bits for LFSR A, 31 for LFSR B, 33
for LFSR C, 39 for LFSR D). E0 also contains 4 nonlinear memory bits, the
so-called blender. At each iteration the LFSRs are clocked, the new state of the

21

blender is calculated as a nonlinear function of its current state and of the 4
output bits of the LFSRs, and one bit of key stream is calculated as the XOR of
the 4 output bits of the LFSRs and of the output bit of the blender.

We want to stress out that our results do not imply an immediate weakness.
The reason is that the Bluetooth encryption consists of a two level encryption.
Therefore any known differences at the beginning of level 1 do not produce known
differences after level 2. On the other hand, the Bluetooth encryption scheme
would be in danger if an ad-hoc equation would be known which depends only
on the input of level 1 and the output of level 2 (= the key stream). The methods
developed in [2] are not practical in this case9 but other ways to find such an
equation may exist. Further on, our attacks show that if a feasible attack on
level 2 of E0 can be found, it is very easy to recover the actual secret key used
in level 1.

Fig. 3. Layout of the stream cipher E0

In level 1 the LFSRs are linearly loaded with the key and an initialization
vector. The blender is set to zero. Then, E0 is clocked 200 times. The first 72
outputs are discarded, the next 128 outputs will be the initial state of the LFSRs
in level 2. The initial state of the blender in the second level is set equal to the
final state of the blender after the first level.

Known IV attack on level 1 of E0. In this section, we describe a resyn-
chronization attack on level 1 of E0 such as described in Sect. 7.1. This attack is
similar to the attack of S. Fluhrer described in [10]. We show that this attack can
be put into the the general framework of resynchronization attacks and hence
gets very efficient once R ≥ ϕ.

In this attack we assume that we have recovered the state of E0 for some
instances of level 2. This could have been done by implementing attacks on frames
of level 2, e.g., an algebraic attack as described by [3]. We now want to recover the

9 The reason is that the output of level 1 is permuted before it is used as the input of
level 2.

22

actual secret key which is used in level 1. In our attack, we will use two properties
of E0. The first is the above mentioned fact that the final state of level 1 of the
blender is also the initial state of level 2. This means that we will know the final
state of the blender in level 1 in our resynchronization attack. The second is that
the blender can be run backwards [24]. Namely, apart from the normal equation
M i

t+1 = h(kt ⊕ iv
i
t, M

i
t), we can also easily determine the function h′ such that

M i
t = h′(kt ⊕ iv

i
t, M

i
t+1).

Our attack is now a regular resynchronization attack on combiners with mem-
ory and µ = 0, with as only particularity that the attack is executed on the level 1
generator running backwards in time. The attack has been implemented in the
depth-first search manner described above. At each iteration we take the next
state that fulfills all equations generated by the LFSRs, by f and by h′.

This attack has been implemented in C and turns out to be very efficient.
Three resyncs already enable us to recover the secret key in several minutes. But
it is only when the number of resyncs is equal to 4 (the number of LFSRs) that
the attack gets very efficient. This is because the search that has to be done
is very limited, as can be predicted by our framework for the resynchronization
attack. The attack runs in a few milliseconds on a PC. The search algorithm only
needs to go through a couple of thousands guesses for the states. If the number of
resyncs is larger than 4, the algorithm is even faster because even more conditions
are imposed and even less values need to be searched.

Actual algebraic attacks. The secret key K = (a0, . . . , d38) is the initial state
of four LFSRs A, B C and D. Let at, bt, ct and dt denote their output bits at
clock t. We define

σ1
t := at ⊕ bt ⊕ ct ⊕ dt, σ2

t := atbt ⊕ atct ⊕ atdt ⊕ btct ⊕ btdt ⊕ ctdt,

σ3
t := atbtct ⊕ atbtdt ⊕ atctdt ⊕ btctdt, σ4

t := atbtctdt

Then the ad-hoc equation found in [2] is

G(at−1, . . . , dt−1, . . . , at+2, . . . , dt+2, zt−1, . . . , zt+2)

= (zt−1 ⊕ zt ⊕ zt+1 ⊕ zt+2) ⊕ σ1
t · (zt−1 ⊕ zt+1 ⊕ zt+2) · (1 ⊕ zt) ⊕

⊕σ2
t · (zt−1 ⊕ zt ⊕ zt+1 ⊕ zt+2) ⊕

⊕σ1
t+1 · (1 ⊕ σ2

t) · (zt+1) ⊕ σ1
t+1 · σ1

t · (1 ⊕ zt) · (zt+1) ⊕
⊕σ1

t · (σ2
t+1 ⊕ σ1

t+2 ⊕ σ1
t−1) · (1 ⊕ zt) ⊕ σ4

t ⊕ σ2
t+1 · σ2

t

Obviously, it is r = d = 4 and |I| = 1 . We calculated that dimG = 39, |Md(G)| =
213, e = 1 (the minimum possible degree) and M1 = n = 128, M4 ≈ 223.07 and
M3 ≈ 218.32. Figure 4 shows the estimated efforts for the attacks.

Let B̃ := {G(kt ⊕ iv
i
t, z

i
t, z

i
t+1, z

i
t+2, z

i
t+3)| 0 ≤ i ≤ R − 1} be the set of

functions available to the attacker. Using (19), we calculated the probability of
B̃ being a basis of V (G), depending on the number R of resyncs:

R 39 40 41 42 43 44 45 46
Prob 28.9 57.8 77 88 93.9 96.9 98.4 99.2

23

Attack Degree-d -1 Degree-1 attack Daemen et al.
Attack Attack with ad-hoc eqs.

Equation (15) (27) (36)

Effort 254.25 225.38 223.32

Fig. 4. Attacks on the E0 key stream generator

Additionally, we’ve checked the estimation by repeating the following test
3000 times: For a fixed random value of k0 we generated randomly iv

i
0 and

corresponding expressions G(k0 ⊕ iv
i
0, z

i
0, z

i
1, z

i
2, z

i
3), until the number of linearly

independent expressions was equal to dimG = 39. It turned out that the prob-
abilities computed with (19) were too optimistic. The following table shows the
results of our test:

R ≤ 39 40 41 42 43 44 . . . 49 50 . . . 58 59
% 1.2 6.5 16 28.2 41.7 54.3 . . . 89.1 91.8 . . . 98.8 99.1

In more than 90% of all cases, the number R of frames was between 39 and 50,
and in more than 99% between 39 and 59. Hence, we assume that the Degree-
e attack and the Degree-1 attack work against E0 with a high probability for
about 59 resynchronizations. Additionally, we expect similar effects for other key
stream generators.

We did similar tests concerning the Daemen et al. attack using ad-hoc equa-
tions. I.e., we did 6000 times the following test: We reinitialized the cipher for
random iv’s until 9 bit of information of k0 were uniquely specified.10 It turned
out that R was always ≥ 19. The following table shows the results of our test:

R ≤ 19 20 21 22 . . . 32 33 . . . 43 44 . . . 58 59
% 0.1 0.3 1 1.9 . . . 49.2 55.3 . . . 89.5 91 . . . 98.5 99.2

In more than 90% of all cases, the R was between 19 and 44, and in more than
99% between 19 and 59. As expected, the Daemen et al. attack needed less frames
than the Degree-1 attack.

We simulated the Degree-1 attack and the Daemen et al. attack on the whole
E0 keystream generator independently 500 times on a computer. I.e., for a fixed
unknown key K we generated new frames with random known differences until
the bits a1, b1, c1, d1,. . . ,a39, b39, c39, d39 could be reconstructed.11 Figure 5 dis-
plays the results. It shows how many times a given number of frames was needed.
E.g., in 12 resp. 39 cases out of 500, the Degree-1 attack resp. the Daemen et
al. attack needed 47 frames. In our simulations, the Degree-1 attack needed on
average more frames. The same holds for the time effort: Degree-1 attack needed
on average 239 s, Daemen et al. attack 4 only 91 s.

10 In fact, due to the form of G, only 8 of the ϕ · r = 16 bits can be reconstructed
directly. The other 8 bits occur only as a linear combination = 1 bit information.

11 The attack could be improved by using the fact that a1, . . . , a25 uniquely determine
a26, . . . , a39 etc. or by reconstructing only a part of the key and guess the missing
bits.

24

Frames 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Degree-1 attack 0 0 0 0 0 0 0 0 0 1 2 12 36 49 41

Daemen et al. 1 4 6 8 9 14 13 20 30 21 26 39 29 36 31

Frames 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

Degree-1 attack 55 48 44 41 26 22 18 12 15 10 6 10 9 9 7

Daemen et al. 23 23 28 14 9 19 9 8 8 9 6 9 3 7 7

Frames 66 67 68 69 70 71 72 73 74 75 76 78 83 98

Degree-1 attack 3 1 5 2 3 2 3 1 0 2 1 3 1 0

Daemen et al. 3 3 4 3 2 5 5 2 2 1 0 0 0 1

Fig. 5. Computer simulations of the Degree-1 attack and the Daemen et al. attack using
ad-hoc equations on the E0 key stream generator

9.2 Attacks on Toyocrypt

Description of Toyocrypt. Toyocrypt was submitted to Cryptrec, the Japanese
government call for cryptographic primitives, and was accepted to the second
phase but has finally been rejected. A description can be found in [20]. At each
clock t the key stream bit zt is produced by

zt = f(Lt(K)) = f(kt
0, . . . , k

t
127) = kt

127 ⊕
∑62

i=0 kt
ik

t
αi

⊕ kt
10k

t
23k

t
32k

t
42⊕

⊕kt
1k

t
2k

t
9k

t
12k

t
18k

t
20k

t
23k

t
25k

t
26k

t
28k

t
33k

t
41k

t
42k

t
51k

t
53k

t
59 ⊕

∏62
i=0 kt

i ,
(42)

with {α0, . . . , α62} being some permutation of the set {63, . . . , 125}.

Algebraic attacks. As noticed in [7], multiplying f with (1⊕kt
23) resp. (1⊕kt

42)
provides two ad-hoc equations G1 and G2 of degree 3.

Due to the large number ϕ ·r of key bits used in G1 and G2) (ϕ = 126, r = 1),
the computation of dimG1 resp. dimG2 in the naive way is infeasible. Therefore,
we concentrate only on the Degree-d -1 attack. As |I| = 1, M3 ≤ β(128, 3) =
218.42 and M2 ≤ β(128, 2) = 213.01, the number of operations is about is

(
|I|3 + M3

)
·M2 + M3

2 ≤ (1 + 218.42) · 213.01 + (213.01)3 ≈ 239.04

Chosen IV attack. We can see, for instance, that only the monomial x24 ·x63 in
(42) contains the variable x63. We now perform a chosen IV attack as in Sect. 6.1
with two IV s that only differ in bit x63. Eliminating all terms as in (20) gives us
the following simple equation for t = 0:

x24 = z0
0 ⊕ z1

0 , (43)

which is a simple linear equation in the linear state bits. We need just n such
equations to determine the entire linear state of the algorithm. We can obtain
these easily by performing more resyncs as above for other times, and by do-
ing resyncs at the same time but flipping another bit that also only appears in
monomials of degree 2 (there are many of them here).

25

9.3 The Summation Generator with 4 Inputs

The summation generator was proposed by Rueppel [23]. The number ϕ of inputs
(i.e., the number of LFSRs) can be chosen arbitrarily. In [16], the authors proved
that an ad-hoc equation of degree ≤ 2⌈log2

ϕ⌉ always exists if r = ⌈log2 ϕ⌉ + 1
clocks are regarded. We consider only the case of ϕ = 4 inputs and use the ad-hoc
function G of degree 4 given in [16]:

0 = σ4
t ⊕ (1 ⊕ zt) · σ3

t ⊕ σ2
t · σ1

t+1 ⊕ (1 ⊕ zt+1) · σ2
t ⊕ σ2

t+1 ⊕ σ1
t+2 ⊕ zt+2

⊕(1 ⊕ zt) · σ1
t · σ1

t+1 ⊕ (1 ⊕ zt) · (1 ⊕ zt+1) · σ1
t ⊕ (1 ⊕ zt+1) · σ1

t+1

We calculated that |I| = 1, dimG = 19, |Md(G)| = 69, e = 1 and appreciated
M4 resp. M3 by β(128, 4) ≈ 223.32 resp. β(128, 3) ≈ 218.43. Figure 6 displays our
estimations for some attacks. To be comparable with the other results in this
paper, we have chosen a key size of n = 128.

Attack Degree-d -1 Degree-e- Daemen et al.
Attack Attack using ad-hoc eqs.

Equation (15) (27) (36)

Effort 255.25 222.34 223.32

Fig. 6. The Degree-d -1 Attack, the Degree-e attack and the Daemen et al. attackon
the summation generator with 4 LFSRs and a key size of 128

10 Conclusions

In [9], Daemen, Govaerts and Vandewalle presented the original resynchroniza-
tion attack on synchronous stream ciphers. In this paper, we have extended this
resynchronization attack in several directions, by using new attack methods and
by combining the attack with cryptanalytic techniques such as algebraic attacks
and linear cryptanalysis.

Our attacks on linear resynchronization mechanisms show that a linear resyn-
chronization mechanism should never be used in practice. Even if the system uses
few resyncs, has an input function with many inputs and has a non-linear mem-
ory, it will still very likely contain weaknesses that can be exploited by one of
our attack scenarios.

Nowadays, resynchronization mechanisms are typically designed in an ad hoc
manner, by making them nonlinear to an extent that seems to be sufficient. Our
attacks on nonlinear resynchronization mechanisms lead to a better understand-
ing of the strength of such mechanisms and can be used to provide a lower bound
for the nonlinearity required from a secure resynchronization mechanism. This
allows designers to consider the trade-offs between the speed and the security of
a resynchronization mechanism.

26

Acknowledgements

The authors would like to thank An Braeken, Joe Cho, Matthias Krause, Ste-
fan Lucks, Erik Zenner and the anonymous referees for helpful comments and
discussions.

References

1. R. Anderson, A5 (Was: Hacking Digital Phones), sci.crypt post, June 1994.
2. F. Armknecht, M. Krause, Algebraic Attacks on Combiners with Memory, Crypto

2003, LNCS 2729, D. Boneh, Ed., Springer-Verlag, pp. 162-176, 2003.
3. F. Armknecht, Improving Fast Algebraic Attacks, FSE 2004, LNCS 3017, B. Roy,

W. Meier, Eds., Springer-Verlag, pp. 65–82, 2004.
4. F. Armknecht, On the Existence of Low-degree Equations for Algebraic Attacks,

Cryptology ePrint Archive, Report 2004/185, 2004.
5. Bluetooth S.I.G., Specification of the Bluetooth System, Version 1.2, available from

www.bluetooth.org/spec, 2003.
6. Y. Borissov, S. Nikova, B. Preneel, J. Vandewalle, On a Resynchronization Weak-

ness in a Class of Combiners with Memory, SCN 2002, LNCS 2576, S. Cimato,
C. Galdi, G. Persiano, Eds., Springer-Verlag, pp. 164–173, 2002.

7. N. Courtois, W. Meier, Algebraic Attacks on Stream Ciphers with Linear Feedback,
Eurocrypt 2003, LNCS 2656, E. Biham, Ed., Springer-Verlag, pp. 345–359, 2003.

8. N. Courtois, Fast Algebraic Attacks on Stream Ciphers with Linear Feedback, Crypto
2003, LNCS 2729, D. Boneh, Ed., Springer-Verlag, pp. 177–194, 2003.

9. J. Daemen, R. Govaerts, J. Vandewalle, Resynchronization Weaknesses in Syn-
chronous Stream Ciphers, Eurocrypt 1993, LNCS 765, T. Helleseth, Ed., Springer-
Verlag, pp. 159–167, 1993.

10. S. Fluhrer, Improved key recovery of level 1 of the Bluetooth Encryption System,
Cryptology ePrint Archive, Report 2002/068, 2002.

11. C. Fontaine, Contribution à la Recherche de Fonctions Booléennes Hautement Non
Linéaires, et au Marquage d’Images en Vue de la Protection des Droits d’Auteur,
PhD Thesis, Paris University, 1998.

12. J. Golic, Correlation via Linear Sequential Circuit Approximation of Combin-
ers with Memory, Eurocrypt 1992, LNCS 658, R. Rueppel, Ed., Springer-Verlag,
pp. 113–123, 1992.

13. J. Golic, Linear Cryptanalysis of Stream Ciphers, FSE 1994, LNCS 1008, B. Preneel,
Ed., Springer-Verlag, pp. 154–169, 1994.

14. J. Golic, G. Morgari, On the Resynchronization Attack, FSE 2003, LNCS 2887,
T. Johansson, Ed., Springer-Verlag, pp. 100–110, 2003.

15. A. Joux, F. Muller, A Chosen IV Attack against Turing, SAC 2003, LNCS 3006,
M. Matsui, R. Zuccherato, Eds., Springer-Verlag, pp. 194–207, 2003.

16. D. Lee, J. Kim, J. Hong, J. Han, D. Moon, Algebraic Attacks on Summation Gen-
erators, FSE 2004, LNCS 3017, B. Roy, W. Meier, Eds., Springer-Verlag, pp. 34–48,
2004.

17. M. Matsui, Linear Cryptanalysis Method for DES Cipher, Eurocrypt 1993,
LNCS 765, T. Helleseth, Ed., Springer-Verlag, pp. 386–397, 1993.

18. W. Meier, E. Pasalic, C. Carlet, Algebraic Attacks and Decomposition of Boolean
Functions, Eurocrypt 2004, LNCS 3027, C. Cachin, J. Camenisch, Eds., Springer-
Verlag, pp. 474-491, 2004.

27

19. W. Meier, O. Staffelbach, Correlation Properties of Combiners with Memory in
Stream Ciphers (extended abstract), Eurocrypt 1990, LNCS 473, I. Damgard, Ed.,
Springer-Verlag, pp. 204–213, 1990.

20. M. Mihaljević, H. Imai, Cryptanalysis of Toyocrypt-HS1 stream cipher, IEICE
Transactions on Fundamentals, vol. E85-A, pp. 66–73, Jan. 2002. Available at
http://www.csl.sony.co.jp/ATL/papers/IEICEjan02.pdf.

21. New European Schemes for Signature, Integrity and Encryption,
http://www.cryptonessie.org

22. R. Rueppel, Correlation Immunity and the Summation Generator, Crypto 1985,
LNCS 218, H. Williams, Ed., Springer-Verlag, pp. 260–272, 1985.

23. R. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, Berlin, 1986.
24. M. Saarinen, Bluetooth und E0, sci.crypt post, February 2002.
25. P. Sarkar, S. Maitra, Nonlinearity Bounds and Constructions of Resilient Boolean

Functions, Crypto 2000, LNCS 1880, M. Bellare, Ed., Springer-Verlag, pp. 515–532,
2000.

26. V. Strassen, Gaussian Elimination is Not Optimal, Numerische Mathematik,
vol. 13, pp. 354-356, 1969.

27. Y. Tarannikov, On Resilient Boolean Functions with Maximum Possible Nonlin-
earity, Indocrypt 2000, LNCS 1977, B. Roy, E. Okamoto, Eds., Springer-Verlag,
pp. 19–30, 2000.

28. G. Xiao, J. Massey, A Spectral Characterization of Correlation-immune Combining
Functions, IEEE Trans. Inf. Theory, Vol. IT-34, pp. 569–571, 1988.

29. K. Zeng, C. Yang, T. Rao, On the Linear Consistency Test (LCT) in Cryptanaly-
sis with Applications, Crypto 1989, LNCS 435, G. Brassard, Ed., Springer-Verlag,
pp. 164–174, 1990.

30. Y. Zheng, X. Zhang, Plateaued Functions, ICICS 1999, LNCS 1726, V. Varadhara-
jan, Y. Mu, Eds., Springer-Verlag, pp. 284–300, 1999.

A Calculation of the Complexities for the Overlapping
Bits Attack

Suppose we have done R resynchronizations, where R < ϕ. This implies that on
average 2ϕ−R solutions remain for kt. The probability that one specific bit is the

same in all these solutions is (1/2)2
ϕ−R−1. We have found one bit of information

if this is the case, else we didn’t learn anything. This holds for all ϕ bits of kt.
The average frame length required is now equal to the amount of information

required (the k bits of the key) divided by the average information learned at
each time step:

frame length =
k
ϕ

22ϕ−R
−1

=
k

ϕ
· 22ϕ−R−1 . (44)

The time complexity of the attack now consists of performing an exhaustive
search over 2ϕ possibilities at each time t. Hence the time complexity is equal to

2ϕ times the frame length, which gives n
ϕ · 22ϕ−R−1 · 2ϕ.

